
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/314871548

Runtime Verification for Detecting Suspension Bugs in Multicore and Parallel

Software

Conference Paper · March 2017

DOI: 10.1109/ICSTW.2017.20

CITATIONS

0
READS

25

3 authors:

Some of the authors of this publication are also working on these related projects:

Risk Analysis of Autonomous System of Systems View project

TOCSYC: Testing Of Critical SYstem Characteristics View project

Sara Abbaspour Asadollah

Malardalen University

13 PUBLICATIONS 56 CITATIONS

SEE PROFILE

Daniel Sundmark

Mälardalen University

80 PUBLICATIONS 538 CITATIONS

SEE PROFILE

Hans Hansson

Mälardalen University

165 PUBLICATIONS 3,873 CITATIONS

SEE PROFILE

All content following this page was uploaded by Sara Abbaspour Asadollah on 10 October 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/314871548_Runtime_Verification_for_Detecting_Suspension_Bugs_in_Multicore_and_Parallel_Software?enrichId=rgreq-441210abc0789467fdad7239d51eb8ba-XXX&enrichSource=Y292ZXJQYWdlOzMxNDg3MTU0ODtBUzo1NDc4OTM3NjIxMTc2MzJAMTUwNzYzOTQ2MDA0OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/314871548_Runtime_Verification_for_Detecting_Suspension_Bugs_in_Multicore_and_Parallel_Software?enrichId=rgreq-441210abc0789467fdad7239d51eb8ba-XXX&enrichSource=Y292ZXJQYWdlOzMxNDg3MTU0ODtBUzo1NDc4OTM3NjIxMTc2MzJAMTUwNzYzOTQ2MDA0OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Risk-Analysis-of-Autonomous-System-of-Systems?enrichId=rgreq-441210abc0789467fdad7239d51eb8ba-XXX&enrichSource=Y292ZXJQYWdlOzMxNDg3MTU0ODtBUzo1NDc4OTM3NjIxMTc2MzJAMTUwNzYzOTQ2MDA0OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/TOCSYC-Testing-Of-Critical-SYstem-Characteristics?enrichId=rgreq-441210abc0789467fdad7239d51eb8ba-XXX&enrichSource=Y292ZXJQYWdlOzMxNDg3MTU0ODtBUzo1NDc4OTM3NjIxMTc2MzJAMTUwNzYzOTQ2MDA0OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-441210abc0789467fdad7239d51eb8ba-XXX&enrichSource=Y292ZXJQYWdlOzMxNDg3MTU0ODtBUzo1NDc4OTM3NjIxMTc2MzJAMTUwNzYzOTQ2MDA0OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sara_Abbaspour_Asadollah?enrichId=rgreq-441210abc0789467fdad7239d51eb8ba-XXX&enrichSource=Y292ZXJQYWdlOzMxNDg3MTU0ODtBUzo1NDc4OTM3NjIxMTc2MzJAMTUwNzYzOTQ2MDA0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sara_Abbaspour_Asadollah?enrichId=rgreq-441210abc0789467fdad7239d51eb8ba-XXX&enrichSource=Y292ZXJQYWdlOzMxNDg3MTU0ODtBUzo1NDc4OTM3NjIxMTc2MzJAMTUwNzYzOTQ2MDA0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Malardalen_University?enrichId=rgreq-441210abc0789467fdad7239d51eb8ba-XXX&enrichSource=Y292ZXJQYWdlOzMxNDg3MTU0ODtBUzo1NDc4OTM3NjIxMTc2MzJAMTUwNzYzOTQ2MDA0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sara_Abbaspour_Asadollah?enrichId=rgreq-441210abc0789467fdad7239d51eb8ba-XXX&enrichSource=Y292ZXJQYWdlOzMxNDg3MTU0ODtBUzo1NDc4OTM3NjIxMTc2MzJAMTUwNzYzOTQ2MDA0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Sundmark?enrichId=rgreq-441210abc0789467fdad7239d51eb8ba-XXX&enrichSource=Y292ZXJQYWdlOzMxNDg3MTU0ODtBUzo1NDc4OTM3NjIxMTc2MzJAMTUwNzYzOTQ2MDA0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Sundmark?enrichId=rgreq-441210abc0789467fdad7239d51eb8ba-XXX&enrichSource=Y292ZXJQYWdlOzMxNDg3MTU0ODtBUzo1NDc4OTM3NjIxMTc2MzJAMTUwNzYzOTQ2MDA0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Maelardalen_University?enrichId=rgreq-441210abc0789467fdad7239d51eb8ba-XXX&enrichSource=Y292ZXJQYWdlOzMxNDg3MTU0ODtBUzo1NDc4OTM3NjIxMTc2MzJAMTUwNzYzOTQ2MDA0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Sundmark?enrichId=rgreq-441210abc0789467fdad7239d51eb8ba-XXX&enrichSource=Y292ZXJQYWdlOzMxNDg3MTU0ODtBUzo1NDc4OTM3NjIxMTc2MzJAMTUwNzYzOTQ2MDA0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hans_Hansson?enrichId=rgreq-441210abc0789467fdad7239d51eb8ba-XXX&enrichSource=Y292ZXJQYWdlOzMxNDg3MTU0ODtBUzo1NDc4OTM3NjIxMTc2MzJAMTUwNzYzOTQ2MDA0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hans_Hansson?enrichId=rgreq-441210abc0789467fdad7239d51eb8ba-XXX&enrichSource=Y292ZXJQYWdlOzMxNDg3MTU0ODtBUzo1NDc4OTM3NjIxMTc2MzJAMTUwNzYzOTQ2MDA0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Maelardalen_University?enrichId=rgreq-441210abc0789467fdad7239d51eb8ba-XXX&enrichSource=Y292ZXJQYWdlOzMxNDg3MTU0ODtBUzo1NDc4OTM3NjIxMTc2MzJAMTUwNzYzOTQ2MDA0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hans_Hansson?enrichId=rgreq-441210abc0789467fdad7239d51eb8ba-XXX&enrichSource=Y292ZXJQYWdlOzMxNDg3MTU0ODtBUzo1NDc4OTM3NjIxMTc2MzJAMTUwNzYzOTQ2MDA0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sara_Abbaspour_Asadollah?enrichId=rgreq-441210abc0789467fdad7239d51eb8ba-XXX&enrichSource=Y292ZXJQYWdlOzMxNDg3MTU0ODtBUzo1NDc4OTM3NjIxMTc2MzJAMTUwNzYzOTQ2MDA0OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Runtime Verification for Detecting Suspension Bugs in Multicore and Parallel
Software

Sara Abbaspour Asadollah∗, Daniel Sundmark∗, Hans Hansson∗
∗Mälardalen University, Västerås, Sweden

{sara.abbaspour, daniel.sundmark, hans.hansson}@mdh.se

Abstract—Multicore hardware development increases the pop-
ularity of parallel and multicore software while testing and
debugging these software becoming more difficult, frustrating
and costly. Among all types of software bugs, concurrency
bugs are also important and troublesome. This type of bugs is
increasingly becoming an issue, particularly due to the growing
prevalence of multicore hardware. Suspension-based-locking
bugs are one type of concurrency bugs.

This position paper proposes a model based on runtime
verification and reflection technique in the context of multicore
and parallel software to monitor and detect suspension-based-
locking bugs. This model is not only able to detect faults, but
diagnose and even repair them. The model is composed of four
layers: Logging, Monitoring, Suspension Bug Diagnosis and
Mitigation. The logging layer will observe the events and save
them into a file system. The monitoring layer will detect the
presents of bugs in the software. The suspension bug diagnosis
will identify the Suspension bugs by comparing the captured
data with the suspension bug properties. Finally, the mitigation
layer will reconfigure the software to mitigate the suspension
bugs. A functional architecture of runtime verification tool is
also proposed in this paper. This architecture is based on the
proposed model and is comprised of different modules.

1. Introduction

Multicore software is typically defined as the parallel ap-
plications executing on multicore hardware. Since utilizing
the potential advantages of multicore hardware is desired in
the multicore software field, multicore software is emerging
from the necessity of obtaining a good performance on
multicore processors. Achieving this aim brings some chal-
lenges such as designing concurrent and parallel software
on multicore processors as well as testing and debugging
them. Parallel execution of multicore software makes them
complicated, error prone and thus expensive.

Concurrent, multicore and parallel software introduce
the possibility of new types of software bugs, known as
concurrency bugs [1]. These types of software may exhibit
problems such as race conditions and deadlocks that may
not occur in sequential software. The errors typically appear
under very specific (nondeterministic) thread interleavings
between shared memory accesses. The effects of the bugs
spread through the software until they cause the software
to crash, become unresponsive (hang) or produce incorrect
output. Such nondeterministic bugs are typically considered
to be problematic errors [2], [3], [4]. Suspension-based-
locking bug is one type of concurrency bugs which is briefly
called Suspension bug in this paper. This type of bug can
also occur on multicore and parallel software. It typically
happens when a calling thread waits for an unacceptably
long time in a queue to acquire a lock for accessing a shared
resource [5].

A previous investigation [6] indicates that debugging
Suspension bugs compared with debugging other types of
concurrency bugs has not attracted attention and the current
body of knowledge does not report studies on Suspension
bugs during 2005 to 2014 and hence, there is a gap among
the researches in the field. The existing gap in research
study on Suspension bug may be due to the fact that this
bug is not well-known yet, or identifying it is not an easy
task. Although, the other investigation of an open source
software [7] indications that Suspension bugs after Data
race has occurred more than the other type of concurrency
bugs and about 15% of the bugs belongs to the Suspension
type. Accordingly, there is a need to propose novel solutions
or significant extension to an existing technique especially
with the focus on new demands in parallel and multicore
software.

Due to the complexity of multicore software, it may
be harder to detect potential concurrency bugs in the early
stages of software life-cycle and such bugs can arise during
system execution. Traditionally, verification techniques such
as testing, model checking and theorem proving are used
to increase the trust of the correctness of software. Some
of these techniques typically need strong requirements like
the existence of formal models and some of them could
not cover all potential errors. In order to address these
problems, runtime verification and reflection technique was
developed [8]. This technique operates at runtime, which
makes it possible for developer (tester or user) to react
whenever a software behaves incorrectly. Since detecting
and monitoring the faults at runtime would be possible with
this technique thus it would be a suitable and interesting
feature for multicore and parallel software with unexpected
behavior or nondeterministic output.

This position paper points out the potential of runtime
verification and more specifically of multicore and parallel
software. Runtime verification and reflection may address
and alleviate the mentioned challenges by collecting, pro-
cessing and measuring significant data at an actual execution
time. It is specifically focused on not only detecting Suspen-
sion bugs, but also finding the causes and outline research
directions. It also is applicable to design and develop a tool
with the aim of detecting and fixing the Suspension bugs
in parallel and multicore software as the future work. The
main contributions of this article are listed as follows: (1)
Suspension bugs in multicore software are introduced and
an example of Suspension bug is explained. (2) A runtime
verification model for detecting and identifying Suspension
bugs is proposed. The proposed model is composed of
four parts: Logging, monitoring, Suspension bug diagnosis
and mitigation. (3) A functional architecture of the runtime
verification tool for detecting Suspension bugs is proposed.

Different module for a runtime verification tool is explained
as a part of tool architecture. The proposed modules are
Periodic Request Module, Trace Module, Data Visualiza-
tion Module, Monitor Module, Suspension Bug Diagnosis
Module and Mitigation Process/Module.

2. Preliminaries

In parallel and multicore software, a Suspension-based
locking or Blocking suspension occurs when a calling thread
waits for an unacceptably long time in a queue to acquire
a lock for accessing a shared resource [5]. In general,
four conditions should be fulfilled when a Suspension bug
occurs [9]:

1) At least one of the threads is executing on one of
the processor cores.

2) The number of requests for a specific resource is
larger than the number of available resources of that
type.

3) At least one of the threads has acquired a lock.
4) At least one thread is in waiting for an unacceptably

long time.

It should be noted that the terminology concerning
software problems is not entirely consistent. In software
testing, debugging and troubleshooting, different terms like
fault, error, bug, failure, problems, anomalies, troubles, and
defect exist and are sometimes used interchangeably. In this
research the term bug is used while this may not be entirely
in line with the above terminology, it is consistent with
the terminology used in related work on concurrency bugs
specially Suspension bug.

The hardware architecture focus of this study is on
Symmetric Multiprocessing (SMP) architecture (and not on
Asymmetric Multiprocessing (AMP)). On SMP architecture
the memory and I/O devices are shared among all proces-
sors [10]. In this SMP model the system have a single-
chip multicore processor with “k”’ identical cores and two
levels of cache1. Each core has its private level one cache,
while the last level cache (LLC) is shared among all cores.
Furthermore a single operating system managing resources
and execution on all cores is assumed in this study.

2.1. Suspension bug example on multicore software

In this section, one Suspension bug example, as a part of
a multicore software and its execution scenario is presented.
Figure 1 shows an example of a Suspension bug which is
data race free and causes an unexpected output. In order
to consider synchronization issues and avoid data race bug
(data race free) this example is given by using the lock
mechanism. It supposes to save all updates by Thread M
and N into a file by Thread P. The updated values belong to
two shared variables (customerName, Balance). Thread P is
a separated thread for recording the history of updated data
by other threads (M and N). One scenario for executing
these three threads as parts of multicore software would
be: suppose all three threads have the same priority and
the initial values for (customerName, Balance) are Null and
0, respectively. There are three free cores available (Core1,
Core2 and Core3) and Threads M, N and P are executing on

1. Cache is “an area of memory that holds recent used data and instruc-
tion” [11].

Thread M
…
5: lock(L)
6: customerName = read(customerName)
7: Balance = 100
8: unlock(L) …

Thread N
…
14: lock(L)
15: customerName = read(customerName)
16: Balance = 200
17: unlock(L) …

Thread P
…
25: lock(L)
26: file.write (customerName, balance)
27: unlock(L)
…

Figure 1: A Suspension bug example on multicore software

Core1, Core2 and Core3, respectively in parallel. If Core1
reaches line 5 before Core2 reaches line 14 and Core3
reaches line 25 then the customerName will read from I/O
and store the value (which is given by user) to DRAM,
LLC and L1 Cache of Core1 after executing line 6. Then by
executing line 7, Core1 will update the Balance value (with
100) by storing to L1 Cache of Core1, LLC and DRAM.
On the other hand, while Core1 is executing these lines (5
to 7), Thread N and Thread P will stay in Blocked queue
until Core1 reaches to line 8 and release the lock. Core1
will continue to execute other commands from Thread M.
When Core1 reaches line 8 and if Core2 reaches line 14
before Core3 reaches line 25 (assuming that Thread N and
P are running on Core2 and Core3, respectively) then the
customerName will read from I/O and store the value (which
is given by user) to DRAM, LLC and L1 Cache of Core2
after executing line 15. Then by executing line 16, Core2
will update the Balance value (with 200) by storing to L1
Cache of Core2, LLC and DRAM. While Core2 is executing
these lines (14 to 16), Thread P will stay in Blocked queue
until Core2 reaches to line 17 and release the lock. Thus, the
updated value by Thread M cannot store into the file because
Thread P could not execute and the data was corrupted by
Thread N.

Other scenarios which work perfectly and save the
updated data into the file at the right time without any
data corruption are available for this example. However, the
explained scenario shows at least one situation, which causes
a type of concurrency bugs (suspension bug) for parallel and
multicore software.

3. Runtime Verification and Reflection Model
for Detecting the Suspension Bugs

As explained in the prior sections, this study is based
on runtime verification and reflection technique that respec-
tively monitor multicore and parallel software in order to
detect suspension bugs. Leucker and Schallhart defined the
runtime verification [12] as “the discipline of computer sci-

ence that deals with the study, development, and application
of those verification techniques that allow checking whether
a run of a system under scrutiny satisfies or violates a given
correctness property”. In other words, runtime verification is
an analysis and execution approach based on extracting in-
formation from a running system and using it to detect, and
possibly react to, observed behaviors satisfying or violating
certain properties.

The logical architecture of a multicore software follow-
ing the runtime reflection pattern is shown in Figure 2. It
is decomposed into four layers viz., Logging, Monitoring,
Suspension Bug Diagnosis and Mitigation.

Multicore / Parallel
Software

Logging

Monitoring

Suspension Bug Diagnosis

Mitigation

Monitoring

Suspension Bug Diagnosis

Mitigation

Figure 2: Architecture of the runtime verification framework for
detecting Suspension bugs

The Monitoring layer is followed by a logging layer.
Logging layer will observe the multicore system events
and record the events data, which would be suitable for
monitoring layer. The Logging layer can be implemented
as separated stand-alone loggers (application) or it can be
implemented as part of the multicore software by adding
code annotations to the software.

The Monitoring layer is the heart of the architecture. It
considers as fault detection and could consist of a number
of monitors that observe the stream of multicore software
events provided by the logging layer. It will detect the pres-
ence of bugs in the software without affecting its behavior.
If a violation of a correctness property is detected in the
multicore software then the monitor will respond with an
alarm signal/message for subsequent diagnosis.

The Suspension Bug Diagnosis layer will not directly
communicate with the application. It will collect the results
of the Monitoring layer and will deduce an explanation for
the current multicore software state. In other words, this
layer will compare the results of Monitoring layer to the
suspension bug properties.

The Mitigation layer will reconfigure the multicore soft-
ware in order to mitigate the suspension bug (if possible).
This layer will use the results of the Suspension Bug Diag-
nosis layer (identified suspension bugs) and will re-establish
a determined system behavior. However, the identified cause
may not always be possible to re-establish a determined
system behavior. In this instance, a recovery system may
save the detailed diagnostic data to use offline mode in other
software life-cycle phase such as debugging.

4. Runtime Verification tool architecture for
detecting the suspension bugs

An overview of the runtime verification tool architecture
for detecting Suspension bugs is proposed in this section. As
it is shown in Figure 3, the functional architecture tool is

comprised of six separate modules, viz., Periodic Request
Module, Trace Module, Data Visualization Module, Monitor
Module, Suspension Bug Diagnosis Module and Mitigation
Process/Module. All modules within gray rectangle are ex-
ecuted after every “n” ms, while all other modules are
executed upon users request.

The Trace Module will be enabled with a single link time
option given by Periodic Request Module. Periodic Request
Module is responsible for sending the request to capture the
data every “n” ms. The “n” is a value which is defined by
user before the tool starts working. The Trace Module will
observe and record the utilization for each active thread into
a buffer. Each record of buffer, represents “n” ms of wall-
time, contains the list thread with executing state, the list of
threads with waiting state and list of waiting reason.

The observed raw data will store into the memory buffers
when the multicore software is executing. The buffered
data will be written out to a file system (log file) when
buffers fill or when the software terminates. The logs can
then be manipulated, displayed and post-processed within
other modules of the tool, i.e., monitoring, diagnosis and
mitigation. Detailed log files store chronological and time
stamped recording of runtime execution metrics within a
requested time encountered in the software. These log files
tend to be large thus care has to be taken for producing an
effective analysis and detecting the suspension bugs.

The detected suspension bug data gathered in this tool
can describe the fraction of the execution time spent in each
activity over some period of time.Some fine-grained data
on the execution activities will be lost if the user chose
a big number (n) for snapshot, however user can repeat
the logging and saving log files processes within smaller
snapshot for another round. In other words, the user can
set a suitable value for a variety of analysis tasks such as
Monitoring and Suspension Bug Diagnosis.

Monitoring Module will check the stream of the ex-
tracted data saved in log files to detect the presence of
bugs in the software without affecting the software’s be-
havior. In order to identify the type of bug(s) provided
by Monitoring Module and ensure that the bug(s) is a
suspension bug, the Suspension Bug Diagnosis will compare
the bugs properties to the suspension bug properties. If
these data were exactly mapped then a suspension bug(s)
will identify and report.This operation will be performed
as follows: all threads with executing state within specific
snapshot will extract from the log file. On the other hand,
all threads with waiting state within specific snapshot will
extract from the log file. Among the waiting threads, the
reason of waiting will be considered. If the reason(s) is
due to lock mechanism, then a counter will count the total
number of threads and just these threads will consider for
the rest of the processes. If the waiting time for a thread is
longer that the user tolerance time (user already specified
the tolerance for accepting delay during execution time)
and if at least one of the threads is executing on one of
the processor cores during the snapshot, then the Diagnosis
Module will identify a Suspension bug and will save the
thread(s)s properties which cases the Suspension bugs. The
Visualization Module will also show a list of thread(s)
which have identified in Suspension Bug Diagnosis Module.
The Mitigation Process/Module will apply an appropriate
mitigation process. This process can change the priorities
of threads and tasks dynamically, change scheduling policy
at runtime, reconfigure the software at runtime, or other

Trace
Module

Monitor
Module

Suspension Bug
Diagnosis Module Mitigation

Process / Module

Data from
Trace Module

Data from
Suspension Bug

Diagnosis Module

Data Visualization Module

Buffers

 send request

“n
”

va
lu

e
 stop execution

th
re

ad
s’

da
ta

threads in executing state
threads in waiting state
waiting reason

 filled buffers

re
tri

ev
e

th
e

st
or

ed
 d

at
a

bug’ properties
suspension bus’s properties

threads’ data

reconfiguration
delay tolerance

Periodic Request
Module

Log file

Figure 3: A functional architecture of the proposed runtime verification tool for detecting suspension bugs

re-establishing process. It is worth noting that based on
the diagnosis and the occurred bug; it may not always be
possible to reconfigure the software to mitigate the bug.

5. Conclusions and Future work

This paper introduced an architectural model for runtime
verification of one type of concurrency bugs. The focus of
this paper has been mainly on Suspension bugs and the
proposed model provides a systematic way to detect and
tackle Suspension bugs. In this model the Suspension bugs
are detected by checking if specific properties of these bugs
can be observed, monitored and derived from the collected
runtime verification information.

The proposed model acts as the basis for developing a
tool to detect and identify the Suspension bugs on multi-
core platforms, thus a functional architecture of a runtime
verification tool is also proposed in this paper. The imple-
mentation of the tool would be based on the proposed model
and is considered as future work. Another future direction
of this work is to extend the model and tool for detection
of other concurrency bugs based on their distinct properties
which are already identified in [9]. There are other possible
directions for the future work such as implementing the
model as part of a framework.
Acknowledgment

We acknowledge the Swedish Research Council (VR,
EXACT project) for supporting this work.

References

[1] D. A. Weiser, Hybrid Analysis of Multi-threaded Java Programs.
ProQuest, 2007.

[2] M. Süß and C. Leopold, “Common mistakes in OpenMP and how
to avoid them,” in OpenMP Shared Memory Parallel Programming.
Springer, 2008, pp. 312–323.

[3] P. Godefroid and N. Nagappan, “Concurrency at Microsoft: An
exploratory survey,” in CAV Workshop on Exploiting Concurrency
Efficiently and Correctly, 2008.

[4] J. Desouza, B. Kuhn, B. R. De Supinski, V. Samofalov, S. Zheltov, and
S. Bratanov, “Automated, scalable debugging of MPI programs with
Intel Message Checker,” in Proceedings of the second international
workshop on Software engineering for high performance computing
system applications. ACM, 2005, pp. 78–82.

[5] S. Lin, A. Wellings, and A. Burns, “Supporting lock-based multi-
processor resource sharing protocols in real-time programming lan-
guages,” Concurrency and Computation: Practice and Experience,
vol. 25, no. 16, pp. 2227–2251, 2013.

[6] S. Abbaspour Asadollah, D. Sundmark, S. Eldh, H. Hansson, and
W. Afzal, “10 years of research on debugging concurrent and multi-
core software: a systematic mapping study,” Software Quality Journal,
pp. 1–34, 2016.

[7] S. Abbaspour Asadollah, D. Sundmark, S. Eldh, H. Hansson, and
E. Paul Enoiu, “A study of concurrency bugs in an open source soft-
ware,” in International Conference on Open Source Systems (OSS),
2016.

[8] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, and
O. Sokolsky, “Formally specified monitoring of temporal properties,”
in Real-Time Systems, 1999. Proceedings of the 11th Euromicro
Conference on, 1999, pp. 114–122.

[9] S. Abbaspour A., H. Hansson, D. Sundmark, and S. Eldh, “Towards
classification of concurrency bugs based on Observable properties,”
in International Workshop on Complex Faults and Failures in Large
Software Systems, Italy, 2015.

[10] R. Brown, “Method and apparatus for processing requests for video
presentations of interactive applications in which vod functionality
is provided during nvod presentations,” Jun. 23 1998. [Online].
Available: https://www.google.com/patents/US5771435

[11] D. Gove, Multicore Application Programming: For Windows, Linux,
and Oracle Solaris. Addison-Wesley Professional, 2010.

[12] M. Leucker and C. Schallhart, “A brief account of runtime verifi-
cation,” The Journal of Logic and Algebraic Programming, vol. 78,

no. 5, pp. 293 – 303, 2009.

View publication statsView publication stats

https://www.researchgate.net/publication/314871548

