JOURNAL OF IEEE ACCESS

Delay Mitigation in Offloaded Cloud Controllers in
Industrial IoT

Saad Mubeen, Senior Member, IEEE, Pavlos Nikolaidis, Alma Didic, Hongyu Pei-Breivold Member, IEEE,
Kristian Sandstrom Member, IEEE and Moris Behnam, Member, IEEE

Abstract—This paper investigates the interplay of cloud com-
puting, fog computing and Internet of Things (IoT) in control
applications targeting the automation industry. In this context,
a prototype is developed to explore the use of IoT devices that
communicate with a cloud-based controller, i.e., the controller is
offloaded to cloud or fog. Several experiments are performed to
investigate the consequences of having a cloud server between the
end device and the controller. The experiments are performed
while considering arbitrary jitter and delays, i.e., they can be
smaller, equal or greater than the sampling period. The paper
also applies mitigation mechanisms to deal with the delays and
jitter that are caused by the networks when the controller is
offloaded to the fog or cloud.

Index Terms—Industrial IoT, Fog computing, cloud computing,
industrial automation systems.

I. INTRODUCTION

Cloud computing [1]] and Internet of Things (IoT) [2]], [3I]
are two notable concepts that have evolved significantly over
the past few years. Cloud computing is an operational scheme
that provides network-based services such as computational
power, storage and networking to users within many indus-
trial and application domains. It offers a pool of virtualized
computing resources at various levels, covering infrastructure,
platforms or software delivered to users as on-demand services
from the cloud. In this way, cloud computing is changing the
services consumption and delivery platform as well as the way
businesses and users interact with IT resources.

IoT extends the cloud computing concept beyond com-
puting and communication to include everything, i.e., also
the physical devices. Industrial IoT uses sensors, machine-
to-machine (M2M) collaboration and various technologies to
gather and analyze data from physical and virtual world for
optimized operations and providing services. In IoT, devices
are connected through a network. They share data, information
and even resources to accomplish their goal or increase total
system intelligence. Accordingly, cloud computing and IoT
can provide services to consumers and businesses, allowing
organizations to become more agile and flexible in pursuing
new revenue streams and new business models.

Despite numerous advantages of cloud computing, there are
some limitations such as high delays that render cloud comput-

S. Mubeen, M. Behnam, P. Nikolaidis, A. Didic are with Milardalen Uni-
versity, Viisterds, Sweden, e-mail: {saad.mubeen, moris.behnam, pns13002,
adc13001} @mdh.se.

H. Pei-Breivold is with ABB Corporate Research, Visteras, Sweden, e-mail:
hongyu.pei-breivold @se.abb.com.

K. Sandstrom is with the Swedish Institute of Computer Science (SICS),
Visteras, Sweden, kristian.sandstrom @sics.se.

ing unfavorable to the industrial control systems that have low-
delay requirements. In order to overcome the drawbacks of
cloud computing, a local cloud computing architecture called
the fog computing has been introduced recently [4]. According
to Cisco, fog computing extends the cloud computing away
from the cloud computing data centers and towards the edge
of the network [5].

A representation of the three-tier fog computing architecture
proposed by Cisco is shown in Fig. [T} The first tier of
the architecture gets data from the local embedded devices
and sensors. This tier is used for the M2M interactions and
supports real-time systems with stringent timing requirements.
A real-time system is required to provide its logically correct
response within the time that is mandated by the specified
timing requirement(s). The M2M interaction is the key aspect
to increase the intelligence of the ‘“things” [6l], [7]. The
response times provided by the first tier are in the order of
milliseconds to sub-seconds. The first tier can also filter or
pre-process the vast amount of data before it gets sent to the
higher tiers as shown in Fig. [I] In this way the higher tiers
only get the selected information and can easily communicate
with multiple first-tier fog nodes. The second and third tiers
support the human-to-machine (H2M) interactions. These tiers
can also filter data before sending them to the cloud for further
processing. The second tier provides response times in the
range from seconds to minutes. Whereas the third tier provides
response times from minutes up to days. Note that the higher
the tier, the wider the coverage range. Cloud is responsible
for the global coverage which is used for intelligent business
analytics based on long periods.

A. Problem Statement

There are several works that investigate the application of
cloud computing infrastructures in the industrial automation
systems, e.g. [8], [9]. In majority of the existing solutions,
clouds have been used for monitoring industrial processes
and for creating short- and long-term reports for different
characteristics of the shop floor. Although cloud computing
seems adequate to monitor industrial processes, it cannot be
used to control industrial machines because of unpredictable
wide-area network (WAN) delays [10]. Therefore, utilizing
local resourceful servers, local clouds, can alleviate unpre-
dictable WAN delays. While local clouds seem to offer an
attractive solution, it is expensive to acquire and maintain such
infrastructure.

Recent advantages in IoT can be leveraged to solve the
aforementioned cost problem. Accordingly, costly industrial

JOURNAL OF IEEE ACCESS

Area Coverage

Global coverage

Response Times

Minutes to
Days

Seconds to
Minutes

2nd Fog Tier.
Historical Data

Local coverage

Milliseconds to
sub-seconds

1st Fog Tier

Operational and non-operational data

Grid Sensors, Automation Systems

Fig. 1: A representation of the three-tier fog architecture by Cisco.

controllers can be replaced by cheaper components that can
sense the process and send data to the local cloud. Since
the devices in the context of IoT are not very resourceful,
they cannot handle intensive tasks. Hence, a local powerful
cloud infrastructure is needed. A main advantage of devices
in the IoT concept is that they can enter or leave the network
dynamically without influencing the rest of the system. As
a result, observability of the system can be increased or
decreased on demand. In addition, the centralized controller
running on the cloud can perform optimizations or changes in
the process that can instantly affect the entire system.

IoT, cloud computing and fog computing can be combined
to form a new operational scheme that can benefit the indus-
trial applications in terms of scalability, flexibility and cost
effectiveness. In this scheme, the IoT devices communicate
with the controller located on the local cloud server, providing
real-time control as a service. One of the main challenges that
is faced when a networked controller is included in the closed-
loop control system is how delays affect the performance of
the system. Another challenge is how to mitigate or even
compensate these effects on the end device.

A typical closed control loop is shown in Fig. [2] It consists
of a controller that controls a physical process through sensors
and actuators. The controller is usually located close to the
actual process. Fig. [3| depicts the closed loop control when the
controller is offloaded to the network, e.g., to a fog node or a
cloud. In this case there are network delays in the control loop
that should be accounted in the response times of the systems.
These delays can have serious effects on the systems with
real-time requirements such as making them unpredictable
and unstable. A detailed investigation is needed to show the
feasibility of offloaded controllers to the fog versus cloud in
the delay-sensitive industrial automation systems.

The first tier of the fog architecture, shown in Fig. [T} can be
used for closed loop control between the industrial machines
and the fog nodes. The second and third tiers can be used
to process data to monitor the machines and prevent future
hardware failures. While the latter has been investigated in
the existing works, this paper focuses on the closed loops with

offloaded controllers to the fog as well as to the cloud.

Process

Controller

Fig. 2: Closed control loop.

Actuator Sensor

Y

Process

Sensor

A
|

{ Controller

Fig. 3: Closed loop with networked controller.

The devices in the context of IoT are not very resourceful to
support computation-intensive tasks. Using cloud computing,
control can be provided as a service allowing the execution
of computation-intensive algorithms in the cloud. However,
according to [10], cloud computing cannot be used to control
the automation industrial machines, mainly, due to unpre-
dictable network delays. In order to overcome the limitation
of cloud computing, this paper advocates the effectiveness of
local cloud computing infrastructure, especially fog computing
for the delay-sensitive industrial automation systems.

B. Paper Contributions

In order to address the challenges discussed in the previous
subsection, we develop a control system application prototype
by exploiting the principles of 10T, cloud computing and fog
computing. Using the prototype, we perform a number of
experiments to investigate the impact of local and wide area
networked controller on the closed loop control. In order to
do the performance evaluation, we consider arbitrary jitter and
delays, i.e., they can be smaller, equal or greater than the
sampling periods. Additionally, we apply two delay mitigation
mechanisms for the end device. These mechanisms do not

JOURNAL OF IEEE ACCESS

use any internal information from the controller, in fact these
mechanisms rely only on the received data.

It should be noted that the goal of this paper is not to invent
new techniques for interplay of IoT, cloud computing and fog
computing in the industrial automation, but to investigate and
show the feasibility of existing techniques in this area. The
contributions in this paper include a comparative evaluation
of various scenarios in the above-mentioned context including
(1) local controller, (2) controller offloaded to the cloud
and (3) controller offloaded to the fog. The contributions
also include the application of delay mitigation techniques,
i.e., prediction methods have been implemented in the end
devices, whereas the adaptive PI algorithm is implemented
in the cloud-based controller. The techniques, prototype and
experiments that are presented in this paper are applied in
the industrial settings within the domain of the automation
control systems, provided by one of our industrial partners.
The proof of concept provided in this paper serves as the
foundation for the advanced cloud-based controllers which will
be eventually used in the automation industry, e.g., robotic arm
and collaborative machines.

C. Paper Layout

The rest of the paper is organized as follows. Section II
discusses the related work. Section III presents the prototype
architecture. Section IV presents the experimental evaluation.
Section V provides the outlook and discussion. Section VI
concludes the paper and discusses the future work.

II. RELATED WORK

In the past few years, IoT has gained wide popularity in
many domains such as smart cities, smart grid, commodities
tracking and monitoring, logistics, security, transportation,
health monitoring, home automation, environmental and agri-
cultural applications, just to name a few [L1], [12f], [13],
[14]. Recent studies predict that IoT will bring around 26
billion devices to the connected world by 2020 [[15]. According
to [10], the application of IoT in the industrial automation
is addressed to a very small extent. IoT solutions for the
industrial automation are still evolving.

Cloud computing has recently drawn the attention of the
automation industry [10], [16]. There are several works that
investigate the usage of cloud computing in the industrial au-
tomation systems. In this regard, preliminary studies and initial
experiences of utilizing cloud computing in the industrial au-
tomation are discussed in [[17], [[18]. Langman and Meyer [S§]]
highlight the increase in the interest of the automation industry
in applying the concepts of cloud computing to the process
control. They propose a new service-oriented architecture,
called the web-oriented automation system that employs the
principles of cloud computing in the industrial automation.
Vogel-Heuser et al. [19] propose a two-layered architecture
based on cloud computing for the industrial automation. In
this architecture the upper layer provides the process control
and management services. Whereas the lower layer provides
the field bus communication and control services. According

to [18]], the work in [19] lacks a concrete solution to implement
the proposed architecture in the industrial automation.

There are several works that utilize cloud computing for the
purpose of monitoring data and managing control processes in
the industrial automation [20Q], [21]]. According to [8] and [L7],
the majority of existing approaches and solutions in the context
of cloud computing in the industrial automation focus on
the higher levels than the field-level. Utilization of cloud
computing in control loops in the industrial automation has
received very less attention. In [[22] Chen et al. propose robot
as a service in the industrial automation. In [23]] Givehchi et
al. investigate the use of a virtualized Programmable Logic
Controller (PLC). They show that the virtualized PLC can
provide similar behaviour to a hardware PLC, but it’s perfor-
mance decreases considerably with an increase in the sampling
frequency. The issues concerning the real-time aspects and
timing predictability in the industrial automation systems
employing the principles of cloud computing need a detailed
investigation.

Cisco has recently provided the vision of fog computing [4],
[24]. Since its introduction, the applications of fog computing
have been explored in many domains including wireless sensor
and actuator systems, health data management, connected
vehicles and smart grid [S]], [25]. Gazis et al. [26] discuss
various challenges that are faced when fog computing is used
in the context of industrial IoT. Sarkar et al. [26] develop
a mathematical model of fog computing to investigate its
applicability in IoT. None of these works target the delay-
sensitive industrial automation control systems which is the
main focus of this paper.

Stojmenovic [7] explores the M2M networks in fog com-
puting. Madsen et al. [6] explore the reliability aspect of
fog computing. Stojmenovic and Sheng [27] discuss security
concerns, particularly the man-in-the-middle attacks in fog
computing. Hong et al. [28] address the mobility aspect in
fog computing by introducing the mobile fog model. In [29],
fog computing is used for one of the most computation-
intensive tasks, namely the brain-state classification, where
it achieves low response times to enable augmented brain-
computer interaction. Yi et al. [25] compare the delays in
fog and cloud by means of a synthetic experiment, however
a full-fledged industrial implementation is left for the future
work. On the other hand, investigation of delay effects due
to offloaded controllers to fog and cloud in the industrial
automation is targeted in this paper. Hong et al. [30] propose
a heuristic for dynamic deployment of programs to the end
devices and fog nodes. In this regard, they propose a de-
ployment platform and perform experiments. However, they
do not investigate the effect of delays and delay mitigation
techniques in fog and cloud. Furthermore, there is no industrial
case study that evaluates the fog combined with cloud (fog-
cloud) architecture; and how a system can benefit from a smart
combination of these two platforms.

Offloading is used to make the decision which task should
be offloaded to meet the system requirements. Computational
offloading algorithms focus on meeting the timing constraints
of their tasks or increasing throughput and improving quality
of service . There are several offloading techniques such

JOURNAL OF IEEE ACCESS

as [310, [32l], 1330, [34], [35], [36] that can be used comple-
mentary to our work. We investigate the control-as-a-service
scenario where control is offered as a cloud service. We
explore the advantages and disadvantages of executing the
service in cloud, fog and locally. Our offloading goal is not to
increase performance but to offer a centralized control for the
industrial automation systems.

The problem of Networked Control Systems (NCS) has
been addressed in 2001 in [37]. Plenty of work exists regarding
this problem such as [38], [39]]. In NCS the controller is tuned
in order to compensate network delays or data dropout. In
comparison, in this paper we offload the local tuned controller
to the fog and cloud. We investigate the effects of offloaded
controller on the response times and jitter of the industrial
automation systems. Furthermore, we utilize the mitigation
mechanisms that are aimed to mitigate the extra delays in-
troduced by the network due to offloading the controller to
the fog and cloud.

In summary, cloud infrastructures are used for monitor-
ing industrial machines, improving business intelligence and
reporting. Moreover, cloud computing is used in high-level
procedures and not in low-level procedures that require faster
and predictable responses by the systems. In order to overcome
these problems, fog computing is utilized. However, this
technology is yet to mature.

III. PROPOSED SYSTEM ARCHITECTURE
A. Prototype Architechure

A prototype is built in order to create a representation of
the real case. The setup, shown in Fig. @] consists of an end
device connected to a switch through which it can reach a
local server (fog node) or a remote one (cloud node). Since
the setup is realised in a local environment, a delay emulator
is used for simulating the distance between the device and the
cloud node.

The fog and cloud nodes are set up as the Ubuntu servers.
For emulating the connection over WAN with the cloud, a
software solution called the Wide Area Network Emulator
(WANEME is used. WANEM is based on the Linux kernel
and it utilizes NetEmP} among other, functionalities in a simple
graphical user interface provided on a live Knoppi disk.
WANEM enables specifying typical network problems, such as
delays, jitter, packet loss, packet corruption, connection loss,
etc. It also enables specifying the bandwidth, setting a correla-
tion percentage for each characteristic and a few distributions
for the delays (normal, pareto, paretonormal) for simulating
various realistic internet conditions. All communication routed
through WANEM is affected by the set parameters. The end
device is an Arduino Un(ﬂ running a small program that
involves sensing and actuating. It sends the sensed value to
the server (fog or cloud) where a control value is calculated.
The control value is then sent back to the Arduino to actuate.

Uhttp://wanem.sourceforge.net/,

Zhttp://www.linuxfoundation.org/collaborate/workgroups/networking/
netem,

Shttp://knoppix.net/,

4http://www.arduino.cc/en/Main/ArduinoBoardUno,

The control loop consists of a photo resistor and an LED. The
controller can change the brightness of the LED until it reaches
the desired value (set to 700 in the experiments). It should be
noted that the photo resistor and LED are considered as a
sensor and actuator in the prototype for the proof of concept.
The photo resistor and LED can be generally replaced by any
other complex sensor and actuator respectively.

WAN emulator

Ethernet L !

Switch

Private Cloud

End Device

Fog Node

Fig. 4: Architecture overview.

For the device-server communication, two different ap-
proaches are used. The first one, called polling, is listed in
Algorithm E} It involves the Arduino waiting for, or polling,
the server to establish the connection. In this case, after sam-
pling the sensor value and sending it to the server, the device
does nothing until the response from the server is received and
could potentially wait forever for it. This approach could be
used in a scenario where the sensor and actuator are placed on
the same device. This approach is also suitable in the scenario
where sensor and actuator are located on separate devices.

Algorithm 1 Polling

1: procedure POLLING CONTROLLER
2: begin:

3 sensorValue < readSensor();

4 sendMsgToServer(sensorV alue);
5: loop:

6 if resultAvailable() then

7 result < readResult();

8
9

applyValue(result);
goto begin;

10: end if

11: goto loop;

12: end procedure

The second approach, called non-polling, is listed in Algo-
rithm 21 In this case the device sends the sensed value and
checks if a reply is available. If there is no message, the
device does not wait for the server to reply, hence it is not
polling the server. Instead, the device repeats its cycle, sending
another value and checking for a received message again. On
the server side this means that multiple messages with the
same value will be received. This might lead the controller to
think that the calculated values are taking no effect and thus
respond more aggressively, which is not a desired behaviour.
This approach suits a case where the sensor and actuator are
located on separate devices.

http://wanem.sourceforge.net/
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://knoppix.net/
http://www.arduino.cc/en/Main/ArduinoBoardUno

JOURNAL OF IEEE ACCESS

Algorithm 2 Non-polling

1: procedure NON-POLLING CONTROLLER
2 begin:

3 sensorValue < readSensor();

4: sendMsgToServer(sensorValue);

5: if resultAvailable() then

6 result < readResult();

7 applyValue(result),

8 end if

9: goto begin;

10: end procedure

The proposed local cloud architecture prototype is consis-
tent with the requirements from our industrial partners in the
automation domain. The number of end devices in the final
system on the shop floor is expected to be in the order of a few
thousands. It should be noted that the local cloud infrastructure
complemented by fog computing will be used for not only
monitoring, but also for controlling the industrial automation
systems consisting of several thousand end devices. That is,
the controller will be offloaded to the fog node(s) in the case
of delay-sensitive applications. Whereas, the controller will
be offloaded to the cloud in the case of the applications that
are relatively less sensitive to network delays. In addition, the
cloud will be used for monitoring these applications.

B. Delay Mitigation

In order to mitigate delays caused by the networked con-
troller, having some simple mechanism on the device side
is desirable. Typically, model-based controllers are used for
control loops with time delays (also referred to as dead
time) in which the sensing needs to be done at a certain
time after the actuation. Note that the controller has to wait
for the dead time before it can get any feedback from the
process regarding the recent control value. The controller then
contains a model of the process it is controlling and is able
to provide adequate response based on the behaviour of the
model. However, these controllers are not intended for variable
delays and do not fit into the idea of the desired simple
mechanism. In our case the control is achieved using a PI
controller. Since the delays affect the integral term of the
controller, an adaptive PI controller [40] would be sufficient
to deal with the delays. The adaptive controller can be tuned
to adapt to the delays and is simple enough for our purposes.
Statistical prediction methods are also used for predicting the
delays [41] or, in dynamic offloading, to asses the current
state of network parameters (such as bandwidth or loads on the
server end) to avoid measuring them too often which increases
overhead [42]. This is another method that is considered
in our experiments, where the predictions could be used to
predict a missed value from the controller. Due to the nature
of the algorithms we use (polling and non-polling) and the
considered mitigation methods, the adaptive PI controller suits
the non-polling approach while the prediction methods are
used on the polling approach.

In order to improve the polling method, a timeout is added
and a prediction method is used in case no message is received
from the server before the timeout. When the timeout occurs,
the predicted control values are applied at the device. This
timeout is set to the average round trip time (RTT) for the
device-server communication, which is 18 milliseconds. Two
prediction methods are used: exponential moving average and
double exponential smoothing model. Both of these prediction
methods make use of all the data collected, without having to
store or manage a large number of variables or the need to col-
lect more than two values to start off. The exponential moving
average [43]], also called exponential smoothing, calculates a
weighted average of the previous data values z, as presented
in (I), where A is a value between 0 and 1. The predicted
value for the next cycle, Fy 1, is the value calculated in the
current cycle (2).

St — Al't + (1 — A)St_l (1)

Ft+1 = St 2

The double exponential smoothing average model is calcu-
lated by the “Holt model” forecast [44]. It calculates two terms
in each cycle, as seen in and (@), and has two smoothing
factors A and B, both of which take values between 0 and
1. The second term b; represents the change in the slope, or
the trend. This method calculates F},,, the predicted value
of x4y, at time ¢+ m, m > 0, by using (3]

s¢ = Axy + (1 — A)(se—1 + be—1) 3)
bt = B(St — st—l) + (1 — B)bt_l (4)
Ft+m = s; + mby)

In case of the non-polling approach, due to delays, the
controller receives the same value multiple times before a
change is registered. Note that this situation cannot occur in the
polling approach because the fresh sensor values are sent from
the end device to the controller only when the control signals
corresponding to the previous sensor value have been received
from the controller. When the controller receives multiple
messages with the same value, it affects the integral factor
of the PI controller. In this case an adaptive PI controller is
suitable to mitigate the affects of the delays on the controller.
A smoothing factor, a, is calculated based on the sampling
period and the round trip time, as shown in (6] to lessen the
influence of these changes caused by delays.

_ sampling period ©)
“= sampling period + RTT

This smoothing factor is then applied to the received values
before they are used by the actuator.

IV. EXPERIMENTAL EVALUATION

We performed a large number of experiments on the proto-
type discussed in the previous section [45]. In this section we

JOURNAL OF IEEE ACCESS

explore the effects of delay and jitter on the system’s response,
due to offloaded controller to the fog or cloud. Jitter refers to
the variable delay between 0 and its specified value. The pa-
rameters of interest in the system’s response are overshoot and
settling time. Overshoot is defined as the difference between
maximum and targeted values of the response. Whereas, the
settling time refers to the amount of time that elapses from a
change in the input to the corresponding stabilized response.
In the following subsections, first we consider the system’s
response without using delay mitigation mechanisms. Then
we consider the effect of delay mitigation mechanisms on the
response of the system under high level of delays and jitter.
The sampling period is set to 14 ms in all the experiments.

A. Case 1: Response Without Mitigation Mechanisms

This case is further divided into two cases. In the first case,
we consider the delays and jitter do not exceed the sampling
period. Whereas in the second case, we investigate the effects
of delays and jitter that exceed the sampling period. Both
these cases are investigated using the polling and non-polling
approaches.

1) When delay and jitter are smaller than or equal to
the sampling period: In this case, the prototype is tested
with delays and jitter that are comparable to the sampling
period. The effects of delays and jitter on the response of
the system under polling scheme are shown in Fig. Bh and
Fig. b respectively. Similarly, the effects of delays and jitter
on the response of the system under non-polling scheme are
shown in Fig. 5t and Fig. [0 respectively. The curve identified
with “Local” in Fig. Ph and Fig. Bk represents the response of
the system with a local controller, i.e., without offloading the
controller to the fog or cloud. The response of the system due
to direct communication with the server is labeled as “fog”
in Fig. B and Fig. [Bk. In the case of offloaded controller to
the fog node, the delay is less than half a millisecond. The
network delays in the rest of the responses in Fig. Ph and
Fig. Bk are 1 ms and 10 ms.

When polling scheme is used as shown in Fig. Bh the
disturbance in the response curve is not big, especially for
the fog and 1 millisecond communication delay. As expected,
the network delays that are less than the sampling period
can be tolerated without any significant degradation in the
performance of the control loop. That is, there is a very small
overshoot in all the four curves. The settling time is also small
and very similar except for the response corresponding to 10
ms delay. Therefore it can be concluded, that offloading the
controller to fog or cloud servers does not cause any significant
degradation of the response under polling scheme as long as
the network delays are smaller than the sampling period.

Similarly, when non-polling scheme is used as shown in
Fig. 5k there is no significant effect on the system’s response
as long as delays are kept below the sampling period. However,
the degradation in the performance becomes severe when mes-
sages are queued in the network. As we can notice in Fig. 5k,
when the delay is 10 ms the device sends two messages to the
controller with the same value before it receives a response
from the controller. As a result, the “I”” part of the PI controller

is doubled, thereby causing bigger changes to the actuator
which downgrades the systems’ performance. That is, when
the system receives the second message, it computes the same
control value as that of the previous message. This, in turn,
forces the controller to compute a larger control value in order
to decrease the error because the previous value does not affect
the system. Obviously, such interpretation from the controller
is wrong since the first computed value is not yet applied.

We investigate how jitter affects the performance of the
controller in Fig. Bp and Fig. [5d. The effect of four different
values of jitter on the response of the system is shown in
Fig. [5b for the polling approach. When the jitter is smaller
than the sampling period, it does not significantly affect the
performance of the controller. However, the jitter increases the
overshoot but the system still manages to stabilize itself under
the settling time of 120 ms in all the cases. In the case of non-
polling approach, the effect of four different values of jitter
on the response of the system is shown in Fig. [5d. The results
in this case are similar to those in the case of the polling
approach.

2) When delay and jitter are larger than the sampling
period: In this subsection, we investigate the effect on the
response of the system due to delays and jitter which are
considerably larger than the sampling period. Once again, we
consider both polling and non-polling approaches. In this set
of experiments, the values of the delays and jitter are increased
until the system starts to oscillate. In Fig. [6h, the polling
approach is used and the system becomes unstable when the
delay exceeds 50 ms. The oscillation for the delay more than
50 ms exceeds the limit of the steady state error therefore the
system is considered unstable. The settling time for 50 ms
delay is less than 600 ms.

In Fig. [6k, the non-polling approach is used. It can be
noticed that the system tolerates smaller delays compared to
the polling approach. The system eventually stabilizes when 15
ms delay is applied, however the settling time is much higher
as compared to the polling approach. The system becomes
unstable for 23 ms delay. Moreover, the systems’ response
downgrades significantly from 15 ms delay. The degradation
of system’s performance, for this approach, starts when the
sensor sends consecutive messages before the actuator receives
a message. That happens when delays exceed the sampling
period.

In Fig. [6b and Fig. [6d, the effect of jitter in the control loop
is depicted for polling and non-polling approach respectively.
As it can be noticed, the overshoot increases as the jitter
increases, but the system manages to reach the steady state
after some time. Jitter does not affect the system in the same
way that delays do. Because of the jitter, the controller can
receive some values before the sampling period is exceeded.
Also the controller can receive some values that exceed the
sampling period by a small amount. Since jitter is a variable
delay, it may affect the control loop in a different way on
every run.

3) Discussion on settling time and overshoot in polling and
non-poling schemes: The comparison between the effects of
delay and jitter on the controller shows that both affect the
settling time since it takes more time to get enough responses

JOURNAL OF IEEE ACCESS

a.) Polling with delays

800
700 —————
600
Q
=t
"< 500
>
=
& 400
Local
= 300
—Fog
200 ims
100 — 10ms
0
0 50 100 150 200 250 300 350 400 450
Time (ms)
c.) Non-polling with delays
900
800
. [_\—
Q
= 600
<
> 500
)
=
.80 400
i
50 Local
Fog
200
ims
100 — 10ms
0
0 50 100 150 200 250 300 350 400 450
Time (ms)

b.) Polling with jitter
800

mF-

g

Light value
g

300 — 1MS
— 2MS
Sms

100 . 10MS

200

0 200 400 600 800 1000 1200

Time (ms)

d.) Non-polling with jitter
800
- M =

500

400

Light value

— 1MS

300
— 2MS

200 Sms
100 s 10MS

0 200 400 600 800 1000 1200

Time (ms)

Fig. 5: System response under delay and jitter smaller than or equal to sampling period, both polling (a and b) and non-polling

(c and d) approaches.

to stabilize the system. Both the delay and jitter also affect the
overshoot of the controller. Additionally, the polling approach
tolerates delays better than the non-polling approach. The
overshoot is plotted against the Round Trip Time for polling
and non-polling approaches in Fig. [7 and Fig. [8]respectively. In
these figures, “Local” represents the case when the controller
is not offloaded to fog or cloud. Hence the network delay in
this case is considered as zero. The label “Fog” represents
the case when the controller is offloaded to the fog server. In
this case the delay is very small (equal to half a millisecond).
The overshoot for the non-polling approach increases faster as
compared to the polling approach. Similarly, the settling time
is plotted against RTT for polling and non-polling schemes
in Fig. 0] and Fig. [10] respectively. It can be seen that the
polling scheme results in a smaller settling time compared to
the non-polling scheme. Moreover, from all the four graphs
we can verify that offloading the controller to fog nodes does

not affect the system. Consequently, the local servers can be
included in the control loop without performance degradation.

B. Case 2: Response with Delay Mitigation Mechanisms

This case is further divided into two cases. In the first
case, we use adaptive PI controller for mitigating delays due
to offloaded controller to the cloud. Whereas in the second
case, we apply prediction/forecasting methods to mitigate the
delays.

1) Mitigating delays using Adaptive PI Control: In this
case, we investigate the effect of delay mitigation mechanism
using the adaptive PI controller on the response of the system.
We show the results using the non-polling scheme since the
adaptive PI control inherently suits more to this scheme. In
the first experiment, a delay of 20 ms is considered as shown
in Fig. [[Th. The smoothing factor is set to 0.31 according to
the formula in (6). Compared to the behavior of the controller

JOURNAL OF IEEE ACCESS

a.) Polling with delays

Light value

300 —— 50ms delay
200 = 100ms delay
100 150 ms delay

2000 3000 4000 5000 6000 7000

Time (ms)

o 1000

c.) Non-polling with delays

Light value

— 15ms delay
200 -| = 20ms delay
23ms delay

0 200 400 600 800 1200

Time (ms)

1000

b.) Polling with jitter

Light value

=08 =7 = 25ms jitter
200 = 50ms jitter
75ms jitter

0 200 400 600 800 1000 1200

Time (ms)

d.) Non-polling with jitter

Light value

300 — 25ms jitter
200 - - = 50ms jitter

100 J 75ms jitter
0 !
0

200 400 600 800 1000 1200

Time (ms)

Fig. 6: System response under delay and jitter greater than sampling period, both polling (a and b) and non-polling (c and d)

approaches.

20ms 100ms 150ms 174ms 200ms 250ms
RTT (ms)

Overshoot
-
8 8

8§ 8 8

[
o

2ms

Fig. 7: Overshoot in various scenarios using the polling
approach.

before the smoothing factor is applied, overshoot has been
decreased from 142 to 56 and settling time from 1415 ms to
601 ms. In the second experiment, a delay of 25 ms is applied.
The system is unstable without delay mitigation mechanism as
shown in Fig. [TTp. In this experiment the smoothing factor is
set to 0.26. When the smoothing factor is applied the system
manages to stabilize after 686 ms with an overshoot of 59.
In the next two experiments, the jitter is 25 ms and 75
ms as shown in Fig. [Tt and Fig. [TId respectively. The

250

200
5 150
S
=
§
> 100
o

50

oo e [l
2ms 20 ms ms 40 ms
RTT (ms)

Fig. 8: Overshoot in various scenarios using the non-polling
approach.

smoothing factor is computed and RTT is set to the maximum
possible value. The smoothing factors are set to 0.26 and 0.1
respectively. In the case of 25 ms jitter, the overshoot has
decreased from 134 to 0 and the settling time from 384 to 199.
When the jitter is set to 75 ms the system becomes unstable.
Utilizing the smoothing factor the system manages to stabilize
after 1264 ms with an overshoot of 62.

2) Mitigating delays using prediction methods: In this case,
we investigate the effect of delay mitigation mechanism, using

JOURNAL OF IEEE ACCESS

1800

600

400

200
o | — -

2ms 20 ms 100 ms 150 ms
RTT (ms)

8 B 3
S 3 &
S & o

g
o

Settling Time (ms)
@
8

Local Fog

Fig. 9: Settling time in various scenarios using the polling
approach.

3500
3000
2500

2000

.__-IIII

Local Fog 20ms 23ms

Settling Time (ms)
g
o

g
o

o
=1

10 ms 15 ms

RTT (ms)

1ms

Fig. 10: Settling time in various scenarios using the non-
polling approach.

the prediction mechanisms discussed in Section [lII-B| on the
response of the system. Fig. [I2h shows that the system is
under the delay of 75 ms. In this case, the two prediction
methods are compared with respect to the response of the
polling method when executed with the same delay without
delay mitigation. While the exponential moving average has
a smoother transition, the double exponential smoothing has
a faster settling time. Both methods, however perform better
than the original system.

Similar results are gained when a 100 ms delay is applied,
as shown in Fig. [I2Zb. We can notice that the responses of both
methods have disturbances in the beginning. This is because
a smaller number of messages are available in the message
buffer at the beginning as compared to later times. This means,
the system has to rely on the prediction methods for input.
However, the prediction methods depend on the values from
the server to improve their accuracy. This is less of a problem
once the system becomes more stable, since changes in the
slope are smaller and therefore it is less likely to predict a
value that stands out significantly.

As for the jitter, the system performs much better as
compared to the delay. Fig. [[2k and Fig. [I2d show the
prediction methods performing with 25 ms and 75 ms of jitter,
respectively. We can see that in both the cases, there is barely
any overshoot. Moreover, the curves are much smoother in the
beginning as compared to the results with constant delays. This
is due to variations in the delay. The system performs better
when the system uses less predicted values in the beginning.

In the case of jitter there is barely any noticeable difference
between the two prediction methods, although the exponential
moving average settles the response slightly faster.

V. OUTLOOK AND DISCUSSION

The controller is clearly affected by the longer delays and
jitter. However, the system manages to stabilize when the
delays are smaller than the sampling period for both polling
and non-polling approaches. Introducing a local server in
the control loop adds a small delay of 2-3 ms and could
be considered. However, the setup should be tested with
increased load on the server to see how it would affect the
response. The adaptive PI controller is an intuitive solution.
It manages to stabilize the response of the system, and offers
a great improvement to the non-polling approach in all cases.
However, it has no proof for the robustness of the algorithm.
It should be examined on a more complex system or have
a mathematical proof in order to prove its robustness. The
prediction methods perform better under jitter than under
delays. This is because both methods depend on updating their
calculations, meaning they depend on getting correct values
from the server. In the case of delays, most predictions happen
in the start while the control values change and before the
system reaches its stable point. As the delays increase, the
system relies on more consecutive predicted values, worsening
the response of the system. In the case of jitter, the total
amount of predictions made is roughly the same as for the
delays, but the predictions are more distributed over time rather
than concentrated in the start, and thus the response is much
better. Even though the delay mitigation mechanisms manage
to improve the responses under delays and jitter, none of the
results are comparable to the local control with no delays. The
system examined here is a relatively simple case. However, the
results are reasonable considering the ratio of the sampling
period of the process and the delays applied. Most of the
research regarding hosting controllers on a cloud consider a
more comfortable difference between the sampling period and
the network delay. Whereas, we considered arbitrary delays
and jitter between the end device and the offloaded controller.

One important conclusion that can be drawn from the
experimental evaluation is that there is a strong need for
the development of a smart resource management technique.
Such a technique should be able to dynamically (at run-time)
decide whether to offload the controller to a remote server or
not. In the case of offloading requirements, it should be able
to decide whether to offload the controller to a fog server,
private cloud or public cloud. The decisions should be made
on the basis of several aspects such as admission control infor-
mation, application-specific heuristics, and information about
the global resources from the cloud. One way to implement
such technique is to develop a multi-level resource manager.
That is, it can be implemented at various levels including the
public cloud, private cloud, fog or even locally in the “thing”.
However, the level of intelligence and resource management
capabilities will be different at different levels. Together with
our industrial partners, we are currently investigating all these
aspects.

JOURNAL OF IEEE ACCESS

a.) 20ms delay
1000

800
600 —

500
400

Light value

= Smoothed line

St — QOriginal

100

| Ly

0 500 1000 1500 2000 2500
Time (ms)

c.) 25ms jitter
1000

800 —
700

500
400 |

Light value

200
100

[=]
8

400 600 800 1000 1200
Time {ms)

b.) 25ms delay

1000

Light value

800
700

500
400

200

100_] l J

0 500 1000 1500 2000 2500
Time (ms)

d.) 75ms jitter

1000

Light value

800
700

500
400

200
100

0 1000 2000 3000 4000 5000 6000
Time {ms)

Fig. 11: System response using adaptive PI control under different delays (a and b) and jitter (c and d).

VI. CONCLUSION AND FUTURE WORK

In this paper we have investigated the effects of offloading
the controller to the fog and cloud. We have built a prototype
to create a realistic scenario. Moving the controller to a remote
server degrades system’s performance. Even small delays
affect the control loop when they exceed the sampling period.
The forecasting methods that we have investigated, work better
with variable delays because the predicted values that are used
are more scattered, as opposed to constant values where the
predictions are concentrated at the beginning. However, these
methods are challenged in the case when consecutive predicted
values are needed, especially in the start up of the control
system. Whereas, the adaptive PI controller uses an intuitive
idea for mitigating delays inside the network. A formal proof
for the robustness of such approaches is needed.

Since not much research has been conducted in this area,
there are some possibilities left to try out in the future. The
polling and non-polling approaches can be expanded into a
more sophisticated system. Moreover, loads can be introduced
on both ends to simulate a more complex approach. These
methods can be tested with a more complicated system.
Another interesting future work is to develop a smart resource
manager that is capable of making offloading decisions at run-
time. Such a manager can be realized at various levels in the
IoT infrastructure such as public cloud, private cloud and fog.

ACKNOWLEDGEMENT

The work in this paper is supported by the Swedish Founda-
tion for Strategic Research through the project Future factories
in the Cloud (FiC), the Swedish Governmental Funding from
Strategic Research Area through the project XPRES and the
Swedish Knowledge Foundation through the project PreView.

[1]
[2]

[3]
[4]

[5]
[6]

[7]

[8]

REFERENCES

B. Sosinsky, Cloud Computing Bible, ISBN 978-0-470- 90356-8, Wiley
Publishing, Inc., 2011.

K. Ashton, “That ’Internet of Things’ Thing, in the real world things
matter more than ideas,” http://www.rfidjournal.com/articles/view 74986,
June 2009, [Online; Accessed 06-February-2015].

IEEE Internet of Things, http://iot.ieee.org/about.html, accessed: January
2017.

F. Bonomi, “Keynote talk: Connected vehicles, the internet of things,
and fog computing,” in 8th ACM International Workshop on VehiculAr
Inter-NETworking (VANET), 2011.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” pp. 13-16, 2012.

H. Madsen, G. Albeanu, B. Burtschy, and F. L. Popentiu-Vladicescu,
“Reliability in the utility computing era: Towards reliable fog comput-
ing,” in 20th International Conference on Systems, Signals and Image
Processing (IWSSIP), 2013, pp. 43-46.

I. Stojmenovic, “Fog computing: A cloud to the ground support for smart
things and machine-to-machine networks,” in Australasian Telecommu-
nication Networks and Applications Conference (ATNAC), 2014, pp.
117-122.

R. Langmann and L. Meyer, “Automation services from the cloud,” in
11th IEEE International Conference on Remote Engineering and Virtual
Instrumentation (REV), 2014, pp. 256-261.

http://www.rfidjournal.com/articles/view?4986

JOURNAL OF IEEE ACCESS

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

a.) 75ms delay

900
800 x
700 e —
o 600
=
T 500
o=
.—ED 400
= 300 : ;
Exponential moving average
200 = Double exponential smoothing
100 = Original
0
0 500 1000 1500 2000 2500
Time (ms)
c.) 25ms jitter
900
800
700 .
o 600
5
T 500
iﬂ 400
= 300 s ;
Exponential moving average
200 == Double exponential smoothing
100 = Original
0
0 200 400 600 800 1000 1200
Time (ms)

Fig. 12: System response using the prediction methods

0. Givehchi and J. Jasperneite, “Industrial automation services as part
of the Cloud: First experiences,” Proceedings of the Jahreskolloquium
Kommunikation in der Automation-KommA, Magdeburg, 2013.

H. P. Breivold and K. Sandstrom, “Internet of Things for Industrial
Automation Challenges and Technical Solutions,” in 8th IEEE Interna-
tional Conference on Internet of Things (iThings 2015), Dec. 2015.

A. Serbanati, C. M. Medaglia, and U. B. Ceipidor, Building blocks of
the internet of things: State of the art and beyond. INTECH Open
Access Publisher, 2011.

E. Borgia, The Internet of Things Vision: Key Features, Applications
and open Issues, Journal of Computer Communications, 2014.

Internet of Things From Research and Innovation to Market Deploy-
ment, Editors: Ovidiu Vermesan, Peter Friess, River Publishers Series
in Communication.

J.Gubbi, R.Buyya, S.Marusic, M.Palaniswami, Internet of Things (IoT):
A Vision, Architectural Elements, and Future Directions, Journal of
Future Generation Computer Systems, 2013.

Gartner, “Gartner says the internet of things installed base will grow
to 26 billion units by 2020,” December 2013, http://www.gartner.-
com/newsroom/id/2636073, accessed January 2017.

H. P. Breivold, I. Crnkovic, I. Radosevic, and I. Balatinac, “Architecting
for the Cloud: A Systematic Review,” in [/7th IEEE International
Conference on Computational Science and Engineering (CSE2014),
Dec. 2014.

0. Givehchi, H. Trsek, and J. Jasperneite, “Cloud computing for indus-
trial automation systems - A comprehensive overview,” in 18th IEEE
Conference on Emerging Technologies & Factory Automation (ETFA),
2013, pp. 14.

0. Givehchi and J. Jasperneite, Industrial Automation Services as part
of the Cloud: First Experiences, in: Jahreskolloquium Kommunikation
in der Automation - KommA (Communication in the Automation
Conference), Magdeburg, 2013.

B. Vogel-Heuser, G. Kegel, K. Bender, and K. Wucherer, “Global in-
formation architecture for industrial automation,” Journal of Automation
Technology (Automatisierungstechnische Praxis), vol. 51, no. 1, pp. 108—
115, 2009.

H. Sequeira, P. J. Carreira, T. Goldschmidt, and P. Vorst, “Energy
Cloud: real-time cloud-native Energy Management System to monitor
and analyze energy consumption in multiple industrial sites,” in 7th

b.) 100ms delay

900
800 AN = o\ /\
700 \
o 600 ; /
=
T 500
-
i" 400
— 300 y .
Exponential moving average
200 == Double exponential smoothing
100 = QOriginal
0
0 500 1000 1500 2000 2500
Time (ms)
d.)75ms jitter
900
i /\
700
o 600
=
S 500
£ 400
20
) 300 ']
Exponential moving average
200 == Double exponential smoothing
100 = Original
0 200 400 600 800 1000 1200 1400
Time (ms)

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

under delays (a and b) and jitter (c and d).

IEEE/ACM International Conference on Utility and Cloud Computing
(UCC), 2014.

J. Delsing, F. Rosenqvist, O. Carlsson, A. W. Colombo, and T. Bange-
mann, “Migration of industrial process control systems into service
oriented architecture,” in 38th Annual IEEE Conference on Industrial
Electronics Society (IECON). 1EEE, 2012, pp. 5786-5792.

Y. Chen, Z. Du, and M. Garcia-Acosta, “Robot as a service in cloud
computing,” in 5th IEEE International Symposium on Service Oriented
System Engineering, ser. SOSE ’10, 2010, pp. 151-158.

O. Givehchi, J. Imtiaz, H. Trsek, and J. Jasperneite, “Control-as-a-
service from the cloud: A case study for using virtualized PLCs,” in
10th IEEE Workshop on Factory Communication Systems, 2014.
Cisco, Cisco Delivers Vision of Fog Computing to Accelerate
Value from Billions of Connected Devices, Tech. Rep.,
January 2014, avaialble: https://newsroom.cisco.com/press-release-
content?articleld=1334100.

S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and
applications,” in Third IEEE Workshop on Hot Topics in Web Systems
and Technologies (HotWeb), Nov 2015, pp. 73-78.

V. Gazis, A. Leonardi, K. Mathioudakis, K. Sasloglou, P. Kikiras, and
R. Sudhaakar, “Components of fog computing in an industrial internet
of things context,” in 12th Annual IEEE International Conference
on Sensing, Communication, and Networking - Workshops (SECON
Workshops), June 2015, pp. 1-6.

1. Stojmenovic and W. Sheng, “The Fog computing paradigm: Scenarios
and security issues,” in Federated Conference on Computer Science and
Information Systems (FedCSIS), 2014, pp. 1-8.

K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwlder, and B. Kold-
ehofe, “Mobile fog: A programming model for large-scale applications
on the internet of things,” in Proceedings of the 2nd ACM SIGCOMM
workshop on Mobile cloud computing. ACM, 2013, pp. 15-20.

J. K. Zao, T. T. Gan, C. K. You, S. J. R. Mendez, C. E. Chung, Y. T.
Wang, T. Mullen, and T. P. Jung, “Augmented brain computer interaction
based on fog computing and linked data,” in International Conference
on Intelligent Environments (IE), 2014, pp. 374-377.

H. J. Hong, P. H. Tsai, and C. H. Hsu, “Dynamic module deployment
in a fog computing platform,” in /8th Asia-Pacific Network Operations
and Management Symposium (APNOMS), Oct 2016, pp. 1-6.

A. Toma and C. Jian-Jia, “Server resource reservations for computation
offloading in real-time embedded systems,” in //th IEEE Symposium

JOURNAL OF IEEE ACCESS

(32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

on Embedded Systems for Real-time Multimedia (ESTIMedia), 2013,
pp. 31-39.

W. Lingyun and A. Canedo, “Offloading industrial human-machine
interaction tasks to mobile devices and the cloud,” in IEEE Conference
on Emerging Technology and Factory Automation (ETFA), 2014, pp.
1-4.

Y. Nimmagadda, K. Kumar, L. Yung-Hsiang, and C. S. G. Lee, “Real-
time moving object recognition and tracking using computation offload-
ing,” in International Conference on Intelligent Robots and Systems
(IROS), IEEE/RSJ, 2010, pp. 2449-2455.

A. Toma and J.-J. Chen, “Computation offloading for real-time systems,”
pp. 1650-1651, 2013.

L. L. Ferreira, G. Silva, and L. M. Pinho, “Service offloading in adaptive
real-time systems,” in 16th IEEE Conference on Emerging Technologies
& Factory Automation (ETFA), 2011, pp. 1-6.

Z. Yuan, L. Hao, J. Lei, and F. Xiaoming, “To offload or not to offload:
An efficient code partition algorithm for mobile cloud computing,” in
1st IEEE International Conference on Cloud Networking (CLOUDNET),
2012, pp. 80-86.

W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked
control systems,” Control Systems, IEEE, vol. 21, no. 1, pp. 84-99, 2001.
J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proceesings of the IEEE, vol. 95, no. 1,
2007.

T. C. Yang, “Networked control system: a brief survey,” IEE
Proceedings-Control Theory and Applications, vol. 153, no. 4, 2006.
K. J. Astrom and T. Higglund, Advanced PID control. ISA-The
Instrumentation, Systems, and Automation Society; Research Triangle
Park, NC 27709, 2006.

X.-L. Zhang and P. Liu, “A new delay jitter smoothing algorithm based
on pareto distribution in cyber-physical systems,” Wireless Networks, pp.
1-11, 2015.

C.-S. Shih, S.-M. Wang, J. Chen, and Y.-H. Wang, “Workload migration
framework for streaming applications on smartphones,” in 20th IEEE
International Conference on Embedded and Real-Time Computing Sys-
tems and Applications (RTCSA), 2014, pp. 1-8.

R. G. Brown, Smoothing, forecasting and prediction of discrete time
series. Courier Corporation, 2004.

J. Guerard, Introduction to financial forecasting in investment analysis.
Springer Science & Business Media, 2013.

P. Nikolaidis and A. Didic, “Real-time control in industrial IoT,”
Master’s thesis, Milardalen University, Sweden, June 2015.

| Saad Mubeen Dr. Mubeen is a Senior Member of
IEEE. He is a Senior Lecturer/Assistant Professor at
the School of Innovation, Design and Engineering at
Milardalen University, Sweden. He has previously
worked in the automotive industry, employed by
Arcticus Systems AB, Sweden. He has also worked
as a consultant for Volvo Construction Equipment,
Sweden. He received his PhD in Computer Sci-
ence and Engineering from Milardalen University
in 2014. His research interests include model-based
development of vehicular embedded systems with a

focus on timing models, end-to-end timing analysis and multicore platforms.
Saad has co-authored over 90 research publications in international peer-
reviewed journals, conferences, workshops and book chapters.

Pavlos Nikolaidis Pavlos has worked as a consultant
for ABB Corporate Research, Sweden. He holds a
Master degree in computer science from Mélardalen
University, Sweden.

Alma Didic Alma has worked as a consultant for
ABB Corporate Research, Sweden. She holds a
Master degree in computer science from Mélardalen
University, Sweden.

Hongyu Pei-Breivold Dr. Pei-Breivold is a Princi-
pal Scientist within the Industrial Internet-of-things
group at ABB Corporate Research, Sweden. She
obtained her PhD degree in Computer Science and
Engineering from Milardalen University in 2011.
She is also an adjunct researcher at Milardalen
University. She has published more than 30 peer-
reviewed articles in journals, conferences and work-
shops. She is active in academia as program com-
mittee member, track co-chair, and industry-research
chair in international conferences. Her main research
interests are software evolution, cloud computing, internet-of-things technolo-
gies and their applications in industry.

Kristian Sandstrolm Dr. Sandstrom is a senior
researcher at Research institutes of Sweden (RISE)
SICS. His research interest is within industrial
software systems, specifically in internet of things
and cloud technologies for industrial systems and
furthermore includes software architecture, design,
analysis, and implementation of embedded real-time
systems with high demands on reliability. Kristian
received a PhD from Royal Institute of Technology,
KTH, Stockholm, Sweden, in 2002, and holds a po-
sition as Adjunct Professor at Mélardalen University.
He has held a position as a Senior Lecturer at Milardalen university and
he co-founded and worked at ZealCore Embedded Solutions. He has been
subsequently employed as a manager at ENEA R&D and later as a Principal
Scientist at ABB, Sweden.

Moris Behnam Dr. Behnam is a Senior Lecturer at
the School of Innovation, Design and Engineering
at Mailardalen University, Sweden. Currently, he
is leading the Networked and Embedded Systems
Division at Milardalen University, Sweden. Moris
received his PhD degree in Computer Science and
Engineering from Milardalen University in 2010.
His main research interest is on resource virtual-
ization for industrial distributed real-time systems.
He has been working on virtualization techniques
in both operating system level and communication
level using resource reservation techniques. Moris has published over 175
publications in international journals/conferences/workshops. Moris has orga-
nized and chaired several international conferences and workshops including
VTRES 2013, VTRES 2014 and WFCS 2016.

	Introduction
	Problem Statement
	Paper Contributions
	Paper Layout

	Related Work
	Proposed System Architecture
	Prototype Architechure
	Delay Mitigation

	Experimental Evaluation
	Case 1: Response Without Mitigation Mechanisms
	When delay and jitter are smaller than or equal to the sampling period
	When delay and jitter are larger than the sampling period
	Discussion on settling time and overshoot in polling and non-poling schemes

	Case 2: Response with Delay Mitigation Mechanisms
	Mitigating delays using Adaptive PI Control
	Mitigating delays using prediction methods

	Outlook and Discussion
	Conclusion and Future Work
	References
	Biographies
	Saad Mubeen
	Pavlos Nikolaidis
	Alma Didic
	Hongyu Pei-Breivold
	Kristian Sandströlm
	Moris Behnam

