
Analyzing Industrial Simulink Models by
Statistical Model Checking

Predrag Filipovikj1, Nesredin Mahmud1, Raluca Marinescu1, Guillermo
Rodriguez-Navas1, Cristina Seceleanu1, Oscar Ljungkrantz2, and Henrik Lönn2

1 Mälardalen University, Väster̊as, Sweden,
{first.last}@mdh.se

2 Volvo Group Trucks Technology, Gothenburg, Sweden,
{oscar.ljungkrantz, henrik.lonn}@volvo.com

Abstract. The evolution of automotive systems has been rapid. Nowa-
days, electronic brains control dozens of functions in vehicles, like brak-
ing, cruising, etc. Model-based design approaches, in environments such
as MATLAB Simulink, seem to help in addressing the ever-increasing need
to enhance quality, and manage complexity, by supporting functional
design from predefined block libraries, which can be simulated and ana-
lyzed for hidden errors, but also used for code generation. For this reason,
providing assurance that Simulink models fulfill given functional and tim-
ing requirements is desirable. In this paper, we propose a pattern-based,
execution-order preserving automatic transformation of Simulink atomic
and composite blocks into stochastic timed automata that can then be
analyzed formally with UPPAAL Statistical Model Checker (UPPPAAL SMC).
Our method is supported by the tool SIMPPAAL, which we also introduce
and apply on an industrial prototype called the Brake-by-Wire system.
This work enables the formal analysis of industrial Simulink models, by
automatically generating their semantic counterpart.

1 Introduction

Designing modern automotive systems is as rewarding as it is challenging. Trends
like the drive-by-wire technology, in which standard vehicle operations such as
braking are carried out by electronic components rather than mechanical ones,
make the assurance of a modern vehicle’s correct operation extremely difficult.

The cost of drive-by-wire systems is often greater than for conventional sys-
tems. The extra costs stem from higher complexity, development costs and the
redundant elements needed to make the systems safe. Such systems fall under the
category of safety-critical systems that are recommended to be developed under
standards like ISO26262 [1], which require extensive changes in the traditional
development process due to the need of providing assurance of the system’s safe
operation at all development stages.

To achieve some form of assurance with respect to safety-critical require-
ments, as well as valuable design insight, model-based design enables industry to
create executable specifications in the form of Simulink [2] models that can be

simulated and formally analyzed [3] to detect hidden design errors and require-
ment violations.

Analyzing Simulink models formally has been a research target for a while
now. Existing work [4–6] provides solutions based on (stochastic) hybrid au-
tomata, extended finite automata etc., yet no integrated framework exists, which
could serve as an immediate tool applicable to complex industrial Simulink mod-
els. To address this gap, in this paper, we introduce a pattern-based approach
(Section 3) that captures formally the behaviors of Simulink blocks, as networks
of stochastic timed automata, and report our experience with analyzing an in-
dustrial system, with UPPAAL SMC (Statistical Model Checker) [7] (Section 5).
Our use case, that is, the Brake-by-Wire (BBW) prototype comes from Volvo
Group Trucks Technology (VGTT), Sweden, a well-known truck manufacturer.

We classify the Simulink blocks into atomic (do not contain sub-blocks) and
composite (hierarchical) blocks, and we separate further the former into discrete-
time and continuous-time blocks, depending on whether a given sample time is
used in the simulation or not. In order to be able to reason about such blocks, we
propose a generic tuple definition for the atomic block. The definition captures
the functionality of a Simulink block as a blockRoutine() that updates data
(state) variables, after which it produces an output observable at particular time
instances defined as a multiple of the block’s sample time (in case of discrete
blocks), or continually observable in case of a continuous block. Next, we define
the semantics of the Simulink blocks in terms of timed transition systems, and we
sketch the proof of the soundness of the transformation into particular stochastic
timed automata, by showing that the Simulink atomic block refines our proposed
stochastic patterns, in the discrete-time case. If the model contains continuous-
time blocks then the soundness resorts to comparing simulation traces generated
by simulating the model in Simulink and UPPAAL SMC, respectively. A crucial
aspect of the Simulink to stochastic timed automata transformation is ensuring
and preserving the correct execution order of the Simulink blocks, both at the
system and subsystem level. We do this by introducing a flattening algorithm of
the hierarchical Simulink models that removes the hierarchy by capturing only
the execution order of the blocks as computed by Simulink at the beginning of
the simulation in the so-called sorted list.

The crux of our method is twofold: (i) using patterns in the transformation,
which eases the modeling process while preserving the execution semantics of
Simulink blocks, and (ii) verifying the encodings of the Simulink blocks behaviors
as C routines in UPPAAL, with the program verifier Dafny [8]. To be able to apply
our approach on the selected Brake-by-Wire industrial use case, we also provide
the tool called SIMPPAAL that takes as input the Simulink model together with
the sorted list and generates automatically the flattened formal model to be
statistically model checked.

Our endeavor is justified by the industrial needs of ensuring correctness with
respect to both functional and timing behaviors of automotive embedded sys-
tems. Moreover, an initial investigation of verifying large Simulink models with
the existing Simulink Design Verifier tool shows limitations in terms of scalabil-

2

ity and coverage of all types of requirements. The application of our approach to
the Brake-by-Wire Simulink model does not yet confirm the scalability of our ap-
proach, but it shows its feasibility. We show that we can automatically generate
the network of stochastic timed automata corresponding to the Brake-by-Wire
Simulink blocks and their sorted order of execution, and analyze via statistical
model checking the complete transformed model, against probabilistic functional
and timing requirements, with high accuracy. Applying exhaustive model check-
ing on the 4-wheels architectural model of the Brake-by-Wire, integrated with
formal semantics in terms of timed automata generates a very large state-space,
unless reduction techniques are applied [9, 10]. It is then foreseeable that apply-
ing exact model checking on more complex industrial models would most likely
run into the state-space explosion problem. This motivates our choice of SMC
as the analysis solution for Simulink models, despite the fact that the method is
not exact.

The remainder of the paper is organized as follows. In Section 2 we overview
Simulink, UPPAAL SMC, and Dafny, after which we present our Simulink to stochas-
tic timed automata transformation approach in Section 3. The SIMPPAAL tool’s
architecture is described in Section 4, and its validation by applying it on the
Brake-by-Wire prototype is shown in Section 5. In Section 7 we compare to re-
lated work, before concluding the paper and outlining future lines of research in
Section 8.

2 Preliminaries

In this section, we recall the basics of the notations, languages and tools needed
to comprehend the rest of the paper. We overview Simulink, stochastic (priced)
timed automata, UPPAAL SMC, and Dafny.

2.1 Simulink

Simulink [2] is a graphical programming environment for model-base design, sim-
ulation, verification, and code generation of multi-domain dynamic systems. The
model-based design is achieved based on predefined libraries of atomic blocks,
e.g., Sum, Product, Gain, Sine in the Math Operations library, Logical Opera-
tor, Relational Operator in the Logic and Bit Operations. Such blocks represent
computational modules that produce an output based on a equation or another
modeling concept either continuously (i.e., continuous-time blocks) or at specific
points in time (i.e., discrete-time blocks). Fig. 1 shows a visual representation
of the continuous-time and discrete-time behaviors of the Sine wave Simulink
block. The tool also enables the definition of custom blocks modeled as State-
flow diagrams or user-defined functions via the concept of S-function written
in Matlab, C, C++, or Fortran, and Block Masks modeled in Simulink with a
userdefined interface, encapsulated logic, and hidden data from the user.

A hierarchical diagram is achieved through the implementation of a Sub-
system, a block that encapsulates a set of atomic blocks and possibly other

3

(a) (b)

Fig. 1: Example (Sine Wave Block): (a) Simulink Diagram and (b) Simulation
Result

subsystems. A subsystem can either be virtual, that is, encapsulated blocks are
evaluated according to the overall system model, or non-virtual, that is, encap-
sulated blocks are executed as a single unit that can be conditionally executed
based on a predefined triggering, function call, or enabling input. Other blocks
also aid the creation of a hierarchical diagram, like Inport and Outport block
from the Ports and Subsystems library, and Goto and From block from the Signal
Routing library.

For example, in Fig. 2 we show a small Simulink model. This is an excerpt
from the BBW model that is used as a use case in this paper. The first block
in the model is a masked block called MaskedInput that produces the signal
presented in Fig. 2a. Next, this signal is limited to a maximum value of 100,
that is, if the input signal to Saturation is grater than 100, then the output will
be set to 100, otherwise will remain unchanged. This signal is then rounded to
the closed integer by the Rounding block and represents the output signal of the
system witch is displayed by Fig. 2b. Between the Saturation and the Rounding
block, there is the RateTransition block, which does not alter the value of the
signal, but handles the data transfer between the two blocks.

In Simulink, the dynamic models can be simulated and the results can be
displayed as simulation runs. The order in which the blocks are invoked is deter-
mined during simulation by the model compiler. The system’s block invocation
ordering is called the sorted order. Some blocks, such as Mux, Demux, Goto,
From, are related to the signal flow and have no computational value, thus they
are not part of the sorted order. Similarly, virtual subsystems do not execute
as a unit and are also not part of the sorted order, but the blocks inside the
virtual subsystem are part of the root-level system’s sorted order and share the
system’s index.

4

(a) (b)

RateTransition

round

RoundingSaturationMaskedInput ScopeOut

ScopeIn

(c)

Fig. 2: Example (Simulink model): (a) Simulink input signal (Scope1), (b)
Simulink output signal (Scope2), and (c) The Simulink model.

2.2 UPPAAL SMC

UPPAAL SMC [11] is a statistical model checker for system models represented
as networks of stochastic priced timed automata. A stochastic priced timed au-
tomaton (SPTA) is defined as the following tuple:

SPTA = 〈L, l0, X,Σ,E,R, I, µ, γ〉, (1)

where L is a finite set of locations, l0 ∈ L is the initial location, X is a finite set of
continuous variables, Σ = Σi]Σo is a finite set of actions partitioned into inputs
(Σi) and outputs (Σ0), E is a finite set of edges of the form (l, g, a, ϕ, l′), where l
and l′ are locations, g is a predicate on RX , action label a ∈ Σ, and ϕ is a binary
relation on RX , R : L → NX assigns a rate vector to each location, I assigns
an invariant predicate I(l) to any location l, µ is the set of all density delay
functions µs ∈ L×RX , which can be either uniform or exponential distribution,
and γ is the set of all output probability functions γs over the Σo output edges
of the automaton.

The semantics of the probabilistic SPTA is defined over a timed transition
system, whose states are pairs s = (l, v) ∈ L×RX , with v |= I(l), and transitions

defined as: (i) delay transitions ((l, v)
d−→ (l, v′) with d ∈ R≥0 and v′ = v + d),

and (ii) discrete transitions ((l, v)
a−→ (l′, v′) if there is an edge (l, g, a, Y, l′) such

that v |= g and v′ = v[Y], where Y ⊆ X, and v[Y] is the valuation assigning
0 when x ∈ Y and v(x) otherwise). We write (l, v) (l′, v′), if there is a
finite sequence of delays and discrete transitions from (l, v) to (l′, v′). The delay
density function µs over delays in R≥0 for each state a is either uniform or
exponential distribution depending on the invariant of l of the state s. Let El

5

denote the disjunction of guards such that (l, g, o,−,−) ∈ E for some output o.
With D(l, v) = sup{d ∈ R≥0 : v + d |= I(l)} we denote the supremum delay,
whereas with d(l, v) = inf{d ∈ R≥0 : v + d |= El} we denote the infimum delay
before enabling an output. If D(l, v) < ∞ then the delay density function µs
for a given state s is a uniform distribution over the interval [d(l, v), D(l, v)],
otherwise it is an exponential distribution with a rate P (l). For every state s,
the output probability function γs over Σo is the uniform distribution over the
set {o : (l, g, o,−,−) ∈ E ∧ v |= g} whenever the set is non empty.

Under the assumption of input-enabledness, disjointedness of clock sets and
output actions, a collection of composable SPTA can be defined as a network of
SPTA (NSPTA) (A1 ‖ A2 ‖ ... ‖ An). The states of the NSPTA are defined as
a tuple s = 〈s1, ..., sn〉, where sj is a state of Aj of the form (l, v), where l ∈ Lj

and v ∈ RXj

, where different automata synchronize based on standard broadcast
channels. The probabilistic semantics is based on the principle of independence
between components. Each component decides on its own (that is, based on a
given delay density function and output probability function) how much to delay
before outputting and what output to broadcast at that moment.

In our work, for encoding the patterns, we use SPTA with real-valued clocks
that evolve with implicit rate 1. These automata are in fact timed automata
with stochastic semantics, called stochastic timed automata (STA). A network
of STA (NSTA) is a parallel composition of STA, defined in a similar way like
NSPTA. The notion of SPTA is introduced due to the fact, that, for analysis we
use monitor automata (composed in parallel with the actual system model) that
implement the stop-watch mechanism, which renders the model an NSPTA.

UPPAAL SMC uses a probabilistic extension of WMTL [12] to provide:

– Hypothesis testing : check if the probability to reach a state φ within cost
x ≤ C is greater or equal to a certain threshold p (Pr(♦x≤Cφ) ≥ p),

– Probability evaluation: calculate the probability Pr(♦x≤Cφ) for some NSPTA,
– Probability comparison: is P (♦x≤Cφ1) > P (♦y≤Dφ2)?

2.3 Dafny

Dafny [8] is an imperative, sequential programming language with generic classes
and dynamic allocation that allows for built-in specification constructs, such
as standard pre- and postconditions, framing constructs, and termination met-
rics. The language also offers updatable ghost variables, recursive functions, and
types like sets and sequences. The specification style is based on dynamic frames
[13] and the language also includes user-defined mathematical functions. These
features permit programs to be specified for modular verification, so that the
separate verification of each part of the program implies the correctness of the
whole program.

Dafny includes a static program verifier that can be used to verify the func-
tional correctness of the programs. The tool translates a given (Dafny) program
into the intermediate verification language Boogie [14], which ensures that the
correctness of the Boogie program implies the correctness of the Dafny program

6

Transformation

Simulink
Model

NSTA Model

STA
Patterns

Sorted
Order
List

Fig. 3: Overall Approach of the Simulink to UPPAAL SMC Transformation

(the semantics of Dafny is defined in terms of Boogie). The Boogie tool is then
used to generate first-order verification conditions that are passed to a theorem
prover, in particular to the Z3 SMT solver [15].

For example, pre- and postconditions have a standard declaration based on
the keywords requires and ensures, respectively. The caller has the responsibil-
ity to fulfill the precondition and the implementation has the responsibility to
establish the postcondition. If either fails, an error is reported by the verifier.

3 Simulink to UPPAAL SMC: Approach

In our approach, the transformation from a Simulink model to a Network of
Stochastic Automata (NSTA) handles a wide range of Simulink block types,
and these blocks include virtual and non-virtual blocks, atomic and composite
blocks, continuous and discrete blocks and special blocks such as S-function,
Custom and Masked blocks. The wide consideration of the Simulink blocks in
our transformation is motivated by a study conducted on the block of types used
in modeling various industrial Simulink models.

During the transformation, we also preserve the Simulink model’s execu-
tion semantics on the UPPAAL SMC model checker, that includes the behavior of
the blocks and their execution order. Figure 3 illustrates the high level process
of the transformation (the oval shapes represent artifacts and the rectangu-
lar shape represents functionality). The Transformation block implements func-
tionalities for parsing, transformation and generation of artifacts. The Simulink
model represents the model to be transformed, the Sorted Order List contains
the sorted order of the blocks inside the Simulink model, while the Stochastic
Timed Automata (STA) patterns are the patterns used for transforming the
atomic Simulink blocks into NSTA. In order to guarantee correct functionality
of the Simulink blocks, we also verify the functional correctness of the blocks

7

using Dafny. The transformation of Simulink models into a NSTA is performed
in following steps:

(i) first, we categorize the Simulink blocks into atomic and composite. The
atomic blocks are primitive types e.g., Gain, Integrator, etc., whereas the
composite blocks such as the Subsystem and Reference Model blocks con-
sist of communicating atomic blocks, hence allowing hierarchical modeling.
Further, we classify the atomic blocks by the blocks’ execution behavior into
continuous-time and discrete-time. The continuous-time blocks execute at
infinitely small time intervals that approximate continuous behavior, e.g.,
Integrator; whereas the discrete-time blocks execute with sample time, ts;

(ii) second, we give a formal definition for the atomic Simulink blocks as a tuple.
The semantics of the composite blocks is interpreted according to its atomic
blocks constituents and the connections among the atomic blocks (described
in Subsection 3.1);

(iii) third, we propose a flattening algorithm that transforms the composite blocks
into their equivalent flat NSTA. Our implementation preserves the atomic
execution behaviors of the Subsystem blocks (described in Subsection 3.3);

(iv) fourth, we transform the continuous-time and discrete-time atomic blocks
into their respective STA using Transformation Patterns (described in Sub-
section 3.2);

(v) finally, we model the connections among blocks using globally shared mem-
ory.

The user defined blocks via the extension mechanisms of Simulink such as
S-function, Masked and Custom blocks are also handled in our transformation
approach with a special treatment. Since S-function blocks are implemented on
the basis of user defined functions, and the Custom and the Masked blocks
conceal the content of their blocks, we only transform the blocks’ execution
behavior into their corresponding STA. Their respective routines that map input
and state variables into output are manually encoded on, or migrated to the
blockRoutine functions, hence treating the special blocks as atomic blocks.

In the following subsections, we give formal definitions of atomic Simulink
block and Simulink model, followed by detail descriptions of the transformation
patterns and the flattening algorithm.

3.1 Formal definitions

The Simulink documentation [16] provides informal descriptions of Simulink
blocks, e.g., short descriptions and usages of blocks, detailed blocks’ parame-
ters, datatypes support and runtime characteristics of blocks, e.g., sample time,
zero-crossing, etc. For the purpose of clarity in the usage of terminologies in
our context, we provide formal definitions of a Simulink block and a Simulink
model respectively. The formal definitions are later employed to reason about
the soundness of our transformation, by establishing connections between formal
syntactic definitions and their corresponding semantics.

8

Simulink blocks are the main elements used to build models in MATLAB
Simulink. Since non-computational blocks, such as MUX, virtual SubSystem
blocks, etc., are not involved in the execution, the formal definition only ad-
dresses computational blocks, e.g., Gain, Integrator, etc.

Definition 1 (Simulink block). An atomic Simulink block, denoted by B, is
defined as the following tuple:

B = 〈sn, Vin, Vout, VD, ∆, Init, blockRoutine〉 (2)

where:

(i) sn ∈ Z - is B’s execution order number;

(ii) Vin - is a finite set of typed input real-valued variables;

(iii) Vout - is a finite set of typed output real-valued variables;

(iv) VD - is a finite set of typed data (or state) real-valued variables;

(v) ∆ - represents the set of time points at which output is produced, ∆ =
n ∗ ts + offset, where ts, offset ∈ R≥0 are the sample time and the offset
of the atomic Simulink block, respectively, n ∈ N. For continuous blocks ∆
is infinitely small, meaning that the output is produced at infinitely small
intervals;

(vi) Init() - is an initialization of the data variables;

(vii) blockRoutine() = Update();Output() - is the sequential composition of
Output() and Update() functions. It captures the functionality of a Simulink
block, where: Output() : Vin × VD 7→ Vout is the output function and
Update() : Vin × VD 7→ VD is the update function.

Based on the definition of a Simulink block, we propose the formal definition
of a Simulink model.

Definition 2 (Simulink model). A Simulink model is formally defined as a
sequential composition of n Simulink blocks, as follows:

S = B1 ⊗B2 ⊗B3 · · · ⊗Bn (3)

where: ssn =
n⋃
i=1

sin is an ordered list of execution, where ∀(i, j).i < j ⇒ si < sj ,

V Sin =
n⋃
i=1

V iin is the set of input variables, V Sout =
n⋃
i=1

V iout is the set of output

variables, V SD =
n⋃
i=1

V iD is the set of internal state variables, ∆S =
n⋃
i=1

∆i is the set

of time points at which the respective data and output variables are updated, and
(Init; blockRoutine)S , (Init1; blockRoutine1)‖=∆1

; (Init1; blockRoutine2)‖=∆2
;

. . . ; (Initn; blockRoutinen)‖=∆n
is an ordered list of pairs of (Init, blockRou-

tine), which are executed atomically at given times ∆i.

9

Semantics of Simulink blocks. Let us rewrite ∆ = n ∗ ts + offset of Defini-
tion 1, as an integral multiple of Simulink’s simulation step δ ∈ Q≥0, that is,
∆ = n∗(m∗δ)+(r∗δ), n,m, r ∈ N. Let us also assume that x ∈ Vin, u ∈ VD, and
y ∈ Vout are input, data, and output variables, respectively. Then, we define the
semantics of a Simulink block in terms of the following discrete-time transition
system.

Definition 3 (Semantics of a Simulink block). Assume B is a Simulink
block as given in Definition 1. The semantics of B is a timed transition system,
as follows:

TB = 〈q0, Q,L,−→〉, (4)

where Q = Rn is the state space: a state q = y|t = (y, t) is given by the values of
all output variables y at a given time instance t ∈ R≥0, for given input at time t,
that is, x|t, and data at time t, that is, u|t, q0 = y0|t0 = (y0, t0) ∈ Q is the initial
state, t0 ∈ R≥0, L = La ∪Lt is the set of labels, with La the set of action labels:
La = {Init, blockRoutine}, Lt the set of time labels: Lt = {r∗δ,m∗δ}, and −→
is the transition relation: −→⊆ Q× La × Lt ×Q with two types of transitions:

q0
Init,r∗δ−−−−−→ q′ ⇐⇒ t′ = t0 + r ∗ δ, and ∃ y0|t′ such that y|t′ = y0|t′

q
blockRoutine,m∗δ−−−−−−−−−−−−→ q′ ⇐⇒ t′ = t+m ∗ δ, and ∃u|t, x|t′ such that

u|t′ = f(x|t′ , u|t), and y|t′ = f(x|t′ , u|t′).

The first transition is the Init-type transition, fired at the beginning of the
block’s execution, at t0, and the second is the Operation-type corresponding to
generating outputs for given inputs, at particular time points, t′ = t + m ∗ δ.
Note that state q′ can be the same as q if the input does not change between two
sample times. If the Simulink block is continuous, then m = 1, r = 1, meaning
that transitions are fired “infinitely” often, that is, every δ. Note that Definition 3
assumes an unknown but constant simulation step δ during the entire simulation
time, which is one of the possible cases in Simulink.

By the above definition, a finite run % of the Simulink block can be defined
as the following sequence of transitions:

q0
Init,r∗δ−−−−−→ q1

blockRoutine,m∗δ−−−−−−−−−−−−→ . . .
blockRoutine,m∗δ−−−−−−−−−−−−→ qn

where qn is the last (final) state.
We denote by Runs(B, q0) the set of finite runs of B from q0. Assuming

s1 < s2 < . . . < sn the execution order numbers of the blocks in a Simulink
model S described as in Definition 2, a run of S is defined as the sequence
of Init and Operation transitions of each block, at each step i ≤ n, in the
corresponding order of execution.

3.2 STA Patterns

In order to facilitate the transformation of atomic Simulink blocks into their
equivalent STA, we propose transformation patterns for the continuous-time

10

and discrete-time blocks. The transformation patterns are reusable and conform
to the semantics of the tuple discussed in Equation 3. Figure 4 shows our trans-
formation patterns encoded in the input language of UPPAAL SMC.

(a)

(b)

Fig. 4: STA Transformation Patterns: (a) Continuous-time and (b) Discrete-time
Blocks

The patterns presented in Figures 4a and 4b are similar to a great extent. The
major difference is the absence of the Offset location from the contentious-time
pattern, as the continuous-time blocks are not allowed to delay their execu-
tion. Additionally, the patterns differ in the way they implement the execution
mechanism. The execution of the discrete-time pattern proceeds according to the
uniform distribution for time-bounded delays modeled via the invariant, whereas
the continuous-time patterns execute according to an exponential distribution
for unbounded delays.

The elements of the STA patterns are explained as follows:

(i) Locations {Start, Offset, Operate} - In the Start location, the automa-
ton waits for the release according to the order of execution given in the
sorted order list. In the Offset location of Figure 4b, the automaton waits
until the offset time expires, if there is any. Then, it moves to the Operate

location, where the automaton executes for fixed simulation time units. The
invariants, I(Start), I(Offset), I(Operate) are boolean conditions that
are defined over the clock variables R{gtime,t} used to limit the time that
the automaton is allowed to stay in each location, respectively. In case of
continuous-time STA, the exponential rate λ at location Operate determines

11

the probability of the automaton to remain in that location at each simula-
tion step, according to an exponential distribution.

(ii) Edges {(Start, Offset), (Start, Operate) } - The edge from the Start
to Offset (in case of the discrete-time STA) is enabled when the guard condi-
tion for the release of the block, gtime ≥ sn*IAT, is satisfied, where: gtime
is the the global clock, sn*IAT is the global time when the block is scheduled
to be released, defined using the block’s sorted order number sn and the con-
stant inter-arrival time (IAT) between two consecutive releases of automata
IAT. On the same edge, when the edge is enabled, the initialization function
is executed, hence initializing the data variables, including the parameters of
the corresponding block. During the initialization function, all the internal
state variables are initialized to the corresponding configuration values, and
the local clocks are reset.

(iii) The edge (Offset, Operate) - The edge from Offset to Operate is tra-
versed when the offset time expires t≥ para[OFFSET], where: t is a local
clock, and para[OFFSET] is the offset value stored at the index of OFFSET

in the list of parameters para.

(iv) The edge (Operate, Operate) - In the case of continuous-time STA, the
self-loop in the location Operate fires with probability Pr(leaving after t) =
1− e−λt according to the exponential distribution. The exponential rate λ is
a user-configurable variable that determines how early the automaton leaves
the location; the higher the value of λ, the earlier the automaton leaves the
location. In case of discrete-time STA, the automaton leaves the location
when the guard condition t≤ts is true. In both cases, the block’s routines
blockRoutine() are executed. The blocks’ routines are implemented in the
C language and verified using the Dafny programmer verifier.

3.3 Flattening Algorithm for Preserving the Execution Order

In this section, we introduce the flattening procedure that is used for transform-
ing a hierarchical Simulink model into a flat (non-hierarchical) model composed
of atomic blocks only.

The flattening of a Simulink model is performed in two steps, as follows:
(i) removing the non-virtual composite Simulink blocks from the model and
replacing them with a set of atomic Simulink blocks, and (ii) assigning a correct
execution order number for the atomic blocks such that the original behavior
of the model is preserved. The proposed flattening procedure is implemented
using a recursive algorithm, meaning that it can be applied on Simulink models
with arbitrary levels of nesting and terminates once all the virtual hierarchical
structures are eliminated from the result model.

An intuitive, yet naive approach for flattening a Simulink model would be
to apply the flattening procedure on the model itself, which includes traversing
the complete model. Even though such approach is feasible with respect to step

12

(i), it cannot satisfy step (ii), as the model itself does not contain information
about the execution order of the contained blocks. Instead, the execution order
of the blocks, called the sorted order list is always computed at the beginning
of the simulation. To obtain the execution order of the blocks inside a given
model, the MATLAB environment has to be set in debug mode by running the
sldebug command with the Simulink model name as input parameter from the
MATLAB console. Once in the debug mode, the sorted order list is generated
by executing the slist command. The command generates a list of tuples,
where each tuple corresponds to a Simulink block, be it composite or atomic.
A tuple in the list contains information for a single block, including: execution
order number, block unique identifier and block type. There is also additional
information not relevant for the flattening procedure. The sorted order list also
contains information about the hierarchical structure of the Simulink model for
the non-virtual blocks, as the virtual ones are automatically flattened. Given the
structure and the information contained inside the sorted order list, it is better
to apply the flattening procedure on the list directly. In the rest of the section,
we give an overview of the structure of the sorted order list and the algorithm
that is applied for its flattening.

Algorithm 1 Flattening algorithm for sorted order list.

1: function flatten(String currentBlockId, String currentBlockOrderNo, String par-
entBlockOrderNo)

2: orderedList← emptyList . Ordered list containing blocks IDs.
3: if isAtomicBlock(currentBlockId) then . The current block is atomic.
4: orderedList.append(parentBlockOrderNo.concat(currentBlockOrderNo))
5: else . The current block is a subsystem.
6: currentChildren← getChildren(currentBlockId)
7: concatenatedParentId← parentBlockOrderNo.concat(currentBlockOrderNo)
8: for all child in currentChildren do
9: orderedList.append(flatten(child.id, child.orderNo, concatenatedParentId))

10: return orderedList

The sorted order list represents the hierarchical structure of the Simulink
model as a collection of contexts. There are two types of contexts in a Simulink
model: the root context, which is the model itself, and a number of local con-
texts representing the inner contents of the non-virtual subsystem blocks inside
the model. For the virtual and atomic subsystem blocks, no contexts are cre-
ated, as such blocks are flattened by Simulink automatically, at the time when
the “slist” command is executed. Each local context creates a “nested level”.
Simulink supports infinite levels of hierarchy of subsystem blocks (of any type).
Given such structure, the procedure for “flattening” a model is reduced to a
procedure of assigning global execution numbers to all atomic Simulink blocks
within the atomic subsystems. A global execution order number is an execution
order number relative to the root context, that is the root Simulink model file
itself. By doing that, we perform an implicit flattening of the Simulink model,

13

as the correct order of execution of the atomic Simulink blocks in the model
for achieving the model’s behavior is known. After the flattening procedure is
complete, all the local contexts can be safely replaced with the respective set of
atomic blocks. The pseudo code of the algorithm which is used to assign global
execution order for atomic Simulink blocks nested arbitrary deep inside a given
Simulink model is given in Algorithm 1. The algorithm produces new sorted
order list, which contains a subset of the original tuples corresponding to the
atomic blocks only, sorted according to their global execution number from first
to last.

The sorted order list is available as output in the MATLAB console. In order
to automatically flatten the list, the output from the MATLAB console is saved
as a textual file which is then given as input to the SIMPPAAL tool (see Section
4). The flattening procedure is fully automated, meaning no user interaction is
required.

3.4 Block Routine Verification using Dafny

As already presented in Section 3, the function that maps inputs and state
variables into outputs for Simulink blocks is encoded as a C function called
blockRoutine. To verify the correctness of these functions, we use Dafny [8], a
language and program verifier.

To prove the correctness of the input-output mapping functions we use pre-
/post-condition verification. We use a set of pre-conditions to describe the state
of the input, output and state variables prior to the execution of the blockRou-
tine. Given that the pre-condition holds, after the execution of the blockRoutine,
the set of post-conditions has to be established. We consider the blockRoutine to
be correct if the specified set of postconditions is satisfied for all executions. For
complex block routines that contain loops, we use loop invariants and termina-
tion conditions. In the following, we give an overview of blockRoutine verification
by applying Dafny on an illustrative example.

Listing 1.1: Example of Dafny verified Simulink block routine

/* saturate block routine */

method saturate(input: real , lowerBound:real , upperBound:

real) returns (output: real)

requires (lowerBound <= upperBound)

ensures (lowerBound <= output && output <= upperBound)

{

output := input;

if(output <= lowerBound){

output := lowerBound;

}

if(output >= upperBound){

output := upperBound;

}

}

14

Listing 1.1 shows the Dafny implementation of the basic functionality of
the Saturation Simulink block. Saturation is an atomic Simulink block that
is used to constrain the range of an input signal between a lower and an up-
per limit 3. The illustrated saturation function is given as a ternary function
that takes as input the incoming signal, and the lower and the upper limits for
the output signal. The saturation is executed only if the lower limit is lower or
equal to the upper allowed limit for the signal, which is captured by the pre-
condition: requires (lowerBound <= upperBound). Under this precondition,
the implementation of the saturation function ensures that the postcondition
ensures (lowerBound <= output && output <= upperBound) is maintained
for all possible executions. In other words, the given implementation of the sat-
uration guarantees that the output of the saturation function will always be
within the allowed range for all input values. By adjusting the parameters of
the Saturation block, one can significantly influence the behavior of the satu-
ration routine. For instance, if the designer specifies that the output signal of
the saturation function should be an integer value, then the saturation function
is combined with one of the rounding functions (ceiling, floor, rounding, etc.).
In such cases, the postcondition for the saturation function has to be modified
accordingly.

In our previous work [17], we have used Dafny to verify the block routines
at a pattern level. This means that for each block type it is required to generate
the most general block routine that captures all the possible behaviors. Then a
set of parameters is used to control the flow and decide which of the functional-
ities of the given routines should be executed for each instance of that routine.
Such functions are big and introduce unnecessary complexity for blocks that
have simple computational routines, as discussed above. With the automation
of the transformation procedure, it is possible to generate custom block routines
for each block instance individually, with the pre- and post-conditions specific
to that actual implementation. For illustration, for the Saturation blocks that
do not have to perform rounding of the output signal, we generate a simple
saturation procedure as the one given in Listing 1.1. Such implementations of
the routines are easier to read, understand and debug. Our new approach en-
ables verification of each individual block routine, compared to template-level
verification, as presented in previous work [17].

In the next subsection, we sketch the transformation’s proof of soundness,
assuming our particular case of STA patterns.

3.5 Proof Sketch of Transformation Soundness

Assume a Simulink model, as described by Definition 2, consisting of discrete-
time blocks only, which has to be analyzed against properties in the category
“for all paths” (e.g., invariance/safety, inevitability etc.). In order to show the
soundness of our approach, we can show that the set of runs of the resulting
NSTA, obtained by using the semantic pattern given in Figure 4b, is refined

3 https://se.mathworks.com/help/simulink/slref/saturation.html

15

by the set of runs of the Simulink model, under the discrete-time blocks only
assumption. We have that a Simulink model A′ is a refinement of the NSTA
model A if and only if Runs′A ⊆ RunsA, meaning that if the model A satisfies a
safety or inevitability property p, and A′ refines A, it then follows that A′ also
satisfies p.

We show the refinement at the discrete-time block level first and then we
explain how the result extends to Simulink models with discrete-time blocks. For
this, we use the results on decision problems for timed automata, overviewed by
Alur and Madhusudan [18].

The authors show that reachability is decidable for the discrete-time or sam-
pled semantics of timed automata [18], assuming an unknown non-negative ra-
tional sample time. If we consider the STA pattern of Figure 4b, we notice that
the output probabilities over edges outgoing from locations Start and Offset,
according to the uniform distribution γ, are 1, since there is only one outgo-
ing edge from each location, respectively. Similarly, the delay density function
µ gives probability 1 of delaying in location Operate for ts time units, due to
the disjointness of the invariant t ≤ ts and the guard t ≥ ts. Basically, the
automaton of Figure 4b is a deterministic closed timed automaton (since clock
constraints are of the form x ./ c, with ./∈ {≤,≥}).

Refinement also equates to the problem of language inclusion between timed
automata, which is an undecidable problem in general. An important class of
timed automata for which the inclusion problem is decidable involves the notion
of digitization [18]. A timed language L is said to be closed under digitization if
discretizing a timed word (a string of symbols tagged with occurrence times) in
the language, by approximating the events of the timed word to the closest tick
of a discrete clock results in a word that is also in L. It is a proven fact that closed
timed automata are closed under digitization. This means that constructing a
sampled version of the STA automaton of Figure 4b yields an automaton that is
a refinement of the original pattern, since LAd

⊆ LA, where A is an automaton
conforming to our STA pattern, and Ad is its discretized version.

Let us consider a digitization of the transformation pattern automaton of
Figure 4b, as follows:

Definition 4 (Sampled semantics of STA of Figure 4b). Given a timed
automaton A as in Figure 4b, and the sampling rate δ ∈ Q (equal to the simu-
lation step of the Simulink block), we define an automaton Aδ with the states,
initial states and final states the same as the states, initial states, and final states
of A, and the transitions of Aδ labeled with either action a ∈ Σ ∪ {ε}, where ε
is not in Σ, with m ∗ δ, m ∈ N, or with r ∗ δ, r ∈ N. We call Aδ a sampled
(digitized) timed automaton.

Note that in any reachable state of Aδ, the values of clocks are integral
multiple of δ. A run of Aδ with initial state s0, over a finite timed trace ζ =
(t0, a0)(t1, a1)(t2, a2) . . . (tn, an) is a sequence of transitions:

s0
0,Initialize−−−−−−−→ s1

r∗δ,blockRoutine−−−−−−−−−−−→ s2
m∗δ,blockRoutine−−−−−−−−−−−→ . . .

m∗δ,blockRoutine−−−−−−−−−−−→ sn

.

16

Theorem 1 Let us assume a discrete-time Simulink block B defined by Defi-
nition 1, and a discrete transformation pattern described by a timed automaton
with sampled semantics Aδ, as in Definition 4. Then, we have that B refines Aδ.

Proof: There is a direct mapping between a location l of Aδ and the value of
the output variable y of B, meaning that in locations Offset and Operate the
variable y is observable (is assigned over the corresponding discrete transitions,
respectively). By Definition 1 and Definition 4, all transition sequences possible
in B are also possible in Aδ. Therefore, given q0 the initial state of B and s0 the
initial state of Aδ, it follows that Runs(B, q0) ⊆ Runs(Aδ, s0), which equates to
the fact that B is a refinement of Aδ. Q.E.D.

Given the fact that Aδ refines A, the STA pattern automaton of Figure 4b,
it follows by transitivity of the refinement relation that the Simulink block B
refines the STA pattern automaton A, assuming the discrete-time behavior.

This result extends to a Simulink model defined by Definition 2, if the former
contains only discrete-time blocks. Given the execution order of each block,
only one block at a time can be enabled and executed in the Simulink model,
therefore the probability distributions of the network of STA that represents
the Simulink model’s transformation render transitions with probability one, so
the parallel composition of STA is in fact a parallel composition of deterministic
timed automata, which due to the enforced execution order is in fact a sequential
composition of deterministic timed automata that can be further sampled. Given
the result of Theorem 1, it follows that a discrete-time Simulink model described
as in Definition 2 refines the network of STA in which it is transformed.

In case the Simulink model contains one or more continuous-time blocks that
are being transformed by instantiating the transformation pattern of Figure 4a,
the resulting network of STA uses the exponential distribution to compute the
delay of each continuous-time STA, and the uniform distribution to chose the
STA that is going to broadcast its output within the network. Therefore, in such
cases, to have an indication on the correctness of transformation, we compare the
simulations of the Simulink model, generated by Simulink, with the simulations
of its STA counterpart generated by UPPAAL SMC. If they are identical, we can
conclude that the behaviors of the Simulink model and its translation are similar,
to the extent provided by simulation.

4 SIMPPAAL Tool

In this section, we present our tool called SIMPPAAL (SIMulink to uPPAAL),
which automates the process of transforming Simulink models into networks of
STA suitable for analysis using the UPPAAL SMC tool. The tool represents an
implementation of the transformation approach described in Section 3. In the
following subsections, we describe the architecture and the functionalities of the
SIMPPAAL tool.

17

STE

UPE

SPE

System model
(.mdl Simulink

file)

STA
templates

sorted order
list

Formal system
model (network

of STA)

Fig. 5: SIMPPAAL tool architecture.

SIMPPAAL Architecture

The architecture of the SIMPPAAL tool is based on a modular design, where the
overall functionality is achieved through a set of communicating software mod-
ules (called modules for simplicity), via well-defined Application Programming
Interfaces (APIs). Each module is designed to perform a specific role in the over-
all design. The advantages of such design are numerous, including: decreasing
implementation complexity by separation of concerns, increasing system main-
tainability and re-usability of the modules. The architectural design is given in
Figure 5, and is based on the following concepts: artifacts, which can be in-
put or output represented as circles, and the modules represented as squares.
In the following, we use the term module and software engine interchangeably.
The tool is implemented in JAVA programming language, with limited usage of
third party libraries. The core module of the tool is the Simulink Transforma-
tion Engine (STE), whereas the other two modules UPPAAL File Parser Engine
(UPE) and the SList Parser Engine (SPE) have supportive roles, which include
serialization and de-serialization of the specific artifacts.

As one can see in Figure 5, the transformation process is based on three
different input artifacts: the Simulink model given as an .mdl file, the sorted
order list for the execution order given as a textual file, and a UPPAAL .xml file
that contains the templates for continuous-time and discrete-time blocks. Each
of these inputs is handled by a specific module. Each module that is handling
a given artifact is responsible for: i) reading and parsing that input in a format
such that it can be consumed by other modules, and ii) writing back to that
file if required. Given that, the coupling between the inputs and the modules
is the following: the STE module is responsible for parsing the Simulink .mdl
files, the UPPAAL Parser Engine (UPE) handles the reading from and writing
to UPPAAL specific .xml files, while the sorted order list are handled by the SList
Parser Engine (SPE).

18

The STE module is the core module of the SIMPPAAL tool. Its main responsibil-
ity is to transform a Simulink model given as an .mdl file into a network of STA
suitable for analysis using UPPAAL SMC. This is by no means a trivial procedure,
and for that purpose, the module itself is further decomposed into submodules
as follows: a submodule for reading and manipulating Simulink models, and an-
other submodule for transforming Simulink blocks into STA. The role of the first
submodule is to read an .mdl file from the disk and store it as a memory ob-
ject. It delivers functionalities such as: retrieving a Simulink block by its unique
identification, navigating through the structure of the model, identifying the
predecessors and successors of a given Simulink block, etc. The implementation
of this submodule is based on the ConQAT library 4, which provides an API
that eases the model’s traversal and block manipulation. The library, however,
exhibits limitations when it comes to traversing referenced subsystem blocks, as
the contents of the referenced subsystem resides in a different context saved in
a separate .mdl file. To mitigate this problem, we have developed a “context-
switching” procedure that enables the tool to switch contexts, that is, go from
one .mdl file and back, without information loss.

The second STE submodule is responsible for transforming an atomic Simulink
block into a corresponding STA, by mapping Simulink parameters into STA spe-
cific constructs, such as: sample time, execution order number and the block rou-
tine. The submodule also generates Dafny verification expressions for each block
routine. The main challenge during this phase is to generate an adequate block
routine for the given atomic block. The reason for this is that each Simulink block
performs a specific computation routine based on different sets of inputs and dif-
ferent configurations, respectively. Consequently, the transformation submodule
must know how to parse each block type in the Simulink library. Moreover, the
number of atomic Simulink blocks is not finite as it is possible to introduce new
atomic block types via the concepts of S-function and block masking. To cope
with this challenge, we have resorted to the “plug-and-play” concept, meaning
that the generation of the block routine for a specific block type is performed by
a plug-in, which is dynamically loaded into STE. The given approach facilitates
the extension of the STE functionalities to scale with the modeling capabilities
of Simulink, with additional advantages such as: i) the effort and complexity of
developing a new plug-in is relatively low, and ii) plug-ins are developed inde-
pendently from the STE, which means that the source code of the STE module
does not have to be modified for extending its functionality.

The UPE module is used for reading the UPPAAL .xml file that contains the
patterns for the continuous-time and the discrete-time blocks, as well as for
writing the result UPPAAL model into a new .xml file. The module provides an
API that allows manipulation of UPPAAL files, including the flowing operations:
deserializing a UPPAAL file into a UPPAAL model, adding and retrieving elements
from the UPPAAL model (automaton, location, edge) and serializing the UPPAAL

memory model back into an .xml file which is used as an input to the UPPAAL

4 https://www.cqse.eu/en/products/simulink-library-for-java/overview/

19

tool. The UPE can be used as a stand alone library or as part in any other
tool for manipulating UPPAAL models. The implementation of the module is not
bound to the given context, which means it can be reused either as a standalone
library for managing UPPAAL files or as a part of another system.

The SPE module implements the flattening algorithm discussed in Section 3.3.
It reads the sorted order list provided as a textual file and applies the flattening
algorithm. The result is an ordered list of atomic Simulink blocks according to
the execution order number that is then passed on to the STE. Unlike the UPE,
the SPE module is bound to a specific purpose and cannot be reused outside the
initially-intended context.

SIMPPAAL work-flow

The transformation of the Simulink models into a network of STA implemented
by the SIMPPAAL tool is performed in the following steps:

1. Flattening of the sorted order list
2. Collecting information about the atomic Simulink blocks

(a) Finding a block in the model and retrieving block parameters
(b) Populating the list of predecessors
(c) Populating the list of successors

3. Transforming atomic Simulink blocks into STA
(a) Mapping Simulink block information into STA constructs
(b) Determining the output signal type
(c) Instantiation of the STA inside the UPPAAL model

4. Saving the generated UPPAAL model in the file system

The transformation process of the Simulink models into a network of STA
starts by loading and flattening the sorted order list such that the global execu-
tion number to each atomic block in the model is assigned (Step 1). As presented
in the architecture of the tool, this set of actions is performed by the SPE mod-
ule. The newly generated sorted order list, which has been flattened and sorted
according to the execution order number is composed of atomic Simulink blocks
only, and contains all the blocks that participate in producing the overall behav-
ior of the Simulink model.

The flattened sorted order list is then used as a primary input in the STE for
transforming the Simulink model into a network of STA. Basically, the transfor-
mation of the Simulink model is a process of iterating through the list, collecting
information about each block (Step 2), and mapping that information onto an
adequate STA pattern (Step 3). The process of collecting information about
each block is performed as a set of simpler actions that include Step 2.a, get-
ting an entry from the list and locating the Simulink block inside the model
by its unique identifier. The procedure locates the given block no matter how
deeply it is nested inside the model, even if it resides in another .mdl. This is en-
abled by our context-switching technique. Once the block has been identified, the

20

Fig. 6: SIMPPAAL graphical user interface.

STE tries to identify all of its predecessors, which is a list of non-virtual atomic
Simulink blocks, performed in Step 2.b. In our implementation, the following
blocks are considered as virtual: Mux, Demux, Inport and Outport. Addition-
ally, some non-virtual blocks that do not perform computational routines, such
as Scope and RateTransition are added to the list of virtual blocks. In other
words, a predecessor is an atomic block whose output is consumed by the block
that is currently being transformed. In a similar way, the STE identifies the list
of successors, which is a list of non-virtual atomic Simulink blocks, which uses
the output of the given Simulink block as an input for producing an output (this
is given as Step 2.c).

Once all the transformation-relevant information for the block is gathered, in
Step 3 the STE transforms the Simulink block into an STA. The transformation
is done in several steps: first, in Step 3.a the STE calls UPE to provide the
list of patterns. Once the patterns are loaded, the STE determines the execution
type of the block (continuous-time or discrete-time) based on existence of sample
time, and assigns the appropriate pattern from the list. Then, the block details,
such as execution order number, sample time (if discrete) and the inter-arrival
time are mapped onto the pattern. Next, based on the block type the STE tries
to load the plug-in that generates the block routine as a C-function and a Dafny

verification objective for the same. If there exists no plug-in for the given block
type, a default block routine is generated. With the generation of the block

21

routine, all the template constructs have been instantiated with block-specific
ones. With this, the block transformation is complete and the pattern becomes
an instantiation of an STA.

Once the automaton is obtained, in Step 3.b the STE determines the type of
the output produced by the block, which can be either scalar or vector of type
Boolean or Double. Even though the type of the output in general is defined for
each block type, sometimes it can be determined by other factors, such as: the
type and format of the input (ex: a Gain block that has input scalar can produce
either scalar, vector or matrix, but if the input is vector it cannot produce scalar).
In the current version of the tool, this procedure is implemented in the STE,
but to be able to scale with the number of blocks, this responsibility will be
transferred to the plug-in for that specific block type.

Once the transformation is completed, in the next Step 3.c the STA that
corresponds to the given block is added to the UPPAAL model. The operation
includes adding the automaton into the list of automata, and instantiating a
global shared variable with a type and name determined in Step 3.b, which will
represent the output channel. Finally, in Step 4, the generated UPPAAL model is
saved into the file system, in XML format, which can then be used as an input
to the UPPAAL SMC tool.

In the current version, SIMPPAAL is a standalone tool that can be used via the
simple interface, as presented in Figure 6. To create a UPPAAL model file, the user
has to select the root Simulink model, the sorted order list, and the destination
.xml file where the result UPPPAAL model is saved. Once all parameters have
been selected, the transformation can be started by pressing the Start button.
During the transformation, the SIMPPAAL tool logs important messages in the
console part. After the transformation is complete, the user can save the console
as a log file for analyzing the output, or for debugging purposes.

Applying SIMPPAAL on a Toy Example

We apply SIMPPAAL on the small Simulink example introduced in Fig. 2. The
result of this transformation is a network of 3 STA, all generated based on
the continuous-time template introduced in Fig. 4a. For the given blocks, only
two block routines could be automatically generated by the tool, that is, the
Saturation and Rounding block routines. The MaskedInput is an S-function,
for which we need to implement the block routine manually. In Listing 1.2 we
present the three block routines.

Listing 1.2: Applying SIMPPAAL: the block routines

/* MaskedInput STA blockROutine ()*/

void blockRoutine (){

if(25.0>t) {MaskedInput_1_signal =0.0;}

if(t >=25.0 && 50.0>t){MaskedInput_1_signal=t*0.2 -5.0;}

if(t >=50.0 && 75.0>t) {MaskedInput_1_signal=t*0.8 -35.0;}

if(t >=75.0) {MaskedInput_1_signal =25.0;}

22

}

/* Saturation STA blockROutine ()*/

void blockRoutine (){

if(MaskedInput_1_signal >= 20.0) {Saturation_2_signal =

20.0;}

if(MaskedInput_1_signal <= 0.0) {Saturation_2_signal =0.0;}

if(MaskedInput_1_signal <20.0 && MaskedInput_1_signal >0.0)

{Saturation_2_signal=MaskedInput_1_signal ;}

}

/* Rounding STA blockROutine ()*/

void blockRoutine ()

{ rounding=true; i=0.0;

while(rounding)

{ i = i + 1.0;

if (i>Saturation_2_signal)

{ if(2 == 0) Rounding_3_signal = i -1.0;// floor

else if(2 == 1) Rounding_3_signal = i;// ceiling

else if(2 == 2)//round

{ if(i - Saturation_2_signal >0.5)

Rounding_3_signal = i-1.0; //floor

else Saturation_2_signal = i;// ceiling

rounding=false;

}

}

}

}

We use the UPPAAL SMC model checker to simulate the system and display
the values of the outputs for the MaskedInput and Rounding automata. The
simulations are presented in Fig.7, and they match the Simulink simulations
depicted in Fig.2.

Scope of Application

The modular architecture of the SIMPPAAL tool represents a solid foundation
for future improvements, in order to reach a version that can be used to auto-
matically transform industrial Simulink models into a network of STA suitable
for analysis using UPPAAL SMC. However, the current version of the tool has a
limited scope and can be used for a certain subset of Simulink models only.
This is mostly due to the fact that currently, we have implemented a set of
plug-ins for the automatic generation of Simulink blocks that are present in the
Brake-By-Wire model.

The SIMPPAAL tool cannot properly handle model referencing in cases when
a parent model references directly a model instead of a library. This is due to the
fact that the structures of the referenced models and the referenced libraries are
different. The referenced libraries always start with a subsystem block that has

23

(a) (b)

Fig. 7: Applying SIMPPAAL: (a) simulating the MaskedInput STA, and (b)
simulating the Saturation STA.

the same ’in’ and ’out’ ports as the subsystem that is referencing the library in
the parent model. In contrast, the referenced models are loaded as such, meaning
that the contents are not necessarily wrapped inside a subsystem block. We plan
to address this limitation in the subsequent releases of the SIMPPAAL tool.

5 Application on Brake-by-Wire Use Case

5.1 The Brake-by-Wire System

System Description. Brake-by-Wire (BBW) is a prototype implementation of a
braking system equipped with an ABS function, and without any mechanical
connection between the brake pedal and the four brake actuators. Despite being
a prototype implementation, the given BBW Simulink model is a faithful repre-
sentation of a realistic industrial system. The functionality of the BBW is given
as follows. The sensor attached to the brake pedal reads its position, which is
used to compute the desired global brake torque. At each wheel, the dedicated
sensor measures the speed of the wheel, which is used by the ABS algorithm
together with the brake torque to compute the actual brake torque that will be
applied. The wheel’s slip rate s is computed as follows:

s = (v − w ×R)/v, (5)

where v is the speed of the vehicle, w is the speed of the wheel, and R is the
radius of the wheel. The friction coefficient has a nonlinear relationship with
the slip rate: when s starts increasing, the friction coefficient also increases, and
its value reaches the peak when s is around 0.2. After that, a further increase
in s reduces the friction coefficient of the wheel. For this reason, if s is greater
than 0.2 the brake actuator is released and no brake is applied, otherwise the
requested brake torque is used by the actuator.

24

At system level, the BBW system has a set of 13 functional and 4 timing re-
quirements that need to be verified. Below, we give a subset of the requirements,
described in natural language:

R1BBW The time needed for a brake request to propagate from the brake pedal
sensor to the wheel actuator should not exceed 200 ms.

R2BBW The difference between the time needed for a brake request to propa-
gate from the brake pedal sensor to two different wheel actuators should not
exceed 20 ms.

R3BBW The value of the brake pedal position shall not exceed its maximal
value of 100.

R4BBW If the slip rate exceeds 0.2, then the applied brake torque shall be set
to 0.

Transformation. In Simulink, the BBW is a hierarchical Simulink model with
four levels of nesting, which contains 320 connected blocks. The result of the
transformation is as follows:

– A network of 143 automata corresponding to the computational blocks in the
Simulink model (e.g., gain, sum, rounding), since the 177 non-computational
blocks (e.g., subsystem, inport, outport, from, goto, rate transition) have
been removed during the flattening and transformation phases,

– 133 STA were created using the discrete-time pattern and 10 STA were
created using the continuous-time pattern,

– 137 block routines have been generated automatically, with only 6 blocks
routines left to be implemented manually (that is, two S-functions and four
Sateflow blocks).

The original BBW model contains four (identical) Sateflow blocks, modeled as
simple flow charts. We transform the StateFlow blocks by a 1-to-1 mapping to
the automata model (i.e., flow chart conditions are mapped to guards, and flow
chart actions are mapped to updates).

Analysis results. Once the complete model has been constructed, we validate the
correctness of each of the STA by comparing its simulation trace in UPPAAL SMC

with the simulation trace of the corresponding Simulink block. For instance, Fig.
8 shows the value of the brake pedal position (see requirement R3BBW , which
can be obtained with the following command:

simulate1[<= 100]{pedal map 161 signal} (6)

For the BBW system, we have verified an extensive set of functional and
timing requirements. In Table 1 we provide concrete verification results for re-
quirements R1BBW , R2BBW , R3BBW , and R4BBW . For some properties, we
need to implement another STA that monitors the execution of the system. For
instance, for requirement R1BBW we have implemented the monitor presented
in Fig. 9. The vertical part of the automaton models the time until the monitor

25

Fig. 8: Simulation of the brake pedal position value.

starts following the execution of the system. To start different simulations at
arbitrary moments in time, we introduce a clock that allows for a delay between
0 and n. The vertical part describes the sequence of relevant actions of the moni-
tor (i.e., trigg[160] is a channel that provides broadcast synchronization between
the monitor and the block with the sorted order 160, which is the braking pedal
modeled as an S-function). In this case, between the pedal and actuator, there
are only 8 blocks that propagate the requested torque through the system. Sim-
ilar monitors have been implemented for analyzing requirements R2BBW and
R4BBW . No monitor is needed for requirement R3BBW .

Fig. 9: The Monitor automaton for requirement R1BBW .

The UPPAAL SMC statistical model checker can achieve analysis results with
different probability interval spans and different confidence levels, depending on
the values of the statistical parameters. During the analysis, we have opted for
different values of α, the probability of false negatives, and ε, the probability
uncertainty, to show how these influence the results and the number of runs
generated by the model checker. In Fig. 10, we also show the probability density
distribution for requirement R1BBW .

26

Table 1: Overall Results of Statistical Model Checking.

Req. Query Result Runs

R1BBW Pr[Monitor.x <= 200](<> Monitor.End) Pr ∈ [0.998, 1] with confi-
dence 0.999

3797

R2BBW Pr[Monitor1.x <= 200](<>
Monitor1.End and (Monitor1.x −
Monitor2.x <= 20 and Monitor1.x −
Monitor2.x >= −20))

Pr ∈ [0.990014, 1] with
confidence 0.995

597

R3BBW Pr[<= 200](<> pedal map 161 signal <=
100)

Pr ∈ [0.995002, 1] with
confidence 0.9975

1334

R4BBW Pr[<= 200](<>
Monitor.End and Monitor.s >
20 and Monitor.torque == 0)

Pr ∈ [0.902606, 1] with
confidence 0.95

36

Fig. 10: Probability Density Distribution for requirement R1BBW

6 Discussion on the Approach

In this section we discuss the characteristics of the proposed approach for the
transformation of Simulink models into networks of STA and their analysis using
UPPAAL SMC.

The core of the Simulink to NSTA transformation is the pattern-based ap-
proach. Such approach provides a straightforward transformation procedure,
with the transformation result being faithful to the original model. This is
achieved by instantiating patterns for both discrete-time and continuous-time
blocks whose functional behavior is encoded as C functions. The usage of the
C routines enables us to extend the application of the patterns and faithfully
represent the functional behavior of each block. This means that no matter how
complex the computational routine of the given block is, it can be transformed
via the given patterns. Our approach supports the transformation of the current
blocks in the Simulink library, but also of custom atomic blocks built using the

27

concepts of S-function and Mask. We verify the functional correctness of each
block (its block routine) by using the Dafny program verifier.

Our general flattening procedure based on a recursive algorithm can, in prin-
ciple, be applied to flatten any model with arbitrary nested composite blocks.
The procedure however is limited to Simulink models that use libraries as a way
of extending the model. For models that utilize model referencing, the procedure
does not work, as the atomic blocks from the referenced model are not included
in the sorted order list for the root model. Additionally, we have detected an
inconsistency between the block identifiers in the sorted order list and the block
identifiers in the Simulink model. The inconsistency comes from the fact that
Simulink allows new line characters into block identifiers, whereas the new line
characters, when exported as sorted order list, are replaced with characters for
blank space.

Based on our current experience, the current version of the SIMPPAAL tool,
as presented in this paper, can be used to generate an NSTA model of the BBW
industrial prototype model, which is suitable for analysis using UPPAAL SMC,
after minor changes. The tool implements functionalities for model flattening,
Simulink block retrieval, predecessor and successor identification and transfor-
mation of atomic Simulink blocks into STA. As a drawback, the tool is capable
of parsing complex Simulink models that are extended via libraries only. This
means that the tool is not suitable for a more extensive application, as it does
not support manipulation of Simulink models extended via referenced models.
The reason for the limitation is the different structure of the referenced models
as compared to the referenced libraries, thus requiring different ways of parsing.
Additionally, to be able to automatically transform all blocks of a given model,
an adequate set of plug-ins has to be developed. This is by no means a limitation
of the tool, but it is due to lack of time and resources needed to develop the
extensive set of plug-ins.

Despite the mentioned limitations, our approach and the SIMPPAAL tool has
been successfully applied on the Simulink model of the Brake-by-Wire industrial
prototype. The transformation results from the case study show that SIMPPAAL
is fast and efficient in transforming Simulink models into NSTA. The positive
experience of the application described in this paper, combined with the solid
code base and the modular tool architecture form a solid basis towards extending
it to a more complete platform, which can be further extended with new features,
including the formal specification of properties to be verified, and ultimately
completely automated to a “push-button” formal analysis of Simulink models
via statistical model checking.

7 Related Work

Simulink is considered as the de-facto standard for designing embedded systems,
particularly in the automotive, robotics and automation domains. Formal ver-
ification of Simulink models has been studied in a number of publications, yet
with diverse objectives. For instance, the verification of control algorithms im-

28

plemented in Simulink has been formulated as a hybrid-automata reachability
problem, where the verification objective is proving either that erroneous states
are unreachable, or that certain desirable properties hold in every reachable
state. An example of this type of verification is the tool CheckMate [19], which
transforms Simulink models into a class of hybrid automata known as polyhedral-
invariant hybrid automata (PIHA). The main limitation of this method is that
it can be applied on a restricted class of models, as reachability is known to be
undecidable, in the general case, for hybrid automata. Furthermore, the method
does not scale well to the complexity of real industrial cases, which contain a
large number of very diverse modules: continuous, discrete, StateFlow, etc.

The verification of more complex Simulink models that has been proposed
in the literature follows three different strategies:

1. Generation and abstraction of simulation traces.
2. Abstraction of blocks into contracts/theories and formal analysis.
3. Model to model transformation followed by model checking.

The first strategy exploits the simulation capabilities of Simulink in order to
generate and collect simulation traces that are later transformed, by abstraction,
into a state machine representing the system’s behavior, which can be model
checked without difficulty [3]. For instance, PlasmaLab follows this approach
and uses SMC for model checking [4]. However, this strategy is limited by the
feasibility to generate an exhaustive (although up to a given time) simulation
of the system, and thus raises concerns about the completeness of the obtained
abstraction. Moreover, since it is based on system traces, it is not adequate for
analyzing extra-functional properties, at least not without further changes on
the initial model. On the positive side, the approach is generic, applicable to
any kind of Simulink diagram, and does not require adding more computation
if new blocks are considered.

The second strategy is implemented in two steps. First, the system designer
“lifts” the specification of each block using some type of logical language. Second,
the whole specification is composed and fed into an analysis engine. Ferrante et
al. [20] use contract-based theory in order to lift the block specification, and rely
on a combination of SAT solvers and the NuSMV model checker for analysis.
Hocking et al. [21] use the PVS specification language for writing the specifi-
cation, and rely on the PVS theorem prover for analysis. A limitation of this
strategy is that both steps still require much user interaction, so it is error-prone
and requires certain understanding of the formal analysis engines, which is not
common among embedded systems engineers.

The third strategy tries to reduce user intervention to the minimum. It is
based on applying some kind of automated model-to-model (M2M) transforma-
tion from Simulink into an automata language that can be verified with model
checking. This strategy has received much more attention in the literature. The
approach proposed by Barnat et al. [5] focuses on transforming the Simulink
models into the language of an LTL explicit model checker called DiViNE. The
authors show how this can be integrated with the Honeywell formal verification

29

environment. They only provide support to discrete blocks, yet they show it
suitable for the aeronautics industry. Similarly, the approach by Meenakshi et
al. [22] propose a transformation of discrete blocks into NuSMV. In contrast,
Agrawal et al. [23] propose a transformation approach of Simulink models into
networks of automata, without providing concrete means for formal verification.
The work by Miller [24] proposes a translation from Simulink to Lustre, and
enables formal verification with a constellation of model checkers and provers.
The transformation of StateFlow design elements has been addressed in research
endeavors by Manamcheri [25] and Jiang et al. [6], in which the authors propose
transformation frameworks from StateFlow/Simulink into timed and hybrid au-
tomata, respectively, without considering other types of Simulink blocks.

In general, the solutions available for the automated M2M transformation
of Simulink are quite restrictive with respect to the number of block types sup-
ported (typically only discrete blocks or only StateFlow diagrams). Also, they
have been applied only to academic or middle-size Simulink models, such as the
engine control system appearing in the Simulink distribution, which raises con-
cerns about the scalability of the approach. The only exception is the approach
by Zuliani et al. [26], which uses Bayesian statistical model checking for ana-
lyzing the specification and can scale better to models of larger sizes. Despite
that, the approach has been applied to a medium-size Simulink model only, and
it seems to have practical limitations such as not accepting multi-file Simulink
models.

The framework presented in this paper also follows the third strategy, but it
goes beyond the current state of the art, by reducing the modeling effort (M2M
transformation is based on templates and fully automated), and by supporting a
larger number of Simulink blocks (although the support of some of them is still
under development). To our best knowledge, it is also the only approach that
verifies formally the encodings of the Simulink blocks functionalities, by using
Dafny.

8 Conclusions and Future Work

In this paper, we have extended and improved our already existing pattern-
based approach for transforming Simulink models into NSTA semantics [17]. For
that purpose, we have proposed the following extensions: i) a formal definition
of Simulink blocks, to facilitate the soundness proof between the formalized
Simulink model and the stochastic priced timed automata, ii) a definition of a
Simulink model as a serial composition of interconnected Simulink blocks, iii) a
soundness proof-sketch for the mapping of the formalized Simulink blocks into
the respective stochastic timed automata patterns, for discrete-time models, and
iv) a tool, called SIMPPAAL, which embodies our approach and is intended for
automating the complete process of transforming Simulink models into networks
of STA.

The main purpose of the tool is to enable formal analysis of large Simulink
industrial models, and keep the formal modeling effort to a minimum, by adding

30

automation to the transformation. A secondary goal is to make the approach
applicable for practitioners, who are not expert in formal methods. Both the
scalability and the suitability for engineers of out tool SIMPPAAL await validation.

The approach described in this paper is suitable for transforming Simulink
models that contain both continuous-time and discrete-time blocks, which has
been identified as a major limitation of the existing academic approaches. An-
other strong point of our approach is the fact that it can be applied on both
Simulink-provided and user-defined blocks. Additionally, the SIMPPAAL tool pro-
vides a high degree of automation, thus minimizing the interaction with the
user during the formal model generation phase. This is achieved through the
complete automation of the M2M transformation from Simulink to NSTA. This
feature of the approach makes it a promising candidate for adoption in industrial
settings, where analysis and verification approaches are evaluated and approved
based on how fast, accurate and user-demanding they are. Another benefit of
the proposed approach is the fact that all the functional behavior of the model
is verified. For that purpose, we use Dafny, a program and language verifier by
which we prove the correctness of each computational routine that encodes the
functional behavior of a Simulink block. Similar to the generation of the formal
model, the generation of the Dafny verification routines is in principle com-
pletely automated and handled by the SIMPPAAL tool, thus almost no additional
modeling effort is required from the user.

Despite the approach being extended and improved as shown above, it is still
not ready to be applied on Simulink models of operational systems, as used in
industry. The main reason for this is the fact that although stable, the SIMPPAAL
tool does exhibit technical limitations that are beyond the scope of the approach
per se. For example, the current major limitation of the tool is its inability to
transform Simulink models that rely on model referencing for loading external
libraries. This limitation is of a purely technical nature, and will be addressed in
the subsequent updates and releases of the tool. Another technical limitation is
the lack of plug-ins for generating all the block routines. For now, the SIMPPAAL

plug-in library consists of ten plug-ins that are enough to cover most of the block
types found in the Brake-by-Wire Simulink model. In order for the tool to be
applicable on a large and diverse set of industrial Simulink models, the plug-in
library has to be extended accordingly.

Our future work can proceed in several directions. First, we aim at improving
the efficiency and scalability of our approach, by proposing a new transformation
procedure for the triggered subsystem blocks. Second, we intend to implement
the missing features of the SIMPPAAL tool, such that it can be applied on larger
industrial systems. By doing that, we seek for more industrial penetration. This
is tightly connected with the next direction of our work, which is the validation of
the approach. The goal is to consider at least two examples of industrial Simulink
models of operational systems, and i) test the scalability of the SIMPPAAL tool to
generate formal models of such Simulink models, and ii) perform statistical model
checking of the obtained models using UPPAAL SMC. Finally, we plan to explore
the possibilities of generating formal models required by other verification tools,

31

such as for instance the STORM probabilistic model checker [27], in an attempt
to enhance the class of systems that can be tackled.

References

1. ISO/DIS 26262-1 - Road vehicles Functional safety Part 1 Glossary. Technical
report, Geneva, Switzerland, July 2009.

2. J. B. Dabney and T. L Harman. Mastering Simulink. Pearson/Prentice Hall, 2004.

3. B. Boyer, K. Corre, A. Legay, and S. Sedwards. Plasma-lab: A flexible, distributable
statistical model checking library. In QEST, pages 160–164. Springer, 2013.

4. A. Legay and L.M. Traonouez. Statistical Model Checking of Simulink Models
with Plasma Lab. In FTSCS’15, pages 259–264. Springer, 2015.

5. J. Barnat, J. Beran, L. Brim, T. Kratochv́ıla, and P. Ročkai. Tool chain to Support
Automated Formal Verification of Avionics Simulink Designs. In FMICS, pages
78–92. Springer, 2012.

6. Y. Jiang, Y. Yang, H. Liu, H. Kong, M. Gu, J. Sun, and L. Sha. From Stateflow
Simulation to Verified Implementation: A Verification Approach and A Real-Time
Train Controller Design. In RTAS’16, pages 1–11, April 2016.

7. Alexandre David, K.G. Larsen, A. Legay, M. Mikučionis, and D.B. Poulsen. Uppaal
smc tutorial. STTT Journal, 17(4):397–415, 2015.

8. K. Rustan M. Leino. Dafny: An automatic program verifier for functional correct-
ness. In LPAR’10, pages 348–370. Springer, 2010.

9. Raluca Marinescu, Henrik Kaijser, Marius Mikuc̀ionis, Cristina Seceleanu, Henrik
Lönn, and Alexandre David. Analyzing industrial architectural models by simula-
tion and model-checking. In Third International Workshop on Formal Techniques
for Safety-Critical Systems, November 2014.

10. Raluca Marinescu, Saad Mubeen, and Cristina Seceleanu. Pruning architectural
models of automotive embedded systems via dependency analysis. In 42nd Eu-
romicro Conference series on Software Engineering and Advanced Applications,
September 2016.

11. A. David, D. Du, K.G. Larsen, A. Legay, M. Mikučionis, D.B. Poulsen, and S. Sed-
wards. Statistical Model Checking for Stochastic Hybrid Systems. arXiv preprint
arXiv:1208.3856, 2012.

12. P. Bulychev, A. David, K.G. Larsen, A. Legay, G. Li, and D.B. Poulsen. Rewrite-
based Statistical Model Checking of WMTL. In RV Conference, pages 260–275.
Springer, 2012.

13. Ioannis T Kassios. Dynamic frames: Support for framing, dependencies and sharing
without restrictions. In International Symposium on Formal Methods, pages 268–
283. Springer, 2006.

14. Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K Rus-
tan M Leino. Boogie: A modular reusable verifier for object-oriented programs. In
International Symposium on Formal Methods for Components and Objects, pages
364–387. Springer, 2005.

15. Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Inter-
national conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

16. Inc. The MathWorks. Simulink Reference, Matlab&Simulink. The MathWorks,
Inc., 3 Apple Hill Drive Natick, MA 01760-2098, R2017a edition, March 2017.

32

17. Predrag Filipovikj, Nesredin Mahmud, Raluca Marinescu, Cristina Seceleanu,
Oscar Ljungkrantz, and Henrik Lönn. Simulink to UPPAAL Statistical Model
Checker: Analyzing Automotive Industrial Systems, pages 748–756. Springer Inter-
national Publishing, Cham, 2016.

18. Rajeev Alur and P. Madhusudan. Decision problems for timed automata: A survey.
In In Proceedings of SFM04, Lect. Notes Comput. Sci. 3185, 124, pages 1–24.
Springer, 2004.

19. Alongkrit Chutinan and Bruce H Krogh. Computational techniques for hybrid
system verification. IEEE transactions on automatic control, 48(1):64–75, 2003.

20. Orlando Ferrante, Luca Benvenuti, Leonardo Mangeruca, Christos Sofronis, and
Alberto Ferrari. Parallel NuSMV: A NuSMV extension for the verification of com-
plex embedded systems. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol-
ume 7613 LNCS, pages 409–416, 2012.

21. Ashlie B. Hocking, M. Anthony Aiello, John C. Knight, and Nikos Aréchiga. Prov-
ing Critical Properties of Simulink Models. In Proceedings of IEEE International
Symposium on High Assurance Systems Engineering, volume 2016-March, pages
189–196, 2016.

22. B Meenakshi, A. Bhatnagar, and S. Roy. Tool for Translating Simulink Models
into Input Language of a Model Checker. In ICFEM, pages 606–620. Springer,
2006.

23. A. Agrawal, G. Simon, and G. Karsai. Semantic Translation of Simulink/State-
flow Models to Hybrid Automata using Graph Transformations. ENTCS Journal,
109:43–56, 2004.

24. Steven P. Miller. Bridging the Gap Between Model-Based Development and Model
Checking. In TACAS, pages 443–453. Springer, 2009.

25. K. Manamcheri Sukumar. Translation of Simulink-Stateflow Models to Hybrid
Automata. 2011.

26. Paolo Zuliani, André Platzer, and Edmund M Clarke. Bayesian statistical model
checking with application to stateflow/simulink verification. Formal Methods in
System Design, 43(2):338–367, 2013.

27. Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk.
A storm is coming: A modern probabilistic model checker. arXiv preprint
arXiv:1702.04311, 2017.

33

