
Towards the Architecture of a Decision Support
Ecosystem for System Component Selection

Jakob Axelsson1, 2, Ulrik Franke1, Jan Carlson2, Séverine Sentilles2, Antonio Cicchetti2

1 Swedish Institute of Computer Science (RISE SICS)
SE-164 29, Kista, Sweden

2 Mälardalen University
SE-721 23 Västerås, Sweden

Abstract—When developing complex software-intensive

systems, it is nowadays common practice to base the solution

partly on existing software components. Selecting which

components to use becomes a critical decision in development,

but it is currently not well supported through methods and tools.

This paper discusses how a decision support system for this

problem could benefit from a software ecosystem approach,

where participants share knowledge across organizations both

through reuse of analysis models, and through partially disclosed

past decision cases. We show how the ecosystem architecture

becomes fundamental to deal with efficient knowledge sharing,

while respecting constraints on integrity of intellectual property.

A concrete architecture proposal is outlined, which is a web-

based distributed system-of-systems. Experiences of a proof-of-

concept implementation are also described.

Keywords—Software ecosystems; software architecture;

decision support systems; software components; system-of-systems.

I. INTRODUCTION

It is nowadays common practice to develop software-
intensive systems based on existing software components and
frameworks, in combination with additional components that
are tailored for the application in question. The components
can come from many different sources, including internal or
outsourced development, commercial off-the-shelf, and for
software also open source communities. They can also have
varying characteristics and interfaces, as well as requirements
on the context they can be used in. All this makes the decisions
about what components to use very complex, involving not
only technical, but also business and organizational
perspectives, and life-cycle considerations. The decisions are
critical to the success of a system development project, and yet
they have to be made with very little available information. In
practice, the decisions are often made ad hoc, with little use of
structured methods. A number of persons are usually involved,
which adds challenges related to the interplay between humans
in the context of systems engineering processes [2].

Component selection would thus benefit from decision
support tools that guide designers through the decision process
in an efficient way. Such guidance would lead to decisions of
higher quality, i.e., the decisions would have a lower risk of
getting torn up later on, or of being suboptimal. Ideally, the
decisions should be based on facts rather than guessing, and
knowledge and evidence should therefore be used by this tool.
These ideas have led to the ongoing ORION research project

where a goal is to develop a support tool called COACH
(Component Options Analysis in Cooperation with Humans).

One of the key ideas in COACH is to use knowledge to
support decision makers, but a critical aspect is how to actually
acquire the necessary evidence on which that knowledge will
be built. The data could, at least partially, come from previous
decision cases. However, it does not appear realistic that an
individual organization will make sufficiently many similar
decisions on their own to build up a knowledge base of the
necessary size that can lead to good decision recommendations.
Therefore, we have investigated if a software ecosystem
approach could be used, in which different users and
organizations can share knowledge between each other in order
to make decisions more efficiently and effectively.

The contribution of this paper is to address the research
question “What would be a suitable software architecture to
support an ecosystem for decision support?” This has been
investigated using a design science methodology [15], and the
major steps have been to elicit requirements; perform
architectural analysis, resulting in a description based on the
ISO 42010 standard [18]; and develop a proof-of-concept
prototype to validate the architectural description. To our
knowledge, the idea of using an ecosystem approach to
decision support is novel and lacks previous research.

The remainder of the paper is structured as follows: In the
next section, key requirements are presented. In Section III,
software ecosystem perspectives on the system are discussed
further, and in Section IV the architecture principles are
explained. Section V describes the proof-of-concept prototype,
and Section VI introduces some related work. The final section
summarizes the conclusions and gives directions for future
extensions.

II. KEY REQUIREMENTS

The initial step in the research was to elicit the key
architecturally significant requirements. This was done by
creating scenarios from decision processes, and use them to
identify stakeholders, their concerns, and important use cases.
These requirements address what different users want to get
out of using the decision support.

A. Stakeholders

Four key stakeholder groups were identified:

This work is supported by The Knowledge Foundation in Sweden (Grant
No. 20140218), as part of the ORION project, www.orion-research.se.

1. Decision makers. COACH users who participate in a
decision process using the tool.

2. Contributors. Developers of extensions to the tool, in
the form of modules implementing special decision
processes, estimation models, etc.

3. System administrators. Responsible for setting up a
system instance, and maintaining its operation.

4. Process analysts. Researchers who analyze
aggregated data from many decision cases for
research purposes or for further improving the tool.

B. Concerns

The stakeholders have different concerns, and the most
important ones from an architecture perspective are, in the
terminology of ISO 25010 [17]:

• Usability in use. It must be easy to use the system for
decision making, for adding extensions, and for
configuring it for different uses.

• Flexibility in use. The system must be dynamically
extensible with new contributions, as well as being
interoperable (e.g. for including legacy components
such as existing data sources).

• Transferability. The system should be adaptable to the
needs of different organizations with different decision
making practices.

• Maintainability. The system will have a long life time,
and it must be possible to continue its development,
while still having access to old data and contributions.

• Security. This includes confidentiality and integrity. The
decision support will be a critical application for
companies, and the security level should be similar to
that of other critical applications.

Some of these concerns are conflicting, constituting trade-
off points. For instance, high flexibility may make it more
difficult to maintain and secure the system.

The elicited requirements also contain descriptions of about
20 use cases, including creation and closure of decision cases;
inviting users to a decision case; adding case facts and decision
alternatives; deciding on the decision process to use; deciding
on what property to evaluate alternatives against, and how to
estimate those properties; generating and reviewing decision
recommendations; and extending the tool with different
models.

III. ECOSYSTEM CHARACTERISTICS

In a typical organization, the most difficult decisions would
be the ones that are rarely made, whereas the more standard
ones are well known and are often already well supported
through organizational processes. It is thus in the rare decisions
that decision support would be most valuable. However, this
means that a single organization would typically not build up
sufficient evidence about these rare decisions to be able to
generate good advice to the decision makers. Instead, it is
necessary to provide ways of sharing the relevant knowledge

and evidence across organizations, and this is a central idea of
our research.

We have found it natural to consider a software ecosystem
approach to address knowledge sharing in the development of
COACH. A common definition of a software ecosystem is “the
interaction of a set of actors on top of a common technological
platform that results in a number of software solutions or
services” [21]. The actors in this case would include decision
makers in different organizations, and the platform is the
decision support system, which can be extended in different
ways with both data and services.

In this section, we will highlight some characteristics of this
software ecosystem, and these characteristics are important as
input for deriving a suitable decision support system
architecture. In the first subsection, we describe what data is
shared inside the ecosystem and how that can be used for
reasoning. Then, services in the form of best practice methods
are introduced, and these are also shared knowledge assets that
can be used to improve decision making. Finally, it is discussed
how to make the ecosystem attractive to decision makers and
contributors.

A. Shared data and reasoning

In order to support decision making, information from a
wide range of different data sources is needed. A prime
example of such a data source is previous decision cases within
the own organization or outside it. Also, public sources such as
scientific literature, web sites, etc. are useful. Additionally,
there is often a lot of relevant information in different internal
development tools in the organization. All these sources can be
seen as knowledge repositories that can be used for reasoning
in order to provide recommendations to decision makers. This
broad range of knowledge repositories makes it necessary to
have a uniform query mechanism to search for information
across the whole range.

When it comes to the information from previous cases, the
idea is to allow analogy-based reasoning to suggest
recommendations to users, based on information from cases
that are in some way similar. To achieve this, a way of
analyzing similarity is needed and this requires a classification
of decision case data. Therefore, we have created a taxonomy
for decision cases in the area of software components. This
taxonomy is called GRADE [23], and it characterizes decision
cases through five perspectives, namely Goals, Roles, Assets,
Decisions, and Environments. In short, Goals document the
key objectives of a decision; Roles the stakeholders involved in
the process; Assets the options available to the decision;
Decision the methods used to make the decision; and
Environment details of the context in which the decision is
taken. The categories are used to tag items in the knowledge
repository. GRADE has further been refined into an
information model suitable for storing cases in a knowledge
repository [12].

In addition, the concept of a context model is being
explored, which corresponds to the environment perspective of
GRADE. It contains information about aspects like
organization, business domain, etc., which can to some extent
be reused between decision cases within an organization [8].

The information in the context model constitutes the basis for
determining whether the preconditions of a previous decision
case, potentially from a different organization, is similar
enough to justify using it for recommendations in a new case.

B. Best practice methods

Apart from data, there is also a potential for sharing best
practice methods in decision making. This can be seen as
consolidated procedural knowledge that is best operationalized
through software modules. In order to make it possible to
extend this type of procedural knowledge over time, the tool
has to be extensible with new modules. COACH therefore
needs variability points in the decision support system
architecture that allows the inclusion of software extensions.
These extensions are used to encode a set of different methods
[27]:

• Decision processes. Each case follows some process to
reach a decision, but there will not be a single process
that fits all needs. Therefore, different modules can be
implemented that define the necessary steps to reach a
decision, and describe how trade-offs are to be made
between different properties when evaluating
alternatives [14].

• Context models. As already described above, these
models encode contextual factors, and they can vary
between companies and business segments.

• Property models. A property is a characteristic against
which alternatives are evaluated, and for each property
different estimation methods are possible, ranging
from simple expert opinions to more advanced
analytical ones.

C. Ecosystem attractiveness

A key question is how to make the ecosystem actually
work, or in other words, what is the value provided that will
encourage people and companies to contribute to the
ecosystem? As discussed in e.g. [3], a central element is the
ownership of information, and this applies very much in this
system. Many decision cases will involve proprietary
information that should not be shared. At the same time,
something has to be shared in order to both build the data in the
knowledge repositories, and to be able to generate
recommendations from it.

Some characteristics that will contribute to making the
ecosystem attractive to contributors are:

1. Low barrier. The decision makers should be able to
focus on their tasks, and spend minimum time in
adjusting their information to fit a specific format
enforced by the knowledge repository, or to add meta-
information to the case. Preferably, as much as
possible should be automated.

2. Control of confidentiality. To build confidence, the
user must be able to see, and control, what data is
shared with others through the knowledge repository.
Ideally, the user should be given a direct feedback of
the added value received from providing more

information, such as an estimate of the confidence
level of recommendations.

3. Useful feedback. There must be a clear value to
decision makers, in the form of useful
recommendations, or access to a broader range of
appropriate analysis methods.

IV. ARCHITECTURE PRINCIPLES

Given the requirements, and the desired ecosystem
characteristics, the architecture principles were elaborated
through a set of viewpoints that included the overall software
structure; the deployment structure; the control flows for the
major states in the system; the data flows between the different
modules; and the data storage structure.

The architecture analysis led to a number of cornerstone
decisions that provide the basis of the more detailed
architecture. Many elements are similar to previous
architectures for decision support systems (see Section VI), but
what is unique here is the provisions for building a software
ecosystem for decision support.

The cornerstones of the COACH architecture, and their
rationale, are:

• Service oriented architecture (SOA) with each
module being implemented as a stand-alone micro-
service (i.e. a self-contained program). Rationale:
usability for decision makers and contributors (easy to
configure system with new modules); flexibility
(extensibility, interoperability – different modules can
be deployed on different servers, allowing a mix of
contributions from internal and external sources in the
ecosystem); and maintainability (different pieces can
be exchanged independently of each other).

• Representational state transfer (REST) based
interface between components. Rationale:
maintainability (minimizes dependencies between
modules).

• Web service protocols (e.g. HTTPS) for interactions
between components. Rationale: flexibility (allows
components to be developed in any programming
language, and supports wrapping of legacy
components); maintainability (standardized, widely
used technologies).

• Web browser based user interfaces. Rationale:
usability (familiar user interface, cross platform
implementations, low threshold for new users);
transferability (look and feel can be customized for
different organizations by changing style sheets);
maintainability (no software installed on user
computers, each piece of the user interface is a part of
the service to which it is connected).

• Semantic web ontologies for describing information
structure. Rationale: flexibility (since ontologies are
extensible, it becomes possible for software
extensions to describe how they add data which is
specific to that module); maintainability (since the

data structure described in the ontology is in itself
stored as data, and not hard coded into the
algorithms).

• Graph database for storing case database and
knowledge repository. Rationale: flexibility (the
extensible data structure makes the graph format more
appropriate than tables).

• Common format for all transfers of structured data.
Rationale: maintainability (it reduces the need for
creating interface adapters).

For security concerns, a number of key decisions are also
made. Mostly, they are in line with standard practices for web
based IT systems of the kind described above, including for
example user authentication; encryption of sensitive data; and
time limited tokens controlling the rights for services to access
the data, where the core components can access a broader
range of services and a larger part of the data than can the
extensions.

Fig. 1 shows the software structure viewpoint of the
architecture (using UML notation). As a basis, there are a
number of core classes that contain the basic functionality for
creating microservices, decision processes, estimation methods,
etc. Some of the classes in the framework will now be
explained further:

• Microservice: The base class of all microservices. It
contains the functionality for setting up a service that
can act as a stand-alone web server. Subclasses are
expected to create the URL endpoints, i.e. the
concrete web services to which the microservice

should respond. If the service provides a user
interface, it is also related to a set of HTML templates
and possibly CSS style sheets describing that user
interface. (All the classes in Figure 1 except Client are
subclasses of Microservice, but this is not shown to
avoid cluttering the picture.)

• Client: This is a standard web browser through which
the user accesses the system.

• InteractionService: Implements the overall workflow
manager and decision case manager. It is configured
with links to a number of directories, which are used
for searching for other services. It contains the basic
functionality for logging in; registering users; creating
and closing decision cases; attaching users to a
decision case; selecting the decision process; and
initiating a transfer of partial case data to a shared
KnowledgeRepository.

• ContextModelService: Implements the interactions
that allow the user to describe the context in which the
decision case is taken place. This information is useful
when looking for analogies with other decision cases,
in order to provide the user with recommendations.
The context data is stored in the CaseDatabase.

• DecisionProcessService: Base class for decision
process services, which provide the logic of a decision
process. It can provide a process menu to the
InteractionService, and when the user selects different
process steps, further endpoints of the decision
process can be invoked. Decision process specific
data is stored in the CaseDatabase.

Fig. 1. Software structure viewpoint of the COACH architecture (UML class diagram notation).

• EstimationMethodService: The base class for
estimation methods. Normally, they provide a
dialogue for users to enter parameters, and an
evaluation method that produces the result of the
estimation based on the data.

• DirectoryService: Used for providing catalogues of
other services. It can be used by the InteractionService
to look up e.g. DecisionProcessServices and
EstimationMethodServices, but also for a Decision-
ProcessService to find estimation methods. To make a
new service available to users, it is sufficient to add its
URL to a directory that the user can access. The role
of this service in the ecosystem is elaborated further
below.

• KnowledgeInferenceService: Provides a uniform
query mechanism to the different knowledge
repositories, in order to find evidence and analogies
that can be used to generate recommendations to the
user.

• KnowledgeRepository: Some instances of this class
stores selected data from closed decision cases, and
uses it to derive generic knowledge and provide
recommendations. Others provide access to further
information sources, such as existing legacy tools or
public sources.

• CaseDatabase: Provides the interface to the database
for storing case information. This information
includes all the data that users have entered into the
system as part of using it to reach a decision, and is
based on the aforementioned GRADE taxonomy. It
wraps an API around a graph DBMS, and this API is

used by the InteractionService, ContextModelService,
DecisionProcessService, and KnowledgeInference-
Service.

• AuthenticationService: Responsible for managing user
accounts, checking passwords, and generating tokens
to be used when InteractionService delegates
authority to other services. The CaseDatabase also
uses the service to validate that provided credentials
are sufficient for accessing different endpoints of its
API.

The architecture is strictly layered, so service invocations
go downwards in the figure, and results are sent back upwards.
It roughly follows the Model-View-Controller pattern, where
the View is the web interface shown in the browser client; the
Controller is the InteractionService, DecisionProcessService,
EstimationModelService, and ContextModelService; and the
model is basically the rest.

The directory services play an important role in the
ecosystem, since they will be the integration point for
contributed services and be the “app stores” of the system. As
discussed in [4], this infrastructure of which the directory is a
part can be used in many ways for quality assurance, such as:

• Pre-release testing: When a service is registered with
the directory, a standard test suite can be ran to check
that common requirements are fulfilled, before
making it available to users.

• Dynamic configuration management: Since the
directories keep track of what services exist, they can
also automatically check that they are interoperable
with each other, by testing each newly registered
service together with existing services.

Fig. 2. Proof of concept prototype.

• Online diagnosis and testing: The directories can
continuously check the quality of service of each
registered service, and automatically prompt the
service owners for actions when an issue is detected.

• Sharing of operational knowledge: The performance
of different extensions can be measured continuously,
both by the system and by user ratings, and this
knowledge can be taken into account when making
recommendations.

V. PROOF-OF-CONCEPT PROTOTYPE

In order to validate the architecture design, a prototype
proof-of-concept implementation has been created, as
illustrated in Fig. 2, which shows a Pugh analysis of the case
reported in [5]. It is available as open source1 which is
continuously updated, and also as a publicly available
demonstrator2. The prototype has been implemented mainly in
the Python programming language, and uses the Neo4j graph
database for storing case data. In some respects, the current
implementation is a bit simplified (e.g., the data representation
in the case database needs to be elaborated for realistic decision
scenarios, and the interaction with the knowledge repository is
only rudimentary). The implementation is continuously refined
in different ways, both by improving the framework with better
user interfaces, improved security, and new features, but also
by developing new extensions.

The major conclusion from the proof-of-concept is a
validation that the microservice-based concept works in
practice, and constitutes a good basis for a software ecosystem.
Even though the architecture itself is extremely distributed, it
manages to deliver a coherent interaction experience to the
users.

VI. RELATED WORK

The research presented in this paper builds on previous
work in several areas. Within decision support systems (DSS),
a number of architectures have been presented which are web
based and have other similarities to our approach. The progress
in the area of web DSS was reviewed in [6], concluding that
the literature focuses much on implementation and
applications, and not so much on architectural issues and
design guidelines based on empirical evidence. In [29], an
integrated solution is presented to deal with the distributed
nature of web DSS, proposing a layered architecture that can
integrate data from different disciplines using a component
based approach. They use four layers: presentation, knowledge,
information, and data. Another framework is presented in [22],
which is like ours based on system-of-systems thinking. They
emphasize the ability to deploy through cloud computing, and
acknowledge the need to support a mixture of public and
private clouds. Although the approach to use microservices
appears to be unique in our work, [13] is suggesting something
similar, but call the services agents. A multi-agent framework
is also suggested by [16]. In [28], the emphasis is on how to
support flexibility using a service-oriented approach to DSS. A

1https://github.com/orion-research/coach.
2https://orion.sics.se.

key aspect of the COACH framework is to have access to data,
and one approach for this is data mining, as discussed in [24].
Their approach is to use a web DSS in combination with
service-oriented solutions, and they apply it in an e-business
and e-customs context. The purpose of COACH is to support
group decision making, and this was one reason for choosing a
highly distributed system with thin clients. Similar work exists
in group DSS, such as [1] which focuses on how to reach
consensus using a moderator in a Delphi like process. This
would constitute a decision process in our framework.

Compared to the above work on DSS, our approach is
similar in many respects, but differ on two major points. The
first is the use of ontologies for decision making as an
extensible data representation, and the other is that we take an
ecosystem approach to decision making where data is shared
and reused.

Regarding ontologies for decision making, several
suggestions have been made, in the context of engineering
decisions [25], and for supporting complex group decision
processes that involve many subtasks [10]. A generic decision
support ontology is described in [26], containing over 200
classes, and another general ontology is presented in [19]. All
these suggestions are fairly similar in their general structure,
and would also be a suitable basis for the needs in our domain.

When it comes to ecosystem architectures, [7] identifies a
number of challenges that have also been identified in our
work, including interface stability; workflow and user
integration; security; and extensions with new functionality.
Examples of ecosystem architectures for distributed systems-
of-systems are given in the domains of telemedicine [11] and
smart cities [20]. The latter also investigates decision support
in order to reuse architectural decisions between different
applications, which is similar to the approach of COACH.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have outlined the architecture of the
COACH decision support system for selecting components.
The approach is a modular architecture that forms the basis of a
software ecosystem, where users can share both abstracted
knowledge from previous decision cases, and also best
practices encapsulated in services in the microservice based
architecture. In this way, the decision makers can profit both
from a wider range of analysis possibilities, and from
recommendations based on historic data from a wide set of
decision makers.

The current architecture forms a promising starting point
for the tool and its ecosystem. In the near future, the work will
continue in several directions. First, the COACH framework
will continue to evolve towards more features and improved
quality. This will be carried out by the team members, but
hopefully also by others who contribute to the open source or
by providing services. Secondly, certain aspects of the
framework require more fundamental research, and this is in
particular true for the interplay between the knowledge
repository and the rest of the framework. Finally, the concept
will be used for experiments and case studies, where users will
apply the tool to real decision cases, thereby contributing both
to validation of the system, but also with data that can be used

by analysts to improve knowledge of how decisions are
actually made.

REFERENCES

[1] S. Alonso, E. Herrera-Viedma, F. Chiclana, and F. Herrera, “A web
based consensus support system for group decision making problems
and incomplete preferences,” Inf. Sci., vol. 180, no. 23, pp. 4477–4495,
2010.

[2] J. Axelsson, “Towards an Improved Understanding of Humans as the
Components that Implement Systems Engineering,” in INCOSE
International Symposium, 2002, vol. 12, no. 1, pp. 1137–1142.

[3] J. Axelsson, E. Papatheocharous, and J. Andersson, “Characteristics of
software ecosystems for Federated Embedded Systems: A case study,”
Inf. Softw. Technol., Apr. 2014.

[4] J. Axelsson and M. Skoglund, “Quality assurance in software
ecosystems: A systematic literature mapping and research agenda,” J.
Syst. Softw., vol. 114, pp. 69–81, Dec. 2015.

[5] J. Axelsson, “Architectural Allocation Alternatives and Associated
Concerns in Cyber-Physical Systems,” in Proceedings of the 2015

European Conference on Software Architecture Workshops - ECSAW
’15, 2015, pp. 1–6.

[6] H. K. Bhargava, D. J. Power, and D. Sun, “Progress in Web-based
decision support technologies,” Decis. Support Syst., vol. 43, no. 4, pp.
1083–1095, 2007.

[7] J. Bosch, “Architecture challenges for software ecosystems,” in
Proceedings of the Fourth European Conference on Software
Architecture Companion Volume - ECSA ’10, 2010, p. 93.

[8] J. Carlson, E. Papatheocharous, and K. Petersen, “A Context Model for
Architectural Decision Support,” in 2016 1st International Workshop on
Decision Making in Software ARCHitecture (MARCH), 2016, pp. 9–15.

[9] M. Cataldo and J. D. Herbsleb, “Architecting in software ecosystems,”
in Proceedings of the Fourth European Conference on Software
Architecture Companion Volume - ECSA ’10, 2010, p. 65.

[10] J. Chai and J. N. K. Liu, “An Ontology-driven Framework for
Supporting Complex Decision Process,” in World Automation Congress
(WAC), 2010.

[11] H. B. Christensen, K. M. Hansen, M. Kyng, and K. Manikas, “Analysis
and design of software ecosystem architectures – Towards the 4S
telemedicine ecosystem,” Inf. Softw. Technol., vol. 56, no. 11, pp. 1476–
1492, 2014.

[12] A. Cicchetti, M. Borg, S. Sentilles, K. Wnuk, J. Carlson, and E.
Papatheocharous, “Towards Software Assets Origin Selection Supported
by a Knowledge Repository,” in 2016 1st International Workshop on
Decision Making in Software ARCHitecture (MARCH), 2016, pp. 22–29.

[13] C.-S. J. Dong and A. Srinivasan, “Agent-enabled service-oriented
decision support systems,” Decis. Support Syst., vol. 55, no. 1, pp. 364–
373, 2013.

[14] U. Franke, “Towards Preference Elicitation for Trade-Offs between
Non-Functional Properties,” in 2016 IEEE 20th International Enterprise
Distributed Object Computing Conference (EDOC), 2016, pp. 1–10.

[15] Hevner, Alan R., S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS Q., vol. 28, no. 1, pp. 75–105, 2004.

[16] B. Imène and T. Noria, “A Multi-agent Framework for a Web-based
Decision Support System Applied to Manufacturing System,” in
Conférence Internationale sur l’Informatique et ses Applications, 2009.

[17] ISO, “ISO/IEC 25010 Systems and software engineering - Systems and
software Quality Requirements and Evaluation - System and software
quality models,” 2011.

[18] ISO, “ISO/IEC/IEEE 42010 Systems and software engineering —
Architecture description,” 2011.

[19] E. Kornyshova and R. Deneckère, “Decision-Making Ontology for
Information System Engineering,” in Conceptual Modeling – ER 2010,
Springer Berlin Heidelberg, 2010, pp. 104–117.

[20] I. Lytra, G. Engelbrecht, D. Schall, and U. Zdun, “Reusable
Architectural Decision Models for Quality-Driven Decision Support: A
Case Study from a Smart Cities Software Ecosystem,” in 2015

IEEE/ACM 3rd International Workshop on Software Engineering for
Systems-of-Systems, 2015, pp. 37–43.

[21] K. Manikas and K. M. Hansen, “Software ecosystems – A systematic
literature review,” J. Syst. Softw., vol. 86, no. 5, pp. 1294–1306, 2013.

[22] M. Nouh, M. Hadhrawi, A. Sanchez, and A. Alfaris, “Towards Cloud-
Based Decision Support Platform for Group Decision Making,” in 2013

IEEE International Conference on Systems, Man, and Cybernetics,
2013, pp. 50–55.

[23] E. Papatheocharous, K. Petersen, A. Cicchetti, S. Sentilles, S. M. A.
Shah, and T. Gorschek, “Decision support for choosing architectural
assets in the development of software-intensive systems,” in
Proceedings of the 2015 European Conference on Software Architecture
Workshops - ECSAW ’15, 2015, pp. 1–7.

[24] L. Razmerita and K. Kirchner, “Data Mining for Web-Based Support
Systems: A Case Study in e-Custom Systems,” in Data Mining for Web-

Based Support Systems: A Case Study in e-Custom Systems, 2010, pp.
387–402.

[25] J. Rockwell, I. R. Grosse, S. Krishnamurty, and J. C. Wileden, “A
Decision Support Ontology for collaborative decision making in
engineering design,” in 2009 International Symposium on Collaborative
Technologies and Systems, 2009, pp. 1–9.

[26] M. Rospocher and L. Serafini, “Ontology-centric decision support,”
Proceedings of the 2012 International Conference on Semantic

Technologies Meet Recommender Systems & Big Data - Volume 919.
CEUR-WS.org, pp. 61–72, 2012.

[27] C. Wohlin, K. Wnuk, D. Smite, U. Franke, D. Badampudi, and A.
Cicchetti, “Supporting Strategic Decision-Making for Selection of
Software Assets,” in Proceedings of the 7th International Conference on
Software Business (ICSOB 2016), 2016, pp. 1–15.

[28] D. Yu and S. Zheng, “Towards Adaptive Decision Support Systems: A
Service-oriented Approach,” Adv. Inf. Sci. Serv. Sci., vol. 3, no. 7, pp.
26–34, 2011.

[29] S. Zhang and S. Goddard, “A software architecture and framework for
Web-based distributed Decision Support Systems,” Decis. Support Syst.,
vol. 43, no. 4, pp. 1133–1150, 2007.

