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Abstract—Architectural engineering of embedded systems
comprehensively affects both the development processes and the
abilities of the systems. Verification of architectural engineering is
consequently essential in the development of safety- and mission-
critical embedded system to avoid costly and hazardous faults.
In this paper, we present the Architecture Quality Assurance
Tool (AQAT), an application program developed to provide a
holistic, formal, and automatic verification process for architec-
tural engineering of critical embedded systems. AQAT includes
architectural model checking, model-based testing, and selec-
tive regression verification features to effectively and efficiently
detect design faults, implementation faults, and faults created
by maintenance modifications. Furthermore, the tool includes
a feature that analyzes architectural dependencies, which in
addition to providing essential information for impact analyzes
of architectural design changes may be used for hazard analysis,
such as the identification of potential error propagations, common
cause failures, and single point failures. Overviews of both the
graphical user interface and the back-end processes of AQAT are
presented with a sensor-to-actuator system example.

Keywords—verification tool; model checking; model-based test-
ing; dependence analysis; regression verification

I. INTRODUCTION

Architectural engineering of safety-critical and mission-
critical embedded systems is conducted throughout the devel-
opment process, where faults may be created when the archi-
tecture is designed, when the architectural design is imple-
mented, and every time the design is modified due to mainte-
nance. Architectural faults tend to significantly impair the cost
and performance of development processes [1] [2] [3] and the
dependability of the systems [4] [5]. Rigorous and holistic ver-
ification of architectural engineering is consequently essential
in the development of safety- and mission-critical embedded
systems, from requirements analysis and design to implemen-
tation and maintenance. Furthermore, automated verification
is essential to reduce the cost of labor and the risk of human
error [6]. In this paper, we present the Architecture Quality
Assurance Tool (AQAT), an application program developed to
provide a holistic, formal, and automated verification process
for architectural engineering of critical embedded systems.
AQAT corresponds to an implementation of the Architecture
Quality Assurance Framework (AQAF) [7], which includes a
model checking technique to detect design faults, a model-
based testing technique to detect implementation faults, and a
selective regression verification technique based on a change
impact analysis technique to efficiently detect faults created
by maintenance modifications. The verification criteria of
the framework enforce assessments of architectural control

and data flow paths and their compliance with requirements.
The contribution is of industrial importance as contemporary
functional safety standards (e.g. ISO 26262) require control
and data flow analysis of the architectural design, tests that
demonstrate conformance of the implementation with respect
to the design, and impact analysis of design changes to identify
the necessary reverification measures.

The provided verification techniques are developed upon
a common formal foundation constituting a combination of
timed automata [8] and architecture flow graphs [7]. Ar-
chitecture flow graphs identify the prescribed control and
data flows of architectural models that must be subjected to
verification and also provide control and data dependencies on
which change impact analysis automatically can be performed
through slicing [9]. The theory of timed automata is used to
anchor the semantics of an architectural model in a format
appropriate for model checking and model-based test case gen-
eration. A common formal underpinning provides traceability
between the verification runs, the coverage of the model, and
the coverage of the implementation. Regression verification
can thereby be efficiently executed by only selecting verifica-
tion runs of the model and implementation that can be traced
from the change impact analysis. AQAT has mainly been
developed for verification of architectures with synchronous,
fixed-priority preemptive or non-preemptive execution models,
as these commonly are used in critical embedded systems.
Principles of modularization are implemented to facilitate ex-
tensions. Furthermore, AQAT is currently only compatible with
architectural models described by the Architecture Analysis
and Design Language (AADL) [10], but may be adapted to
other languages with a similar expressiveness. Research in this
field has developed a number of verification tools for AADL,
such as model checking tools (e.g. [11] [12] [13] [14] [15]) and
resource scheduling analysis tools (e.g. [16]). However, these
tools do not provide verification techniques for architectural
engineering that is conducted subsequent to an established de-
sign. Moreover, they do not include methods that enforce and
measure coverage of the architectural design in the verification
process, which is essential to determine the extent to which a
design has been verified.

The paper is organized as follows. In section II, we present
the front-end of AQAT together with the three main cases in
which the tool is intended to be used. In Section III, we present
an overview of the back-end processes of AQAT. A list of
performance evaluation results is then presented in Section IV,
which is followed by related work in Section V, and finally
concluding remarks and future work in Section VI.



software

ActuatorLogics
properties
Dispatch_Protocol => Periodic;
Period => 18 ms;
Priority => 0;
Compute_Execution_Time => 1 ms .. 2 ms;
Compute_Deadline => 18 ms;

annex behavior_specification
{**
states
s0 : initial state; s1 : final state;
transitions
s0 [1] -[Control_value<=3]-> s1 {Actuator_setpoint:= 
Control_value; Sensor_warning:= 
Sensor_Failure; Sensor_Failure:=false};
s0 [0] -[Control_value>3]-> s1 {};
**};

properties
Dispatch_Protocol => Periodic;
Period => 16 ms;
Priority => 1;
Compute_Execution_Time => 1 ms .. 2 ms;
Compute_Deadline => 16 ms;

annex behavior_specification
{**
states
s0 : initial state; s1 : final state;
transitions
s0 [1] -[Input1==Input2]-> s1 {Output:=Input1};
s0 [0] -[Input1!=Input2]-> s1 {Output:=(Input1+ 
Input2)/2; Sensor_Failure:=true};
**};

Sensor

properties
Dispatch_Protocol => Periodic;
Period => 14 ms;
Priority => 2;
Compute_Execution_Time => 1 ms .. 2 ms;
Compute_Deadline => 14 ms;

annex behavior_specification
{** 
states
s0 : initial state; s1 : state; s2 : final state;
transitions
s0 -[ ]-> s1 {Sensor1:=1};
s0 -[ ]-> s1 {Sensor1:=3};
s1 -[ ]-> s2 {Sensor2:=1};
s1 -[ ]-> s2 {Sensor2:=3}; 
**};

control

Sensor_Failure

sensor_1

sensor_2

setpoint

warning

Latency => 0ms .. 4ms;

Latency => 0ms .. 4ms; Latency => 1ms .. 6ms;

ProcessorPlatform

RAM

primary_sensor

secondary_sensor

properties
Scheduling_Protocol => Higest_Priority_First;
Preemptive_Scheduler => true;

Actual_Processor_Binding =>  (reference (processorPlatform)) applies to software;

actuator

display

Concurrency_Control_Protocol => Semaphore;

BUS BUS

Fig. 1: Running example: a sensors-to-actuator AADL model (the textual and graphical syntax has been simplified).

II. AQAT FRONT-END AND USAGE

A. Use Cases

Architectural design and modeling is conducted in the
early phases of the development process of embedded systems
to create and represent system structures that generate the
required extra-functional properties, such that the require-
ments of safety, reliability, availability, performance, etc., are
achieved [17]. A faulty architectural design may therefore not
only cause an erroneous behavior of critical functionality, but
also of redundancy and fault tolerance mechanisms that are
supposed to maintain dependability in the presence of errors.
Moreover, architectural design faults tend to cause extensive
rework costs [1]. They are consequently critical to detect
and correct prior to any refinement or implementation of the
architectural design. This constitutes the chronologically first
case in which AQAT may be used in the development process.
AQAT provides an architectural model checking feature and an
architectural simulation feature by means of the UPPAAL en-
vironment [8] for the detection and debugging of faults within
the design. As a running example, we will use the simplistic
sensor-to-actuator AADL model presented in Fig. 1 (the reader
is referred to Section III-A for a description of the AADL
syntax). The design is composed of three concurrent and
periodically dispatched tasks: Sensor, Logics, and Actuator.
Sensor represents the behavior of a dual modular redundant
sensor that periodically outputs two integer values. The output
values are transmitted to Logics through connections sensor 1
and sensor 2. Logics then controls the position of an actuator
device based on these values, where the mean of the two
sensor values is used if they differ, whereas the value from
the primary sensor is used if they are considered as equal.
In addition to the computation of the mean if the sensor
values differ, the shared data component Sensor Failure is
set to the Boolean value true. Actuator finally acts as an
interface to the controlled actuator. If the control signal is
below or equal to the threshold of three, Actuator positions

the device according to the request and displays the state of
Sensor Failure. If the signal is higher than the threshold, no
values shall be assigned to output interfaces. In addition to the
modeled components, interfaces, connections, and scheduling
properties, the architecture is modeled with latency properties
that constraint the time window in which the interactions
should take place to achieve a safe regulation of the actuator
device. The tasks are bound to a processing platform with a
fixed-priority preemptive scheduler.

Any element of the design in Fig. 1 that causes an incorrect,
inconsistent, or incomplete execution of the prescribed control
and data flow paths (from the sensors to the actuator), such
as incorrect component interactions, inconsistent timing and
scheduling properties, excessive response times, missed dead-
lines, unsatisfiable control expressions, unreachable behavior,
and deadlocks, livelocks, and starvations of threads due to
misuses of shared resources, can be detected by AQAT [18].

Although a correct, complete, and consistent architectural
design is important in the development of critical embedded
systems, these verification measures do not imply a corre-
sponding implementation as faults may be created in the pro-
cess of implementing the design. This constitutes the second
case in which AQAT may be used in the development process.
AQAT provides a model-based test suite generation feature
for the generation of test cases that test the conformance of
the implementation with respect to the design. Test cases are
generated based on the model checking process, where the
input and output behavior of each model-checked control and
data flow path is converted to a test case that attempts to
observe a corresponding behavior in the implementation.

Finally, the system lifecycle typically includes modifica-
tions to the architectural design due to maintenance, product
line and variability development, and tradeoff analysis. Mod-
ifications require reverification measures since a modification
may induce an erroneous behavior to previously functioning ar-



chitectural elements. Reverification of the complete design, i.e.
a re-run all approach, is inefficient if the change does not have
the corresponding comprehensive effect. This corresponds to
the third case in which AQAT may be used in the development
process. AQAT provides a selective regression verification
feature that only selects those verification sequences that cover
a changed or possibly impacted part of the modified design
for reverification. The feature assesses the impact of a change
through an analysis of dependencies between components of
the architecture. The dependencies may, in addition to impact
analysis, be used for hazard analysis, where potential fault
propagations, common cause failures, single point failures,
etc., may be deduced from the information. Furthermore, the
information may be used for reusability analysis, paralleliza-
tion of independent functions, and for the analysis of potential
dependencies between critical and non-critical components in
mixed criticality systems.

B. User Interface

AQAT is controlled through a graphical user interface
(GUI). An AADL model is verified by first creating a new
AQAT project through File→New Project in the menu bar, as
illustrated in Fig. 5. The user then selects the AADL model
to be verified, and possibly a previously saved AQAT project
pertaining to the verification of a prior version of the model.
The selective regression verification feature is engaged by the
latter action.

Fig. 2: GUI: creation of a new verification project.

The user is subsequently given the option to configure
the verification process according to case-specific needs, as
presented in Fig. 3. By default, the tool will not perform
verification of, or generate test cases from, control and data
flow paths that include component-internal or inter-component
loops. If the user needs to include potential loops in the
analysis, the user may set the maximum number of loops
the tool should consider. These bounds do not have any
effect on the verification of the sensor-to-actuator example
since it is free from loops. The user may finally request a
schedulability analysis, a test suite generation, and/or a record
of architectural dependencies to enable a selective regression

verification process in a possible future reverification project.
A successful verification of control and data flow paths implies
that the model is schedulable during the execution of the
verified paths. However, in order to ensure that the tasks do
not miss their deadlines over one hyperperiod, an explicit
schedulability analysis must be conducted. Furthermore, in
case of an unsuccessful verification of control and data flow
paths, an explicit schedulability analysis facilitates the debug-
ging process by declaring the presence or absence of missed
deadlines.

Fig. 3: GUI: selection of verification options.

If a test suite generation is requested, a dialogue box is
displayed wherein the user is asked to mark the components
of the model that represent the possible behaviors of the system
environment, as presented in Fig. 4. The information is neces-
sary for the tool to identify the input interfaces of the model
that will constitute the controlled interfaces of the system under
test. Test cases shall stimulate the implementation in place of
Sensor in this case.

Fig. 4: GUI: selection of system environment.

The tool initiates the verification process when the options
have been selected. The progress of the process is displayed in
real time through the main window of the GUI, as illustrated
in Fig. 5. The left-hand window pane displays the status of
major framework processes that are executing and their key re-
sults. Verdicts from the model checking process are displayed
through green, red, and a yellow symbols, depending on if a
path is executable (green circle), unexecutable (red rectangle),
or if the executability is inconclusive (yellow circle).



Fig. 5: GUI: main window.

Fig. 6: GUI: open results.

An inconclusive verdict indicates that the model-checker ran
out of memory in the process of verifying the executability

of the path. The right-hand window pane displays details from
back-end processes and messages that are sent from the model-
checker.

Subsequent to the completion of the model checking pro-
cess, and the test suite generation and dependence analysis
processes if selected, the user may open a comprehensive
description of the project and the results through the menu
bar, as illustrated in Fig. 6. Detailed examples of results based
on the sensor-to-actuator model are presented in Section III.
The user may also open the AADL model within the UPPAAL
environment as illustrated in Fig. 7, wherein its behavior may
be simulated, inspected, and subjected to customized model
checking. Customized model checking is especially useful
for debugging, where context-specific requirements can be
specified and verified to analyze the cause and extent of the
erroneous behavior. In case of an unexecutable path verdict,
the tool displays a path-specific launch button together with the
warning, as shown in Fig. 5, through which the particular faulty
behavior can be debugged within the UPPAAL environment.

Fig. 7: GUI: open AADL model in UPPAAL.

III. AQAT BACK-END

AQAT executes a framework of back-end processes, illus-
trated in Fig. 8, to provide a holistic verification process. In
this section, we present an overview of these processes and
their implementations within the tool. Theoretical details are
presented in [7].

A. Architecture Analysis and Design Language

AQAT operates on AADL XML files and utilizes the Java
package javax.xml.parsers for the preparation of the transfor-
mations to architecture flow graphs (AFGs) and UPPAAL timed
automata. In this section, we present an overview of AADL
in this form and the preparation, whereas the transformation



TABLE I: AADL XML Schema

A1: <SystemType name=” . . . ”/><SystemImplementation name=” . . . ”>
A2: <ownedProcessorSubcomponent name=” . . . ” processorSubcomponentType=”xmi:id of comp. impl.”/> . . . // Protocol=>FIXED PRIORITY Preemptive=>true|false

A3: <ownedProcessSubcomponent name=” . . . ” processSubcomponentType=”xmi:id of comp. impl.”/> . . .
A4: <ownedPropertyAssociation property=”../../...aadl#Deployment Properties::Actual Processor Binding”> . . . </ownedPropertyAssociation > . . .
A5: <ownedAccessConnection name=” . . . ” . . . ><destination . . . /><source . . . /></ownedAccessConnection> . . .
A6: <owned(Port/Parameter)Connection name=” . . . ”><ownedPropertyAssociation property=”../../.aadl#Communication Properties::Latency” > . . .
A7: </ownedPropertyAssociation><destination . . . /><source . . . /></ownedPortConnection> . . . </SystemImplementation>
A8: <ProcessType name=” . . . ”><owned(Data/Event/EventData)Port name=” . . . ” direction=”in|out|inout” dataFeatureClassifier=”reference to data type” /> . . .
A9: <ownedDataAccess name=” . . . ” kind=”requires|provides” dataFeatureClassifier=”reference to data type” /> . . . </ProcessType> . . .

A10: <ProcessImplementation name=” . . . ”><owned(Thread/Subprogram/Data)Subcomponent . . . /> . . . <ownedAccessConnection . . . > . . . . . .
A11: <owned(Port/Parameter)Connection . . . > . . . </ProcessImplementation> . . .
A12: <ThredType name=” . . . ”><ownedPropertyAssociation property=”Dispatch Protocol” value=”Periodic” />
A13: <ownedPropertyAssociation property=”Period” unit=”Time Units.ms/sec/min/...” value=” . . . ” /><ownedPropertyAssociation property=”Priority” value=” . . . ” />
A14: <ownedPropertyAssociation property=”Compute Execution Time” ><minimum unit=”Time Units.ms/sec/min/...” value=” . . . ”/>
A15: <maximum unit=”Time Units.ms/sec/min/...” value=” . . . ”/></ownedPropertyAssociation>
A16: <ownedPropertyAssociation property=”Compute Deadline” unit=”Time Units.ms/sec/min/...” value=” . . . ” />
A17: <owned(Data/Event/EventData)Port . . . /> . . . <ownedDataAccess . . . /> . . . </ThreadType> . . .
A18: <ThreadImplementation name=” . . . ”><ownedAnnexSubclause name=”behavior specification” sourceText=”variables variable name : reference to data type; . . .
A19: states textitstate name : initial|complete|final|state; . . . transitions source state [priority] -[guard]-> destination state {action1;action2 . . . }; . . . ”/>
A20: <owned(Subprogram/Data)Subcomponent . . . ”/> . . .
A21: <ownedAccessConnection . . . > . . . <owned(Port/Parameter)Connection . . . > . . . </ThreadImplementation> . . .
A22: <SubprogramType name=” . . . ”><ownedParameter . . . /> . . . <ownedDataAccess . . . /> . . . </SubprogramType> . . .
A23: <SubprogramImplementation name=” . . . ”><ownedAnnexSubclause . . . /><ownedDataSubcomponent . . . /> . . . </SubprogramImplementation> . . .

AADL to timed automata 

transformation

Control and data flow 

verification criteria
Timed automata

Verification 

Sequences

Model 

checking

Model-based 

testing

AFG generation

Architecture 

Flow Graph
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verification

Verification sequences to observer 

automata transformation

Observer 

automata

Verification 

history
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Test suite 

generation
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Graphs 

comparison

Change

Change 

impact

Inter-observer satisfiability

independence

AADL model

Implementation of 

AADL model

Changed 

AADL model

Fig. 8: The Architecture Quality Assurance Framework.

to AFG is presented in Section III-B and the transformation
to timed automata is presented in III-D. An illustration of the
AADL XML schema that is fundamental to the transformation
rules is presented in Table I. AADL provides modeling of
component abstractions dividable into three groups: appli-
cation software components (Process, Thread, Subprogram,
and Data); execution platform components (Processor, Virtual
Processor, Memory, Bus, Virtual Bus, and Device); and general
composite components (System). A component is modeled by
a component type (e.g. A12-A17) and a component implemen-
tation (e.g. A18-A21) declaration. A component type defines
the externally visible properties (e.g. A12-A16) and interfaces
(e.g. A17) of the component. A component implementation
declaration defines the component-internal structure, in terms
of subcomponents (e.g. A20) and their connections (e.g. A6-
A7). These subcomponents can themselves have subcompo-
nents resulting in a hierarchy that eventually describes the
whole system. AQAT operates on this type of schema, where
the complete architecture is described within a system com-
ponent (A1-A7) containing at least one process component
(A3) composed of at least one thread (A10) that is bound to
a processing unit (A3-A4).

A component may essentially be modeled with three types
of interfaces: ports (e.g. A17), component accesses (e.g. A17),
and parameters (e.g. A22). Ports represent directional interac-
tion points of components for the transmission of data streams,
messages, and events. A port can either be declared as a
data port, an event port, or an event data port. A data port
communicates data without queuing whereas an event data port
communicates data with queuing. An event port communicates
events with queueing, such as dispatch triggers of threads,
triggers for mode switches, and alarms. Parameters represent
interaction points of subprograms for the transmission of call
(in parameter) and return (out parameter) data. Component
access declarations support modeling of shared resources, such
as global data components and data buses. Access declarations
are named and can be declared with a provides or requires
statement. A provides statement denotes that a component
provides access to a data or bus component internal to it. A
requires statement denotes that a component requires access
to a data or bus component external to it. There are three
types of corresponding connections: port connections (e.g.
A6), component access connections (e.g. A5), and parameter
connections (e.g. A6).

Each AADL element may be associated with a property
declaration. A property constraints the expression it is asso-
ciated with, e.g. in terms of timing (A6-A7) and scheduling
(A12-A16). Furthermore, the behavior of a component can be
described as a state transition system by using the AADL
Behavioral Annex [19] (A18-A19), which is composed of a
set of local variables, a set of states (at least one initial and
one final state), and a set of state transitions. A state transition
s

pri,g,act−−−−−→ s′ has a source state s, a priority pri ∈ N (guards
are evaluated in a sequence stipulated by the priorities if the
source state has several outgoing transitions), a Boolean guard
(predicate) g, a sequence of actions act, and a target state s′.

AQAT utilizes the Java package og.jgrapht to facilitate
the transformation from AADL behavioral models to UP-
PAAL timed automata, whereby the behavioral model transition
systems are virtually created and manipulated such that they
conform to the target domain. Manipulation must essentially



be performed to transitions that include timing properties,
subprogram calls, or accesses to shared resources to accurately
represent timing and potential context switches in timed au-
tomata. A jgrapht graph object G(V,E) is composed of a set
of vertices V and a set of edges E on the form e = 〈v1, v2〉,
where e connects v1 to vertex v2. In order to conform to AADL
Behavioral annex transitions, the default implementation of
jgrapht edges, DefaultEdge, is extend with labels according
to timed automata edges, as illustrated in Listing 1.

Listing 1: Extension of org.jgrapht.

c l a s s Behaviora lAnnexEdge<V> ex tends D e f a u l t E d g e{
p r i v a t e V v1 , V v2 , S t r i n g p r i o r i t y ,
S t r i n g guard , S t r i n g a c t i o n ;
p u b l i c UppaalEdge (V v1 , V v2 , S t r i n g p r i o r i t y ,
S t r i n g guard , S t r i n g a c t i o n ){ t h i s . v1 = v1 ;

t h i s . v2 = v2 ; t h i s . p r i o r i t y = p r i o r i t y ;
t h i s . gua rd = guard ; t h i s . a c t i o n = a c t i o n ;

} . . . }

B. Architecture Flow Graphs

In order to extract the necessary verification data, the
framework includes a technique that captures the prescribed
control and data flows of an AADL model in a directed
graph referred to as the architecture flow graph (AFG) [7].
The vertices of the graph represent operations, interfaces, and
scheduling states (such as the standard scheduling states of
threads illustrated in Fig 11) of the software components. The
arcs represent how control and data flow through the vertices
according to the behavioral models, component connections,
and the semantical rules of AADL. AFGs are created through
three operations. The first operation is to generate a control
flow graph (CFG) for each thread and subprogam component
of the AADL model. From this perspective, the control flow
is determined by the behavioral model of the component. An
illustration of the CFG of a behavioral model is presented in
Fig. 9.

annex behavior_specification
{**
states
s1 : initial state;
s2 : state;
s3 : state;
s4 : state;
...
sx : final state;
transitions
s1 [pri1] -[g1]-> s2 {act1};
s1 [pri2] -[g2]-> s3 {act2};
s2 [pri3] -[g3]-> s4 {act3};
…**};

g1

act1

TF

g2

g3

TF

act2

TF

act3

ENTRY

Fig. 9: The CFG (right) of a behavioral model (left). Assume
pri1 > pri2.

The second operation is to compute the component-internal
data flows, from input interfaces and to output interfaces, for
each component and annotate them to the CFGs. Such flows
are computed by AQAT through definition-use pairs analysis
of each CFG with respect to each interface of the component,
as illustrated with dashed arrows in Fig 10. The flows are

necessary for the extraction of all prescribed component in-
teractions through component connections. The third and final
operation of creating the AFG is to integrate the individual
graphs according to the component connections, as illustrated
by bold arrows in Fig 10.

TLogics

Actuator

Sensor

Sensor1:=3Sensor1:=1

Sensor2:=3Sensor2:=1

sensor_2:=Sensor2sensor_1:=Sensor1

Input2:=sensor_2Input1:=sensor_1

Input1==Input2

Input1!=Input2 Output:=Input1

Output:=(Input1+Input2)/2

Sensor_Failure:=true

control:=Output

Control_value:=control

Control_value<=3

Actuator_setpoint:=Control_value
Control_value>3

Sensor_warning:=Sensor_Failure

Sensor_Failure:=false

setpoint:=Actuator_setpiont warning:=Sensor_warning

F

T

TF

Fig. 10: AFG (excluding scheduling vertices) of the run-
ning example: component-internal control flows (solid arrows),
component-internal data flows (dashed arrows), and component
connections (bold solid arrows).

AQAT uses the og.jgrapht package to virtually create and
operate on AFGs. In order to conform to the syntax of AFGs,
the default implementation of jgrapht edges is extended as
illustrated in Listing 2. The type label is used to denote the
type of flow (component-internal or inter-component control
or data flow) and the constraints label is used to associate the
flow with defined AADL properties (e.g. expected minimum
and maximum latencies of connections).

Listing 2: Extension of org.jgrapht.

c l a s s AFGEdge<V> ex tends D e f a u l t E d g e{
p r i v a t e V v1 , V v2 , S t r i n g type , S t r i n g c o n s t r a i n t s ;
p u b l i c AFGEdge (V v1 , V v2 , S t r i n g type ,
S t r i n g c o n s t r a i n t s ){ t h i s . v1 = v1 ; t h i s . v2 = v2 ;
t h i s . t y p e = t y p e ; t h i s . c o n s t r a i n t s = c o n s t r a i n t s ;
} . . . }

C. Verification Criteria and Verification Sequences

An AFG contains different structural types of paths. There
exist component-internal paths from the entry point to the
exit point of a component (e.g. from Input1 := sensor 1
to control := Output of Logics) and there exist inter-
component paths from the exit point of a component to the
entry point of another if their interfaces are connected (e.g.
from control := Output of Logics to Control value :=
control of Actuator). These may create indirect paths from
one component to another through one or several intermediate



components (e.g. from Sensor1 := 1 of Sensor to setpoint :=
Actuator setpoint of Actuator through Logics). The paths
are constrained by property declarations, such as scheduling
policies of processors, protocols of shared resources, and
minimum and maximum latencies. A path in conjunction with
a set of constraints is referred to as a verification sequence.
The verification criteria enforced by AQAT ensure that each
path is executable and in compliance with the constraints.

AQAT extracts component-internal paths by utilizing
the org.jgrapht.alg package, in particular by means of the
AllDirectedPaths class, as illustrated in Listing 3. Inter-
component paths are extracted through a tool-specific method,
getAllDirectPaths, which extracts all AFG arcs labelled as
an inter-component flow. The set of indirect component to
component paths are finally extracted through an application
of the recursive, tool-specific method getIndirectPaths to each
component-internal path. If the system contains component-
internal loops or inter-component feedback loops, the recursion
ends according to the upper bounds specified by the tool
user. The set of constraints for each path is subsequently
accumulated by searching each arc in the path for property
associations.

Listing 3: AFG paths extraction methods.
A l l D i r e c t e d P a t h s<S t r i n g , AFGEdge> p a t h G e n e r a t o r =
new A l l D i r e c t e d P a t h s<S t r i n g , AFGEdge>(CFG ) ;
L i s t<GraphPath<S t r i n g , AFGEdge>> c o m p I n t e r n a l P a t h s =
p a t h G e n e r a t o r . g e t A l l P a t h s (ENTRY, EXIT , f a l s e , n u l l ) ;
L i s t<GraphPath<S t r i n g , AFGEdge>> d i r e c t C o m p P a t h s =
g e t A l l D i r e c t P a t h s ( EXIT , ENTRY, AFG ) ;
L i s t<GraphPath<S t r i n g , AFGEdge>> i n d i r e c t C o m p P a t h s =
new <GraphPath<S t r i n g , AFGEdge>>();
f o r ( GraphPath<S t r i n g , AFGEdge> p a t h : c o m p I n t e r n a l P a t h s ){

g e t I n d i r e c t P a t h s ( pa th , AFG, c o m p I n t e r n a l P a t h s ,
d i r ec tCompPa ths , c y c l e s l i m i t ) ;

}

D. Transformation To Timed Automata

The transformation from AADL to the formal domain
of UPPAAL timed automata corresponds to a transformation
to UPPAAL XML as the utilized model-checker Verifyta [8]
operates on such files. The outputted XML document consists
of three main parts: a declaration, a set of templates (automata),
and a system description, as shown in Table II. The declaration
part (U1-U7) essentially defines the set of global variables,
clocks, and synchronization channels of the system. A template
(U8-U12) is composed of a local declaration (U8-U10), a set
of locations (U11), and a set of transitions (U11-U12). Finally,
the system part (U13) instantiates the templates as automata
of the system.

An AADL model is transformed into an UPPAAL XML
document essentially composed of one template for each
processor, thread, and subprogram component. Schedulers
within the processor templates control the transition of thread
scheduling states, from thread dispatches to completions, and
of context switches through synchronization channels (U4-U6),
as illustrated in Fig 11. Each thread is initially in the Await-
ing Dispatch location. The edge to the Ready location is sub-
sequently fired according to the period of the thread (A13 →
U9). Input data from connections are simultaneously assigned
to the input ports of the thread, where component interfaces
are mapped to local, template variables (U10) whereas connec-
tions and shared data objects are mapped to global variables

Fig. 11: UPPAAL template of AADL threads. The behavior
model of a thread replaces the “Running” location.

(U1). Shared data objects are accessible in critical sections
through Get Resource() (U3) and Release Resource (U3)
service calls. If the semaphore (U2) of a resource already is
locked at the time of an access attempt, the thread transits
to the Awaiting Resource location. Threads in the Ready
location, i.e., threads in the ready queue (U4), are assigned
to be executed by the processor component they are bound to
according to the scheduling policy property (U7). The bindings
between AADL processes and processing units (A3-A4) are
transformed to the timed automata model by distinguished
identities of the scheduling synchronization channels (U4-U6).
Given a scheduler with fixed priority preemptive scheduling
policy, the thread with the highest priority is assigned to
the processor and consequently switched to the Running
location. The Running state of threads constitutes the tran-
sition system defined by the AADL behavioral annex (A18-
A19), however where AADL transitions that include timing
properties, subprogram calls, or accesses to shared resources
are complemented in the transformation with constructs for
potential context switches. A running thread is preempted and
switched to the ready location if another thread with a higher
priority enters the Ready location. A running thread that com-
pletes its execution transits to the Awaiting Dispatch location.
Output is simultaneously assigned from output interfaces (local
variables) to the corresponding connections (global variables).

E. Model Checking

Path-executability analysis for model checking, and for test
suite generation as described in Section III-F, is performed
through the generation of observer automata [7]. AQAT gen-
erates an observer automaton for each possible AFG path
(verification sequence), where each control flow arc of the
path is mapped to one observer edge that is dependent on the
corresponding transition in the UPPAAL model, and where each
data-flow arc of the path is mapped to two consecutive observer
edges such that the former is dependent on the corresponding
interface/connection definition and the later is dependent on
the corresponding interface/connection use. By arranging the
observer edges according to the sequence of the AFG path, an
arrival to the final observer location implies that the observed
path has been successfully executed. Path constraints, such as
minimum and maximum latencies of connections, are trans-
formed to constructs of invariants, guards, actions, and clocks
of the observer that enforce the conditions through which the
flows must be observed. An example of such an observer



TABLE II: UPPAAL XML Schema

U1: <declaration >Data Type Connection Name; . . . Data Type Data Component Name; . . . /*connections and shared data*/
U2: broadcast chan Subprogram Name; . . . /*call channel*/ bool semaphore[Number Shared Data Components]; /*for shared data components*/
U3: bool Get Resource(int Component Identifier){ . . . } void Release Resource(int Component Identifier){ . . . } /*system routines to lock and release resources*/
U4: int Processor name ready queue[Number Bound Threads]; /*ready queue*/ broadcast chan Processor Name dispatched[Number Bound Threads]; /*disp. synch.*/
U5: broadcast chan Processor Name run[Number Bound Threads]; broadcast chan Processor Name complete[Number Bound Threads]; /*context switch synch.*/
U6: broadcast chan Processor Name preempt[Number Bound Threads]; broadcast chan Processor Name blocked[Number Bound Threads]; /interruption synch.*/
U7: void Processor name schprotocol(int Thread Identifier) . . . //arranges dispatches to ready queue according to the scheduling protocol </declaration>
U8: <template ><name>Component Name</name ><declaration >/*scheduling properties (only for threads)*/
U9: int Period = value; int Priority = value; int Compute Execution Time = value; int Compute Deadline = value; int Identifier = Priority;

U10: /*interfaces and local variables (only for threads and subprograms)*/ Data Type Port Name; . . . Data Type Variable Name; . . . </declaration>
U11: <location id=”Location Identifier”/> . . . <transition><source ref=”Location Identifier”/><target ref=”Location Identifier”/>
U12: <label kind=”guard”>guard</label><label kind=”assignment”>action1,action2 . . . </label></transition> . . . </template> . . .
U13: <system>Component Name1,Component Name2 . . . ; </system>

is presented in Fig. 12. The automaton observes data flows
through connection sensor 1 of the sensor-to-actuator model.
Since the connection is under-sampled, i.e. the sending task
(Sensor) has a higher dispatch frequency than the receiving
thread (Logics), the observer allows sending of new data before
the previously sent data have been read, to ensure that some
data are received but not necessarily all.

Fig. 12: Observer for connection sensor 1 in Fig. 1.

Verification sequences are subsequently executed by AQAT
through the invocation of Verifyta with formulae on the form
E <> ObserverX.Acceptance, pronounced “there exists one
path where ObserverX.Acceptance eventually holds”, where-
upon the observer monitors a state space search of the model
and reaches the final acceptance state whenever the coverage
criterion has been satisfied. The tool invokes the model checker
through a command on the form: runtime.exec(“verifyta -t0
-f tracefile.xtr Uppaal.xml query.q”), where the reachability
formulae are contained within the query.q file. With respect
to the sensor-to-actuator model, two faults are detected by the
tool. First, the minimum latency property of connection control
(1 ms) is exceeded in the second dispatch of Actuator as the
dispatch coincides with the completion of Logics (all tasks
are simultaneously released at system initialization). The time
from when output is produced by Logics until it is read by
Actuator will consequently be below the required minimum.
Second, the control signal to Actuator cannot be higher than
three according to the modeled input range and computations.
The corresponding predicate within Actuator is consequently
unreachable.

F. Test Suite Generation

A satisfied observer produces a trace, written by Verifyta
to tracefile.xtr, that contains information about the initial state
of the system and its environment before the path is executed,
the input or the sequence of inputs needed to stimulate an
execution of the system according to the expected path, and
the expected output or sequence of outputs. The trace also
holds information about the timing of input and output. Each
observer trace may therefore be used to test the observed path
against the architecture implementation when available. AQAT

includes a module that converts the generated observer traces
into test cases. Examples of test cases generated from the
running example is presented in Table III.

TABLE III: Examples of generated test cases.

Test case 11 Test case 12 Test case 13

INPUT 0(time=0): 

sensor_2 = 0, 

sensor_1 = 0

INPUT 0(time=0): 

sensor_2 = 0, 

sensor_1 = 0

INPUT 0(time=0): 

sensor_2 = 0, 

sensor_1 = 0

INPUT 1(time=2): 

sensor_2 = 1, 

sensor_1 = 1

INPUT 1(time=2): 

sensor_2 = 1, 

sensor_1 = 1

INPUT 1(time=2): 

sensor_2 = 1, 

sensor_1 = 1

INPUT 2(time=16): 

sensor_2 = 1, 

sensor_1 = 1

INPUT 2(time=16): 

sensor_2 = 3, 

sensor_1 = 1

INPUT 2(time=16): 

sensor_2 = 1, 

sensor_1 = 1

INPUT 3(time=30): 

sensor_2 = 3, 

sensor_1 = 1

INPUT 3(time=30): 

sensor_2 = 1, 

sensor_1 = 1

INPUT 3(time=30): 

sensor_2 = 3, 

sensor_1 = 3

Ensure OUTPUT(time=38): 

Sensor_Failure==0 and 

warning==1 and 

setpoint==2

Ensure OUTPUT(time=38): 

Sensor_Failure==0 and 

warning==0 and 

setpoint==1

Ensure OUTPUT(time=38): 

Sensor_Failure==0 and 

warning==0 and 

setpoint==3

G. Selective Regression Verification

AQAT also includes a technique for efficient reverifica-
tion of a modified architecture, where only those verification
sequences that may be impacted by the modification are re-
executed. The first step of the technique identifies the change
by comparing the AFGs of the initial and changed model.
The second step identifies the remaining parts of the modified
architecture design that possibly are impacted by the change.
Impact analysis is performed through static forward slicing
of the changed model based on control and data dependen-
cies of its AFG, which are represented in a directed graph
referred to as the architecture dependence graph (ADG). The
tool then selects only those verification sequences that cover
changed vertices or vertices that are forward-reachable from
the changed vertices, i.e. vertices that possibly are dependent
on the change.

The selection process is optimized by means of observer
satisfiability independence analysis, which adds dynamic de-
pendencies to the selection process. The analysis is performed
between verification projects through satisfiability checking of
formulae on the form: E <> ObserverX.Acceptance and not
ObserverY.Acceptance. From the data, satisfiability indepen-
dence (and dependence) between observers may be deduced.
If an observer obsx may be satisfied without satisfying another



observer obsy , then obsx is satisfiable independently from
obsy . This implies that the path observed by obsx may be
executed without an execution of the path observed by obsy .
Consequently, a previously satisfied observer which satisfia-
bility is independent to each previous observer that covers the
modification (changed vertices) will also be satisfiable in the
regression verification process, and is therefore unnecessary to
re-execute even if it covers a vertex in the forward static slice.

Examples of dynamic independences in the sensor-to-
actuator model are presented in Table IV. Only observers
for component-internal or inter-component paths are presented
in the figure, where observers H and K cover the two
faults in the model and cannot be analyzed for independence.
Any subsequent reverification process therefore implies re-
execution of H and K. Multi-independence to a collection of
component-internal paths pertaining to a single component are
joined by “+”. Given that a component has two paths X and
Y , an independence of Z to X + Y implies an unconditional
independence to the component whereas an independence of
Z to X,Y implies a conditional independence, where X must
not execute before Z as long as Y executes before Z, and vice
versa.

As presented in Table IV, all paths through Sensor (A, B,
C, and D) are unconditionally independent to Logics (E+F) and
Actuator (G+H). Moreover, each path through Sensor may be
executed independently from the other paths through the same
component and from the component connections (I, J, and K).
Path E through Logics is conditionally independent to Sensor
(A+B+C, A+B+D, A+C+D, B+C+D), i.e., E may execute
independently from any path through Sensor as long as one of
the paths, any of them, precedes E. Note that the chronological
dependency is not caused by the connections between Sensor
and Logics (path E may execute independently from the output
produced by Sensor), but due to the scheduling properties,
where Sensor is scheduled prior to Logics. Path E may also
execute independently from the other path through Logics (F),
from the Actuator component (G+H), and from the component
connections (I, J, and K). On the other hand, Path F through
Logics is conditionally independent to Sensor such that any
path through Sensor must not execute before F as long as either
A or D precedes F. Moreover, contrary to path E, path F is
dynamically dependent on E, on path G through Actuator, and
on connections I and J. The differences in dependencies with
respect to the two paths through Logics, E: Input1==Input2
→ Output:=Input1 and F: Input1==Input2 → Input1!=Input2
→ Output:=(Input1+Input2)/2 → Sensor Failure:=true, are
caused by the initialization values. Since the input interfaces of
Logics have equal values (zero) at the time of system initializa-
tion, where all threads are simultaneously released, path E (in
contrast to path F) will always execute in the initial dispatch of
Logics, regardless of the output produced by Sensor. Output of
Sensor is read at subsequent dispatches of Logics. Path E may
therefore execute independently from the output produced by
Sensor whereas an execution of path F requires an execution
of either of the two paths through Sensor that produces
inconsistent output signals. It should be noted that the AADL
model may be specified with initialization subroutines to define
the (deterministic or non-deterministic) initialization values of
variables. Due to the scheduling priorities and default values of
input ports in this example, the execution of path E in the initial
dispatch of Logics will be followed by an execution of path

G: Control value<=3→ Actuator setpoint:=Control value→
Sensor warning:=Sensor Failure, in the initial dispatch of
Actuator. Path G must therefore be preceded by some path
through Sensor and path E through Logics. Finally, transfers
of data through connections Sensor 1 (I) and Sensor 2 (J)
cannot occur until some path through Sensor, path E, and path
G have been executed in the initial dispatches of the threads,
i.e., until subsequent dispatches of Logics occur.

TABLE IV: Observer satisfiability independence.

Observer (Sensor) A B+C+D E+F G+H I J K

Observer (Sensor) B A+C+D E+F G+H I J K

Observer (Sensor) C A+B+D E+F G+H I J K

Observer (Sensor) D A+B+C E+F G+H I J K

Observer (Logics) E A+B+C A+B+D A+C+D B+C+D F G+H I J K

Observer (Logics) F A+B+C B+C+D H K

Observer (Actuator) G A+B+C A+B+D A+C+D B+C+D F H I J K

Observer (Actuator) H

Observer (Sensor_1) I A+B+C A+B+D A+C+D B+C+D F H J K

Observer (Sensor_2) J A+B+C A+B+D A+C+D B+C+D F H I K

Observer (Control) K

IV. EVALUATION

The fault-detection effectiveness and the resource effi-
ciency of AQAF and AQAT have been evaluated in an in-
dustrial case study comprising an application to a safety-
critical train control system [18]. 385 design faults and 385
implementation faults were injected in the study to guaran-
tee coverage of fault types and statistical significance. The
considered fault types are: absent, unachievable, or incorrect
control expression (guard); absent or incorrect data assignment,
event, or call (action); absent or incorrect port connection;
absent or incorrect parameter connection; absent, incorrect, or
incompatible timing property; absent, incorrect, or incompat-
ible protocol or use of shared resource (deadlock, livelock,
starvation, and priority inversion of threads); absent, incorrect,
or incompatible scheduling property (missed deadline); absent
behavior model transition; and absent or incorrect transition
priority. Results indicate a 100% fault detection rate at the
model level, a 98.5% fault detection rate at the implementation
level, and an average reduced resource consumption (time and
memory) of regression verification by 6.4% with the use of
the selective approach in contrast to a re-run all approach.
The resource consumption of individual framework operations
are negligible with respect to state space searches by the
utilized model-checker and not included in the study. In this
section, performance measurements of each module of the
tool are presented to provide a complete description of the
tool performance. More precisely, the time consumption of
transformation from AADL to architecture flow graph (AFGs)
and timed automata (TA); generation of verification sequences;
change impact analysis through slicing; transformation from
verification sequences to observer automata; model checking;
and test suite generation.

The results of the study are presented in Table V. The
utilized architectural model is composed of a single-core pro-
cessor with preemptive multitasking, 3 tasks, 3 subprograms,
76 interfaces (ports, parameters, and shared data components),



55 connections, and 5 behavioral models (41 local states and
51 local transitions). All measurements have performed in
Windows 7 64-bit edition running an Intel Core i7-3667U
2.0 GHz CPU with 8 GB RAM. On average, 36 verification
sequences are necessary to extract in order to achieve full
coverage of the system. In terms of resource consumption, the
bottleneck is model checking by Verifyta, which takes minutes
to complete in contrast to milliseconds for most framework
operations – 4.3 seconds on average for test suite generation.
Faults may both reduce and increase time consumption of
model checking (and test case generation). The best and worst
case of the samples differ greatly, 14 seconds versus 86
minutes, depending on the type and location of the fault.

TABLE V: Performance measurements

Process/produced artifact Average: Min: Max: St. Dev.:
AADL to AFG and TA 188ms 120ms 387ms 41ms
Verification sequences extraction 376ms 10ms 947ms 144ms
Change impact analysis 1sec 1ms 2.6sec 776ms
No. extracted verification seq. 36 15 56 5
Verifi. seq. to observers 622ms 100ms 1.7sec 186ms
Model checking 6min 14sec 86min 8min
No. unsatisfied verification seq. 16 1 38 13
Test suite generation 4.3sec 2.9sec 4.9sec 697ms
No. failed test cases 18 1 38 14

V. RELATED WORK

Research in this field has developed a number of verifica-
tion tools for AADL. Murugesan et al. [11] present AGREE,
a model-checker for functional AADL models. Björnander et
al. [12] present the tool ABV, which provides model checking
of functional AADL models through a transformation to ML
(Meta Language). Singhoff et al. [16] present the tool Cheddar,
which provides a schedulability and resource requirements
analysis feature for AADL models. Berthomieu et al. [13]
present a verification toolchain based on the Topcased envi-
ronment, where AADL models can be checked by the Tina
toolbox through transformations to timed transition systems.
Chkouri et al. [15] present the tool AADL to BIP, which pro-
vides model checking of event-driven AADL models through
a transformation to the BIP (Behavior Interaction Priority)
language. Esteve et al. [14] present COMPASS, providing
model checking of SLIM models, a variant of AADL, through
a transformation to Markov chain.

These contributions do not provide any solutions to the
verification of architecture implementations and design modi-
fications. Furthermore, scheduling properties, context switches,
concurrency by multitasking and parallel processing, uses of
shared resources, and real-time constraints are not jointly
considered in the verification of behavior. Since these prop-
erties influence each other at runtime, any exclusions of them
in the verification implies uncertainty in the results. To our
knowledge, AQAT is the only contribution that simultaneously
includes all these properties in the verification. Finally, these
contributions do not include methods that measure and enforce
coverage of the architectural design in the verification process,
such as control and data flow path coverage by AQAT, which
is essential to determine the extent to which an architecture
has been verified. Outside the scope of AADL, Simulink
Design Verifier [20] provides a formal verification and anal-
ysis framework for Simulink models. Besides the ability to

automatically detect design faults and requirements viola-
tions through model checking, the tool includes a condition,
decision, and modified condition/decision coverage analyser
and a slicer for dependency tracing and variability modeling.
Inverardi et al. [21] present CHARMY, a tool for UML-based
modeling and analysis of software architectures. By means of a
transformation to Promela code, the SPIN model-checker [22]
is used to verify temporal properties of the architectural model.
The authors are planning to extend the tool with dependence
analysis and architectural slicing in their future work.

VI. CONCLUSION AND FUTURE WORK

We have presented and demonstrated the Architecture
Quality Assurance Tool (AQAT), an implementation of the
Architecture Quality Assurance Framework (AQAF) [7] that
provides a holistic, formal, and automated verification process
for architectural engineering of critical embedded systems.
The tool addresses architectural design faults, implementation
faults, and maintenance faults by means of integrated model
checking, model-based testing, and selective regression verifi-
cation techniques.

Regarding limitations of the technical solution, the algo-
rithms for paths extraction do not take into account potential
control dependencies between branching expressions, where
paths that should not be able to execute by design nonetheless
may be extracted as prescribed execution paths of the archi-
tecture. Such dependencies are complex to statically analyze,
as the satisfiability of each branching expression must be de-
termined for each possible path and combination of inputs that
lead to an execution of the expression. In the current version
of the tool, the user may either simply ignore results from
verifications of non-designed paths (which will be unsatisfiable
and cause the tool to produce alarms) or manually specify
such dependencies for the tool (transition pairs that should not
appear in the same path), whereupon AQAT disregards the
corresponding paths. A similar problem exist with conditional
loops, where the paths extraction algorithms are unable to
determine the potentially maximum number of iterations a
loop should be able to execute by design. The tool user is
consequently required to set appropriate upper bounds and
keep track of extracted paths that exceed the intentions of the
design, such that alarms can be appropriately ignored. In the
future work, we are planning to improve the limitation of paths
extraction by means of symbolic execution and SAT/SMT
solvers, which may be utilized to statically identify the depen-
dencies between branching expressions. Regarding the perfor-
mance of model checking (including generations of test suites
and dynamic dependencies) with respect to different observers
(paths), the time consumption of state space explorations may
be significantly reduced by distributing the computations to
multiple computers. The UPPAAL environment is based on a
client-server architecture, where model checking engines may
be remotely installed on multiple servers and communicate
with clients through TCP/IP. Future work includes a study
wherein the possibilities and effects of a model checking
parallelization of AQAT is explored, to potentially improve
the performance of the tool.

Although AQAT has been evaluated in an industrial case
study with satisfactory results, assessments of scalability, us-
ability, and reliability require further studies with a greater



variety of system types and complexities, preferably with
authentically created faults instead of deliberately injected.
Another area of improvement is compatibility with a wider
range of architecture description languages, requirements spec-
ifications, and execution, middleware, and hardware models.
This essentially entails in extending the set of transformation
rules to constructs of timed automata.
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