
JOURNAL OF EMBEDDED COMPUTING, ISSUE 3, JUNE 2004 1

Real-time issues of MPEG-2 playout in resource
constrained systems

Damir Isović, Member, IEEE, Gerhard Fohler, Member, IEEE, Liesbeth Steffens, Member, IEEE

Abstract— Decoding MPEG-2 video streams imposes hard real-
time constraints for consumer electronic devices such as TV
sets. The freedom of encoding choices provided by the MPEG-2
standard results in high variability inside streams, in particular
with respect to frame structures and their sizes.

In this paper, we discuss real-time issues for MPEG-2 playout.
We present results from a study of realistic MPEG-2 video
streams to analyze the validity of common assumptions for
software decoding and identify a number of misconceptions.
We identify constraints imposed by frame buffer handling and
discuss their implications on decoding architecture and timing.
Finally, we identify realistic timing constraints demanded by high
quality MPEG-2 software video decoding.

Index Terms— MPEG-2, quality of service, real-time video
processing, timing constraints, misconceptions about MPEG,
resource constrained systems

I. INTRODUCTION

THE Moving Picture Experts Group (MPEG) standard for
coded representation of digital audio and video [1], is

used in a wide range of applications. In particular MPEG-
2 has become the coding standard for digital video streams
in consumer content and devices, such as DVD movies and
digital television set top boxes for Digital Video Broadcasting
(DVB). MPEG encoding has to meet diverse demands, de-
pending, e.g., on the medium of distribution, such as overall
size in the case of DVD, maximum bitrate for DVB, or
encoding speed for live broadcasts. In the case of DVD and
DVB, sophisticated provisions to apply spatial and temporal
compression are applied, while a very simple, but quickly
coded stream will be used for the live broadcast. Consequently,
video streams, and in particular their decoding demands will
vary greatly between different media.

The encoded content has to be decoded and played out.
Decoding can be performed in hardware or in software, or in
a mix of both. Both dedicated and programmable decoders
can be based on average-case requirements if they provide
means to gracefully handle overload situations. If not, both
must support worst-case requirements. However, in a software
implementation, it is possible to use the slack on the processor
for other applications in average case. With dedicated hard-
ware, there are no such possibilities. As a consequence, the
behavior of a software decoder will be less regular than that of
a dedicated hardware decoder. Coping with these irregularities
is one of the objectives dealt with in this article.

While in the simplest case of sufficient resources, MPEG
decoding is straight forward, i.e., simply a matter of trans-
mitting and decoding to display frames with the required

frequency, the considerable variations in the streams render
such approaches too costly for many cases. If the processor
cannot work fast enough to decode all the frames, the decoder
has to speed up. There are two ways to do this: quality
reduction, and frame skipping. With the quality reduction
strategy, the decoder reduces the load by using a downgraded
decoding algorithm, while frame skipping means that not all
frames are decoded and displayed, i.e., some of the frames
are skipped. In this paper, we focus on the frame skipping
approach. Frame skipping can be used sparingly to compensate
for sporadic high loads, or it can be used frequently if the load
is structurally too high.

Many algorithms for software decoding of MPEG video
streams use buffering and rate adjustment based on average-
case assumptions. These provide acceptable quality for appli-
cations such as video transmissions over the Internet, when
drops in quality, delays, uneven motion or changes in speed
are tolerable. However, in high quality consumer terminals,
such as home TVs, quality losses of such methods are not
acceptable. In fact, producers of such devices have argued to
mandate the use of hard real-time methods instead [2]. A
server based algorithm for integrating multimedia and hard
real-time tasks has been presented in [3]. It is based on
average values for execution times and interarrival intervals.
A method for real-time scheduling and admission control
of MPEG-2 streams that fits the need for adaptive CPU
scheduling has been presented in [4]. The method is not com-
putationally overloaded, qualifies for continuous re-processing
and guarantees QoS. However, no consideration on making
priorities on the � frame level has been done.

It is difficult to predict WCET for decoding parts. MPEG-2
can use different bitrates which can result in large differences
in decoding times for different streams. This could lead to big
overestimations of the WCETs. Work on predicting MPEG
execution times has been presented in [5], [6]. Most standard
real-time schedulers fail to satisfy the demands of MPEG-2 as
they do not consider the specifics of this compression standard.

This paper is based on our previous work [7]. We derive
realistic timing constraints for MPEG-2 video decoding. We
analyze realistic MPEG streams and match the results with
common assumptions about MPEG, identifying a number of
misconceptions. The correct assumptions are needed to iden-
tify realistic timing constraints for MPEG processing. Even
frame skipping needs appropriate assumptions to be effective.
Dropping the wrong frame at the wrong time can result in a
noticeable disturbance in the played video stream. We discuss
frame buffer handling and its impact on decoding design

0000–0000/00$00.00 c� 2004 IEEE

JOURNAL OF EMBEDDED COMPUTING, ISSUE 3, JUNE 2004 2

and temporal requirements. Based on correct assumptions, we
provide guidelines for real-time MPEG processing, such as
choosing buffer sizes and latency to derive the appropriate
timing constraints. These constraints call for novel scheduling
algorithms to appropriately meet the exact constraints without
quality loss due to misconceptions about the stream character-
istics.

The rest of this paper is organized as follows: We begin
by giving an overview of MPEG-2 video and decoding in
section II, followed by the analysis of realistic video streams in
section III. We describe buffer handling in section IV and give
requirements for end-to-end flow control in section VI. The
results are combined into the derivation of timing constraints
in section VII. Finally, section VIII concludes the paper.

II. PLAYING MPEG STREAMS

In this section we present the main characteristics of MPEG-
2 video stream and give an overview how the stream is
processed, i.e., buffering, decoding and displaying. A complete
description of the MPEG compression scheme is beyond the
scope of this paper. For details on MPEG see e.g., [1], [8], [9].
The text presented in this section is summarized in figure 1.

� � � � � � � � � � � �

GOP n GOP n+1

. . .

a) Frame types and Group of Pictures

� � � �

b) Forward (�) and bidirectional (�) prediction

� � � � � � � � � �

� � � � � � � � � �

Encoding
and display

Transmission
and decoding

c) Changes in frame sequence

Fig. 1. MPEG-2 video stream

A. Frame types

The MPEG-2 standard defines three types of frames, � , �
and �. The � frames or intra frames are simply frames coded
as still images. They contain absolute picture data and are self-
contained, meaning that they require no additional information
for decoding. � frames have only spatial redundancy providing
the least compression among all frame types. Therefore they
are not transmitted more frequently than necessary.

The second kind of frames are � or predicted frames. They
are forward predicted from the most recently reconstructed �

or � frame, i.e., they contain a set of instructions to convert
the previous picture into the current one. � frames are not self-
contained, i.e., if the previous reference frame is lost, decoding
is impossible. On average, � frames require roughly half the
data of an � frame, but our analysis also showed that this is
not the case for a significant number of cases.

The third type is � or bi-directionally predicted frames.
They use both forward and backward prediction, i.e., a �
frame can be decoded from a previous � or � frame, and
from a later � or � frame. They contain vectors describing
where in an earlier or later pictures data should be taken from.
They also contain transformation coefficients that provide the
correction. � frames are never predicted from each other, only
from � or � frames. As a consequence, no other frames depend
on � frames. � frames require resource-intensive compression
techniques but they also exhibit the highest compression ratio,
on average typically requiring one quarter of the data of an
� picture. Our analysis showed that this does not hold for a
significant number of cases.

B. Group of Pictures

Predictive coding, i.e., the current frame is predicted from
the previous one, cannot be used indefinitely, as it is prone
to error propagation. A further problem is that it becomes
impossible to decode the transmission if reception begins part-
way through. In real video signals, cuts or edits can be present
across which there is little redundancy. In the absence of
redundancy over a cut, there is nothing to be done but to
send from time to time a new reference picture information
in absolute form, i.e., an � frame. As � decoding needs no
previous frame, decoding can begin at � coded information,
for example, allowing the viewer to switch channels. An �
frame, together with all of the frames before the next � frame,
form a Group of Pictures (GOP). The GOP length is flexible,
but 12 or 15 frames is a common value. Furthermore, it
is common industrial practice to have a fixed pattern (e.g.,
� ��� ��� ��� ��). However, more advanced encoders
will attempt to optimize the placement of the three frame types
according to local sequence characteristics in the context of
more global characteristics. Note that the last � frame in
a GOP requires the � frame in the next GOP for decoding
and so the GOPs are not truly independent. Independence can
be obtained by creating a closed GOP which may contain �
frames but ends with a � frame.

C. Transmission order

As mentioned above, � frames are predicted from two �
or � frames, one in the past and one in the future. Clearly,
information in the future has yet to be transmitted and so is
not normally available to the decoder. MPEG gets around the
problem by sending frames in the “wrong” order. The frames
are sent out of sequence and temporarily stored. Figure 1-c
shows that although the original frame sequence is � �� � ���,
this is transmitted as � � �� ���, so that the future frame is
already in the decoder before bi-directional decoding begins.
Picture reordering requires additional memory at the encoder
and decoder and delay in both of them to put the order right

JOURNAL OF EMBEDDED COMPUTING, ISSUE 3, JUNE 2004 3

again. The number of bi-directionally coded frames between �
and � frames must be restricted to reduce cost and minimize
delay, if delay is an issue.

D. MPEG-2 video processing

In its simplest form, playing out an MPEG video stream
requires three activities: input, decoding, and display. These
activities are performed by separate tasks, which are separated
by input buffer and a set of frame buffers, see figure 2.

Decoding

task
Display

task

Input

task

Input

buffer

Frame

buffer

space

Fig. 2. MPEG tasks and buffers

The input task directly responds to the incoming stream.
It places en encoded video stream in the input buffer. In
the simple case, the input activity is very regular, and only
determined by the fixed bit rate. In a more general case, the
input may be of a more bursty character due to an irregular
source (e.g. the Internet), or due to a varying multiplex in the
transport stream. We assume that the video data is placed in
the input buffer at a constant bitrate.

The decoding task decodes the input data and puts the
decoded frames in the frame buffers. If sufficient buffer space
is available, it may work asynchronously, spreading the load
more evenly over time. Its deadline is determined by the
requirements of the display task. If � frames are present in
the stream, the decoder performs frame reordering, i.e. the
display order differs from the decoding order. This means that
the frames are offered to the display task at irregular intervals.
Reference frames are offered to the display task after the �
frames they helped to decode.

The display task is IO bound, and often performed by a
dedicated co-processor. It is driven by the refresh rate of the
screen. The display task, once started, must always find a
frame to be displayed. In the simple case, the display rate
equals the frame rate, but we will also consider situations
where the display rate is higher than the frame rate.

III. ANALYSIS OF REALISTIC MPEG STREAMS

In this section we present an analysis of MPEG-2 video
streams taken from original DVDs. We have analyzed 12
diverse streams and matched our results with the common
MPEG assumptions. Due to space limitations we report only
representative results for selected DVD movies. The complete
results for all analyzed movies can be found in [10].

A. The analysis

We have measured frame sizes, decoding execution times,
and GOP statistics such as total GOP sizes, the number of
open and closed GOPs, the number of GOPs where the �
frame is not the largest one, � ,�,� frame patterns etc. Then we
matched the obtained results with some common assumptions
about MPEG video stream.

Since some video contents are more sensitive for quality
reduction than others [11], we have analyzed different types
of movies; action movies, dramas, and cartoons, see table I.
Column GOP in the table I represents the GOP structure of
the streams, i.e., it refer to the length and distance between
reference frames respectivelly, e.g. GOP strucure (12,3) means
�-to-� distance is 12, while �-to-� and � -to-� distance is 3.

TABLE I

SOME REPRESENTATIVE MPEG STREAMS

Genre Length Fps Resolution Mbit/s GOP

Action movie 118 min 25 720x576 9800 (12,3)
Drama 107 min 25 720x576 8700 (12,3)
Cartoon 104 min 25 720x576 6000 (12,3)

B. Simulation environment

The MPEG video streams have been extracted from original
DVD movies. To extract the data out of an MPEG video
stream, we have implemented a C-program. The decoding
execution time measurements were performed on several PC
computers, with different CPU speed (in the range 0.5-2.0
GHz). The time for measuring decoding execution times was
equivalent to the length of the movies.

C. Analysis results

GOP and frame size statistics of the selected movies are
presented in table II. We have also analyzed the relations
between frame sizes on the individual GOP basis, see table
III. “GOP with same length 82%” in the table III means
that in the analysed movie 82% of the GOP had the same
length, e.g. 12 frames per GOP, while 18% of the GOPs did
not follow that pattern i.e., contains less or more frames. “9%”
in the column “� � �” of the table III means that in 9%
of the GOPs there are at least one � frame that is larger
then the � frame. The other colums in the tables are quite
self-explanatory. Furthermore, we have measured the decoding
times for different frame types, see figure 3.

D. Common assumptions about MPEG

Here we present some common assumptions about MPEG
and match them with our analysis results. We have looked into
stream assumptions (1-4), frame size assumptions (5-8), and
a decoding time assumption (9).

Assumption 1: The sequence structure of all GOPs in the
same video stream is fixed to a specific � ,� ,� frame pattern.
This is not true. For example, in 18% of the GOPs in the
action movie the GOP length was not 12 frames. Not all GOPs
consist of the same fixed number of � and � frames following
the � frame in a fixed pattern. That is because more advanced
encoders will attempt to optimize the placement of the three
picture types according to local sequence characteristics in the
context of more global characteristics.

Assumption 2: MPEG streams always contain � frames. Not
true. We have been able to identify MPEG streams that contain

JOURNAL OF EMBEDDED COMPUTING, ISSUE 3, JUNE 2004 4

TABLE II

FRAME SIZE STATISTICS FOR SELECTED ANALYZED MPEG STREAMS (IN BYTES)

Genre Avg I:P:B Nr of � frames � frames � frames
size ratio frames min max average min max average min max average

action 4:2:1 179412 11 247073 63263 2 152000 29352 4 96131 18525
drama 6:3:2 173054 17 183721 58985 4 126229 28893 4 79552 19054
cartoon 6:2:1 121406 7178 140152 84318 159 137167 31943 159 111405 14398

TABLE III

GOP STATISTICS

Genre Open Closed Standard Number of GOPs where
GOPs GOPs GOP length � largest � largest � largest � � � � � � � � �

action 83% 17% 82% 90% 9% 1% 9% 5% 39%
drama 98% 2% 92% 94% 5% 1% 6% 3% 37%
cartoon 99% 1% 98% 92% 7% 1% 8% 1% 12%

only � and � frames (���), or even only the � frames in some
rare cases. � frame only is an older MPEG-2 technology that
does not take advantage of MPEG-2 compression techniques.
The ��� technology provides high quality digital video and
storage, making it suitable for professional video editing.
� frames provide the highest compression ratio, making
the MPEG file smaller and hence more suitable for video
streaming, but if the file size is not an issue, they can be
excluded from the stream.

Assumption 3: All B frames are coded as bi-directional. This
is not true. There are � frames that do have bi-directional
references, but in which the majority of the macroblocks are
� blocks. If the encoder cannot find a sufficiently similar block
in the reference frames, it simply creates an � block.

Assumption 4: All P frames contribute equally to the GOP
reconstruction. Not true. The closer the � frame is to the
start of the GOP, the more other frames depend on it. For
example, without the first � frame in the GOP, ��, it would
be impossible to decode the next � frame, ��, as well as all
the � frames that depends on both �� and ��. In other words,
�� depends on ��, while the opposite is not the case.

Assumption 5: I frames are the largest and B frames are
the smallest. It holds on average. In all the movies that we
analyzed, the average sizes of the � frames were larger than
the average sizes of the � frames, and � frames were larger
than � frames on average. However, our analysis showed that
this assumption is not valid for a significant number of cases.
For example, in the action movie we have a case with 9%
GOPs in which � have the largest size, and 1% of GOPs
where a � frame is the largest one (see table III), which
corresponds roughly to 8 and 1 minutes respectively in a 90
minute film. Such deviations from average cannot be ignored.

Assumption 6: An I frame is always the largest one in a GOP.
This is not true. For example in the action movie the � frame
was not the largest in 12% of the cases (in 9% of the cases
some � frame was larger than the � frame, and in 3% of the
GOPs, a � frame was larger than the � frame).

Assumption 7: B frames are always the smallest ones in a
GOP. Not true. For example, in the drama movie, a � frame

was larger than the � frame in 3% of the cases, and larger than
a � frame in 37% of the cases. As a consequence, even the
assumption that � frames are always larger than � frames is
also not valid. As another example, we found a GOP where
the � frame is almost 100 times larger than the � frame (� �
���� � � ����).

Assumption 8: Assumption 8: - I,P and B frame sizes vary
with minor deviations from the average value of I,P and B. Not
true. In the action movie, � frame sizes vary greatly around
an average of 18525 bytes. The interval between 0.5 and 1.5
of average holds only some 60% of frames.

Assumption 9: Decoding time depends on the frame size
and it is linear. While some results on execution times for
special kinds of frames have been presented, e.g., [6], a (linear)
relationship between frame size and decoding time cannot
be assumed in general. Our analysis shows, that the relation
between frame size and decoding follows roughly a linear
trend. The variations in decoding times for similar frame sizes,
however, are significant for the majority of cases, e.g., in
the order of 50-100% of the minimum value for � frames.
As expected, the frame types exhibit varying decoding time
behavior (see figure 3): � frames vary least, since the whole
frame is decoded with few options only. On the other hand,
� frames, utilizing most compression options, vary most.

IV. LATENCY AND BUFFER REQUIREMENTS

The input, decoding and display tasks are separated by
buffers: one input buffer used for storing the input video bit-
stream data, and a frame buffer space that contains at least
two frame buffers. In this section we describe system latency
and buffer requirements.

A. Latency

Once we start to play out an MPEG stream, the end-to-end
latency is fixed and it is measured from the arrival of the first
bit at the input task to the display of the first pixel or line
on the screen. If this latency is not fixed, the system cannot
work correctly over time. The end-to-end latency is the sum
of the decoding latency, and the display latency, which are
not necessarily fixed, see figure 4.

JOURNAL OF EMBEDDED COMPUTING, ISSUE 3, JUNE 2004 5

Fig. 3. Decoding execution times as a function of frame bitsize

Decoding

task reads

first bit

First bit

arrives at

input task

First pixel

displayed on

the screen

decoding latency

End-to-end latency

display latency
time

Fig. 4. End-to-end latency for MPEG playout

The initial decoding latency is measured from the arrival
of the first bit at the input task to the reading of the first bit
of the first frame, after the header, by the decoder. The initial
display latency is measured from the reading of the first bit of
the first frame, after the header, by the decoder, to the display
of the first pixel on the screen. If the decoding task is strictly
periodic, the decoding and display latencies are constant. If
the decoder is asynchronous, i.e. if its activity is determined
by the buffer fillings, both latencies can vary.

B. Input buffer requirements

The input buffer serves several purposes. First, it has to
compensate for the irregular data size. This irregularity is
bounded, and the bounding is encoded in the stream, in
the form of a parameter called VBVbuffer size, see MPEG
video standard [1]. VBV stands for Video Buffering Verifier,
a hypothetical decoder that starts when the first frame has
completely arrived in its input buffer, and retrieves a complete
encoded frame out of the input buffer at the start of a new
frame period. The contents of the VBV input buffer never
exceeds VBV buffer size. Figure 5 depicts the time lines and
the buffer occupancy for a reference decoder that corresponds
to the VBV. It shows minimum decoding latency, �	
���,
and minimum buffer size, ������ at the start of a new
stream. The time lines represent the input and decoding tasks,
respectively. Because of the fixed bit rate, ��, the duration
of inputting one picture is directly proportional to the number
of bits this picture takes up in the encoded stream. The buffer
occupancy rises linearly during the decoding of each frame,

B B P B B P B BI

P B B P B B P BI

I

decoding

input

o
cc

u
p
an

cy
bu

ff
er

R
B

S
m

in

P

B I

B B

RDLmin time

Fig. 5. Reference decoder - minimum decoding latency

and drops vertically at the start of a new frame, when the
picture data are removed from the input buffer. The buffer
occupancy is zero when the first picture has just been removed
from the input buffer.

Second, the input buffer has to compensate for varying
decoding times, which are not foreseen by the encoder. There-
fore, this compensation cannot be bounded a priori.

Third, a realistic decoder retrieves the data from the input
buffer according to its processing. The resulting non-zero
retrieval time relaxes the buffer requirement, but can also
not be bounded a priori. Therefore, the input buffer size
is essentially a design choice, closely related to the initial
decoding latency and the desired end-to-end latency. Once the
size of the input buffer is chosen, the maximum decoding
latency (�	
���) is fixed:

�	
��� �
���

��

where ��� is the input buffer size, and �� the bit rate.

C. Frame buffers requirements

The frame buffers serve a dual purpose. They serve as
reference buffers for the decoder and as input buffers for
the display task, or output buffer for the decoding task. It is
possible that a certain frame buffer is used in both capacities
at the same time. This makes frame buffer management
somewhat more complicated than input buffer management.

JOURNAL OF EMBEDDED COMPUTING, ISSUE 3, JUNE 2004 6

The display task cannot start until the first frame has been
placed in the output buffer, and does not release the current
output buffer until a second output buffer is available (double
buffering scheme). In this way, the display task always has a
frame to display. If the stream contains two or more � frames
in sequence, the minimum number of frame buffers needed is
4: two for the reference frames, one for the � frame being
displayed, one for the � frame being decoded.

The use of four frame buffers allows a certain irregularity in
the delivery of output frames by the decoder. Figures 6 and 7
depict the behavior of a regular reference decoder, which takes
exactly one frame period to decode a frame. In the first period
in figure 6, a new � frame is being decoded in frame buffer
���. This � frame is needed to decode the � frames �� and
�� (that belong to the previos GOP but are being transmitted
after the � frame which is their backward reference frame). In
the next period, �� can be decoded, and in the third period,
�� can be displayed, while �� is being decoded. If �� is
the -th frame to be displayed, it is the � � ��-th frame to
be decoded. Therefore, the minimum display latency equals
two frame periods. If there are no � frames, there is no frame
reordering, and the minimum display latency will be one frame
period instead of two. In figure 6, the decoding cannot be done

P1 P3

B8 P1 B1 B2 P2 B3 B4 P3 B5

I B1 B2 P1 B3 B4 P2

B1

B2

P2

B3

B4

B5

FB1

FB2

FB3

FB4

P3 B7 B8

B7I

B6

B7

B8

I

decoding forward reference
buffered for displaydisplay backward reference
buffered for release

display

decoding

1 2 3 4 5 6 7

n+1 n+2

n n+1

Fig. 6. Reference decoder - minimum display latency

with less than four frame buffers, but these four frame buffers
do allow a larger display latency. Figure 7 depicts a situation
in which the display latency is maximised. The � frames are
displayed not when they are completely decoded, but when
the buffer is needed to decode the next frame. Now the -th
frame is being displayed while the �� ��-th frame is being
decoded, i.e. the display latency equals three frame periods.
Thus the display latency is bounded between the minimum of
two frame periods and a maximum of three frame periods.

D. Buffer overflow and underflow

Since the decoder is asynchronous, there is a risk of buffer
overflow and underflow. Input underflow, and frame buffer
overflow occur when the decoder is too fast, i.e., when the
decoding latency is too small and/or the display latency too

P1 P3

B8 I B1 B2 P1 B3 B4

P2
FB1

FB2

FB3

FB4

B6 P3 B7B5

I

decoding forward reference
buffered for displaydisplay backward reference
buffered for release

display

decoding
n+1 n+2

n n+1

B8 P1 B1 B2 P2 B3 B4 P3 B5B7I

B7

B8

B1

B2

B3

B4

B5

B6

n+3n

n+2 n+3

Fig. 7. Reference decoder - maximum display latency

large. The decoder is blocked until the input and/or output task
catches up. This can be prevented by synchronization.

Input overflow and output underflow occur when the de-
coder is too slow, i.e. when the decoding latency is too large
and/or the display latency is too small. In case of output
underflow, the display does not have a new frame to display,
but this has been foreseen by retaining the previous frame for
display until a new one arrives. Input overflow can be much
more serious. In some cases, the input can be delayed, e.g. in
case of a DVD player. In other cases, the input task cannot
be blocked, especially in case of a broadcast input, where the
input buffer must be made large enough to accommodate at
least the variation that is allowed by the frame buffers. Figure 8
depicts such an overflow situation.

B B P B B P B BI

I B1 B2 P2 B3 B4 P3 B5 B6 I

B

B

B B P

B7 B8 P1P B B

I

reference

Binput

I B1 B2 P2 B3 B4 P3 B5 B6 IB7 B8 P1B Bdecoding

la
te

n
cy

d
ec

o
d
in

g

o
cc

u
p
an

cy
bu

ff
er

B
S

tailhead
buffer queue

time

RDLmax

RDLmin

Fig. 8. Input buffer owerflow

The overflow is most likely to occur close to the end of
a GOP. At that time, the buffer will be mainly filled with �
frame data. Since input time is proportional to input size, the

JOURNAL OF EMBEDDED COMPUTING, ISSUE 3, JUNE 2004 7

shaded rectangle in the input time-line can be interpreted as
the buffer contents when the overflow occurs. The decoder
reads from the head of the buffer queue, the input task writes
to the tail of the buffer queue. At the head of the queue there
will be some B frame data (from B6, the B frame that is being
decoded when the overflow occurs), which have not yet been
removed. At the tail of the queue the input data may reach up
to the next P frame.

Theoretically two options are open for the input task:
overwrite data at the head of the queue, or drop incoming data.
In both cases, reference data will be destroyed, which will lead
to a very serious artifact, because the remainder of the GOP
cannot be decoded without these reference data. Therefore,
preventing overflow at the input is imperative. There are three
measures that contribute to preventing overflow: judicious
choice of end-to-end latency and input buffer size, speeding up
the processing by allocating more processing resources, and
preventive load reduction, e.g. by skipping frames. This will
be discussed in details in the next section.

V. END-TO-END FLOW CONTROL

The latency variation allowed is a design decision, based
on the maximum allowed end-to-end latency, and the available
buffer space. If the processor cannot work fast enough to meet
the time constraints, the decoder has to speed up. There are
two ways to do this: quality reduction, and frame skipping.
Whichever strategy is chosen, we assume that the system
organisation is such that the display task is never without data
to display. This is not difficult to achieve. If a decoded frame
does not arrive on time, and the display task has to redisplay
the previous frame, this is a deadline miss for the decoder.
With the given arrangement deadline misses have a penalty,
in the form of a perceived quality reduction. Moreover, since
the frame count has to remain consistent, the decoder must
skip one frame.

A. Quality reduction

With the quality reduction strategy, the decoder reduces
the load by using a downgraded decoding algorithm. Quality
reduction for MPEG decoding and other video algorithms is
discussed in [12], [13], [14], and [15]. This approach has
two advantages over frame skipping. In general the decoding
load is higher when there is more motion, but in that case,
skipping frames may be more visible than reducing the quality
of individual pictures. Moreover, quality reduction can be
more subtle, whereas skipping frames is rather coarse grained.
Control strategies for fine-grained control based on scalable
algorithms are proposed in [16] and [17]. These control
strategies use a mixture of preventive quality reduction and
reactive frame skipping. The main disadvantage of the quality
reduction approach is that it requires algorithms that can be
downgraded, with sufficient quality levels to allow smooth
degradation. Such algorithms are not yet widely available.

B. Frame skipping

Frame skips speed up the decoder, and increase the display
latency, like a throttle. Unfortunately, the corrective step is

rather coarse grained: the display latency is increased by
a complete frame period. If the range of allowable display
latencies is not large enough, this may lead to oscillation, in
which frame skips and bounces on frame buffer overflow both
are very frequent.

Frame skipping does not come for free. At the very least,
the start of the new frame has to be found and the intermediate
data have to be thrown away. There are two forms of frame
skips, reactive and preventive.

A reactive frame skip is a frame skip at or after a deadline
miss to restore the frame count consistency. In case of a
deadline miss, there are two options, aborting the late frame,
which is probably almost completely decoded, or completing
the late frame, and skipping the decoding of a later frame.
The effects of an abortion and of a reactive frame skip on the
display latency are shown in figures 9 and 10. In the former
case, the display latency stays low, and a next deadline miss
is to be expected soon. In the latter case, the display latency is
drastically reduced, because the decoder will be blocked due to
output buffer overflow. An additional frame buffer would give
more freedom, and a more stable system, at the cost of using
additional memory. In both cases, we have to make sure that
the input buffer is large enough to allow the minimal display
latency.

B1 B3 P3 B5

I B1 B2 P1 B3 B3 P2 B5 B6

B3

B5

B2 P2 B4 B6

B6

I

display

decoding

FB3

FB4 B4

B1

B2

time

2.0

3.0

(f
ra

m
e

p
er

io
d

s)
d

is
p

la
y

 l
at

en
cy

skipping remainder of frame

deadline missed, decoding aborted, B3 redisplayed instead

display latency below minimum

P2

P3P1

I B7FB1

FB2

Fig. 9. Deadline missed - frame aborted

A preventive frame skip preventively increases the display
latency. Skipping a frame takes a certain time, but much less
than decoding it. Instead of rising, which is normal for �
frames, the buffer occupancy drops during the frame skipping.
The decision to skip preventively is taken at the start of a new
frame, and is based on an measurement of the lateness of the
decoder. The effect of a preventive frame skip on the display
latency is depicted in figure 11, where the decoding of ��
is skipped (1). To keep up the appropriate frame count, ��

JOURNAL OF EMBEDDED COMPUTING, ISSUE 3, JUNE 2004 8

B1 B3 P3

I B1 B2 P1 B3 B3 B4 P2 B6

B3

B2 P2 B4 B6

B6

I

display

decoding

FB3

FB4

B1

B2

time

P2

P3P1

I

B7

B7FB1

FB2

skipping frame

deadline missed, decoding completed

available
decoder blocked

no frame buffer

2.0

3.0

(f
ra

m
e

p
er

io
d
s)

d
is

p
la

y
 l

at
en

cy

B4 I

n n+1 n+2 n+3 n+4

B3 redisplayed
B5 skipped

Fig. 10. Deadline missed - subsequent frame skipped

is displayed twice (2). Because of this, ��� is not available
decode the next reference frame ��. Therefore, �� has to be
decoded in ��� (3). The buffer organization must be such
that this is allowed. When �� is to be decoded, the decoder
must wait for a free reference frame buffer (4). Because of the
frame skip, and the short decoding time for ��, the display
latency rises to more than 3 frame periods at the start of ��.
The display latency could even rise up to 4 frame periods at
the start of �� if the decoding of �� and �� would be very
fast.

In the next section we present some criteria for quality aware
frame selection upon overload situations.

VI. QUALITY AWARE FRAME SELECTION

As mentioned in the previous section, one way of speeding
up decoding upon overload situations, is to skip some frames.
However, frame skipping needs appropriate assumptions to be
effective. Dropping the wrong frame at the wrong time can
result in a noticeable disturbance in the played video stream.
In this section we identify some criteria for frame skipping
and propose an algorithm for quality aware frame selection
when it is not possible to decode all frames in time.

A. Criteria for preventive frame skipping

Not all the frames are equally important for the overall
video quality. Dropping some of them will result in more
degradation than others. Here we identify some criteria to
decide the relative importance of frames.

Criterion 1: Frame type. According to this criterion, the �
frame is the most important one in a GOP since all other
frames depend on it. If we lose an � frame, then the decoding
of all consecutive frames in the GOP will not be possible.

B1 P3 B5

I B1 B2 P1 P1 B4 P2 B5 B6

B4

B5

B2 P2 B6

B6

I

display

decoding

FB3

FB4

B1

B2

time

2.0

3.0

(f
ra

m
e

pe
ri

od
s)

di
sp

la
y

la
te

nc
y

B7

B7

P2

P1

I IFB1

FB2

P3

B4

2

3

1

1. display latency below minimum; B3 skipped

2. P1 redisplayed

3. FB2 not available; FB4 used in stead

4. no frame buffer available to decode B5; decoding delayed

4

Fig. 11. Preventive frame skipping

� frames are the least important ones because they are not
reference frames. Skipping one � frame will not make any
other frame undecodable, while skipping one � frame will
cause the loss of all its subsequent frames and the two
preceding � frames within the same GOP. If we would apply
this criterion only, then we would pull out all � frames first,
then � frames and finally the � frame.

Criterion 2: Frame position in the GOP. This is applied to
� frames. Not all � frames are equally important. Skipping a
� frame will cause the loss of all its subsequent frames, and
the two preceding � frames within the GOP. For instance,
skipping the first � frame (��) would make it impossible to
reconstruct the next � frame (��), as well as all � frames
that depends on both �� and ��. And if we skip �� then we
cannot decode �� and so on.

Criterion 3: Frame size. Applies to � frames. According to
the previously presented analysis results, there is a relation
between frame size and decoding time, and thus between size
and gain in display latency. The purpose of skipping is to
increase display latency. So, the bigger the size of the frame
we skip, the larger display latency obtained.

Criterion 4: Skipping distribution. With the same number of
skipped � frames, a GOP with evenly skipped � frames will
be smoother than a GOP with uneven skipped � frames, e.g
if we have a GOP=������������ then even skipping
������������ will give smoother video than uneven
skipping � ����������, since the picture information
loss will be more spread [11].

JOURNAL OF EMBEDDED COMPUTING, ISSUE 3, JUNE 2004 9

Criterion 5: Buffer size. Buffer requirements has to be taken
into account when designing a frame skipping algorithm.
There is no point in having a nice skipping algorithm without
having sufficient space to store input data and decoded frames.

Criterion 6: Latency. This is not really a criterion, but one
must be aware of: an algorithm that takes entire GOP into
account requires a large end-to-end latency, and corresponding
buffer size.

When deciding the relative importance of frames for the entire
GOP, we could assign values to them according to all criteria
collectively applied, rather than applying a single criterion.
Since the criterion 1 is the strongest one, the � frame will
always get the highest priority, as well as the reference frames
in the beginning of the GOP, while in some cases we would
prefer to skip a � frame towards the end of the GOP than a
big � frame close to the GOP start.

B. Frame selection algorithm

Here is an example of a frame selection algorithm that
makes skipping decisions based on some of the criteria above.
We apply the skipping criteria on a GOP and assign different
importance values to the frames. The lower the value for a
frame, the sooner the frame will be skipped. The number of
importance values is equal to the number of frames in the GOP.
That will provide for unique priorities between frames. Note
that, even if we need to check entire GOP to assign values to
the frames, we do not need to buffer the entire GOP, since we
only do a look-ahead in the stream where we check the GOP
structure and count frame sizes.

Here is the pseudo-code for the assignment of the impor-
tance values among frames in a GOP:

Let:
� = GOP length
� = distance between reference frames
� = a set containing all � frames in the GOP
� = a set containing all � frames in the GOP
���� = importance value of frame �
���� = ��� even-skip chain of � frames

/* apply criterion 1 on the all frames */
1: ���� � �

2: ��� � � � � � � � ���
����� � � � �

3: ��� � �� � � � � ���
����� � ��	����� � � � � � ���
� �

/* apply criterion 3 and 4 on � frames */
4: ���� � ���	
 ������	 � � � � �

	��
	

��� � � � � ����
���� � ���	
 ������	 � � � � �

	��
	

�� ��������� � �����������
���������� �������

��� � ����
����� � ������ �������

Comments:
1) Assign the highest value to the � frame (equal to the

number of frames in the GOP)
2) The set � contains all � frames, � � ���� ��� ���� ��	,

sorted according to their position in GOP (�� is closest
to the � frame, i.e, the first � frame in the GOP, while
�� is the last frame in the GOP). The longer the distance
from the � frame, the lower the importance value (��

will get the highest value and �� the lowest one).
3) Initially set all values for � frames to the lowest � value

(e.g. �� above).
4) Identify all “even-skip” chains for � frames and sort

them according to the total bytesize. Decrease the im-
portance values of the � frames, depending on which
chain they belong to. The less the total byte of a chain,
the less the valuest are assigned to belonging � frames.

C. Example

Assume the following GOP with respective bitsizes (taken
from the action movie):

� �� � �� � �� � �� �

�������� ����� ������ ������ ����� �����

������ ������ ���� ������ ����� �����	

We want to assign importance values to frames according to
our method. The number of frames in the GOP is 12, so the
values will be between 1 and 12, 12 being the highest priority.
The assigned values after each step are depicted on top of the
frames. The frames with values that differ from the previous
step will be highlighted by filled style. Also, � and � frames
are indexed in order to distinguish between different frames
of the same type. We start by applying criteria 1:

� �� �� �� �� �� �� �� �� �� �� ��

12 10 10 11 10 10 11 10 10 11 10 10

According to this criterion, the � frame got the highest value
12, three � frames got the same value 11, and � frames are
the least important, with value 10. We continue by applying
the criterion 2 on the � frames:

� �� �� �� �� �� �� �� �� �� �� ��

12 10 10 11 10 10 10 10 10 9 10 10

�� is closest to the � frame among all � frames. Hence ��
will keep its assigned value (11), while the values of �� and
�� will get decreased. Since �� is closer to the � frame than
��, it will get higher value than ��. By this we ensure that
in overload situations �� will be dropped first, �� second and
�� will be the last one among � frames to drop. Since the
value of �� is now the same as the values of � frames, we
even need to decrease the � values to make sure that all �
frames will be prioritized before any of the � frames:

� �� �� �� �� �� �� �� �� �� �� ��

12 8 8 11 8 8 10 8 8 9 8 8

We mentioned earlier that the criteria 3 and 4 should not be
applied separately. For the criterion 3 we need to compare sizes

JOURNAL OF EMBEDDED COMPUTING, ISSUE 3, JUNE 2004 10

for � frames. Let ���� denote the size in bits for a frame � .
For the chosen GOP the following holds:

���

If we apply the frame size alone, then ���� frames would
be assigned values 6, 7, 6, 3, 2, 4, 1 and 8 respectively (� �

would get the highest value, 8, because it is largest). Assume
now that we need to skip 4 frames. According to the assigned
values, the skipping mechanism would produce the pattern:
� �� � �� � �� � ��, which is not the optimum for
the video smoothness, as discussed before. Instead, we need
to apply criterion 3 together with criterion 4 to obtain the best
possible value assignment with respect to both frame sizes and
even distribution of skipped frames. We start by identifying all
“even-skip” chains (���) of � frames:

���� � �� � �� � �� � ��

���� � �� � �� � �� � ��

We compare the total byte size in both chains, and we assign
greatest values to the � frames in the chain with larger size:

���� ���� � ����� � ����� � ����� � ����� � ������

���� ���� � ����� � ����� � ����� � ����� � �����

Since the total size of ���� is larger than the size of ����,
we first decrease the values of ���� by the number of frames
in ����, i.e., 4; we need those four values for frames in
����. The new assignment is:

� �� �� �� �� �� �� �� �� �� �� ��

12 4 8 11 4 8 10 4 8 9 4 8

Next we do internal value distribution according to the frame
sizes, in both ���� and ����. The largest frame in the chain
gets the highest value. In ����, �� will get value 4 because
it is the largest in the chain, and �� gets the smallest value
1. Similarly, in ����, �� keeps the value 8 and �� gets the
lowest value in the chain, that is 4. The final value assignment
is:

� �� �� �� �� �� �� �� �� �� �� ��

12 4 7 11 3 5 10 2 6 9 1 8

So, the frame skipping according to the assigned values is
performed as shown below:

� � � � � � � � � � � � ������

(GOP size)

1)

� � � � � � � � � � � � ������2)

� � � � � � � � � � � � �������3)

� � � � � � � � � � � � ������4)

� � � � � � � � � � � � �����5)

� � � � � � � � � � � � ������6)

...and so on...

By doing this kind of value assignments for � frames we
find the compromise between even skipping and frame sizes,
because we make skipping decision based not only on the
frame size but also on the relation to the other � frames in
the GOP. i.e., the influence on the entire GOP.

VII. TIMING CONSTRAINTS

Video and audio, as well as stream processing in general,
have throughput requirements and real-time deadlines. These
deadlines are hard in the sense that missing a deadline causes
an error, which can render a whole GOP unusable. Timing
constraints for an MPEG video decoder stem from roughly
three sources:

First, the MPEG stream, in particular frame ordering and
their dependencies, poses mostly relative constraints.

Second, the display rate, related to the refresh rate of the
screen, defines mostly absolute constraints. It depends on
hardware characteristics, which in turn define when a picture
should be ready to be displayed. Consumer TV sets typically
have refresh rates of 50, 60, or 100Hz, computer screens may
have more diverse values.

Third, the frame buffers incur resource and synchronization
constraints. The number and handling of frame buffers de-
pends on hardware and architecture design, i.e., the constraints
will be implementation dependent. Therefore we do not in-
clude specific constraints, which would change with design
decisions.

A. Start time constraints

The earliest time at which decoding a frame can begin is
the earliest point in time at which all of the following start
time conditions, STC, hold:

STC 1: Frame header parsed and analyzed.

STC 2: For � and � frames: the decoding completion time
of the forward/backward reference frame.

STC 3: Frame data available in input buffer.

The cumulative input time ��� of a frame � �, where � is
the decoding number of � is calculated as:

��� ���� �

��
�	�

������

������

with ������ the frame size and ������ the bitrate of frame
��. ������ and ������ are available from the frame header

STC 4: Free frame buffer available.

This is always naturally true for reference frames: they
require at least two buffers, one for the current frame and one
for the previous reference frame it references to, see section
IV. When a new reference frame is being decoded, at most
one of them is needed for reference. As a consequence, for
reference frames, STC4 becomes true one frame period earlier
than it would for � frames.

The last two constraints are necessary for unblocked video
stream processing.

JOURNAL OF EMBEDDED COMPUTING, ISSUE 3, JUNE 2004 11

B. Completion time constraints

The latest time at which decoding a frame has to be
completed is the earliest point in time at which any of the
following latest time conditions, LTC, holds:

LTC 1: Required display time of the frame.

If we have a TV set displaying a broadcast stream (DTV),
the input frame rate is equal to the display frame rate: 50 - 60
Hz, depending on the region. Other input streams may have
different frame rates, and other displays may have different
display rates, i.e., the display rate is a multiple of the frame
rate:

	� � � � ��

The frame period, ���, is equal to ����, while the display
period, ���, is equal to ��	�. This means that � can be
expressed as:

� �
	�

��
�
���
���

If the display rate is an integer multiple of the frame rate,
i.e., � is an integer, the solution is simple, since the frame
period and the display period will be harmonic. If this is not
the case, things are more complicated. We will discuss both
cases.

Case 1: Display rate is an integer multiple of the frame rate:

� � �

where � is a set of positive integers (i.e., � � �� �� �� ���).

Let � �� denote a frame with the decoding number � and the
display number �. Note that, as outlined in section II-C, the
decoding order will differ from the display order, i.e., � � �,
if the stream contains � frames. For � frames � � �� �, for
� and � frames, the display number depends on the MPEG
stream and has to be determined via look-ahead.

In this case, the required display time, �	� , of a frame
with the decoding number � and the display number � is given
by:

�	� �� �� � � �	
� �� � �����

where �	
 stands for initial display latency, i.e., the display
time of the first frame, as described in section IV-A. �	

includes ”catching in” on the display period.

The length of the time interval in which a frame can be
displayed is, in this case, the same for each frame, i.e., the
length of the frame display interval, �	� , is equal to the
frame period:

��	��� �� �� � ���

This implies that each frame will be re-displayed the same
number of times, i.e., the repetition rate for the frames, �, is
constant and it is equal to:

��� �� � �
��	��� �� ��

���
�
���
���

� �

Figure 12 depicts a simple example: assume an MPEG
stream with a !"� structure � ��� ��� . If the frame rate
is 25 fps, and the display rate is 50 fps, then we will have two
invocations of the display task per frame. The frame period,

IDL 40 80 120

IDL 20 40 60 80 100 120

���

����

���

a) Frame rate and display rate, �� � � � ��

� � � � � � �

1 2 3 4 5 6 7�:

decoding

� � � � � � �

1 2 3 4 5 6 7	:

display

b) Decoding and display numbers of the frames

� � � �	� ��	� � �

I 1 1 IDL + 0 40 2
B 3 2 IDL + 40 40 2
B 4 3 IDL + 80 40 2
P 2 4 IDL + 120 40 2
B 6 5 IDL + 160 40 2
B 7 6 IDL + 200 40 2
P 5 7 IDL + 240 40 2
...

c) Required display times, frame rates and intervals

Fig. 12. Case 1 - display rate is an integer multiple of the frame rate

���, is equal to ���� � ����, while the display period, ���,
is equal to ���� � ����, as shown in figure 12-a.

Decoding and display numbers are depicted in figure 12-b.
For � frames, � � �� �, e.g., the first � frame will have the
decoding number 3 and the display number 2. For reference
frames in this example, � � ��� (except for the first � frame
in the stream which will have the same display and decoding
number).

Finally, figure 12-c presents the corresponding frame inter-
vals, repetition rates and required display times for the frames.
Note different decoding and display numbers for the frames,
e.g., the first � frame will have the decoding number 2, but
its display time is 4, since we must display the two � frames
first.

Case 2: Display rate is not an integer multiple of the frame
rate:

� � �

If the display rate is not an integer multiple of the frame

JOURNAL OF EMBEDDED COMPUTING, ISSUE 3, JUNE 2004 12

IDL 41.666... 83.333... 124.999...

���

IDL 12.5 25 37.5 50 62.5 75 87.5 100 112.5 125

����

a) Frame rate and display rate, �� � �
���

 � ��

� � � �	� ��	� � �

I 1 1 IDL + 0 50 4
B 3 2 IDL + 50 37.5 3
B 4 3 IDL + 87.5 37.5 3
P 2 4 IDL + 125 50 4
B 6 5 IDL + 175 37.5 3
B 7 6 IDL + 212.5 37.5 3
P 5 7 IDL + 262.5 50 4
...

b) Approach 1: always pospone

� � � �	� ��	� � �

I 1 1 IDL + 0 37.5 3
B 3 2 IDL + 37.5 50 4
B 4 3 IDL + 87.5 37.5 3
P 2 4 IDL + 125 37.5 3
B 6 5 IDL + 162.5 50 4
B 7 6 IDL + 212.5 37.5 3
P 5 7 IDL + 250 37.5 3
...

c) Approach 2: closest instance

Fig. 13. Case 2 - display rate is not an integer multiple of the frame rate

rate, than we can only find approximate solutions. Here is an
example: assume that we have an input frame rate of 24 Hz
(original film material), and a display rate of 80 Hz (computer
display). The decoding period is proportional to the frame rate,
i.e., ��� � ���� � ��������� ms, whereas the display period
is ��� � ��� � ���� ms, as illustrated in figure 13-a.

Since the decoder task is not in phase with the display task,
the required display times will not overlapp with starts of new
frame periods, as in case 1. There are two ways to display
frames:

Approach 1: Always postpone. The required display time for a
frame is always after start of the corresponding frame period.

For example, required display time of the first � frame in
the example from figure 13 (the one with � � � and � � �) is
equal to the start of the first display period that occurs after
the start of �’s frame period (�	
 � ���������), which is
�	
 � ��. Similarly, �	� of the second � frame is the
start of the first display period after �	
��������, which is
�	
� ��� and so on, as shown in figure 13-b.

In this case, the required display time of the frames is
calculated as:

�	� �� �� � � �	
� ��� � �������

Approach 2: Take the closest one. The required display time
for a frame can be before or after start of the frame period,
whichever is closest.

Let ����
�
� � and ����

�
� � denote the time distance from the

start of � ’s frame period to the closest left respective right
start of display period, i.e.,:

����
�
� � � �� � ����� � ��� � �������

����
�
� � � ��� � ������� � �� � �����

The required display time for this approach is given by:

�	� �� �� � � �	
�

��
�

��� � �������� if ����
�
� � # ����

�
� �

��� � �������� otherwise

For example, for the first � frame, ����
�
� � � ����������� �

����� and ����
�
� � � ��� ������ � ����. Since �� is less

than ��, the required display time is equal to �	
 � ����
and not �	
���, as we would have in approach 1. Required
display times for the other frames is shown in figure 13-c.

The repetition rate for the frames (both in approach 1 and
approach 2) will not be constant for each frame, since the
frame display intervals will have different length. For example,
if we use approach 1, �	��� �� � in the example above will have
length ��, while �	��� �� � will have length ������ � ����.

The length of the frame display interval for the both
appraches in this case is equal to the required display time
of the frame that is to be displayed next, i.e., the one with the
display number � � � (and some decoding number �):

��	��� �� �� � �	� �� ���� ���	� �� �� �

The repetition rates are calculated as:

��� �� � �
��	��� �� ��

���

Approach 1 is a little more relaxed in terms of precise
latencies, and thus deadlines. Apparently, the choice between
approach 1 and 2 does not really matter with respect to relative
frame jitter. In both cases, we get a cycle of three frame
intervals: 50, 37.5, 37.5. However, the relative frame jitter
is important for perception. In high quality video where the
jitter is not accepted, this problem has been solved by using
interpolation, i.e., making new frames. This feature is called
natural motion [18].

LTC 2: Imminent overflow of input buffer.

By a judicious choice of input buffer size, as outlined in
section IV, LTC2 will always be met. Should the completion
constraint be missed, though, data loss at the input buffer will
occur, with the risk of having to recapture the stream, which
will take at least the complete GOP or until the next sequence
header.

JOURNAL OF EMBEDDED COMPUTING, ISSUE 3, JUNE 2004 13

VIII. CONCLUSION

In this paper, we presented a study of realistic MPEG-2
video streams and showed a number of misconceptions for
software decoding, in particular about relation of frame struc-
tures and sizes. Furthermore, we identified constraints imposed
by frame buffer handling and discussed their implications on
timing constraints.

Using the analysis, we determined realistic flexible timing
constraints for MPEG decoding that call for novel scheduling
algorithms, as standard ones that assume average values and
limited variations, will fail to provide for good video quality.

Our current work includes extending the study to the sub
frame level, e.g., relationship between framesize and execution
time, motion vectors, and sub frame decoding. Furthermore,
we are formulating a quality based frame selection algorithm
to be used in a real-time scheduling framework.

ACKNOWLEDGEMENTS

The authors wish to thank the reviewers for their fruitful
comments which helped to improve the quality of the paper.
Further thanks go to Clemens Wüst and Martijn J. Rutten from
Philips Research Laboratories, Eindhoven, for their careful
reviewing and useful comments on this paper.

REFERENCES

[1] “Iso/iec 13818-2: Information technology - generic coding of moving
pictures and associated audio information, part2: Video,” 1996.

[2] R. J. Bril, M. Gabrani, C. Hentschel, G. C. van Loo, and E. F. M.
Steffens, “Qos for consumer terminals and its support for product
families,” in Proceedings of the International Conference on Media
Futures, Florence, Italy, May 2001.

[3] L. Abeni and G. C. Buttazzo, “Integrating multimedia applications in
hard real-time systems,” in Proceedings of the 19th IEEE Real-Time
Systems Symposium, Madrid, Spain, 1998.

[4] M. Ditze and P. Altenbernd, “Method for real-time scheduling and
admission control of mpeg-2 streams,” in The 7th Australasian Confer-
ence on Parallel and Real-Time Systems (PART2000), Sydney, Australia,
November 2000.

[5] A. Bavier, A. Montz, and L. Peterson, “Predicting mpeg execution
times,” in Proceedings of ACM International Conference on Surement
and Modeling of Computer Systems (SIGMETRICS 98), Madison, Wis-
consin, USA, June 1998.

[6] L. O. Burchard and P. Altenbernd, “Estimating decoding times of mpeg-
2 video streams,” in Proceedings of International Conference on Image
Processing (ICIP 00), Vancouver, Canada, September 2000.

[7] D. Isovic, G. Fohler, and L. F. Steffens, “Timing constraints of mpeg-2
decoding for high quality video: misconceptions and realistic assump-
tions,” in Proceedings of the 15th Euromicro Conference on Real-Time
Systems, Porto, Portugal, June 2003.

[8] J. Watkinson, The MPEG handbook. ISBN 0 240 51656 7, Focal Press,
2001.

[9] L. Teixera and M. Martins, “Video compression: The mpeg standards,” in
Proceedings of the 1st European Conference on Multimedia Applications
Services and Techniques (ECMAST 1996), Louvian-la-Neuve, Belgium,
May 1996.

[10] D. Isovic and G. Fohler, “Analysis of mpeg-2 streams,” Technical Report
at Malardalen Real-Time Research Centre,Vasteras, Sweden, March
2002.

[11] J. K. Ng, K. R. Leung, W. Wong, V. C. Lee, and C. K. Hui, “Quality of
service for mpeg video in human perspective,” in Proceedings of the 8th
Conference on Real-Time Computing Systems and Applications (RTCSA
2002), Tokyo, Japan, March 2002.

[12] S. Peng, “Complexity scalable video decoding via idct data pruning,” in
Digest of Technical Papers IEEE International Conference on Consumer
Electronics (ICCE), pp. 74-75, June 2001.

[13] Z. Zhong and Y. Chen, “Scaling in mpeg-2 decoding loop with mixed
processing,” in Digest of Technical Papers IEEE International Confer-
ence on Consumer Electronics (ICCE), pp. 76-77, June 2001.

[14] C. Hentschel, R. Braspenning, and M. Gabrani, “Scalable algorithms for
media processing,” in Proceedings of the IEEE International Conference
on Image Processing (ICIP), Thessaloniki, Greece, pp. 342-345, October
2001.

[15] Y. C. John Tse-Hua Lan and Z. Zhong, “Mpeg2 decoding complexity
regulation for a media processor,” in Proceedings of the 4th IEEE
Workshop on Multimedia Signal Processing (MMSP), Cannes, France,
pp. 193 - 198, October 2001.

[16] C. Wüst, “Quality level control for scalable media processing applica-
tions having fixed CPU budgets,” in Proceedings Philips Workshop on
Scheduling and Resource Management (SCHARM01), 2001.

[17] C. Wüst and W. Verhaegh, “Dynamic control of scalable meadia
applications,” in Algorithms in Ambient Intelligence. editors: E.H.L.
Aarts, J.M. Korst, and W.F.J. Verhaegh, Kluwer Academic Publishers,
2003.

[18] G. de Haan, “IC for motion compensated deinterlacing, noise reduction
and picture rate conversion,” IEEE Transactions on Consumer Electron-
ics, August 1999.

Damir Isovic is lecturer and graduate student at
System Design Lab, Departement of Computer Sci-
ence, Malardalen University, Sweden . He received a
Master of Science in Computer Engineering (1998),
a Diploma of Higher Education in Natural Science
Mathematics and Astronomy (1999) and a Technical
Licentiate in Real-time Systems (2001), all from
Malardalen University. Damir’s research interests
include real-time systems and scheduling theory,
with a specific emphasis on combining flexibility
and reliability in construction of schedules, real-time

components and real-time multimedia.

Gerhard Fohler is professor and leader of the
predictably flexible real-time systems group at the
Depatement of Computer Science, Malardalen Uni-
versity. He received his Ph.D. from Vienna Uni-
versity of Technology in 1994 for research towards
flexibility for offline scheduling in the MARS sys-
tem. He then worked at the University of Mas-
sachusetts at Amherst as postdoctoral researcher
within the SPRING project. During 1996-97, he
was a researcher at Humboldt University Berlin,
investigating issues of adaptive reliability and real-

time. Gerhard Fohler is currently chairman of the Technical Committee on
Real-Time Systems of EUROMICRO.

Liesbeth F. Steffens graduated in physics from
Utrecht University in 1972, took a post-graduate
computer-science course at Grenoble University, and
joined Philips Research in 1973, where she spent
most of her career. Her main focus is on real-time,
quality-of-service, and resource-management issues
for streaming and control in consumer-electronics
devices and systems. She contributed to the design
of a distributed real-time operating system, a video-
on-demand system, and a QoS-based resource-
management system for digital video

