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Abstract— Access to shared memory is one of the main chal-
lenges for many-core processors. One group of scheduling strate-
gies for such platforms focuses on the division of tasks’ access to
shared memory and code execution. This allows to orchestrate
the access to shared local and off-chip memory in a way such that
access contention between different compute cores is avoided by
design. In this work, an execution framework is introduced that
leverages local memory by statically allocating a subset of tasks to
cores. This reduces the access times to shared memory, as off-chip
memory access is avoided, and in turn improves the schedulabil-
ity of such systems. A Constraint Programming (CP) formulation
is presented to select the statically allocated tasks and to gener-
ate the complete system schedule. Evaluations show that the pro-
posed approach yields an up to 19% higher schedulability ratio
than related work, and a case study demonstrates its applicability
to industrial problems.

I. INTRODUCTION

Many-core processors are becoming increasingly relevant
for industrial domains, such as the automotive, or avionics do-
main [1, 2]. The vast availability of massive computational
power on many-core platforms is welcomed by industry, as in-
dustrial systems move from distributed to integrated architec-
tures, where multiple applications are consolidated on the same
compute platform (for example Domain Controller in the auto-
motive industry [3] or Integrated Modular Avionics (IMA) for
the avionics industry [4]). Clustered many-core platforms [5],
where a number of compute cores build a subsystem with lo-
cal memory, are candidates to consolidate applications as they
provide isolated islands of computation [3, 6].

The transition to integrated architectures is driven by the in-
creasing number, and complexity of todays applications which
are often subject to stringent timing requirements. Such timing
requirements manifest themselves not only through the well-
known constraints on tasks’ response times, but also on tim-
ing constraints on the data propagation delay through chains of
tasks [7, 8, 9, 10].

Executing these applications on a many-core platform is not
trivial, as contention on shared resources can influence the
Worst-Case Execution Time (WCET) of tasks that are execut-
ing in parallel on different cores. Accounting for the worst-
case access time to shared resources is generally too pessimistic
(overestimated) due to the large number of contenders on these
platforms [11, 6, 12]. Several strategies exist to minimize or

remove the contention on shared resources. The focus of this
work is on the execution frameworks that schedule tasks in a
way such that contention on shared resources is avoided by de-
sign.

Typically, local memory is a scarce resource on many-core
processors, and embedded systems in general. For example,
one cluster of the Kalray MPPA R© many-core processor hosts
2 MB of local memory, while, the software of an automotive
Engine Management System (EMS) has a total memory foot-
print of up to 4 MB [6]. This highlights the need to access off-
chip memory during the execution. The Contention-Free Ex-
ecution Framework (CEF) [6] is based on time-triggered non-
preemptive scheduling. Each core is assigned a private memory
bank, and access to local and off-chip memory is exclusive be-
tween all cores of a cluster. In the CEF, for each execution, the
code of a task is loaded into the core’s private memory bank,
i.e. only one tasks’ footprint is present in a core’s memory bank
at a time. Scheduling all memory accesses is one of the main
challenges and was identified as the bottleneck in [6].

This work builds on the main principles of the CEF. It is
observed that, by statically allocating selected tasks footprint
to the local memory banks, the core’s local memory banks are
utilized more efficiently and the WCET of exclusive memory
accesses that need to be scheduled is reduced, as the code of
statically allocated tasks does not need to be preloaded from
off-chip memory.

The main contributions of this work are:

• An execution model that statically allocates a subset of tasks
to a cores’ local memory, which increases the usage of lo-
cal memory while, at the same time, reduces the expensive
access to off-chip memory.

• We ensure that data propagation delay constraints are met, as
the approach considers specified job-level dependencies that
impose a partial ordering on the tasks jobs.

• A Constraint Programming (CP) formulation for the task
mapping together with the generation of the time-triggered
schedule is presented.

• Evaluations demonstrate an improvement in schedulability
ratio of 19% compared to the CEF. A case study further
demonstrates the applicability to an automotive benchmark
application with data propagation delay constraints.

The rest of the paper is organized as follows. Related work
is discussed in Section II. In Section III the rules of the CEF



are introduced. Section IV presents the system model. The
memory aware execution framework is presented in Section V,
followed by Section VI which discusses the system and sched-
ule generation. Evaluations are presented in Section VII, and
conclusions are drawn in Section VIII.

II. RELATED WORK

The study of execution strategies for real-time workload on
a many-core processor is receiving growing attention due to
their possible benefits for industry [3, 13, 14, 15]. One of the
main challenges faced on many-core platforms is the access to
shared resources, such as memory [11, 16, 6].

Schranzhofer et al. examine different execution models and
show that best results are obtained when access to shared mem-
ory is confined to the beginning and end of a jobs execu-
tion [16]. Such an execution model is for example used in AU-
TOSAR [8], in the PRedictable Execution Model (PREM) [17],
or in the CEF [6].

Several works focus on multi- and many-core execution
frameworks that are based on time-triggered execution [18, 1,
2, 6, 12]. Integer Linear Programming (ILP) formulations are
used in [19, 6]. Due to scalability issues an alternative heuristic
solution is presented in [6]. Constraint Programming frame-
works scale better than ILP frameworks, and results are re-
ported that scale to industrial sized applications [18, 2]. Becker
et al. [6] consider code pre-fetching from off-chip memory,
while an application is mapped to one compute cluster only.
Puffitsch et al. [18], and Perret et al. [1, 2] consider mapping of
applications onto several tiles of a many-core processor where
communication is handled over the Network-on-Chip (NoC).

Precedence constraints are considered in [18, 1, 2]. Such
constraints are necessary to meet timing constraints on the data
propagation through a chain of independently triggered tasks
that can execute at different periods [8, 7, 9, 10]. In [9, 10], it
is shown how to translate timing constraints on the data prop-
agation delay to a set of precedence constraints between tasks
that potentially execute at different periods.

The method presented in this paper is different from the
above in the sense that the task code can be mapped to local
or off-chip memory, depending on the execution of tasks jobs.
The access time to shared memory then depends on this mem-
ory locality.

III. RECAPITULATION OF THE CONTENTION-FREE
EXECUTION FRAMEWORK

This section recapitulates the Contention-Free Execution
Framework (CEF) that is presented in [6]. The framework
is build on three main concepts that address the execution
of independent real-time tasks on clustered platforms under
the presence of shared resources. In the following all three
principles are discussed in detail.

Memory Bank Privatization:
With memory bank privatization, each compute core is stati-
cally assigned one of the clusters local memory banks. A com-
pute core can only access this private memory bank, thus there
is no interference in the access to memory on this bank. The

global copies of all communication variables are located on a
distinct memory bank within the cluster, the global bank. This
memory bank can be accessed by all compute cores.
Read-Execute-Write Semantic:
An application’s memory requirement can exceed the available
local memory. To tackle this shortcoming, the application’s
code is located outside the compute cluster in (remote) global
memory and dynamically loaded to the compute core’s private
memory bank before the execution of the task’s job. This re-
duces the memory requirements for the compute cluster and
also allows to schedule consecutive jobs of the same task on
different compute cores.

The read-execute-write semantic is used and extended to
prefetch the task’s code in addition to creating copies of all
input variables that are then stored in the core’s private mem-
ory bank. During the prefetching step, the task’s code is loaded
from the remote memory into the private memory bank of the
core. Fig. 1 visualizes the execution of one job in the frame-
work, where the different memory access phases are shown and
mapped to the read, execute, and write phase.
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Fig. 1.: Execution of one job divided into its memory and execution phases.

Time-Triggered Schedule:
The previously described concepts lead to a contention-free ex-
ecution during the execute phase of each task. Contention is
still possible when global memory is accessed (during prefetch-
ing of code and reading/writing to shared variables). This con-
tention is resolved by a time-triggered schedule that orches-
trates the access to shared resources in a way such that no read-
or write-phase of any two tasks executions overlaps with each
other (see Fig. 2). This schedule is executed by a core on the
platform that is solely dedicated for managing the access to the
shared memory resources.
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Fig. 2.: Example of three tasks that are executed on two cores. Read, execute,
and write phases of the different jobs are marked by R, E, and W.

IV. SYSTEM MODEL

A. Application Model

An application is defined as the set of non-preemptive peri-
odic dependent tasks Γ, together with the set of job-level de-
pendencies Θ.



A task τi is represented by the tuple
{Ci,E ,

−−→
Ci,R,

−−−→
Ci,W , Ti, Si}. In this model, the tasks exe-

cution is divided into a read, execute, and write phase. The
vectors

−−→
Ci,R and

−−−→
Ci,W represent the time required to access

shared memory before and after the tasks execution and
depend on the tasks type (a detailed explanation is provided in
Section V). The execution time of the task on a compute core
is independent of the task’s type and stays constant with Ci,E
time units. The function min(

−→
Ci) returns the minimum total

execution time of the task (i.e., the sum of Ci,R+Ci,E+Ci,W )
depending on the state. And max(

−→
Ci) returns the maximum

total execution time respectively.
Each task is periodically invoked with a period of Ti time

units and the deadline of each task is assumed to be equal to
its period, i.e., Di = Ti. The tasks do not have offset relations.
The footprint of a task, denoted by Si, represents the number of
bytes that are required to store the task’s code as well as private
and communication variables.

The function LCM(τ1, τ2, ...τi) returns the least common
multiple of the tasks’ periods. Hence, the hyperperiod of the
taskset Γ is obtained by LCM(Γ).

Communication between tasks is realized by register com-
munication. A register is a global variable. A sending task
writes an updated value to the variable, and a receiving task
reads the current value from the variable. I.e. there is no signal-
ing between communicating tasks and the last-is-best semantic
applies. To increase predictability on the communication de-
lays, tasks communicate via the read-execute-write model. All
communication variables with read access are copied into local
variables during the read phase. The task uses the local vari-
ables during the execution phase. Finally, in the write phase,
the values of the local variables are copied to the global vari-
ables with write access.

We denote the jth instance of a task τi by job τi,j . To ease
the presentation we define reli,j and di,j as the absolute re-
lease and deadline of the job τi,j . Tasks may have precedence
constraints that are specified by job-level dependencies. A job-
level dependency τA

i,j−→ τB ∈ Θ specifies a partial ordering
of τA’s and τB’s jobs. Such a dependency specifies that the job
τA,i must be executed before the job τB,j , where i and j refer
to the jobs within HP(τA, τB) and repeat for each consecutive
hyperperiod of the two tasks.

B. Platform Model

The application executes on a compute cluster that contains
m + 1 identical cores. Each core has a private memory bank
that has a capacity of b bytes that is used to store task code. All
cores operate on synchronous clocks. One core, designated as
the management core in the cluster, is responsible for managing
the access to shared resources, for e.g., memory that is shared
among the compute cores or the memory that is external to the
cluster. The management core can access external memory to
copy data into the local memory banks. The remainingm cores
are designated compute cores. They are dedicated to execute
the application tasks.

Such a platform represents, for example, one compute clus-
ter of the Kalray MPPA R© many-core platform [5, 6].

V. MEMORY AWARE CONTENTION-FREE
EXECUTION FRAMEWORK

In the CEF, each job can be executed on any of the compute
cores. During the read-phase, the complete code of the task
is prefetched from external memory, in addition of the copies
that are created for communication variables. In [6] it is shown
that the size of read and write phases has a large influence on
the system schedulability, as memory is an exclusive resource.
Hence, if the memory cannot accommodate the required read
and write phases in a timely manner, the system is deemed to
be unschedulable, even if enough computational power is avail-
able, in terms of compute cores (since the cores stall waiting for
data).

Although the above method works reasonably it should be
noted that the cores’ local memory banks effectively host only
the memory that is required by one task at any given time.
Typically the required memory is small in comparison to the
memory bank size. As an example, the automotive application
presented in a case study by Dziurzanski et al. [15] reports in-
dividual footprints in the range of 7 KB to 17 KB, while one
memory bank on a compute cluster of the Kalray MPPA R© has
a capacity of 128 KB. Thus, less than 15% of each of the core
local memory banks are utilized in CEF.

In the following, the rules of the Memory Aware Contention-
Free Execution Framework (MCEF) are discussed, that are ad-
ditionally specified to the mechanisms described for the CEF
in Section III. The MCEF distinguishes tasks as static and dy-
namic depending on their memory usage. The following pro-
vides a definition of the two task types:

Definition 1 A task τi is said to be static, if all jobs τi,j within
the hyperperiod LCM(Γ) are executed on the same compute
core and the required memory of the task Si is statically allo-
cated to the core’s private memory bank.

Definition 2 A task τi is said to be dynamic, if either the jobs
τi,j within the hyperperiod LCM(Γ) are executed on more than
one core, or the required memory is not statically assigned to
the core’s private memory bank.

Depending on the task type, the read and write phases have
different sizes, which are captured by the different parame-
ters of the task model Cstatici,R and Cdynamici,R (where Cstatici,R ≤
Cdynamici,R ) as well as by the parameters for the write access
Cstatici,W and Cdynamici,W (where Cstatici,W ≤ Cdynamici,W ). The dif-
ferent access times result from the fact that, if a task is static,
task private data and code do not need to be prefetched from
off-chip memory, as it is already available on the core’s mem-
ory bank. Hence, the expensive access to external memory is
not required.

In contrast to the CEF which only schedules independent pe-
riodic tasks, the MCEF considers specified job-level dependen-
cies during the generation of the schedule. This is an important
improvement, as applications in many areas are subject to data
propagation delay constraints in addition to the deadline con-
straints on the response time of each individual task [7, 9, 10].

In the next section, we propose a method using constraint
programming which computes a time-triggered schedule that
orchestrates read, execute, and write phases of each job of the



applications tasks, such that individual deadlines and specified
job-level dependencies are met. The approach further allocates
the application’s tasks statically or dynamically in the cluster.

VI. SCHEDULE GENERATION

This section describes the CP formulation that is used to as-
sign an execution type (i.e., static or dynamic) to each task,
and generate the time-triggered schedule for the MCEF. We use
CP with conditional time-intervals to create the time-triggered
schedule of the execution framework. These variable types are
designed for constraint based scheduling problems [20, 21],
where they represent jobs that may or may not be executed by
the final schedule. The state-of-the-practice CP solver IBM
ILOG CP Optimizer directly supports this variable type which
allows to efficiently solve scheduling problems in contrast to
conventional CP formulations [22, 2].

A. Decision Variables

In the given scheduling problem three types of decision vari-
ables need to be solved by the CP solver.

A.1 Task Jobs as Conditional Time-Intervals

A conditional time-interval variable a defines an activity that
should be scheduled within a predefined interval. Let s(a) be
the start of the interval and e(a) its end. l(a) returns the dura-
tion of the interval. The function x(a) describes if the interval
is present in the solution or not (i.e. it is 1 or 0) [20].

A task’s job τi,k can be represented by the tuple {s, f, l},
where the start of the jobs’ execution is defined by s ∈
[reli,k, di,k − min(

−→
Ci)], the finishing time of the jobs’ execu-

tion is defined by f ∈ [reli,k + min(
−→
Ci), di,k], and the length

of the execution is defined by l ∈ [min(
−→
Ci), Ti]. Hence, the job

is not allowed to start before its release time reli,k, and it must
end latest at its deadline di,k. In any schedule, the duration of
the job must be at least the length of the minimum execution
time.

Lets define Jτi as the set of jobs containing all jobs for the
task τi during the hyperperiod LCM(Γ) of the taskset. The jobs
to be scheduled on one core can be defined as JΓ = {Jτi |τi ∈
Γ}. As a job can be scheduled on any of the m cores, the set
JΓ is defined for each core, which we denote as JcΓ, for the
jobs that execute on core c ∈ [1,m]. To ease the presentation
we denote the job τi,j on core c as τ ci,j .

A.2 Static Tasks

The decision variable δi ∈ [0, 1] models the type of a task τi ∈
Γ. If this variable has the value 0 the task is dynamic, and if the
variable has the value 1 the task is static.

A.3 Memory Access

Depending on the type δi of a task τi, the memory access at the
beginning and at the end of one job varies. In order to represent
the exact length of this memory access, depending on the tasks
type, two variables are introduced for each task.

The length of the task’s read phase is represented by
φi ∈ [Cstatici,R , Cdynamici,R ] and the write phase by ψi ∈
[Cstatici,W , Cdynamici,W ].

B. Constraint Formulation

Four types of constraints are specified. The basic scheduling
constraints, together with the global memory access constraints
model basic parts of the framework. The local memory bank
constraints model the dynamic and static tasks, including their
memory allocation, and finally dependencies between tasks are
modeled by the job-level dependency constraints.

B.1 Basic Scheduling Constraints

The multi-core scheduling problem is modeled by one time-
interval variable for each job on each core. Exactly one of these
possible jobs must be present in the final schedule, as each job
can only be executed once. The operator alt(a, {a1, ..., an})
provides a constraint that states, if interval variable a is present
in the solution, exactly one of the possible interval variables
{a1, ..., an} is present [20]. a then inherits the start and end
times from this interval variable. The first constraint specifies
that for each job exactly one of the possible jobs is present in
the final solution. This selected job is represented by τi,j :
∀τi ∈ Γ ∀τi,j ∈ Jτi

alt(τi,j , {τ ci,j |c ∈ [1,m]})

The operator noOverlap(a1, ..., an) provides a constraint
that states that the execution of the interval variables
{a1, ..., an} do not overlap [21]. As each job is executing non-
preemptively, the following constraint specifies that jobs on the
same core are not allowed to overlap in their execution:
∀c ∈ [1,m]

noOverlap(τi,j ∈ JcΓ)

B.2 Global Memory Access Constraints

Access to the shared memory is exclusive between all tasks.
The timed interval variables represent the complete interval the
core is busy in executing all phases of one job (i.e. read, ex-
ecute, and write). With these constraints, it is guaranteed that
only one task accesses the shared memory at a time. Note that
the length of the read and write phase is itself a decision vari-
able that depends on the type of the task a job belongs to.

Several operators are available to specify constraints that
impact the temporal ordering of time intervals [20]. The
startBeforeStart(a, b, t) constraint specifies that a must start
at least t time units before b starts: s(b) − s(a) ≥ t. The
startBeforeEnd(a, b, t) constraint specifies that a must start
at least t time units before b ends: e(b) − s(a) ≥ t. The
endBeforeEnd(a, b, t) constraint specifies that a must end at
least t time units before b ends: e(b) − e(a) ≥ t. The
endBeforeStart(a, b, t) constraint specifies that a must end at
least t time units before b starts: s(b)− e(a) ≥ t.

To achieve exclusive access to the shared memory, con-
straints are specified between all jobs that are scheduled within
the hyperperiod. It can be observed that memory access inter-
vals of two jobs can only have a potential conflict if the job’s



execution intervals (i.e. the time between the job’s release and
its deadline) overlap. Two jobs τi,j , and τo,p do not overlap if:
do,p ≤ reli,j ∨ di,j ≤ relo,p. Thus, the negation of this state-
ment must be true in order to specify the constraints between
these two tasks.

This constraint models the maximum distance between the
start of the two jobs’ read phases such that they are at least φi
or respectively φo time units apart:
∀τi,j , τo,p ∈ JΓ, τi,j 6= τo,p, ¬(do,p ≤ reli,j ∨ di,j ≤ relo,p)

startBeforeStart(τi,j , τo,p, φi)

∨ startBeforeStart(τo,p, τi,j , φo)

The same reasoning applies for the jobs write phases that
must be ψi or respectively ψo time units apart:
∀τi,j , τo,p ∈ JΓ, τi,j 6= τo,p, ¬(do,p ≤ reli,j ∨ di,j ≤ relo,p)

endBeforeEnd(τi,j , τo,p, ψo)

∨ endBeforeEnd(τo,p, τi,j , ψi)

Read and write intervals are also not allowed to overlap.
Thus, this constraint models that the read interval of τi,j does
not overlap with the write interval of τo,p. As the constraint
is specified between each task, all respective combinations are
covered:
∀τi,j , τo,p ∈ JΓ, τi,j 6= τo,p, ¬(do,p ≤ reli,j ∨ di,j ≤ relo,p)

startBeforeEnd(τi,k, τo,p, φi + ψo)

∨ endBeforeStart(τo,p, τi,j , 0)

B.3 Local Memory Bank Constraints

To model the memory bank constraints for static tasks we de-
fine the following constraints.

taskOnCore(τi, c) evaluates to true1 if all jobs of τi are
present, i.e., executing on core c:

taskOnCore(τi, c) |=
∧

∀τci,j∈Jcτi

x(τ ci,j)

taskMapped(τi) evaluates to true, if the task τi is statically
mapped to any of the m compute cores:

taskMapped(τi) |=
∨

∀c∈[1,m]

taskOnCore(τi, c)

A task can only be of type static if all its jobs execute on the
same core. Note that this is only a necessary condition as a task
can be of type dynamic in the case that the required memory to
accommodate the task’s footprint is not available on that core.
The following constraint can be introduced:
∀τi ∈ Γ

δi ≤ taskMapped(τi)

On each core’s memory bank only b bytes can be allocated
statically. The sum of the footprint of all tasks that are execut-
ing on the core and that are of type static must be less or equal
to the memory capacity:

1Binary values are defined as true=̂1 and false=̂0, and binary variables
can be used in arithmetic constraints, as possible in the IBM ILOG CP solver.

∀c ∈ [1,m]

b ≥
∑
∀τi∈Γ

taskOnCore(τi, c) · δi · Si

The type of a task (static or dynamic) affects its total exe-
cution length. The minimum length of a timed interval τi,j’s
execution is min(

−→
Ci). This results if the task is static and uses

the static version of the read and write phase. A dynamic task
has a larger execution time max(

−→
Ci) as the dynamic read and

data intervals are used. A constraint is specified that restricts
the minimum length of jobs that are dynamic:
∀τi,j ∈ JΓ

δi = 0⇒ l(τi,j) ≥ max(
−→
Ci)

B.4 Job-Level Dependency Constraints

Dependencies on the execution order of tasks jobs that are
specified by job-level dependencies can be represented by the
endBeforeStart(τA, τB , z) operator without offset z. Such
constraints are added for each job-level dependency and are
then instantiated for the length of the task-sets hyperperiod.
The number of required repetitions can be computed by
HP (Γ)/LCM(τA, τB).

∀τA
i,j−→ τB ∈ Θ ∀k ∈

[
0, LCM(Γ)

LCM(τA,τB) − 1
]

endBeforeStart(τA,ωA , τB,ωB , 0)

The indexes of the constraint jobs are represented by ωA and
ωB respectively. Their calculation are shown below:

ωA = k · LCM(τA, τB)

TA
+ i ωB = k · LCM(τA, τB)

TB
+ j

C. Objective Function

The main objective of the schedule generation is to find any
valid schedule. Thus, “minimize 1” is used as optimization
function.

Alternatively the objective function “maximize
∑
i∈[1,n] δi”

can be used to allocate as many tasks statically as possible.
This then reduces the load on the external resources (e.g. inter-
connect, memory controller, etc.) that may be shared between
several compute clusters.

VII. EVALUATION

Evaluations focus on the improvement of the MCEF com-
pared to the CEF. We first present synthetic experiments that
focus on the schedulability ratio, as well as on the solving time.
Additionally, the application presented in the case study is an-
alyzed using the presented framework.

A. Synthetic Experiments

In these experiments, the MCEF is compared against the
CEF presented in [6]. In order to compare the solving time,
the time-triggered schedule for both frameworks is generated
by CP.
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Fig. 3.: Schedulability ratio of MCEF and CEF for the 3 memory scenarios at
varying utilization.
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The platform contains 5 compute cores and operates at a
clock frequency of 400 MHz. Access to local memory takes
1 cycle to fetch 8 bytes, access to off chip memory is three
times slower2. Each compute core’s memory bank has a size of
64 KB. It is assumed that all systems can fit into the memory
outside the compute cluster.

Task sets are generated randomly, where each set con-
tains 10 tasks. Task periods are taken from the set
[1, 2, 5, 10, 20, 50, 100, 200] ms, this represents a subset of
common periods found in the automotive industry [8]. The
task utilizations are generated by UUniFast [23]. The length of
the memory access regions is varied in the experiments, where
3 groups are analyzed. The footprint of a task in memory sce-
nario 1 (MS 1) is in the range [6, 30] KB, and the local data in
the range of [64, 512] bytes. Memory scenario 2 (MS 2) has
a footprint in the range of [6, 60] KB and between [64, 1024]
bytes of local data. Memory scenario 3 (MS 3) has a footprint
in the range of [6, 90] KB, and between [64, 2048] bytes of local
data. All values are chosen based on a uniform distribution.

For each data point 300 systems are generated. The IBM
ILOG CP solver is used with a limited solving time of 10 min-
utes. The experiments are performed using an Intel i7 CPU (4
cores at 2.8 GHz), and 16 GB of RAM.

Fig. 3 compares the schedulability ratio (the ratio between
schedulable and unschedulable systems) that is achieved by
MCEF and CEF for the three described memory scenarios. For
low utilizations, both approaches achieve high schedulability.
Deviations can be observed for high system utilizations, where

2Note that this is a simplification of the memory access latencies. As the
evaluations focus on the qualitative comparison of the two approaches detailed
explanations of memory access latencies are omitted.
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Fig. 5.: Comparison of the computation times in relation to the number of job
in the schedule.

the MCEF outperforms the CEF by up to 19% for the system
with memory scenario 2. Fig. 4 shows the average number of
static tasks of the schedulable systems. It can be seen that, with
increasing utilization, a larger number of tasks need to be allo-
cated statically in order to find a schedulable solution. This
demonstrated that, by taking advantage of local memory, the
schedulability can be improved.

Fig. 5 depicts the execution times recorded during all exper-
iments. The dashed line marks the timeout which was set for
the experiments. A relation of the solving time to the num-
ber of jobs that need to be scheduled within the hyperperiod of
the taskset can be seen. Solving times for the MCEF increase
faster than the CEF, as the additional rules need to be taken into
account during the solving process. This shows that there is a
trade-off between the achieved improvements in the schedula-
bility ratio compared to the required computation time. As a
system is generated only once, this trade-off is negligible com-
pared to the improvements that are achieved.

B. Case Study

The case study is based on an automotive engine control ap-
plication that is presented in [15]. The application consists of
18 real-time tasks that communicate over 62 shared variables
(793 bytes in total). The total memory required to store the
task’s code is 178 KB, and the task-set hyperperiod is 100 ms,
in which 155 jobs need to be scheduled. In addition, three data
propagation delay constraints are specified, one constrains the
maximum reaction time, and two constrain the maximum data
age [7] (see Fig. 7).

Platform parameters are chosen in line with the Kalray
MPPA R© many-core processor [5, 14]. The compute cluster has
15 compute cores, where each core has a private memory bank
of 128 KB of which 64 KB can be used to store the code of
static tasks. Access to off-chip is possible over a Network-on-
Chip that connects to DDR3-1600 SDRAM. The system fre-
quency is set to 400 MHz. The access time to read and write
data to remote memory is computed for a NoC that is follow-
ing the partitioning described in [24]. This allows to compute
tighter bounds on the memory access times compared to the
general NoC. To further minimize the access times, a maxi-
mum request size of 1KB is used. Requests of larger size are
sent in sequence until the complete data is read or written.

The 62 data labels are allocated to the external memory or
to the dedicated memory bank within the cluster. A label is
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Fig. 6.: Memory access times for tasks read phase in static or dynamic configuration, and memory access times for the tasks write phase.

allocated to the external memory if it is only accessed by ei-
ther write or read operations. In these cases the label is used
as input or output of the application, therefore it needs to be
accessed from outside the cluster. All other labels are used
for internal communication by the application, hence they are
mapped to the global memory bank within the cluster. In the
case study, 34 labels are mapped to external memory and 28 la-
bels are mapped to the cluster’s local memory bank. A detailed
description of the task’s access to labels and the size of labels
can be found in [15]. The resulting task parameters are pre-
sented in Table I. Note that tasks that are not periodically acti-
vated in [15] are assigned a period of 100 ms in this case study.
Fig. 6 further visualizes the difference in memory access times,
it can be seen that tasks face significantly longer read times if
they are dynamic in contrast to their static versions due to the
expensive access to external memory.

Fig. 7 visualizes the task chains that are subject to data
propagation delay constraints. In order to meet all specified
data propagation delay constraints, 7 job-level dependencies

TABLE I
: Engine Management System – Case Study.

CE Cstat.
R Cdyn.

R CW T S

[µs] [ns] [ns] [ns] [ms] [B]

CylNumObserverEntity 573 11970 908 25 100 6950

IgnitionSWCSyncEntity 2461 15543 958 195 100 9064

MassAirFlowSWCEntity 86 12070 908 28 5 7076

ThrottleSensSWCEntity 169 13188 908 55 5 7352

APedSensor 482 14858 908 55 5 8286

APedVoterSWCEntity 144 12140 55 28 10 7104

ThrottleCtrlEntity 2892 15413 990 55 10 8868

ThrottleActuatorEntity 2957 27593 1013 83 10 16058

BaseFuelMassEntity 2892 15413 990 55 10 8868

ThrottleChangeSWCEnt. 2957 27593 1013 83 10 16058

TransFuelMassSWCEnt. 3188 27730 1148 28 10 16058

IgnitionSCWEntity 2269 15058 1060 25 10 8348

TotalFuelMassSWCEnt. 677 14948 988 28 10 8304

OperatingModeSWCEnt. 19641 30470 965 390 20 17424

IdleSpeedCtrlSWCEntity 843 14945 933 240 20 8372

APedSensorDiag 118 14858 908 0 100 8286

InjBattVoltCorrSWC 274 12130 28 28 100 7116

InjectionSWCSync 1651 15300 985 195 100 8728

are generated using the methods presented in [9, 10]. These
job-level dependencies are highlighted in the respective com-
munication links between the tasks in Fig. 7.

On the described platform, the execution phases lead to a
utilization of UExecute = 301, 95%. The memory access has a
utilization of UDynamicMem = 2, 67% and UStaticMem = 0, 15%.

A time-triggered schedule can be generated for both settings,
MCEF and CEF. The number of active cores is gradually re-
duced and both solutions can generate the system schedule up
to a system size of 4 compute cores in 2, 1 and 2, 8 seconds
respectively (average out of 100 samples). However, the data
propagation delay constraints cannot be met for the CEF, where
all three constraints are violated. The MCEF on the other hand
takes the specified job-level dependencies into account during
the schedule generation and hence satisfies all specified data
propagation delay constraints. Satisfying these constraints is
crucial for the industrial applicability of the approach as these
constraints are an essential part to guarantee correct function-
ality [7, 8, 9, 10].

VIII. CONCLUSIONS AND FUTURE WORK

This work presents a memory aware execution framework
for clustered many-core platforms. As the contention on ac-
cess to shared memory is one of the main challenges for such
platforms a contention-free execution paradigm is applied, di-
viding the tasks execution into shared memory access, and ex-
ecution. A non-preemptive time-triggered schedule is utilized
to orchestrate the access to the shared memory. As the local
memory is generally not large enough to host the complete ap-
plications, access to off-chip memory is needed. Such access
impacts on the schedulability of the system due to the increased
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Fig. 7.: View of the data propagation constraints and the involved tasks. Addi-
tionally the generated job-level dependencies are shown.



size of the memory access phases. We tackle this challenge by
observing that local memory banks can be used to statically al-
locate a subset of all tasks, which then removes the need for ex-
pensive off-chip memory access. The framework further takes
job-level dependencies into account that are used to guarantee
that timing constraints in the data propagation through chains
of tasks are met. A constraint programming formulation of the
problem is provided that generates the time-triggered schedule.
Evaluations show that the improved memory aware framework
outperforms related work.

Future work will investigate heuristic solutions to allow the
approach to scale to industrial sized applications. Additionally,
we will address the problem of task grouping, that can mini-
mize the communication data and also reduce the number of
jobs that need to be scheduled during one hyperperiod which
in turn improves scalability.
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and T. Nolte, “Partitioning and analysis of the network-on-chip on a
cots many-core platform,” in Proceedings of the 23rd IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2017,
pp. 101–112.


