

 __
 1 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

ABSTRACT

CC Systems AB is a company developing control systems for many different
applications. An important issue when developing new systems or improving existing
ones is the ability to simulate the complete control system in a PC. CC Systems AB has
developed a simulation package which can be used to simulate CAN based distributed
real time control systems in a Windows environment.

This report describes how simulation can be done in Windows using simulated
peripheral devices, such as CAN controllers and memories. Two different approaches
for how the simulation can be realized are discussed. One for an existing control system
designed by Rolls-Royce AB used for ship propulsion, and one to simulate real time
operating systems using an API- level simulation technique.

An improvement of the simulation package, using a simulated time control, is also
considered and realized in this thesis. This time control can be used to control the
execution speed in a distributed real time control system.

The goal with this Master thesis is to describe the benefits simulating a control system in
a PC and to improve the simulation package used by CC System AB, so that it uses a
simulated time control.

 __
 2 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

Abstract 1

1 Introduction 6

1.1 Introduction to the problem 7

1.2 Aim and purpose 7

1.3 Constraints 8

1.4 Structure of this Thesis 8

2 Simulation 9

2.1 Why Simulate? 9

2.2 Simulation techniques 10

2.3 Simulating a Distributed Control System in a host OS 11

2.4 Simulated Parts in a Control System 12
2.4.1 OS kernel 12
2.4.2 EEPROM and flash memory 13
2.4.3 CAN 13
2.4.4 Serial Communication 13
2.4.5 IO 14

3 Real Time Operating System 15

3.1 A real time operating system’s duties 15
3.1.1 Resource Management 15
3.1.2 Time Management 15
3.1.3 Interprocess Communication 15

3.2 Multitasking 15

3.3 Priority and Preemption 16

3.4 Event Driven Operation 16

4 CanMan 17

4.1 Redundancy in CanMan 18

4.2 Nodes in CanMan 18
4.2.1 CCN 01 18
4.2.2 SLIO 01 & SLIO 02 19

4.2 CanMan Operating System 19
4.2.1 Processes 20
4.2.2 Signals 20
4.2.3 Function Blocks 20

 __
 3 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

4.2.4 Operating System 20
4.2.4.1 Task Handling 21
4.2.4.2 Serial and CAN communication 21
4.2.4.3 Memory Management 22
4.2.4.4 Watchdog Supervision 22

4.2.5 Error Handling 22

4.3 Applications in CanMan 22

4.4 HHT 23

4.5 The Complete CanMan control system 24

5 Simulation of CanMan in Windows 26

5.1 Simulating CCN 01 26
5.1.1 Operating System 26
5.1.2 Simulated Hardware Interrupts 27
5.1.3 CAN 27
5.1.4 RS232 28
5.1.5 EEPROM 28
5.1.6 Registers and other hardware dependencies 28

5.2 Simulating the SLIO units 28

5.3 Simulated HHT 28

5.4 Control panels 29

5.5 Demonstration of a Simulated CanMan system in Windows 29
5.5.1 System Description 30
5.5.2 Control Panels 31
5.5.3 Model of the ship behaviour 32

5.6 Timing problems when simulating a CanMan system 32

5.7 Creating a simulated application in Microsoft Visual C++ 33

5.8 Simulation advantages for Rolls-Royce AB 33

6 API - Level Simulation 34

6.1 OSE 34
6.1.1 Processes 34

6.1.1.1 Categories 34
6.1.1.2 States 35
6.1.1.3 Scheduling principles 35
6.1.1.4 Process Types 36
6.1.1.5 Priority 36

6.1.2 Interprocess Communication 36
6.1.2.1 Signals 36
6.1.2.2 Semaphores 37

 __
 4 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

6.1.3 Interrupt Handling 38
6.1.3.1 Hardware Interrupts 38
6.1.3.2 The Wakeup Facility 38
6.1.3.3 Timer Interrupts 38

6.2 RTXC 39
6.2.1 Tasks 39
6.2.2 Intertask Communication and Synchronization 40

6.2.2.1 Semaphores 40
6.2.2.2 Mailboxes and Messages 40
6.2.2.3 Queues 41

6.2.3 Resources 41
6.2.4 Interrupt Service 41

6.3 Simulation of OSE and RTXC in Windows 42
6.3.1 CCOS 42
6.3.2 System Overview using CCOS 43
6.3.3 System calls in CCOS 44
6.3.4 Demonstration of a CCOS application 45

7 Simulated Time Control 47

7.1 Controllable Time using a Dynamic Link Library File (DLL) 48

7.2 System Overview with Controllable Time 49

7.3 Implementation of the DLL file 50
7.3.1 CC_SimTime_ChangeTimeScaleFactor 51
7.3.2 CC_SimTime_GetTimeScaleFactor 52
7.3.3 CC_SimTime_GetGlobalTime 52
7.3.4 CC_SimTime_GetHandleToTimeEvent 52
7.3.5 CC_SimTime_CalculateScaledTime 52
7.3.6 CC_SimTime_waitFor2Events 52
7.3.7 CC_SimTime_stopExecution 53
7.3.8 CC_SimTime_Sleep 53

7.4 Time Control GUI 53

7.5 Simulated Time Control in CanMan 53

7.6 Simulated Time Control in CCOS 54

7.7 Demonstration of a system with controllable time 54
7.7.1 Demonstration of a CanMan system with Controllable Time 54
7.7.2 Demonstration of a CCOS application with Controllable Time 55

8 Conclusion 56

Bibliography 57

 __
 5 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

Appendix 58

A Abbreviations 58

B Terminology and Definitions 59

 __
 6 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

1 INTRODUCTION
Real time systems are computer systems that sense their environment and directly
influence it through actions. These systems must not only choose appropriate actions,
but also perform them at appropriate times. Most real time systems are embedded in
products. Real time computing is not about building “fast” systems; it is about building
systems that are “fast enough” to interact with their environment in well-specified ways.
A distributed computer system is composed of different nodes, i.e. computers, connected
with a network. The different nodes communicate via CAN (Controller Area Network)
for example.

On the software level a real time system consists of two major parts, the application and
the real time operating system. The most important function for the operating system is
to take care of communication with peripherals, memory management, and program and
data management. The applications used in embedded real time systems are a set of
processes that execute logic to handle a specific task. These processes use a set of system
calls (i.e. function calls to the operating system) to handle communication, memory
management etc.

To be able to simulate an application designed for a distributed embedded system in a
Windows [1] environment, one needs, among other things, to emulate the operating
system calls, simulate communication between nodes and simulate different memory
types (e.g. flash, EEPROM).

CanMan [2], a custom-made control system designed and used by Rolls-Royce [3] for
ship propulsion, RTXC [4], a real time operating system designed by Quadros Systems
Inc. [5], and OSE Real Time Kernel [6], a real time operating system designed by Enea
[7], are examples of distributed embedded operating systems. These systems are
developed for specific target hardware and cannot be executed on a PC without using
some kind of emulator.

It is hard to test and debug applications developed for embedded systems in their target
environment. The reason for this is that embedded computers don’t have display units
and usually not as powerful debuggers as a Windows environment can have. Therefore it
is desirable to be able to simulate the software for these kinds of systems in a PC. The
most important advantages are to simplify testing, to speed up the development cycle
and to be able to test applications at an early stage of application development.

CC Systems AB [8] has developed a program package that simulates a distributed
computer system including different memory types (e.g. flash, EEPROM) and
communication with peripherals (e.g. CAN, RS232) [9].

 __
 7 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

1.1 Introduction to the problem
This Master thesis deals with the problem of simulating a distributed RTOS (Real Time
Operating System) in Windows. There are many ways in which this can be done; two of
them are discussed here. The API-level simulation, where a clearly defined API
(Application Programming Interface) is used to separate the hardware dependent parts
from the reusable software, and a less general approach that is used when simulating
existing systems that are not clearly separated and where the hardware dependencies are
significant.

The main issue, when simulating an existing distributed real time system, is reusability
of the target source code and maintainability of system functionality. There is no general
approach when simulating existing systems. The software architecture is crucial when
deciding the line of action. In many cases, there is no clear interface between the
hardware dependent parts and the reusable software. In these cases, a lot of work has do
be done to find the hardware dependent parts which are not reusable.

Another, more general, way to approach the issues of simulating distributed real time
systems is to start by building an API that is to be used by the applications. This is the
common procedure when building new systems today. These new systems often use an
operating system that encapsulates all hardware dependencies. This simulation
procedure is often called API-level simulation.

Regarding the Rolls-Royce control system CanMan, the most important concern is to
reuse as much target source code as possible while maintaining the functionality of the
existing system. The work shall result in a demonstrator showing the advantages of
simulation. The benefits both with respect to system functionality testing, and not less
important, the opportunity to debug the software using Windows debuggers, shall be
indicated.

In the RTXC and OSE case, OS (Operating System) emulation, or API- level simulation,
is the core subject. The OS primitives, used to develop applications for the two real time
execution systems, should be replaced by corresponding Windows functions.

Another problem studied in this thesis is timing and synchronisation between different
simulated nodes, i.e. separate executing processes in Windows. Timing problems arise
when the CPU utilization is too high, resulting in that not all of the simulated nodes gets
enough execution time. Exact timing, i.e. the nodes running in target system speed, is
not an important issue, rather is the system functionality the core subject.

1.2 Aim and purpose
The purpose with this Masters thesis is to make it possible to simulate the behaviour of
distributed real time systems, like the Rolls-Royce control system CanMan, in Windows
and to enhance the simulation package used by CC Systems AB. The improvement of

 __
 8 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

the simulation package should consider synchronisation and timing problems when
simulating a system consisting of more than one node. Another improvement is the
extension of the CCOS (Cross Country Operating System), an OS API layer designed by
CC Systems AB, so that it can target not only OSE, but also RTXC.

The goal is to prepare a demonstrator, showing the benefits of real time system
simulation, for Rolls-Royce. Another part is to build a base for RTXC and OSE
operating system simulation with time control. The aim is that applications developed
for OSE or for RTXC should be executable in both environments using a common API
put on top of the respective RTOS API.

1.3 Constraints
The limitations regarding this thesis are mostly related to general applicability. Only a
subset of the OSE and RTXC operating system primitives are to be considered. As far as
Rolls-Royce CanMan control system is concerned, I have tried to keep the approach
general and not introduced any limitations, except timing related issues, not present in
the target environment.

1.4 Structure of this Thesis
This Masters thesis starts with a brief introduction to real time systems and simulation of
these systems in a PC. These parts are followed by a presentation of Rolls-Royce control
system CanMan. Section 5 describes how this control system can be simulated in a PC
using CC Systems simulation package. The parts about CanMan can be seen as a case
study of how simulation can be done on an existing system, not designed for execution
in Windows.

Section 6 outlines how an API- level simulation can be done, using a common API,
CCOS, for two existing real time operating systems. This part starts with a presentation
of the two RTOS, OSE and RTXC, which is included in the CCOS API.

At the end, the timing issues are discussed, and a suggestion of an improvement, by
implementing a simulated time control using a dynamic load library file (DLL file) is
presented.

 __
 9 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

2 SIMULATION
A distributed embedded real time system consists of a set of computers, called nodes.
The different nodes in the system communicate with the environment, which they are
built to control, directly via IO-signals or through other nodes in the control system
using CAN for example. When developing new control systems or improving existing
ones, testing is an important part of the development cycle. To reduce the time spent on
testing it is very useful to be able to test the whole control system on a PC instead of
using expensive target hardware. To be able to do this, a separate process in Windows
typically simulates each node. A model of the surrounding environment, which the
system is supposed to control, can be built to make the testing more realistic and easy to
use.

2.1 Why Simulate?
CC Systems AB works with development of advanced embedded control systems. These
systems are complex and hard to debug in their target environment, since the embedded
computers often don’t have display units and not as powerful debugging tools as
Windows. Debuggers for target hardware often use CAN or RS232 to communicate with
the PC used to display the results. This occupies that hardware port on the target
hardware, and the result can be that the node cannot use that port as efficiently to
communicate with other peripheral units.

There are different types of hardware debugging tools, e.g. monitors and the JTAG-
standard. Monitors can, for example, be used to test the code in the target hardware. The
monitors require a PC connected to the target hardware. A small program, the monitor,
is stored in the target hardware memory. The application is then loaded and executed in
the hardware, when a breakpoint is reached the monitor is called. The monitor sends a
message containing debug information to the PC. Another hardware debug method is the
JTAG-standard (Joint Test Action Group). This method requires that the processors used
have a JTAG-interface, i.e. a physical access to the CPU. This access sends information
about the source code when a breakpoint is reached. Both these methods are examples of
rather good ISP (In System Programming) debuggers. There is an abundance of different
debuggers and monitors for target hardware, but most of them do not approach the
flexibility and power of debuggers available for the Windows environment.

Companies working with embedded application development have a lot to gain if they
are able to debug and test their applications in a PC instead of using hardware tests:

• Target hardware is often expensive.
• The applications can be tested and debugged before the hardware is ready for

use.
• All developers can test their applications concurrent ly on their own PC.

 __
 10 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

• It is easy and fast to get started since no hardware or cables are needed.
• There are many powerful debugging tools available for testing in Windows.

The ability to test a control system in a PC makes it easier to find and correct errors in
the application logic in an early stage of the development cycle. This reduces the costs
and time spent when building new systems or improving existing ones.

Simulation cannot replace all target environment testing. Even if the simulated parts of
the system have the same behaviour as the target ones, there will still be certain
differences, for example in the OS and the timing between events in the system. And the
target compiler might have subtle implementation differences compared to the PC
compiler. Also, the execution time of code is bound to be very different.

2.2 Simulation techniques
There are different definitions of what one means by simulation of an embedded
computer system. On one hand, simulation can be perfo rmed on the processor level i.e.
the application and RTOS is unchanged, and a simulation of the target processor can be
carried out in, for example, a Windows environment. On the other hand one can use an
existing OS, like Windows or LINUX, and its system calls to simulate the behaviour of
the target OS. Low-level processor simulation, instruction set simulation, is more exact
but rather slow. Simulating an embedded system using an existing OS is more flexible
and faster but not that exact as instruction set simulation.

There are many issues to consider before deciding which simulation technique to use.
Just emulating the RTOS functionality, not taking into account the target hardware
performance, is a more flexible and less complex method. This technique is not as exact
as simulating the target hardware CPU, but the functionality of the real time control
system can be tested. The main problem that arises using this approach is timing. If there
are many nodes present in a control system, one CPU may not be enough to simulate all
of them at target system time speed. This problem can be solved in different ways. One-
way is to use more than one PC; another is to lower the simulated execution speed by
slowing down the time between the clock ticks. If more than one PC is used, these have
to be connected using CAN for example. Slowing down the system makes it possible to
run more nodes on the same PC, but as an undesired side effect it complicates other
things. The time interaction with the environment is not correct, e.g. control loops
interacting with the environment cannot be simulated exact. This leads to a trade-off
between functionality testing and timing fidelity.

To be able to simulate an embedded system on a PC, using the latter definition of
simulation using Windows primitives, without changing too much in the application
source code, one needs to add a new layer, a new API, between the application and the
host OS (see figure 1). The API is a software layer containing different system calls.
This layer is configured differently depending on how the source code is compiled. This

 __
 11 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

is a technique often used by CC Systems AB to simulate distributed real time control
systems.

Simulating a control system also requires a way to simulate different storage devices and
communication with peripherals via CAN, RS232 and IO-devices.

Figure 1: The figure to the left shows a system which can only be used in the target environment, the one
on the right shows a system where the simulated target operating system part can be configured so that
one can compile the target application for Windows or for the target hardware.

2.3 Simulating a Distributed Control System in a host OS
Each node in a distributed control system is simulated as a process. Each process
communicates with the other simulated parts, i.e. other nodes and a model of the
environment, via simulated CAN, IO, or RS232. The simulated nodes in Figure 3 use
Windows operating system primitives to simulate the behaviour of the actual RTOS.

This model can be extended to a mixed simulation if some of the software is run on real
target node. In this case the PC running the simulated nodes needs to be equipped with,
for example, a CAN controller to handle communication with the real target nodes. In
this case timing is an important aspect. To achieve the correct behaviour, the simulated
nodes need to run at the same speed as they are supposed to run on the real target
system.

CC Systems simulation package supports mixed simulation, the simulated CAN
controllers can, for example, be interfaced to hardware CAN card connected to the target
nodes.

APPLICATION

TargetOS

APPLICATION

Sim TargetOS

Windows

TargetOS

Target HW PC Target HW

 __
 12 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

Figure 2: A schematic overview of a simulation of a control system containing two nodes and a model of
the environment.

2.4 Simulated Parts in a Control System
To obtain a correct simulation of an existing embedded computer system, i.e. a system
including the application logic and communication with external devices, one has to
simulate certain parts of the target system hardware.

Figure 3: The hardware dependent parts are simulated in for example Windows.

2.4.1 OS kernel

It is important to simulate the target OS primitives, so that simulation performs in the
same way as the embedded computer system does. Examples of parts which have to be

PC

IO SERIAL

Node 1 Node 2 Model

CAN
DLL

IO
DLL

SERIAL
DLL

CAN SERIAL IO CAN SERIAL IO

Hardware independent

Hardware dependent
PROM
Flash

CAN RS232 IO RTOS

 __
 13 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

simulated are mailboxes, semaphores, context switching etc. To achieve the correct
simulated behaviour, primitives from the OS used for simulation (e.g. Windows or
LINUX) are used. These primitives don’t always have exactly the same behaviour as the
corresponding RTOS ones, in these cases an extra software layer is needed to attain
similarity.

2.4.2 EEPROM and flash memory

There are different kinds of storage devices used in embedded systems, e.g. EEPROM
and Flash. These memory types can be reprogrammed without being removed from the
circuit and are easily simulated using a memory-mapped file. This means that a file
simulates the hardware memory circuit.

2.4.3 CAN

In distributed real time systems there are lots of issues to consider, but one of the most
important of these is communication. CAN (Controller Area Network) is a shared
broadcast bus, with limits on speed and length. The bus can have an arbitrary number of
nodes connected to it. A node is a processor plus a special CAN controller that hand les
communications from the processor to the bus, and vice versa. The CAN protocol has
good real time performance, where urgent messages are prioritised over less urgent
messages. Each message is associated with a priority, a unique static number, which can
also be used as identifier.

The simulation of CAN used by CC Systems AB uses a separate process that simulates
the behaviour of the hardware CAN media. When an application is connected to
simulated CAN, a receive buffer is allocated. This buffer is a shared memory segment,
and can be accessed by both the application and the separate CAN process. All
connected nodes have their own receive buffer. If a node in a simulated network sends a
message, this message is put into all receive buffers. Multiple CAN networks can also be
simulated. If a node is connected to more than one network it has different receive
buffers corresponding to the different networks.

CC Systems implementation of CAN is a high level API (Application Programming
Interface), which can be configured to call different functions depending on pre-
processor definitions at compile time. From the API, there is no difference between
simulated and real target nodes.

2.4.4 Serial Communication

Serial communication, e.g. RS232 and RS485, is a point-to-point connection between
two nodes. It is often used in embedded computer system to connect a separate unit that
handles logging and configuration to the nodes in the system.

Simulated serial communication uses a shared memory segment, which contains two
buffers. If one of the nodes sends, the information is put in the buffer from which the
other part reads and vice versa.

 __
 14 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

2.4.5 IO

IO is used to communicate with peripheral units, such as motors, controls, switches etc.

CC Systems implementation of simulated IO uses shared memory created by a dynamic
load library file. This memory contains information about the IO signal, such as name
and value. Any other node in the system can access this value. It is possible to create a
new IO signal (e.g. analog, digital, PWM, PULSE) that can be read or set by other
processes.

 __
 15 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

3 REAL TIME OPERATING SYSTEM
A real time system is a computer system that must respond to external events within a
limited time. A real time operating system is a platform suitable for supporting real time
applications. The real time kernel is a program that implements a set of rules and
policies about allocation of a computer system’s resources. The rules permit software
processes to operate and gain access to various system resources in an orderly manner.
One of the most important aspects of a real time system is predictability, i.e. the system
must be deterministic to make system analysis possible. Time management is often the
most difficult part of the resources managed by the OS kernel; it is also the most
unforgiving. The design and code of kernel services must be such that they require
minimal execution time yet are predictable. Without the predictability, a system designer
would have no assurance that the timing constraints of the physical process will be met.

3.1 A real time operating system’s duties
A real time operating system has many duties; they can be divided into three categories:

3.1.1 Resource Management

Among the resources in a computer system are the CPU, the memory and various
peripheral hardware devices. One major duty of an OS is to decide which process in the
system that is allowed to use these resources at a specific time.

3.1.2 Time Management

One of the things that define a real time system is the ability to manage time-dependent
applications appropriately. A real time operating system must be able to schedule
activities at or after a certain specified time, often periodically.

3.1.3 Interprocess Communication

It is often necessary to exchange data between processes in a multi-process system. The
mechanism to handle this exchange differs between different operating systems.

3.2 Multitasking
Multitasking is one of the major policies implemented in modern real time operating
systems. Multitasking makes it seem like the computer can execute multiple processes
concurrently. Obviously, the computer cannot do two things at once, as it is a sequential
machine. However, with the functions of the system decomposed into different tasks, the
effect of concurrency can be achieved.

A task is a process that exists to perform a defined function or set of functions as part of
an overall application. An application usually consists of several tasks. A task is
independent of other tasks but may establish relationships with other tasks.

 __
 16 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

In a multitasking system, each task, once given operating control of the CPU, either runs
to completion or to a point where it must wait for an event to occur, for a needed
resource to become available, or until it is interrupted. This switching from one task to
another forms the basis of multitasking.

3.3 Priority and Preemption
Real time systems usually contain several processes, or tasks, which need to have
control of the system resources at varying times due to the system behaviour. Tasks that
depend on IO for example cannot be allowed to monopolize a system resource if a more
important function requires the same resource. There must be a way of interrupting the
operation of the task of lesser importance and granting the needed resource to the more
important task.

One way to achieve timeliness is the assignment of a priority to each task. The priority
of a task is then used to determine its place within the sequence of execution of other
runnable tasks. Tasks of low priority may have their execution preempted by a task of
higher priority so that the latter can perform some time critical function.

3.4 Event Driven Operation
An event is any stimulus that requires a reaction from the system. Examples of an event
would include a timer interrupt, an alarm condition, or a keyboard input. Events may
originate externally to the processor or internally from the software.

An event driven system is a system that takes action depending on the event received. If
different events occur, the system performs to solve the problems associated with the
specific events.

 __
 17 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

4 CANMAN
CanMan (Controller Area Network MANoeuvring system platform) [2, 10, 11] is a
custom made control system platform designed by Rolls-Royce. The system is used for
ship propulsion. CanMan is a decentralised system, based on embedded computers
communicating via two parallel CAN buses. It handles communication between the
lever units on the bridge and the water jet or propeller. CanMan is used as a generic term
for the control system, but also to describe the application platform running in the CCN
(CAN Controller Node) nodes (see section 4.3). The CanMan application platform
includes a small OS part but it is not a general OS that can be used in other control
systems.

The system contains two different node types, the CCN [12] and the SLIO (Serial
Linked IO device) [13, 14]. The CCN nodes form the backbone in the system; they run
all applications and process all data. The SLIO nodes are rather simple. They are directly
connected to physical components, and their main task is to pass on information from
the connected devices with CAN messages to the CCN nodes. Figure 4 shows an
example of a control system, using two CCN nodes connected to SLIO units.

Figure 4: An example overview of a small CanMan system. The three SLIO nodes in the front-end are
connected to the three control panels on the ship bridge. In the back -end, three nodes are used for
interaction with the engine and hydraulics, and one is connected to the control room panel.

The control system is divided into two main sections, the front-end, and the back-end.
The front-end is situated on the vessel bridge and takes care of communication with the
control panels, i.e. the human interface, and pass on information down to the back-end
via CAN messages. The back-end processes engine data and sends status information up
to the bridge for example.

Back-End
e.g.Water Jet

CAN bus S CAN bus S
SLIO

SLIO

SLIO

CCN

CCN

SLIO

SLIO

SLIO

Front-End
Vessel Bridge

CAN bus A

CAN bus B

SLIO

Stbd Panel

Main
Panel

Port Panel

ECU
Panel

Engine IO

 __
 18 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

4.1 Redundancy in CanMan
To enhance safety and reliability in CanMan all electronics, including lever electronics,
are duplicated. Some of the application nodes that are crucial (the bridge node for
example) for more than one vital function are duplicated. One of the nodes in a pair is
configured as master and the other one as a slave. This is also the case for the physical
components connected to those nodes; their electronics are duplicated as well (there are
two transmitters (e.g. potentiometers) to each control lever for example). The CCN
nodes are connected to a redundant CAN network, using two identical parallel buses,
CAN A and B. All CCN to CCN node messages are sent on both buses to enhance safety
and reliability.

There are also two types of nodes, the Gateway and the Freestyle nodes, used to improve
the CAN communication security and to make the CAN network more flexible. Both
these nodes are CCN nodes with customised applications (see figure 7).

The Gateway node is like an electronic firewall isolating different parts of the CAN bus
from each other. A fire that leads to a shortcut in one of the buses cannot jeopardise the
whole bus. So if one complete bus fails, the accident will not influence the crucial units.
It consists of an ordinary CCN unit, programmed to retransmit incoming signals.
Gateways are also used when the bus needs to be extended or when extra
compartmentalization is needed.

The Freestyle node is used to make a single CAN bus device (e.g. display units)
communicate on two redundant buses. The node transmits a signal from the single CAN
bus to the two redundant buses and vice versa. This node is used as an interface to
external units. The units, a display for example, can communicate with both the CAN A
and B buses via the Freestyle node.

4.2 Nodes in CanMan
There are two types of physical nodes in the CanMan control system, the CCN and the
SLIO node.

4.2.1 CCN 01

The CAN controller node, CCN 01 [10], is the main building block in the CanMan
controller network system. It runs the system applications (e.g. manoeuvre responsibility
or pitch loop control) or the Gateway and Freestyle software.

All CCN nodes communicate with each other trough two electrically independent CAN-
buses (A and B, se Figure 4); this is to achieve a redundant network. A CanMan control
system can be designed for an arbitrary number of CCN nodes, depending on the system
complexity. Each CCN node can have its own IO signals. The IO-signals are connected
to the physical system through SLIO-nodes connected to the CCN node on a local
dedicated IO CAN-bus, called the S-bus.

 __
 19 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

The CCN 01 node is built with:

• An Intel 80C196NP processor running at 16 MHz
• 56 Kbytes RAM, primary memory
• Three CAN-controllers (A, B and S buses)
• 32 Kbytes EEPROM, non-volatile parameter memory
• 128 – 512 Kbytes EPROM, application memory
• A RS232 serial bus, for terminal communication

Applications are built using process diagrams made in Auto Cad [15]. These diagrams
generate source code, using a Lisp [16] plug- in to Auto Cad, see figure 5. The process
diagram development contains a set of building blocks, called function blocks, which
communicate via connections. These connections are called signals, and contain
information about the signal value.

4.2.2 SLIO 01 & SLIO 02

SLIO is a common name for the IO-nodes connected to the local CAN bus, the S-bus.
There are two types of SLIO nodes, SLIO 01 [13] and SLIO 02 [14]. The main
difference between them is the IO-configuration. There are also minor differences
between the two nodes regarding the software. When changing the CanMan system
applications, i.e. the code executing in the CCN nodes, no changes are needed in the
SLIO node software. This software is always the same, irrespective of the application in
the CCN node.

The software is mainly a loop that in each round reads and writes IO. The software
contains support for a simple debug monitor, the HHT (Hand Held Terminal) [17]
accessed through the RS232 serial port.

The SLIO node provides connections for digital input, digital output, analog input,
PWM output, PULSE output and frequency measurement.

4.2 CanMan Operating System
The CCN node uses an application platform, including a small OS part, custom made for
the CanMan system. The application platform, here called operating system, includes
more than a regular OS. The CanMan OS contains what generally is called a
middleware, usually separated from the operating system. The platform also handles the
hardware and contains a library of function blocks, which may be used by the
applications. The software for the CanMan system is developed and maintained in a PC
environment, and a cross-compiler from IAR [18] is used to generate code for the
80196-target processor.

 __
 20 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

4.2.1 Processes

A process is an application entity defined to perform a specific task. It consists of a
sequence of function blocks executed at each process cycle and a collection of signals
that holds information. The system is configured for 10 application processes numbered
from 0 to 9, where 0 has the highest priority. On top of these 10 processes there are
another three used for SLIO communication, HHT communication and for RAM and
PROM check. The cycle time of a process is defined at system start-up. All application
processes are strictly periodic with a period defined by the application programmer. The
HHT and SLIO processes are event triggered, but cannot preempt a running task.

When the system is started, all processes, function blocks, and signals have to be
created. At first all application processes are created, a data structure is allocated for
each process and all process structures are linked in a list. All function blocks in each
process are then created and linked in a list, the head of this list points at the process
structure. During the creation of function blocks, signals will be created when needed by
the blocks. The signals are linked in an ordered list and a pointer to the head of this list is
also found in the process structure.

4.2.2 Signals

A signal is a data carrier used to hold information between function blocks. It is defined
by the signal name, holds control and status information with a value. Signals are local
within processes and are kept in an ordered linked list.

4.2.3 Function Blocks

A function block is an element used by the application programmer to do a specific task.
There are two functions for every function block, one for creation of the block and one
runtime function. The create function is called during start-up of the system; it is called
once for every occurrence of the block in the application. It may be called several times
by the same process or by different processes. It is therefore necessary to make a new
local data structure for the block in each call to the create function. The function block
runtime function is called once every process cycle.

A function block is like a software component with a specified interface. These function
blocks can be connected using signals (See section 4.4). The software components are
written in C, and stored in regular source files. These files are included in the CanMan
OS and can therefore be used by the applications.

4.2.4 Operating System

The OS is very small and handles the following functions:
• Task handling
• Serial and CAN communication
• Memory management
• Watchdog supervision

 __
 21 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

4.2.4.1 Task Handling

The OS handles up to 13 tasks, 10 used for the application and three for SLIO and HHT
communication and for RAM and PROM checks, in a non-preemptive manner. This
means that the running task cannot be interrupted by another task with a higher priority.
The running task will run until it calls the delay function. Each task has its own stack.
The delay function causes the current state of the task to be frozen while other tasks are
running.

The delay function takes one parameter, which specifies the time until the function will
return. During this time the task does not demand any CPU time, this allows other tasks
to run instead. Every call to this function results in a scan through the list of tasks, to
find the task with the highest priority that is ready to run; this task will then be started.

Tasks are put in a ready state by a hardware interrupt function called tick, which is
called every 10 milliseconds at a hardware interrupt. At each tick, the tasks waiting
queue is scanned and the time left to execution is decremented for each task. If the time
left is zero, the task is ready to execute. The system clock is also updated at each tick.

To be sure that the processes period time is correct, each process store the current time
when a new period is started. It checks the time again after the execution is done, in each
period, and calls the delay function with the time left to the next period. There are also
certain failure controls when the execution starts in each period. If the tasks period time
cannot be maintained, a warning is logged. If a task misses its deadlines totally the
system is closed down and rebooted.

4.2.4.2 Serial and CAN communication

The RS232 serial interface on the CCN node is interrupt driven and communicates with
a specific task through input and output character buffers. When writing, output data is
placed in the RS232 output buffer. The serial communication interrupt function will
drain this buffer continuously. This design makes it possible to get a high output speed
without doing any work on the task level. Input is collected by the interrupt function and
put in the RS232 input character buffer at any time.

The three CAN interfaces on the CCN node (i.e. CAN A, B and S) are interrupt driven.
Each CAN bus controller has a receive buffer. When a CAN message is received on one
of the CAN controllers, an interrupt is enabled. This interrupt routine puts the message
in the receive buffer which can be accessed by the tasks. When one of the tasks wants to
send a CAN message, it writes the information in a buffer from which the CAN
controller reads. CAN A and B are the node-to-node communication buses. All CCN to
CCN CAN messages are sent on both CAN A and B to enhance security and reliability.
Only the most recently received CAN message of each type (i.e. message id) is stored,
and there will not be any redundant messages in the receive queues. A warning log
message is sent by the system if any of the two CCN to CCN CAN buses fails. CAN S is
the IO interface bus, aimed for communication with up to 16 SLIO nodes.

 __
 22 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

4.2.4.3 Memory Management

There are three different storage devices in the CCN node, RAM, PROM, and
EEPROM.

The RAM memory is allocated dynamically during the creation of application processes;
this is handled by the malloc function.

The PROM contains the applications software. The application is stored in the PROM
before the memory circuit is placed in the CCN node. The PROM unit must be replaced
to upgrade the application.

The EEPROM is used as a parameter memory, i.e. it saves the system parameter values.
The EEPROM is accessed through special read and write functions. Data is stored as
records, which are identified by a unique key. There is a hardware switch on the CCN
node that can be set in restore or normal mode. If the CCN node is restarted with the
switch in restore mode, the EEPROM is cleared and the system default parameter values
are loaded.

4.2.4.4 Watchdog Supervision

The external hardware watchdog function is normally maintained by the delay function.
The watchdog function is common to the system and any task can reset the flag. Because
the system is non-preemptive, all timing problems can be checked using only one
watchdog. If a specific task is running into problems, no other task will be able to run
and the system is restarted. The function is interrupt driven and a flag must be reset at
least every 600 milliseconds otherwise the system is restarted without any error
message. It is assumed that a task executing for a longer time, without setting the flag,
has run into a hardware or software error.

4.2.5 Error Handling

All log error messages produced by the system software are generated by a common
function called error. This function adds a message to a log before returning or halting
the system. The error log can be read using the HHT (Hand Held Terminal).

4.3 Applications in CanMan
Applications are developed as process drawings in Auto Cad, see figure 5. To make
application development easier they are divided into smaller parts, processes. A process
should handle only one major task and execute repeatedly with a given cycle time. Each
process is built up from function blocks. A function block is a “software component”
that takes care of a specific function. Information between function blocks is carried in
signals.

 __
 23 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

Figure 5: An example of an Auto Cad drawing, showing the function blocks and connections used to
create a CanMan application.

When the system design is complete and all process drawings are finished, a Lisp plug-
in to Auto Cad generates c-code. Each process generates its own .c and .h file. These
files are then compiled in an IAR Cross-Compiler together with the CanMan source
code. The compiler generates a .hex file that is stored in a PROM memory circuit and
put in the CCN node.

4.4 HHT
The HHT (Hand Held Terminal) [17] a small display unit with a keyboard used to
configure and debug CanMan systems (see figure 6). The HHT uses RS232 to
communicate with one of the nodes in the system, e.g. a CCN node. The HHT is, for
example, used to calibrate analog and digital IO, to modify system parameters and to
display system status messages, or to check the error log messages stored in the system.

 __
 24 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

Figure 6: A sketch of the HHT connected to a CCN node

As an alternative to the HHT a PC can be used. In this case some terminal program
(Windows HyperTerminal for example), using the PC’s RS232, is used in the same way
as the HHT.

4.5 The Complete CanMan control system
Figure 7 shows a complete CanMan system, with two water jets. The figure also shows
how the Gateway and Freestyle nodes are used.

 __
 25 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

Figure 7: A complete CanMan control system

Freestyle

Gateway

 __
 26 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

5 SIMULATION OF CANMAN IN WINDOWS
To simulate an existing control system, like a Rolls-Royce CanMan system, in a
Windows environment all hardware dependent parts in the code must be found and
replaced with similar Windows primitives. If no similar functions are available they
have to be created. There is no clearly defined interface between the hardware
dependencies and the reusable source code. Therefore I think that it is not relevant to
talk about an API- level simulation in a general sense when simulation CanMan, rather is
it a customized simulation where all hardware dependencies are found and replaced
manually.

To obtain a system that behaves like the target, it is important to reuse as much source
code as possible. Therefore I have tried to keep the system as intact as possible.

5.1 Simulating CCN 01
To simulate the CCN 01 node in Windows, I first created a Microsoft Visual C++ [19]
project containing all the source code from the IAR Cross-Compiler project used for
target compilation. To be able to compile the system for Windows I replaced the
hardware dependent code step by step, first by excluding the non-working parts of the
code. After changing these parts I reintroduced the excluded parts and checked the
system behaviour.

I have chosen to create a library file (.lib) of the application platform part of CanMan.
This library file shall be included when compiling the applications to get an executable
file.

The parts I have changed in the target source code are listed below:

5.1.1 Operating System

The CCN nodes OS is able to run up to 10 different application processes and 3 other
OS related processes (e.g. RAM and PROM checks). The process that has the highest
priority and that is ready to run is allowed to execute. Context switches are done when a
process calls the delay function. This OS call is made whenever a critical system
resource is demanded or when the process execution is ready in each loop round. In the
target environment the processes are stored in a linked list. Each of these processes has
its own stack and the stack pointer may be modified in the delay function. This
implementation is possible in the target code because of features in the IAR cross-
compiler where certain assembler code can be executed before main() is reached. The
assembler code creates different stacks for each process. The delay function is
implemented using the c- functions setjmp and longjmp in the target environment.
This kind of task switch, implemented by setjmp/longjmp [20, 21, 22, 23], together

 __
 27 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

with the fact that the tasks are stored in a linked list and not as separate threads in the
typical Windows manner, leads to an unstable execution in Windows.

When used together, setjmp and longjmp provide a way to execute a “non-local
goto.” A call to setjmp saves the current stack environment. A subsequent call to
longjmp restores the saved environment and returns control to the point just after the
corresponding setjmp call. All variables accessible to the routine receiving control
contain the values they had when longjmp was called.

This type of context switching does not always run in a stable way in Windows.
Problems arise in Windows if the following scenario happens:

• setjmp(mark) is done in a function that later has a return statement, i.e. a
dealloc of the stack frame.

• longjmp(mark, 1) is done to jump back into that function.
• When the return part of the function is reached the program does not know

where to return and the program crashes.

Unfortunately this happens all the time in the CanMan system and because of this the
context switch handling had to be replaced with something more stable. Therefore I
replaced the linked list of processes with a set of threads. To be able to control the
execution in the same way as before, only one thread at a time is allowed to execute. To
achieve this OS call, delay had to be replaced. In the Windows version the task (i.e. the
thread) calling the delay function is suspended and the thread corresponding to the next
task ready to execute is resumed.

Apart from this rather big change, only small changes were necessary in the OS calls
part of the CanMan system.

5.1.2 Simulated Hardware Interrupts

Hardware interrupts in CanMan, like timer-, CAN- and RS232 interrupts are replaced by
software events, implemented by threads with higher priority than the rest of the system.
This does not change the CanMan software; the only difference is that a software event
calls the function in the PC instead of a hardware interrupt in the target hardware. These
threads are implemented as loops, with loop times decided by using the Sleep function.
In every loop round the threads check for incoming messages and update the global
system clock.

5.1.3 CAN

The CCN node has three different CAN buses. The CAN receive interrupt is simulated
using separate threads in Windows. These threads put the received CAN messages in the
same buffers as the interrupt in the target environment. When the application sends a
CAN message, the send procedure is replaced by the simulated send methods.

 __
 28 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

5.1.4 RS232

The simulated serial communication described in chapter 2 is replacing the target RS232
methods.

5.1.5 EEPROM

Instead of reading and writing to the target memory chip, a file is used. The file is named
dynamically depending on the CCN node id, e.g. EEPROM_RR_10.dat. The CCN node
id is defined in the application. This file can be viewed, for debug purpose, using any
editor, Microsoft Visual C++ for example.

5.1.6 Registers and other hardware dependencies

SFR’s (Special Function Registers) in the 80196NU processor (e.g. bus control and
timers) are replaced by pointers, function calls or are not used at all. As an example, the
watchdog is implemented using a SFR. The target watchdog bit is toggled at certain
places, in the delay function for example. This is simulated using a global variable that is
toggled instead.

The CCN node has four LEDs; three of them indicate the CAN controller status and one
of them indicates the CPU status. These LEDs are not simulated at all.

5.2 Simulating the SLIO units
A simulation of the Rolls-Royce CanMan system also requires a simulation of the nodes
used to distribute IO. There are two types of SLIO nodes, SLIO 01 and SLIO 02. The
main differences between these two nodes are the number of IO-ports. The software
used in the nodes is always the same irrespective of the application in the CCN nodes.
The SLIO node software is just a loop reading and writing IO and checking for CAN and
RS232 messages. The simulation is therefore implemented based on the node behaviour
and not based on the target code, so no actual target code is used.

5.3 Simulated HHT
The HHT (Hand Held Terminal) is used to monitor and configure the system. It is
connected via RS232 in the target environment and via a simulated serial
communication in a PC simulation. The simulated HHT is used in the same way as in
the target environment (see section 4.5).

Figure 8 shows the simulated HHT, developed in Borland Builder [24], which can be
used to configure and debug both the CCN and SLIO units. The HHT application can
also be used in the target system if the PC’s IO-port is connected to a CCN unit for
example.

 __
 29 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

Figure 8: The simulated HHT

5.4 Control panels
To manoeuvre the simulated ship, several control panels are used. On the ship bridge
three different panels are situated, i.e. the pilothouse panel, the starboard bridge wing
panel, and the port bridge wing panel, i.e. the panels in the front-end (see figure 4).
Another panel is located in the control room. All these panels are used to control the ship
propulsion. The panels are models of the target panels. The panels, shown in figure 10,
are used to illustrate the system status by showing the IO-values from the SLIO nodes.

In the back-end of the system, the engine and hydraulic behaviour has to be modelled to
reach a good simulation. On the other hand, to debug the application and check the
system, a simple IO list, showing the current IO status of the different signals, is enough.
The IO list is built up in the same way as the panels (see figure 10) and can be used to
set the different input values. In the demonstrator implemented to show the CanMan
system, no environment ship model is implemented. Implementing a ship model can be
seen as a possibility to extend and further elaborate the simulation.

5.5 Demonstration of a Simulated CanMan system in Windows
To demonstrate the simulation of a CanMan system in Windows I have chosen a main
propeller control system. The main propeller control system is a remote control system
that controls the pitch of the main propeller and the RPM (Revolutions Per Minute) of
the main engine. The CCN node on the bridge takes orders from the manoeuvre
equipment and sends them on to the CCN node in the engine control room. The CCN
node in the engine room processes the data, and activates required output commands to
the pitch control system and the engine.

 __
 30 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

Figure 9: An overview of the simulated CanMan system divided into three different parts, the bridge, the
engine control room, and the engine room.

5.5.1 System Description

The system has three different control panel stations on the ship brid ge, one on the main
bridge and one on each side, i.e. port and starboard stations. There is also one control
panel in the engine control room. The system includes two CCN nodes and seven SLIO
nodes. The CCN nodes are found in the bridge and in the engine control room. These
nodes run the applications. The bridge node handles the manoeuvre responsibility
management on the bridge, error detection, and other related functions. The engine
control room node handles for example the engine and alarm system.

1. The CCN

bridge node
2. The CCN

Engine Control
Room node

3. SLIO nodes
4. Panels with

SLIO node

 __
 31 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

5.5.2 Control Panels

To control the simulation of the ship a control panel is needed. I have chosen to divide
the panel into small groups for each IO type. The digital inputs are set active by clicking
on the text or on the led. The analog IO is presented as gauge meters and knobs or slide-
bars. Pulse and PWM outputs are displayed as led-bars, showing the actual status. The
panels are developed using Borland Builder [24], a development environment
specialised in building graphical user interfaces.

Figure 10: An example of a panel used to control the system simulation. This panel is the Engine Control
Room Station panel, used in the main propeller control system that I have chosen to simulate.

Figure 11: An example sketch of a panel used in the ships. This is an overview of the actual Engine
Control Room Station panel used in the main propeller control system.

 __
 32 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

5.5.3 Model of the ship behaviour

When testing the control system today, Rolls-Royce uses a ship simulator. This
simulator is a set of ECUs (Electronic Control Unit) coupled to the SLIO units via an IO
plinth. The ECU’s are an earlier version of the CCN unit, called Newman [11], running
an application to simulate the ship behaviour. When testing the system, all nodes, both
CCN and SLIO units, are coupled together to form a complete system including the
panels. The SLIOs in the back-end of the system is connected to the IO plinth which in
its turn is connected to the ECU’s running the ship simulator.

The Windows simulation of CanMan, based on CC Systems simulation package, can be
extended in the future to take care of this simulation. In this case, a single PC coupled to
an IO plinth could replace the target hardware ECUs used to execute the simulator logic
today. The target hardware SLIO units are then coupled directly to the IO plinth. This
Windows ship simulator could also be used together with the CanMan simulation in
Windows, in this case no IO coupling plinth is needed since simulated IO is used. This
course of action would lead to a more realistic simulation all inside Windows.

5.6 Timing problems when simulating a CanMan system
Timing problems arise in a Windows simulation if the goal is to simulate at target
system time. If there are many nodes present, or if some of the nodes demand high
access to the CPU, the CPU utilization will be high. One or more nodes can miss their
deadline in spite of the fact that the CPU utilization is at max. This leads to missed
deadlines and unpredictable simulation behaviour. When simulating complete systems,
containing many different processes, using CC Systems simulation technique the
execution speed for the different processes is lowered with a certain scale factor. Exact
timing, i.e. simulation in real time, is not essential. The most important part is to keep
the system functionality.

When simulating larger CanMan systems these issues occur. The CCN nodes CPU
utilization is high, which leads to missed deadlines and “starvation” of the SLIO nodes if
the system is running at the same speed as the target system.

This problem can be solved in different ways. By distributing the calculations to
different computers a system can be simulated at real time. A more efficient way, if the
main object is to check system functionality, is to lower the execution speed. This can be
done in CanMan by slowing down the clock ticks that make the system step forward.
This clock tick is increased every ten milliseconds by a hardware interrupt in the target
hardware and simulated by a software event implemented in a thread with higher priority
than the rest of the system in the simulated environment.

I have chosen to solve the timing issues by using a dynamic load library file (DLL file)
with a shared memory area. This file contains functions that take care of all clock and
timing related work. The shared memory area contains, among other things, information

 __
 33 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

about the simulated system time, the scale factor between the simulated time and the
actual etc. See section 7 for more information about the simulated time control.

This solution improves the ability to test the CanMan system since the simulated time
can be changed depending on what one want to investigate and test. If, for example, the
IO values are used to debug the system, it may be helpful for the tester to stop the
execution temporarily.

5.7 Creating a simulated application in Microsoft Visual C++
To make it easy to create new simulated CanMan application I have prepared a
Microsoft Visual C++ project containing all the files needed (e.g. the OS library file and
some header files used) and empty folders that should be used to store the application
source and header files that are generated from Auto Cad.

If the Auto Cad plug in correctly generates the application files, no compile or linker
problem should occur.

5.8 Simulation advantages for Rolls-Royce AB
There are many advantages to be able to simulate a system in Windows. Specific
benefits for the CanMan system that should be mentioned are:

• An opportunity to debug the CanMan control system in Windows using for
example Microsoft Visual C++.

• Simulation makes it possible to easily check system functionality.
• The simulation package contains software tools to check IO, CAN-, and RS232

messages.
• Many application programmers can do testing at the same time on many different

computers.
• No PROM circuits or target hardware are needed.
• No electrical couplings or cables are needed.

The overall gain with simulation, if properly used, is that it speeds up the development
and testing cycle. This leads in the end to reduced development costs and hopefully to
improved software.

In spite of the fact that simulation has many advantages, not all hardware testing can be
excluded. The execution time of tasks on the target hardware is one issue that cannot be
tested in a PC; another is that there can be subtle implementation differences between
the compilers used for Windows and the one used for the target system.

 __
 34 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

6 API - LEVEL SIMULATION
CC Systems use API-level simulation of existing commercial real time operating
systems to test applications developed for these systems in Windows. At the moment
two different operating systems are used, OSE and RTXC.

The API- level simulation is based on an API, CCOS (Cross Country Operating System),
which can be configured to use different OS depending on the purpose of the
application. The CCOS API is placed on top of the host OS (see figure 13) and contains
only a subset of the available operating system primitives. These primitives are enough
to form an application base that can be used by the application programmers.

This approach differs a bit from the CanMan simulation strategy. The CanMan system
doesn’t have a clearly defined OS, it rather serves as an application platform were all
kinds of services are included, like CAN communication for example. The API-level
simulation used in CCOS requires a clearly defined OS, whose primitives can be
simulated in Windows for example. This is the case for both OSE and RTXC, but not for
CanMan (sees section 4).

The following parts about OSE and RTXC (section 6.1 and 6.2) are included to serve as
a background to the section about simulating the operating systems in Windows (section
6.3).

6.1 OSE
The OSE Real Time Kernel is an OS for embedded distributed systems from ENEA
OSE Systems AB. Normally the application software is statically linked with the OS
kernel and stored in ROM in the target system.

The most important parts of a RTOS are processes and interprocess communication.
Knowledge about these parts is therefore crucial to the ability to simulate the behaviour
of the OSE Real Time Kernel.

6.1.1 Processes

The fundamental building block in an OSE system is the process, since it is through the
use of processes that a system allocates CPU time. In an OSE system you will find
different categories and types of processes. These are all carefully designed so that they
complement each other to fulfil possible needs in a system.

6.1.1.1 Categories

Static processes are created at system start by the kernel, or by the interface library if the
static processes reside in a separately linked software unit. Static processes are supposed
to exist “all the time”, i.e. for the life of the system or the software unit. It is not possible

 __
 35 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

to kill a static process. A static process may only be killed if it is part of a separately
linked and loaded software unit, and only as part of an operation that kills all processes
in that unit.

Dynamic processes can be created and killed freely during run-time. The main purpose
of having dynamic processes is that it enables the system to run multiple instances of the
same code, where the number of instances does not have to be known at compile-time.

6.1.1.2 States

A process in OSE can be in one of the following states: running, ready or waiting.

The CPU is currently assigned to a running process. In a single processor system, only
one process can be in this state at a time.

All processes ready to run are placed in a ready queue. At each process-switch the first
process in the ready queue is scheduled for execution. Each process priority level has its
own ready queue. All processes in a ready queue wants to run but may not be allowed to
because some process of higher or equal priority is currently queuing or running.

The process is either waiting for some event to occur or it is stopped. Waiting processes
do not require the CPU at the moment. A process may be in a waiting state for the
following reasons:
• It may be waiting to receive a signal.
• It may be waiting for a delay to expire.
• It may be waiting for a semaphore.
• It may be waiting because the process was explicitly stopped

6.1.1.3 Scheduling principles

There are four different scheduling principles used in OSE, preemptive, cyclic, priority
based and round robin.

If preemption is used, the OS can pre-empt the current process at any time, even if the
current process is executing a system call, i.e. the OS can change execution to another
process at any time.

Using cyclic scheduling, processes can be scheduled to run at certain time intervals. This
scheduling method is used for timer- interrupt processes in OSE.

Priority based scheduling means that the process with the highest priority will run as
long as no interrupts are in service and the process is not waiting for some event to
occur. This scheduling method is used for all prioritised processes in OSE.

To give all processes on a certain priority level equal right to the CPU each priority level
has a queue containing all ready processes for that priority level, this is the basis for

 __
 36 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

round robin scheduling. The first process in the queue is the process currently running
on that priority level. When a process looses its right to be the first process in the queue
it will be placed at the end of the queue and will not run until it reaches the front again.

6.1.1.4 Process Types

Interrupt processes are called in response to a hardware interrupt or a software event and
will run from beginning to end each time, provided no other interrupt process with a
higher priority wants to run, in which case the interrupt process with higher priority will
take over the CPU. The interrupt process with lower priority will continue again when
the interrupt process with higher priority has completed its task.

Timer- interrupt processes act in exactly the same way as ordinary interrupt processes
except that they are called in response to changes in the system timer. This means, for
example, that a system designer can specify that a certain timer- interrupt process is to
run with one-second intervals. Timer- interrupt processes are also called in order of
priority, in the same way as ordinary interrupt processes.

Prioritised processes are the most common process type. They are written as infinite
loops that will run as long as no interrupt process or another prioritised process with
higher priority is ready to run.

Background processes run in a strict time-sharing mode at a priority level below
prioritised processes. This means that a background process can be pre-empted by a
prioritised or interrupt process at any time. They are also written as infinite loops in the
same manner as prioritised processes.

6.1.1.5 Priority

It is possible to assign a certain priority to each process. Priority levels are 0 – 31, where
0 represents the highest priority.

6.1.2 Interprocess Communication

In OSE there are different ways to communicate between or synchronise processes.
Even if all interprocess communication duties can be carried out by signal handling,
which is the recommended way for two processes to communicate, there may be times
when other mechanisms are more suitable. This section describes the different
mechanisms for interprocess communication in OSE.

6.1.2.1 Signals

A signal is a message that is sent from one process to another. Before communicating
with another process it is necessary to know the identity of that process. Static processes
can be declared as public, and any other process wanting to communicate with that
process may declare it as external and thus obtain the process identity. Dynamic
processes are given identities when created and any process wanting to communicate

 __
 37 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

with a dynamic process must determine the destination process identity. So if a process
other than the creator wants to communicate with a dynamic process identity can be
determined by communicating with its creator.

The first location of the buffer will contain the signal number and any data to be sent
will be located immediately after the signal number. Apart from the signal number and
data contents all signals have some hidden attributes associated with them: these are
signal owner, size, sender and receiver. These attributes can be examined by using
system calls. The attributes also change when certain system calls are used.

A process may specify which signals it is interested in receiving at any particular
moment. This is done by passing an array of signal numbers to the receive routine. The
process can then either wait for any of the specified signals to arrive or just check if any
such signal is in the process signal queue. Other signals will be left in the signal queue of
the receiving process. If a certain signal is not in the signal queue and the process wants
to wait for its arrival, execution will switch to another process. It is also possible to be
interested in all signals and thus receive any signal in the signal queue.

If a process with high priority is waiting for a signal and a process with lower priority
sends that signal, the sending process is immediately pre-empted and the process with
higher priority receiving the signal will start to execute.

Signals are the most general tool for interprocess communication in OSE. This means
that all interprocess communication duties can be carried out by signal handling,
irrespective of whether the involved processes belong to the same target system or not.
Since it is possible, but not necessary, for signals to contain data, signals can be used
both for exchanging information and for synchronising processes.

In some rare cases signals may have to be processed by a process other than the one that
they were sent to. For this purpose processes may optionally be equipped with a
“redirection table.”

The redirection table is a data structure containing a list of signal numbers and
corresponding process identities. The redirection table must be specified when the
process is created. For each signal sent to the process the redirection table is scanned. If
the signal number is found in the table, the kernel looks in the table to determine the
corresponding process, and redirects the signal to that process instead. If the associated
process also has a redirection table, the procedure will be repeated until the signal is
finally allowed to reach a process.

6.1.2.2 Semaphores

Each process has one “fast semaphore”. The reason for using fast semaphores for
process synchronisation is that they are much faster than signals. However, they are not

 __
 38 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

as powerful as signals, since they lack the ability to carry data and they cannot be
redirected.

Semaphores are somewhat similar to fast semaphores, but they differ in one very
important aspect: A semaphore is not related to any specific process. Any background or
prioritised process may wait at a semaphore, not just the owner. Any type of process
may signal a semaphore.

The main purpose of semaphores is to protect critical code sections from concurrent
execution without disabling interrupts. This is often done to protect global shared
resources. If the compiler supports static initialisation of C structures this can be used to
declare a semaphore at compile time.

Ordinary semaphores are mainly used to achieve mutual exclusion inside two or more
concurrent processes, which means that if a read or write operation is to be performed on
a shared resource from more than one concurrent process, that operation should be
preceded by a wait_sem system call and followed by a signal_sem system call.

6.1.3 Interrupt Handling

An interrupt is a way of switching execution to separate interrupt process as soon as
possible after some event has occurred. It is not always the case that execution will
continue from where it was when the interrupt occurred. Some operation in the interrupt
process might for instance have made a prioritised process ready. If that process has a
higher priority level than the interrupt process, execution will continue in that process
instead. In an OSE system there are three possible ways an interrupt process may be
triggered; by a real hardware interrupt, by a software event or by a timer event.

6.1.3.1 Hardware Interrupts

An interrupt process may of course be triggered by some external hardware event. In
such cases is it absolutely crucial that the CPU’s hardware interrupt levels match the
logical interrupt priorities in the OSE system.

6.1.3.2 The Wakeup Facility

Software events are performed either by sending a signal to the interrupt process, or
simply by signalling the fast semaphore of the interrupt process. This is called waking
up the interrupt process.

The interrupt process can tell if it was started by a hardware interrupt or the two types of
software events by issuing the wake_up system call.

6.1.3.3 Timer Interrupts

Timer- interrupt processes are identical to interrupt processes except for the manner in
which they are called. A time slice that represents the number of milliseconds between

 __
 39 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

each activation of the process is specified when the timer-interrupt process is created.
Furthermore, all timer- interrupt processes in a system are mutually exclusive and
assigning different priorities to them can state their importance.

Timer- interrupt processes are dependent on a system tick counter. This counter is
advanced by the tick system call. Every time the system tick counter is advanced, the
kernel checks if it is supposed to start a timer interrupt, or if it should change some other
process status from waiting to ready. Since the start of a timer interrupt depends on the
system tick counter the tick system call cannot be issued from within a timer- interrupt
process. Instead, the tick system call should be made from an ordinary interrupt process
triggered by some external timer hardware.

6.2 RTXC
RTXC (Real Time eXecutive in C) is a framework with which to develop real time
embedded systems. It is distributed in source code form. RTXC is based on the concept
of preemptive multitasking which permits a system to make efficient use of both time
and system resources. RTXC is a set of C language source code files that needs to be
compiled and linked with the object files of the application programs. It is designed to
operate in an embedded system.

6.2.1 Tasks

RTXC support both static and dynamic tasks. Static tasks are those whose attributes are
known before the system executes and which remain fixed for the life of the
configuration. Dynamic tasks are started as the result of some situation in the system,
which requires their existence. A TCB (Task Control Blocks) holds the task state and
includes execution state, task id, priority, entry point, stack pointer, and environment
arguments pointer. To provide a consistent interface between the programmer and the
operating environment, all tasks must share a common set of attributes.

The user defines the maximum possible number of tasks permitted in the system. The
task identifier is a number from 1 to the maximum number of tasks. The task number
serves no purpose other than to determine which task is being referenced.

RTXC treats a task as though it were a C function. There are one main difference
between an RTXC task and a C function, the task never returns to its caller. Execution of
a task begins when the task is made runnable and is inserted into the ready list. A task,
which is not currently running, is always in one of the two basic states, runnable or
blocked. When a task is runnable it is always placed in the ready list at a position
relative to its priority. A blocked task is not in the ready list. It is not ready to get CPU
control because it is waiting for some external event to occur which will remove the
blocking condition. A task can be blocked for many different reasons; the task can for
example be waiting for a semaphore, for a message or it can be delayed.

 __
 40 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

The policy of multitasking requires that each task has a stack on which are stored local
variables, return addresses from subroutine calls, and the context of preempted task. The
base address is stored when the task is created. For static tasks, the stack size must be
specified during system configuration.

6.2.2 Intertask Communication and Synchronization

Having an event driven multitasking system requires flexible means of intertask
communication and synchronization. RTXC provides a set of services whereby two or
more tasks can synchronise or communicate with one another. The most important
mechanisms in RTXC for intertask communication and synchronization are listed below:

6.2.2.1 Semaphores

RTXC semaphores are the primary mechanism of synchronizing a task with an event.
Each semaphore contains information about the state of the associated event and any
task trying to synchronise with the event. An RTXC semaphore is not a counting
semaphore nor is it a simple binary event flag. It is a tri-state device capable of
containing information about its associated event and the task waiting on the event. Only
one task at a time may use a semaphore for synchronization with the associated event. It
is considered a design error if a task attempts to synchronise with an event using a
semaphore that is already in use by another task for the same purpose.

A RTXC semaphore contains a value representing one of the three possible states in
which it can exist. These three states are: pending, waiting and done. A pending state
indicates that the event associated with the semaphore has not yet occurred and is
therefore pending. The waiting state shows that not only has the event not yet occurred,
but also a task is waiting for it to happen. The done state tells that the event has
occurred.

If a task attempts to wait for a semaphore in the pending state, the state of the semaphore
is changed to waiting. The current task will then be blocked and removed from the ready
list, and the execution is suspended until the event occurs.

6.2.2.2 Mailboxes and Messages

Mailboxes are used to send messages between tasks. A mailbox is identified by a name,
and is located in RAM. The messages currently in the mailbox are gathered in
descending order of message priority as defined by the senders.

Messages are one of the means by which data moves from a sender to a receiver task.
Every task is capable of being both a message sender and receiver. Messages are
transferred from one task to another via mailboxes. RTXC does not actually move the
content of a message from the sender to the receiver. Instead it puts the address of the
message into a linked list found in the receiving mailbox.

 __
 41 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

Messages are sent from one task and received by another. RTXC takes the message from
the sender and puts it into a mailbox.

6.2.2.3 Queues

A third technique to make two tasks communicate and synchronise with each other is to
use FIFO (First In First Out) queues. Queues are usually used to handle operations like
character stream IO or other data buffering. RTXC queues differ from messages in that
the actual data rather than an address is entered or removed from the queue, i.e. data is
copied.

An RTXC queue has two parts: the header and the body. Both parts of a queue must
reside in RAM. The header contains information needed to move data into and out of the
queue. The body is simply an area of RAM that is organized as an array. Unlike
messages, there is no priority assigned to a FIFO queue entry.

6.2.3 Resources

RTXC permits a task to gain exclusive access to some system component or element.
This is useful where it is necessary to guarantee that one and only one user has control of
an entity. An entity may be defined as one that requires restricted access, e.g. a special
software function or a printer.

An RTXC resource contains two basic components, the resource state, and the list of
waiters. The state of the resource defines whether or not the resource is locked. Only one
task at a time may be the owner of the resource. A resource always exists in one of two
possible states, free and locked. A task may become the owner of a resource only when
the resource is free.

A task wanting to use an entity associated with an RTXC resource must first lock the
resource. When it is finished with the resource, it must unlock it.

6.2.4 Interrupt Service

RTXC also provides a generalized interrupt service scheme. Because Interrupt Service
Routines (ISR) are specific to both the particular device triggering the interrupt and the
method of use in the application, the user must provide it. While the hardware specifics
of interrupt recognition and acknowledgement varies from CPU to CPU, software
handling is more consistent. There are three parts basic parts to all ISR:s, prologue,
device servicing, and epilogue.

The prologue is entered after acknowledgement of the interrupt. It is usually written in
assembly language. The purpose of the ISR prologue code is to save the processor
context plus any extended context necessary to preserve the interrupted environment.
The device servicing is the main function of the ISR to service the interrupting device.
This is usually a C function that performs some device specific operation in order to
clear the source of the interrupt request. The ISR epilogue code is, like the prologue,

 __
 42 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

written in assembly language. Its function is to restore the highest priority ready task and
grant it control of the CPU.

6.3 Simulation of OSE and RTXC in Windows
CC Systems AB use OSE Real Time Kernel and RTXC as real time executives in
different target hardware nodes. Many of the applications developed for these systems
are written so that they use the CCOS (Cross Country Operating System) API. This
makes it possible to use the same applications for different OSes. The CCOS API is also
configured to take care of the system calls, used to simulate the applications, in
Windows.

This approach is a good example of an API- level simulation of a real time system. All
hardware dependencies are clearly separated from the rest of the system, i.e. the
middleware and the applications. This is the preferred method, compared to the one used
to simulate CanMan, but is not always possible to use without having to change the
system architecture. In many cases, existing systems, like CanMan, do not divide the
software in different layers. This makes them much harder to simulate in a PC.

Provided that all primitives in OSE and RTXC had similar behaviour, only one
Windows correspondence to each of these primitives would be necessary to simulate the
behaviour. This is unfortunately not the case; some of the primitives, the mailboxes and
the semaphores for example, work different ly in the two RTOSes and have to have
target OS specific implementations in Windows.

6.3.1 CCOS

CCOS is an API layer containing system calls to the target OS. The API is implemented
for the OSE Real Time Kernel, for RTXC, and for the OS used for simulation. To
configure the system for the desired environment, the source code is compiled with
different pre-processor definitions. This means that only the parts of the source code
used in the chosen environment are compiled and used (see figure 10).

CC Systems AB has used the main parts of the CCOS in conjunction with the OSE Real
Time Kernel for some years. My contribution is mostly related to the simulated time
control, but I have also added some new OS primitives and functionality associated with
RTXC, for example mailboxes.

To simulate RTOS calls correctly, the corresponding Windows calls need to be adapted
to have the same behaviour. Adding another layer, OS_NT, between the CCOS and
Windows, does this. OS_NT contains logic to make the Windows primitives act like
OSE or RTXC system calls.

Some of the primitives in OSE and RTXC work differently. Mailboxes, for example (see
section 6.1.2 and 6.2.2), do not work in the same way in OSE as in RTXC, therefore two

 __
 43 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

different OS_NT functions are needed to make Windows act like the chosen RTOS
mailbox.

6.3.2 System Overview using CCOS

Using the CCOS API requires that the application programmer only use the subset of the
RTOS functionality that the CCOS API offers. There are some extra code introduced in
the system used as “glue code” (see figure 13) to achieve the same behaviour for the
different operating systems. It is important to emphasize that after compiling the source
code for the target environment no unnecessary code, associated with the other OS, is
introduced in the system. Figure 12 shows a typical CCOS function, it works as a
“bottleneck” for the system calls, in the sense that there is only one way in, the CCOS
function call, but different implementations depending on which OS is used. The
function always takes the same parameters as input, but calls different OS primitives
depending on the pre-processor definitions. The only problem is that the depth of the
function calls is increased by one, because of the new layer.

The benefits using CCOS are that it is easy to reuse applications and to use new
operating systems without modifying the applications. The API can be extended to take
care of more of the primitives that are offered by the RTOS. The CCOS system calls,
listed in figure 14, are sufficient to create applications. Using CCOS makes it rather easy
to simulate the behaviour of the target system applications in Window.

Figure 12: Example of a function in CCOS using OSH_delayTime if Windows is used and delay if OSE
is used.

void CCOSSleep(long time)
{
#ifdef OSE_NT
 OSE_delayTime(time);
#elif RTXC_NT
 RTXC_delayTime(time)
#elif OSE
 delay((OSTIME) time);
#elif RTXC
 delay(time);
#endif
}

 __
 44 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

Figure 13: The figure to the left shows a target system, in this case the application makes direct system
calls down to the operating system kernel. In the figure to the right the application can be configured to
work in the target environment or in windows.

6.3.3 System calls in CCOS

CCOS is the operating system API used by the applications. It is used to clearly define a
layer between the applications and the underlying operating systems, OSE, RTXC, or
Windows.

Some CCOS function calls do not have equivalence in all of the operating systems. In
some cases, like CCOSInit and CCOSStart, the calls are used even if the RTOS does not
need the specific function call. This is done in order to make the applications more
consistent. In other cases, like CCOSWaitEvent, there is no exact correspondence in
OSE. This makes the CCOS API incomplete in some sense, but a further extension of
the API is possible using glue code. These extensions would make the API complete in
the meaning that no CCOS calls then would be empty.

Figure 12 shows the OS primitives available in the CCOS API. For further explanation
about the two RTOS, see section 6.1 and 6.2.

RTXC_NT OSE_NT

Windows NT

OSE

RTXC

CC_OS (API)

APPLICATION

Target OS

APPLICATION

Target HW Target HW PC

 __
 45 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

CCOS (API) OSE RTXC Windows OS_NT
CCOSInit KS_execute OSH_initialize
CCOSStart start_OSE
CCOSCreateProcess create_process KS_deftask OSH_createProcess
CCOSStartProcess start KS_execute OSH_startProcess
CCOSInitializeMutex create_sem OSH_initializeSemaphore
CCOSRequestMutexTime get_sem KS_lockt OSH_waitSemaphoreTime
CCOSCreateMailbox OSH_createMailbox
CCOSReceiveMail receive KS_receive OSH_readMail
CCOSReceiveMailTime receive_w_tmo KS_receivet OSH_readMailTime
CCOSSendMail send KS_send OSH_sendMail
CCOSSendMailTime KS_sendt OSH_sendMailTime
CCOSRequestMutex wait_sem KS_lockw OSH_waitSemaphore
CCOSReleaseMutex signal_sem KS_unlock OSH_signalSemaphore
CCOSInitializeEvent OSH_initializeSemaphore
CCOSWaitEvent KS_wait OSH_waitSemaphore
CCOSWaitEventTime KS_waitt OSH_waitSemaphoreTime
CCOSSignalEvent KS_signal OSH_signalSemaphore
CCOSGetTime get_ticks KS_elapse OSH_getTime
CCOSSleep delay KS_delay OSH_delayTime

Figure 14: A summary of the CCOS subset available. These system calls can be used to simulate OSE and
RTXC in Windows.

I have also extended the CCOS implementation to make it possible to use the simulated
time control, see section 7. The actual changes are introduced in layer between the API
and Windows. Thus, this does not affect the API in any way.

6.3.4 Demonstration of a CCOS application

I have tested the functionality of CCOS using a small application developed for an
embedded computer. The application starts by creating three processes in a single node.
The processes in the node communicate using a mutex protected, i.e. a mutually
exclusive access to a resource, RS232 serial communication resource. It also uses events
and CAN. The events are used for synchronisation between the processes. The tested
CCOS application is rather small and simple. The main reason for this is to simplify
debugging and testing.

The application is tested both simulated in Windows and in CC Systems IO node, Cross
Fire [25] (see figure 15). When testing the application in the target node, RTXC was
used as RTOS.

 __
 46 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

Figure 15: CC Systems IO distribution node, Cross Fire, used to test the CCOS API.

The result was satisfactory, both the simulation and the test on target hardware worked
correct. See section 7.6 for an extended description of the simulated time control testing.

 __
 47 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

7 SIMULATED TIME CONTROL
In the current CC System simulation package, there is no support for providing flexible
and powerful simulation of time that does not need a lot of changes in the source code.
Simulating a complete control system in a single PC at real time, i.e. the target system
speed, is often not possible nor important. The important issue is to keep the system
functionality intact and to make it easy to test and debug for different kinds of software
failures. Therefore I have tried to develop an extension to the simulation package, used
both in CanMan and in the API-level simulation, which takes care of timing issues in a
more flexible manner. This extension does not use Windows clock directly, all nodes
using the simulated time control have their own perception of time based on a local
clock. Time control makes it possible to change the execution speed during simulation
and also to stop it temporarily. This is implemented using a simulated clock speed that
can be used by many different processes simultaneously.

Timing problems often arise when simulating a complete distributed control system in
real time, i.e. the same execution speed as in the target environment, on a single PC. The
main reason for this is that the different nodes miss their deadlines, and because of this
the system behaviour is unpredictable or may even stop working. The problem appears if
larger distributed control systems are simulated, containing many nodes, or if some of
the nodes have a high CPU utilization. A comparable problem arises if a small system is
simulated. If a single targe t hardware node with a slow processor is simulated, problems
with too fast execution can appear when simulating on a PC.

A common way to solve this kind of problem is to change the time the nodes sleep by
changing the source code. This can be done either by changing the source code explicitly
or by inserting #ifdef’s in the source code. An example of how this can be done is
showed in figure 16. To achieve the right behaviour of the control system all timing
related function calls needs to be changed with the same “scale factor”. This also
includes changing the period times for different tasks so that no nodes miss their
deadlines because of a mix-up between target and simulation time. Otherwise the
synchronisation and timing between the nodes are changed, which also leads to
uncertainties when testing the system.

 __
 48 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

Figure 16: An example of a commonly used solution to avoid timing problems when simulating in
Windows.

A positive side effect of lowering the execution speed is that the system functionality is
easier to debug. So, if all nodes execution speed is lowered with the same time scale
factor, the system can be simulated in a single PC and the behaviour is intact, or very
close to intact.

By using a Dynamic Load Library file (DLL file), with a shared memory block, timing
can be handled in a more flexible manner. The existing time related OS primitives, like
Sleep, are overridden with functions placed in the DLL file. These functions use a
simulated time instead of using the PC’s clock time directly (for details about the
implementation see section 7.3). A separate time control GUI (Graphical User
Interface) can be used to set the time scale factor used by all the registered nodes, and it
is also linked to the DLL.

This approach makes simulation more flexible and the system behaviour can be checked
using different time scale factors without changing the source code. It also offers
opportunities to stop the execution temporarily to check the current status or to run the
system in slow motion.

7.1 Controllable Time using a Dynamic Link Library File (DLL)
The simulated time control can be implemented using a Dynamic Link Library file (DLL
file). A DLL file contains one or more functions, compiled, linked, and stored separately
from the processes that use them.

The DLL can also create a handle to a shared memory block common to all processes
using the DLL. This handle can be used to access common data, e.g. the simulated
system time scale factor and the number of connected units. This file can be opened by
the DLL and used as if it was a regular memory block. This makes it possible attach a
GUI to the simulation using the same DLL, and use this GUI to control the execution
speed.

#ifndef SIMULATION
 Sleep(10); // Target code
#else
 Sleep(50); // Simulation
#endif

 __
 49 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

Figure 17: A DLL used in two different processes and with a shared memory mapped file, containing the
simulated time; which can only be accessed through the DLL.

7.2 System Overview with Controllable Time
All nodes using the simulated time control are registered when first using any of the
functions implemented in the DLL file. The default value of the time scale factor is one,
so if the time control GUI isn’t used, the system acts like the time control isn’t used.

Figure 18 shows the implementation when using CCOS. In the CanMan case the
simulated time control is introduced in a more customised manner. The application
platform, i.e. the CanMan operating system, is driven by an interrupt that increase the
system clock. The simulated interrupt, implemented as a loop, use the simulated time
control implementation of Sleep. Other timing related functions are also changed in the
CanMan operating system.

Process 1

DLL

DLL data

DLL data

Time:
Scale:

 __
 50 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

Figure 18: System overview using simulated controllable time and the CCOS API. The simulated time is
accessed through shared memory, and the Time GUI can change the clock ”speed”.

7.3 Implementation of the DLL file
The header file for the DLL has to be included in the files that use any of the functions
implemented in the DLL file. The simulated time control is a software component that
can be used by the application programmer during system testing if a certain pre-
processor definition is used. If no such definitions are done, the software will use the old
implementation, i.e. using Sleep.

The set of OS primitives using the clock, or system calls with timeout times,
implemented in the DLL file, use specific Windows event operations. This approach is a
flexible way to implement time related duties.

A process or thread that use any of the functions in the DLL is registered, this is done by
using the DllMain function called the very first time the DLL is used. The DllMain
function is a method of entry into a dynamic link library. It is called by the system when
processes and threads are initialised and terminated. If a process or thread uses the DLL
for the first time, the call to one of the functions is preceded by a call to DllMain. The
DllMain function calls different initialising functions depending on whether it is a
process or a thread attaching. The initialising functions take care of registration and
creation of a handle to the shared memory mapped file. This file contains information
about the number of units connected, the number of threads per unit and of course the
global time scale factor. This information is then global for all the nodes, i.e. processes

TIME GUI

WINDOWS NT

CC_SimTime

WINDOWS NT

RTXC_NT

RTXC

OSE

OSE_NT

CCOS API

APPLICATION

CC_SimTime

Shared

Memory

Time:
Scale:

 __
 51 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

and threads, attached. Information about the elapsed time for the different units and
information used to identify a specific thread or process is stored as process global
variables, i.e. global to all threads in a specific process.

The idea behind the simulated time control is that the simulated execution time can be
changed without changing the source code. I have implemented functions for sleep and
functions with timeouts using “wait for” methods and events. The “wait for” methods
take one or more events as input together with a timeout time. If any of the events are
signalled the method is returning, otherwise it will sleep until the timeout time is
reached. The method has different return values depending on the reason while it was
awakened.

The idea is that only the Time Control GUI (see section 7.4) shall change the time scale.
If the scale is changed all the registered processes and threads are signalled. All methods
using time are implemented using the Windows primitives WaitForSingleObject
or WaitForMultipleObjects. These methods are awakened either using the
events or timeouts.

As a simple example, the OS call Sleep works the following way. When using the time
control DLL file, the Sleep system call calls the DLL file. The implementation of
Sleep uses the Windows OS primitive WaitForSingleObject with a timeout
time corresponding to the time to sleep multiplied with the time scale factor. This OS
call sleeps until the timeout is reached, or an event is signalled. If the time scale factor is
changed while waiting, the event is signalled. In this case the application is supposed to
continue to sleep, so the sleep time is recomputed according to the change.

The different functions available in the time control component are listed and explained
below:

7.3.1 CC_SimTime_ChangeTimeScaleFactor

This method changes the time scale factor and updates the total elapsed time since start
up. The elapsed time is not common to all processes; each of the nodes has their own
system time corresponding to the time since they where started. This system time is
computed and updated at every use of the system time. The system time is updated when
the scale factor is changed because the system time depends on the scale factor in the
sense that if the speed is lowered the system time should update more slowly.

The function also opens the events associated with all processes and threads registered in
the DLL file. These events are signalled to awake all the processes and threads waiting
in the “wait for”, used in sleep for example, OS primitives.

The idea is that only the Simulated Time Control GUI shall call this function.

 __
 52 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

7.3.2 CC_SimTime_GetTimeScaleFactor

This is a simple function used to get the current time scale factor. The method also
updates the total elapsed time since start up.

The Simulated Time Control GUI uses this function to check the current scale factor.

7.3.3 CC_SimTime_GetGlobalTime

A simple method that updates and returns the present global target system time elapsed
since the application first was us ing the DLL. Each node has its own notion of time.

This method can be used by all applications.

7.3.4 CC_SimTime_GetHandleToTimeEvent

This method returns the handle to the event used to signal the “wait for” functions.

This method can be used by all applications.

7.3.5 CC_SimTime_CalculateScaledTime

This function returns the elapsed system time based on the present time scale factor.

This method can be used by all applications.

7.3.6 CC_SimTime_waitFor2Events

This function makes it possible to wait for two events simultaneously, i.e. not only the
scale factor event. This method has to be used when mailboxes and semaphores are
using timeout times. In these cases, two events are needed. If the application use a
mailbox and call the receive mail function with a timeout time (i.e. the
CCOSReceiveMailTime in CCOS), say 10 milliseconds for example. In this case there
are two events needed to be taken care of, one is the scale factor event and the other the
receive mail event.

The function is implemented using the WaitForMultipleObjects method. This
method takes an array of events together with a timeout time as input. When the method
is awakened, by either an event or because the timeout time is reached, it returns with a
value depending on the reason will it returned. If the method returned because of a
change in the time scale factor, it recalculates the time with the new factor and then calls
the method again.

The idea is that all applications using timeouts sha ll use this simulated time control
function.

 __
 53 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

7.3.7 CC_SimTime_stopExecution

This function stops the execution and halts the system clock until the time scale factor is
changed.

7.3.8 CC_SimTime_Sleep

This function sleeps for a desired time, takes care of any time conversion, and changes
in the time scale factor that might occur during the sleep call. See the example in section
7.3 for further description.

7.4 Time Control GUI
The time scale factor can be changed using a time control GUI, see figure 19. This
application shows the current scale factor, the number of nodes connected to the
simulated time control. It also provides a way to stop the execution of the connected
units.

The scale factor one corresponds to real time simulation, i.e. the system is simulated in
the same speed as the host system uses. Scale factor 10 means that the system is slowed
down with a factor 10, i.e. 1 ms (milliseconds) of target time corresponds to 10 ms of
host time. The simulated clock than takes 10 actual ms to increase 1 ms in the simulated
time.

Figure 19: An example of a simple simulated time control GUI.

7.5 Simulated Time Control in CanMan
I have changed all the time related system calls to use the functions provided by the
simulated time control dynamic load library. The software events used to simulate the
target hardware interrupts used to update the system time, for example, is implemented
using simulated time control.

This makes it possible to use the simulated time control when simulating Rolls-Royce
distributed control system CanMan. The implementation doesn’t mean that the Time
Control GUI needs to be used. The system acts like no changes where made if the GUI is
not used, since the time scale factors default value is one.

 __
 54 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

7.6 Simulated Time Control in CCOS
The Simulated Time Control methods were introduced in CCOS as well. My ambition
was that the application developer should not need to decide whether or not the time
control should be used. I have therefore implemented the methods in the “glue code”
layer just under the CCOS API (see figure 16) but I have also kept the old
implementation not using the simulated time control. I have implemented this by using
#ifdef’s in the source code.

All CCOS methods using time has been extended so that the also can be configured to
use the simulated time control.

7.7 Demonstration of a system with controllable time
To demonstrate the simulated time control, I have chosen to demonstrate two different
systems using the simulated time.

7.7.1 Demonstration of a CanMan system with Controllable Time

This system is the same as the one described in section 5.5 extended with the simulated
time control. This system contains of two CCN nodes and seven SLIO nodes. If this
simulation is executed with time scale factor one, certain problems arise. These
problems are related to that the CCN nodes have a high CPU utilization, which leads to
trouble if one of the other nodes misses its deadline. The simulation is more stable and
reliable if the time scale factor is increased. The simulation is still fast enough to test the
system functionality without observable delays.

Figure 20: An example of a Control Panel used to start and configure a CanMan system. The panel also
includes an interface towards the simulated time control.

 __
 55 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

7.7.2 Demonstration of a CCOS application with Controllable Time

The second system implemented to show the behaviour of applications using
controllable time is based on the CCOS API, described in more detail in section 6.3.
Two separate applications and a time control GUI (see figure 21) is used in the
demonstrator. The two applications have each two processes communicating via mail.
The processes communicate with each other via simulated CAN. The processes also
share a critical resource, in this case the RS232 serial port, protected using mutex (i.e.
mutual exclusion). This small system does not gain anything using controllable time, but
serve as a good demonstrator showing the concept.

Figure 21: An example of a Simulated Time Control panel used to control the system time factor when
using CCOS for example.

 __
 56 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

8 CONCLUSION
This thesis deals with issues related to simulation of distributed real time systems in a
Windows environment. The simulation is based on CC Systems simulation package and
the main goal was to indicate the benefits simulating a control system in a PC and to
develop the package further.

There are three main parts considered and realized: simulation of an existing control
system, simulation based on an API- level simulation technique, and an idea of an
extension of the existing simulation package using a simulated controllable time.

CanMan is a control system platform used for ship propulsion and is designed by Rolls-
Royce AB. The system is a CAN based distributed real time system using two different
types of embedded computers, the CCN node used for calculations and the SLIO node
used as an IO distributor. One of the main parts of this thesis was to simulate this control
system in Windows, which includes simulating the hardware units, the CAN-buses, the
IO used to control the engine etc. By replacing all hardware related software from the
target source code I was able to make each node execute as a process in Windows.
Simulating the complete control system, i.e. one process per node, in a single PC makes
it possible to find software failures in an early stage of application development.

CCOS is an API used to serve as a common interface to two different real time operating
systems, RTXC and OSE. The API can also be configured to use Windows primitives to
simulate the behaviour of the operating systems in a PC. This simulation technique is
called API- level simulation and is more general than the approach used when simulating
CanMan. I have extended the CCOS API with new primitives, mailboxes for example,
and also added a simulated time control.

Simulated Time Control is a software component that can be used to control the
execution speed when simulating a distributed control system in windows. This is an
extension of the existing simulation package and it can be used to enhance the ability to
debug systems in a PC.

 __
 57 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

BIBLIOGRAPHY
[1] www.microsoft.com

[2] Rolls-Royce AB, CanMan – a new control system platform, 1999

[3] www.rollsroyce.com

[4] RTXC Kernel User's Guide, Quadros Systems Inc

[5] www.quadros.com

[6] ENEA OSE Systems AB, Documentation Volume 1-3, 1998

[7] www.enea.com

[8] www.cc-systems.com

[9] Ohlsson, Gunnar, CC Systems AB, Simuleringsteknik, 2000

[10] Rolls-Royce AB, CanMan Documentation, 1998

[11] Rolls-Royce AB, Newman Documentation, 1999

[12] Rolls-Royce AB, CCN 01 Documentation, 2000

[13] Rolls-Royce AB, SLIO 01 Documentation, 2001

[14] Rolls-Royce AB, SLIO 02 Documentation, 2001

[15] Auto CAD (www.autodesk.com)

[16] www.lisp.org

[17] Rolls-Royce AB, HHT Guide

[18] www.iar.com

[19] Microsoft Visual C++ (http://msdn.microsoft.com/vstudio/)

[20] www.experts-exchange.com (Provides IT information)

[21] www.google.com (C and C++ discussion group)

[22] Richard J Simons, WIN32 API Super Bible, 1997

[23] Christopher Van Wyk, Data Structures and C Programs, 1988

[24] www.borland.com

[25] Cross Fire (www.cc-systems.com)

 __
 58 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

APPENDIX

A ABBREVIATIONS

API Application Programming Interface

CAN Controller Area Network

CCOS Cross Country Operating System

CPU Central Processing Unit

ECU Electronic Control Unit

FIFO First In First Out

GUI Graphical User Interface

DLL Dynamic Link Library

IO Input Output

ISR Interrupt Service Routine

ISP In System Programming

JTAG Joint Test Action Group

OS Operating System

PWM Pulse Width Modulation

RPM Revolutions Per Minute

RTOS Real Time Operating System

SFR Special Function Registers

 __
 59 (59)

Examensarbetare
Anders Möller

Dok Nr

 1

Säk.klass

Handledare
Magnus Nilsson

Datum

2003-03-17
Rev

PA1
File name
MastersThesis.doc

Synchronised Simulation of a Distributed Real Time System

B TERMINOLOGY AND DEFINITIONS

CanMan Distributed control system used for ship propulsion by Rolls Royce AB

CCN 01 Hardware unit used to execute applications in the CanMan system

Cross Fire IO distributing hardware unit developed by CC Systems AB

EEPROM Electrically erasable programmable read-only memory, non-volatile

HHT Hand held terminal, used to log the CanMan system

Flash A solid-state, non-volatile, storage device

PROM A programmable read-only memory

RAM Random access memory, volatile

RS232 Serial communication, full duplex

RS485 Serial communication, half duplex

SLIO 01 IO distributing hardware unit used in the CanMan system

SLIO 02 IO distributing hardware unit used in the CanMan system

OSE RTOS by ENEA

RTXC RTOS by Quadros

