
Verifying Event-Based Timing Constraints by
Translation Into Presburger Formulae

Björn Lisper1

School of Innovation, Design, and Engineering, Mälardalen University, SE-721 23
Västerås, Sweden

Abstract. Abstract modeling of timing properties is often based on
events. An event can be seen as a sequence of times. Timing constraints
can then be expressed as constraints on events: an example is the TADL2
language that has been developed in the automotive domain.
Event-based constraints can express timing properties of implementa-
tions as well as timing requirements. An important step in timing verifi-
cation is then to show that any events that comply with the properties
of the implementation, i.e., that describe the timings of its possible be-
haviours, also satisfy the requirements.
Real-time software is often organised as a set of periodically repeating
tasks, especially in domains with time-critical systems like automotive
and avionics. This implementation naturally yields periodic events, where
each event occurrence belongs to a periodically repeating time window.
An interesting question is then: if some events are periodic in this fashion,
will they then fulfil a timing constraint that describes a timing require-
ment? We show, for a number of TADL2 timing constraints, how to
translate this implication into an equivalent Presburger formula. Since
Presburger logic is decidable, this yields an automated method to decide
whether the periodic implementation satisfies the timing requirements
or not. Initial experiments with a Presburger solver indicate that the
method is practical.

1 Introduction

Timing behavior descriptions exist in many different forms. Classical real-time
scheduling theory defines the basic periodic [18] and sporadic [19] patterns to
describe task activations, along with the simple notion of relative deadlines for
capturing the desired behavior of a system’s response. Digital circuits are often
accompanied by timing diagrams [4], where selected scenarios from an infinitely
repeating behavior are depicted graphically, specifically indicating the minimum
and maximum distances between key events. In the automotive domain, the
model-based development frameworks of AUTOSAR [6] and EAST-ADL [12]
offer a rich palette of built-in timing patterns and constraints, commonly specified
in terms of typical-case timing diagrams. On the theoretical side, temporal and
real-time logics concentrate on a few basic building blocks, from which more
complex timing formulae can be constructed using logical connectives.

An important class of timing behavior descriptions is based on events: ex-
amples are TADL2 [10], a revised version of the Timing Augmented Description
Language (TADL) [15] that forms the basis for timing specifications in AU-
TOSAR and EAST-ADL, and the CCSL language of the UML real-time profile
MARTE [5]. Events are sequences (or sets) of times. A rich variety of timing
properties, for single as well as multiple events, can be expressed in this fashion.
An advantage with this way of describing timing properties is that it abstracts
away from the underlying system by describing its possible timing behaviours
through constraints on events. Once this is done, it can be checked in the event
domain whether the system fulfils its timing requirements or not. If the possible
timing behaviours of the system are described by a predicate impl on the events
e1, . . . , en, and if the requirements are expressed by the predicate req on the
same events, then the property that the system fulfils its timing requirements is
expressed by the formula

∀e1, . . . , en.[impl(e1, . . . , en) ⇒ req(e1, . . . , en)] (1)

We have studied a case where formulae of this kind can be decided. Systems
are often implemented in a fashion that gives rise to periodic events, where each
event occurrence belongs to a regularly repeating time window of fixed size. The
class of periodic events has certain mathematical properties that, when the impl
predicate in (1) is expressed as a conjunction of periodic event constraints, allows
many instances of (1) to be translated into an equivalent Presburger formula. We
exemplify this by translating a number of instances of (1), where req(e1, . . . , en)
is given by different TADL2 constraints, into equivalent Presburger formulae.
Since Presburger logic is decidable, this yields a route to automatic verification
of these instances.

An important case where periodic events appear is for periodic preemptive
fixed priority based scheduling, where real-time tasks are triggered periodically
and higher priority tasks can preempt lower-priority tasks. The time windows for
events marking the completions of such tasks can be established by a best- and a
worst-case response-time analysis, well-known from classical real-time scheduling
theory. The task model is very common in areas like automotive and avionics,
and many real-time operating systems implement this scheduling policy.

In the widely used AUTOSAR standard [6] for development of automotive
software, the smallest software entities that can be associated with events are
runnables. These are grouped into tasks, which can be executed by the AU-
TOSAR Basic Software Layer according to this scheduling policy. Events arising
from runnables will then be periodic. Timing requirements can be expressed
over these events using constraints from the AUTOSAR Timing Extensions [7],
which are directly based on the TADL timing constraints. This opens the pos-
sibility to verify timing constraints for AUTOSAR software automatically using
our approach.

A concern, however, is the potentially very high complexity for deciding Pres-
burger formulae. This could render the verification method impractical. We have

performed some simple experiments with the the iscc calculator1, which can
handle general Presburger formulae. In all cases, the translated formulae were
solved instantaneously. This indicates that the method may indeed be practical.

The rest of this paper is organised as follows. In Section 2 we define events,
and introduce a syntax for timing constraints as a simple logic “TiCS” for se-
quences of times. Section 3 introduces TADL2, and we define the TADL2 con-
straints in TiCS. In Section 4 we show how to translate statements of form (1)
into Presburger formulae, and we prove the equivalence of the translated formula
for some typical cases where the events are periodic and the requirements are
expressed as TADL2 constraints. In Section 5 we give an account for some initial
experiments with a Presburger solver. We discuss related work in Section 6, and
the paper is concluded with some reflections on future work in Section 7.

2 Events

Definition 1. An event e is a strictly increasing, possibly infinite sequence of
times 〈e0, e1, . . .〉. Each time ei is an occurrence of the event.

We consider times to be integers. This is not a serious restriction: all results
shown here are also valid for events with real-valued occurrences. For a periodic
event, each occurrence belongs to a regularly appearing, fixed size time window:

Definition 2. An event 〈e0, e1, . . .〉 is periodic with start time ts, jitter j ≥ 0,
and periodicity p > j, iff for all i ≥ 0 holds that ts + i · p ≤ ei ≤ ts + i · p + j.
We write Per(e, ts, p, j) to denote that e is a periodic event with start time ts,
periodicity p, and jitter j.

0
ts

p

j

time

j

Fig. 1. Time windows for a periodic event.

Periodic events with jitter correspond to the periodic task model with out-
put jitter [8]. Fig. 1 provides an illustration of the time windows to which the
occurrences of a periodic event must belong.

We define a simple, formal syntax for constraints on events in the form of a
first-order logic, see Fig. 2, where we also give a standard denotational semantics
with semantic functions mapping expressions and environments “ρ” to values.
We label the logic “TiCS” (“Timing Constraints for Sequences”). It is a variation

1 https://dtai.cs.kuleuven.be/cgi-bin/barvinok.cgi

of the event logic “TiCL” [17], which has been used to give a formal semantics to
the TADL2 timing constraints: the main difference between TiCS and TiCL is
that in TiCL events are sets of times, whereas TiCS defines events as sequences
of times.

TiCS allows timing constraints to be expressed as conditions on arithmetic
expressions involving event occurrences. There are three kinds of variables: event
variables e, arithmetic variables t, and index variables i. Event occurrences are
of the form ei+n, where n is a natural number. Quantification can be done over
all three kinds of variables.

n ∈ N (natural numbers)
z ∈ Z (integers)
e ∈ Evar (event variables)
i ∈ Ivar (index variables)

o ∈ Eocc (event occurrences)
t ∈ Avar (arithmetic variables)
a ∈ AExpr (arithmetic expressions)
c ∈ CExpr (constraint expressions)

o → ei+n

a → z | t | i | o | a1 + a2 | a1 − a2 | a1 · a2 | a1/a2
c → T | F | a1 ≥ a2 | c1 ∧ c2 | c1 ∨ c2 | ¬c | ∀e.c | ∀i.c | ∀t.c | ∃e.c | ∃i.c | ∃t.c

ε ∈ Event = N→ Z (events)
ρ ∈ Env = (Avar→ Z) ∪ (Ivar→ N) ∪ (Evar→ Event) (environments)
A ∈ AExpr→ Env→ Z
C ∈ CExpr→ Env→ B

A[[z]]ρ = z
A[[t]]ρ = ρ(t)
A[[i]]ρ = ρ(i)

A[[ei+n]]ρ = ρ(e)(ρ(i) + n)
A[[a1 ⊕ a2]]ρ = A[[a1]]ρ⊕A[[a2]]ρ,

⊕ ∈ {+,−, ·, /}
C[[T]]ρ = T
C[[F]]ρ = F

C[[a1 ≥ a2]]ρ = A[[a1]]ρ ≥ A[[a2]]ρ
C[[c1 ∧ c2]]ρ = C[[c1]]ρ ∧ C[[c2]]ρ
C[[c1 ∨ c2]]ρ = C[[c1]]ρ ∨ C[[c2]]ρ
C[[¬c]]ρ = ¬(C[[c]]ρ)
C[[∀e.c]]ρ = ∀ε.C[[c]]ρ[e 7→ ε]
C[[∃e.c]]ρ = ∃ε.C[[c]]ρ[e 7→ ε]
C[[∀i.c]]ρ = ∀n.C[[c]]ρ[i 7→ n]
C[[∃i.c]]ρ = ∃n.C[[c]]ρ[i 7→ n]
C[[∀t.c]]ρ = ∀z.C[[c]]ρ[t 7→ z]
C[[∃t.c]]ρ = ∃z.C[[c]]ρ[t 7→ z]

Fig. 2. Syntactic categories, abstract syntax, and semantics

We will make free use of derived operators like ⇒ , >, =, 6=, which are
definable in the language. We will write ei for ei+0. We will write a ≤ a′ ≤ a′′

for a ≤ a′∧′a ≤ a′′. We will sometimes use set inclusion x ∈ S when this formula
can be expressed as a predicate in TiCS: for instance, given an interval [l, u] we
may write x ∈ [l, u] for l ≤ x ≤ u. We will use the the shorthands ∀p(x).c and
∃p(x).c for ∀x.(p(x) ⇒ c) and ∃x.(p(x)∧c), respectively. We will allow ourselves
the use of the infinity symbol “∞” in lieu of integers, when the semantics is clear:
for instance, ∞ ≥ z will always be true whenever z ∈ Z. Using this notation we
can express the property of being a periodic event as the following constraint:

Per(e, ts, p, j) = ∀i ≥ 0.[ts + i · p ≤ ei ≤ ts + i · p+ j]

When defining TADL2 constraints below we will allow nonrecursive “macros”
defined in this way to appear in the formulae: their semantics can be defined
by simple substitution. Finally we will use metanotation like “e1, . . . , en”, or
“c1 ∧ · · · ∧ cn”, to describe a varying number of arguments, or expressions.

TiCS, being a first-order logic containing basic arithmetics, is undecidable.
Presburger arithmetic is a decidable fragment.

3 TADL2

The Timing Augmented Description Language (TADL2) [10] is a constraint lan-
guage for describing timing requirements and properties within the automotive
domain. It was originally defined in the TIMMO project, and was subsequently
revised and formalised within the TIMMO-2-USE project2. The syntax of TADL
is compliant to the AUTOSAR meta-model, but the TADL2 constraints can also
be understood through a textual syntax.

TADL2 defines constraints on events, which are simply (finite or infinite)
sequences of strictly increasing times. The definition does not specify whether
times are integers or reals: the constraints have meaningful interpretations in
both cases.

The TADL2 constraints can be divided into three groups: repetition rate
constraints, which concern single events, delay constraints, which concern the
timing relation between stimuli and responses, and synchronisation constraints,
which require that corresponding occurrences of a group of events appear in
sufficiently tight clusters.

All repetition rate constraints can be seen as instances of a generic repetition
rate constraint. This constraint is specified by four parameters lower , upper ,
jitter , and span where span > 0. An event 〈t0, t1, . . .〉 satisfies a generic repetition
rate constraint iff there exists a sequence of times 〈x0, x1, . . .〉 such that for all
i ≥ 0,

xi ≤ ti ≤ xi + jitter , and lower ≤ xi+span − xi ≤ upper

A periodic repetition constraint is a generic repetition rate constraint where
span = 1, and lower = upper . This uniquely decides xi to be x0 + i · lower ,
and we can write the constraint as ∃x0.P er(〈t0, t1, . . .〉, x0, lower , jitter) with
Per given by Definition 2. A sporadic repetition constraint has span = 1, and
upper = ∞. TADL2 also defines more complex pattern repetition constraints,
and arbitrary repetition constraints, see [10].

(The reason why we define a slightly different periodic constraint “Per” in
Section 2 is that the TADL2 Periodic constraint is too weak to allow the results
that we prove in Section 4. These results rely on knowledge about the relative
offsets of periodic events, and this information is not present for the Periodic
constraint.)

Delay constraints relate two events, called stimulus and response, by demand-
ing that each occurrence of the stimulus is matched by at least one occurrence
2 https://itea3.org/project/timmo-2-use.html

of the response within some time window. The basic delay constraint takes the
parameters lower , and upper , and relates the stimulus event 〈s0, s1, . . .〉 and the
response event 〈r0, r1, . . .〉 through the following constraint: for all i there exists
a j such that

si + lower ≤ rj ≤ si + upper

Synchronisation constraints concern a group of events S, characterised by
a single parameter tolerance. The basic synchronisation constraint is fulfilled if
there are time windows of size tolerance such that (1) each time window contains
at least one occurrence of each event in S, and (2) there are no “spurious” event
occurrences outside these windows. In other words, this constraint is satisfied iff
there is a sequence of times 〈x0, x1, . . .〉 such that (1) for all events 〈s0, s1, . . .〉 ∈ S
and for all i there exists a j such that

xi ≤ sj ≤ xi + tolerance

and (2) for all i there exists a j such that

si − tolerance ≤ xj ≤ si

Following [10, 17] the twelve most important TADL2 constraints are expressed
below in TiCS. First, the repetition rate constraints:

Repeat(e, l, u, s) = ∀i ≥ 0.[l ≤ ei+s − ei ≤ u] (s > 0)
Repetition(e, l, u, s, j) = ∃e′.[Repeat(e′, l, u, s) ∧ StrongDelay(e′, e, 0, j)]
Sporadic(e, l, u, j,m) = Repetition(e, l, u, 1, j) ∧Repeat(e,m,∞, 1)
Periodic(e, p, j,m) = Sporadic(e, p, p, j,m) (p > 0)

Pattern(e, p, o1, . . . , on, j,m) = ∃e′.[Periodic(e′, p, 0, 0) ∧Repeat(e,m,∞, 1)∧
Delay(e′, e, o1, o1 − j)∧
. . .
Delay(e′, e, on, on − j)]

Arbitrary(e, l1, . . . , ln,
u1, . . . , un) = Repeat(e, l1, u1, 1) ∧ · · · ∧Repeat(e, ln, un, n)

Burst(e, l, o,m) = Repeat(e, l,∞, o) ∧Repeat(e,m,∞, 1)

Then, the delay constraints:

Delay(e, e′, l, u) = ∀i ≥ 0.∃k ≥ 0.[l ≤ e′k − ei ≤ u]
StrongDelay(e, e′, l, u) = ∀i ≥ 0.[l ≤ e′i − ei ≤ u]

Order(e, e′) = ∀i ≥ 0.[ei < e′i]

Finally, the synchronisation constraints:

Synch(e1, . . . , en, w) = ∃e′.[Delay(e′, e1, 0, w) ∧Delay(e1, e′,−w, 0)∧
. . .
Delay(e′, en, 0, w) ∧Delay(en, e′,−w, 0)]

StrongSynch(e1, . . . , en, w) = ∃e′.[StrongDelay(e′, e1, 0, w)∧
. . .
StrongDelay(e′, en, 0, w)]

In addition, TADL2 contains five constraints that cannot always be expressed
in TiCS: an execution time constraint, and four constraints that are variations
of basic constraints but where these constraints are restricted to hold only be-
tween certain event occurrences as specified by an auxiliary causality relation on
these. As TADL2 does not define the nature of this relation further, we cannot
guarantee that these constraints are always expressible in TiCS. However note
that if the causality relation can be expressed in the TiCS syntax, then the full
constraint can be as well and the verification machinery developed here can be
applied. We will not consider these constraints further here: see [10] for details.

In addition to the constraints TADL2 also allows timing expressions to be
symbolic. Symbolic variables can be defined, or constrained, and used in timing
constraints. Typical usages are to parameterise timing requirements for easy
update, to constrain the ranges of parameters, and to aid time budgeting by
specifying bounds on sums of delays. TiCS supports symbolic timing expressions
right away, and constraints on symbolic variables can simply be conjoined with
the timing constraints.

4 Transforming TADL2 Constraints into Presburger
Formulae

We will now show how to transform statements of the form (1), where the an-
tecedent specifies events to be periodic according to Definition 2, and the conse-
quent is chosen from a selection of TADL2 constraints, into equivalent Presburger
formulae. The correctness of the transformation depends on a certain property of
the repeating time windows for the periodic events. We now define this property,
and show that it holds for these time windows.

Definition 3. Let R = 〈R0, R1, . . .〉 be a sequence of sets of times. Let E be a
set of events.

1. R is a sequence of regions for E iff for all i ≥ 0, and all e ∈ E, holds that
ei ∈ Ri.

2. R is tight for E iff it is a sequence of regions for E, and for any event e,
where ei ∈ Ri for all i ≥ 0, holds that e ∈ E.

Lemma 1. If R is tight for E, then e ∈ E ⇐⇒ ∀i.ei ∈ Ri.

Proof. ⇒ : since if R is tight for E, then R is a sequence of regions for E. ⇐ :
by the definition of tightness.

Let us write win(ts, p, j, i) for the ith time window [ts + i · p, ts + i · p + j]
containing the ith occurrence of a periodic event according to Definition 2.

Lemma 2. {win(ts, p, j, i) | i ≥ 0 } is tight for { e | Per(e, ts, p, j) }.

Proof. Immediate from Definition 2.

A tight sequence of regions fully characterises its set of events: each event
occurrence belongs to the corresponding region, and any event in the set can be
generated by picking a time from each region as the corresponding occurrence.

The transformation into a Presburger formula follows a common pattern.
The first step is to transform the consequent in (1), i.e., the formula specifying
the requirements, by replacing event occurrences with arithmetic variables to
obtain a formula free of such occurrences:

– If the consequent contains the term ∀i.C(ei+n), where Per(e, ts, p, j), then
this term is replaced by ∀i.∀t ∈ win(ts, p, j, i + n).C(t). That is: ei+n is
replaced by the arithmetic variable t throughout, where t ranges over the
interval of ei+n.

– If there are several distinct event occurrences indexed by the same quantified
index variable, then each occurrence is replaced by a distinct arithmetic
variable ranging over its interval. For instance, ∀i.C(ei+n, e

′
i+m) is translated

into ∀i.∀t ∈ win(ts, p, j, i + n).∀t′ ∈ win(t′s, p′, j′, i +m).C(t, t′) (given that
Per(e, ts, p, j), and Per(e′, t′s, p

′, j′)).
– Terms with existentially quantified index variables are transformed in the

same way.

We now give a formal definition. The translation is defined relative to a function
R mapping event variables to sequences of regions, and we denote it “PR”. We
define it for a fragment of TiCS without quantification over events, and where
formulas w.l.o.g. are in prenex normal form (all quantifiers are at the outermost
level). The first restriction is important, whereas the second is merely for con-
venience as it allows a more succinct definition of the translation. In Fig. 3 we
define the syntax of this fragment.

a → z | t | i | ei+n | a1 + a2 | a1 − a2 | a1 · a2 | a1/a2 AExpr
c− → T | F | a1 ≥ a2 | c−1 ∧ c

−
2 | c

−
1 ∨ c

−
2 | ¬c− CExpr−

c → c− | ∀t.c | ∃t.c | ∀i.c | ∃i.c CPExpr

Fig. 3. Abstract syntax for restricted constraint expressions

First we introduce some notation. FVI (c) denotes the set of index variables
that are free in c:

Definition 4. For any expression c and index variable i, Eo(c, i) is the set of
event occurrences in c of the form ei+n, for some event variable e and natural
number n. Furthermore Eo(c) =

⋃
i∈FVI (c) Eo(c, i).

For instance, if r, s ∈ Evar, then Eo(si + l ≤ rj ≤ si + u, i) = {si}, Eo(si + l ≤
rj ≤ si+u, j) = {rj}, Eo(si+ l ≤ rj ≤ si+u) = {si, rj}, and Eo(ei ≤ ei+1, i) =
{ei, ei+1}.

Next, we assume a function t : Eocc → Avar that maps each event occur-
rence ei+n to a syntactic arithmetic variable t(ei+n) ∈ Avar. Our transformation
replaces each ei+n with t(ei+n). We assume that all variables t(ei+n) are fresh.

Definition 5. (Substitution of event occurrences) Let c− ∈ CExpr−, and let
EO be a set of event occurrences: then c−[ei+n ← t(ei+n) | ei+n ∈ EO] is the
expression resulting when every occurrence of ei+n in c, where ei+n ∈ EO , is
concurrently replaced by the variable t(ei+n).

(We could make a fully formal, recursive definition over the structure of c−.)
Basically this is a first order substitution, the only difference being that we
replace syntactic event instances ei+n rather than single variables. Since there
never can be any overlaps between the expressions ei+n to be replaced, and since
the substitution does not introduce such expressions, this kind of substitution is
well-defined. We need some more meta-notation to define the translation:

Definition 6. For any finite set of event occurrences EO = {o1, . . . , on}, arith-
metic variables t(o1), . . . , t(on), sets of integers T (o1), . . . , T (on), and constraint
expression c, we define:

∀(t(o) ∈ T (o) | o ∈ EO).c =
∀t(o1) · · · ∀t(on).(t(o1) ∈ T (o1) ∧ · · · ∧ t(on) ∈ T (on) ⇒ c)

Thus, the meta-notation denotes a formula where the variables t(o1), . . . , t(on)
are universally quantified over c while ranging over the sets T (o1), . . . , T (on).

We now define our transformation PR for expressions inCPExpr. We assume
that for each e ∈ Evar there is a set of events E(e) such that R(e) is a sequence
of regions for E(e):

Definition 7.

PR(c
−) = c−[ei+n ← t(ei+n) | ei+n ∈ Eo(c−)], c− ∈ CExpr−

PR(∀t.c) = ∀t.PR(c)
PR(∃t.c) = ∃t.PR(c)
PR(∀i.c) = ∀i.∀(t(ei+n) ∈ R(e)i+n | ei+n ∈ Eo(c, i)).PR(c)
PR(∃i.c) = ∃i.∀(t(ei+n) ∈ R(e)i+n | ei+n ∈ Eo(c, i)).PR(c)

It is clear that PR(c) will contain no event occurrences. If all numerical subex-
pressions in c are linear in the index variables, arithmetic variables and event
occurrences, and if the set memberships t(ei+n) ∈ R(e)i+n can be expressed as
Presburger formulae, then PR(c) will be a Presburger formula. For instance, if
i, k ∈ Ivar and r, s ∈ Evar then

PR(∀i.∃k.(si+l ≤ rk ≤ si+u)) = ∀i.∀t ∈ R(s)i.∃k.∀t′ ∈ R(r)k.(t+l ≤ t′ ≤ t+u)

Here, we have written t for t(si) and t′ for t(rk). If the conditions t ∈ R(s)i
and t′ ∈ R(r)k can be expressed by Presburger formulae then the transformed
formula is also a Presburger formula.

The translation does not handle terms with quantified events. Such events
appear in the definitions of the Repetition, Pattern, Synch, and StrongSynch

constraints. To translate such constraints, the quantified events have to be elim-
inated. For the Repetition constraint, if l = u = p and s = 1 then the constraint
Repeat(e′, p, p, 1) will uniquely determine e′i = e′0+ i ·p. Then, the quantification
over e′ can be replaced by a quantification over an arithmetic variable e′0, and e′i
can be replaced by e′0+ i · p throughout. This situation appears for the Periodic
constraint, which calls Repetition through Sporadic.

For the synchronisation constraints, Synch, and StrongSynch, the instances
e′i of the existentially quantified event e′ specify starting times of time windows
of size w, where some occurrences of all events e1, . . . , en belong to each win-
dow, and no occurrence of any event is outside such a time window. For these
constraints, the existence of such a window can instead be expressed by the con-
dition that for all pairs of synchronised events, all distances between the involved
event occurrences are less than or equal to the size w of the window. We omit
the details.

By eliminating quantified events in the manner described above, all con-
straints listed in Section 3 except the general Sporadic and Repetition con-
straints can be written in a form where (1) can be translated into a formula
free from event occurrences according to above. What remains is to prove the
correctness of the translation. We exemplify by proving the correctness for the
Delay constraint.

Theorem 1.

∀e, e′.[Per(e, ts, p, j) ∧ Per(e′, t′s, p
′, j′) ⇒ Delay(e, e′, l, u)]

⇐⇒
∀i ≥ 0.∀t ∈ win(ts, p, j, i).∃k ≥ 0.∀t′ ∈ win(t′s, p′, j′, k).[l ≤ t′ − t ≤ u]

Proof. ⇐ : assume that the statement to the right of the equivalence holds.
Consider any events e, e′ such that Per(e, ts, p, j), and Per(e′, t′s, p

′, j′). Then
it holds for any i, k ≥ 0 that ei ∈ win(ts, p, j, i), and e′k ∈ win(t′s, p

′, j′, k).
Then, by instantiating t = ei and t′ = e′k in the right-hand side we obtain
∀i ≥ 0.∃k ≥ 0.[l ≤ e′k − ei ≤ u], that is: Delay(e, e′, l, u).
⇒ : assume that the statement does not hold. We show existence of e, e′

where Per(e, ts, p, j), Per(e′, t′s, p′, j′), and ¬Delay(e, e′, l, u). Since the state-
ment does not hold, there exists an i ≥ 0 and t ∈ win(ts, p, j, i) such that for
all k ≥ 0 there is a t′ ∈ win(t′s, p′, j′, k) where ¬(l ≤ t′ − t ≤ u). Another way
to express this is that there is a sequence of times { t′k | k ≥ 0 } where for all
elements t′k holds that t′k ∈ win(t′s, p′, j′, k) and ¬(l ≤ t′k − t ≤ u). By tightness
and Lemma 1 there is an event e such that ei = t and Per(e, ts, p, j). Similarly,
by tightness and Lemma 1 we can construct an event e′ where Per(e′, t′s, p

′, j′),
by letting e′k = tk for each k ≥ 0. Thus, ∃i ≥ 0.∀k ≥ 0.¬(l ≤ e′k − ei ≤ u), that
is: ¬Delay(e, e′, l, u).

Theorem 1 is illustrated in Fig 4. It shows two time windows, for the events
e and e′, respectively, and indicates how the distance between any t, t′ drawn
from the respective time window must be kept between l and u. The theorem

t’t

0 l u

t’ − t

relative time

> l

< u

Fig. 4. An illustration of Theorem 1.

does not guarantee that the translated formula is a Presburger formula. For this
to hold, the periodicities p, p′ of the events e, e′ must be constants.

For all the TADL2 constraints listed in Section 3, except Sporadic and Rep-
etition, the equivalence of the translation can be proved in a similar manner as
for Theorem 1. This suggests that it should be possible to prove, in a similar
way, a correctness result for the translation PR of any constraint in CPExpr.
However, counterexamples can be found where the equivalence between state-
ment and translated statement does not hold. To prove such a result we need
to find a nontrivial fragment of TiCS, which is smaller than the one defined in
Fig. 3, for which such a result holds. This is a topic for further research.

5 An Experiment: the Box Service Generic-External

We have tried our method by verifying parts of the timing requirements for
the “Box Service Generic-External” (BSG-E) [10], which manages the fog lights
in cars. It also handles the electrical protection of downstream wires, diagnos-
tics, and the dialogue with the main car ECU over a CAN network. The to-
tal specification of the timing requirements includes ten events, five delay con-
straints, two periodic constraints, and one synchronisation constraint involving
two events. We selected a subset of these with two events, and one delay con-
straint: the selection was made to provide an example with periodic events. The
events are: EMA_PERM3, (filtered) voltage reading from the power supply,
and CAR_CDE_BSE, the arrival of the first frame on the CAN bus from the
main ECU. EMA_PERM3 is periodic, with periodicity 15 ms and zero jitter,
and the nature of CAR_CDE_BSE is not specified. The delay constraint spec-
ifies a requirement that whenever a rising edge is detected on the power supply,
the first frame from the CAN bus must be read within 40 ms. For this example
we assume that CAR_CDE_BSE is periodic. We obtain the following timing
constraints:

AcqPerm = 5
T_init = 40
Per(EMA_PERM3, t2, 3 ·AcqPerm, 0)
Per(CAR_CDE_BSE, t3, 3 ·AcqPerm, jitter)
Delay(EMA_PERM3, CAR_CDE_BSE, 0, T_init)

As the start time t2 for EMA_PERM3 is not specified, we leave it open.
Similarly, since CAR_CDE_BSE is not specified at all, we leave its start time
t3 and jitter open. (We cannot leave its periodicity as a parameter, as this would
create a nonlinear expression in the transformed constraint.) For this example
we set it to the periodicity of EMA_PERM3, but any value could be chosen.

We have verified the Delay constraint, transformed according to Section 4,
with the iscc3 calculator [22]. iscc can simplify sets defined by Presburger
formulae using Fourier-Motzkin variable elimination. Sets defined by formulae
without free variables reduce either to the empty or the universal set (that is,
false or true): if the defining formula has free variables then the result will be a
set defined by a simplified, quantifier-free formula in the same variables. Thus,
iscc can be used as a Presburger solver with the ability to return parametric
results.

The experiment was carried out on a Dell Optiplex 7010, with a dual-core
64 bit Intel i5-3570 processor running at 3.40 GHz, 8 GB memory, three levels
of cache (256 kB, 1 MB, 6 MB) running Xubuntu linux v. 14.04.5.

AcqPerm = 5 and T_init = 40 and
t2 >= 0 and t3 >= 0 and jitter >= 0 and
(not exists i : not (not (i >= 0) ||
(not exists t : not (not (t2 + i*3*5 <= t <= t2 + i*3*5 + 0) ||
(exists k : k >= 0 and
(not exists t’ : not (not (t3 + k*3*5 <= t’ <= t3 + k*3*5 + jitter) ||
0 <= t’ - t and t’ - t <= T_init)))))))

Fig. 5. iscc encoding of the Presburger formula for the Delay constraint.

The encoding of the Presburger formula for the Delay constraint, in the
textual language of iscc, is shown in Fig. 5. The formula includes constraints
on the auxiliary variables as well as non-negativity constraints on the starting
times and the jitter. When run with this input, iscc will instantaneously return
the following, simplified set expression:

{ [AcqPerm = 5, T_init = 40, t2, t3, jitter] :
t2 >= 0 and t3 >= 0 and 0 <= jitter <= 40 + t2 - t3 and
15*floor((14t2 + t3)/15) >= -40 + 14t2 + t3 + jitter }

We thus obtain constraints on the unknown parameters of the periodic events.
We can also make runs with different periodicities of CAR_CDE_BSE to
explore how this parameter affects the ability to find a solution that satisfies the
constraint. In all, the ability to produce symbolic solutions facilitates a design
space exploration where the system is designed as to meet its timing constraints.

3 Our version was built using version 0.40 of the barvinok library.

6 Related Work

Logics for expressing and reasoning about real-time properties are mostly ex-
pressed as modal logics [1, 3, 11]. Decidable such logics allow for verification
of real-time properties of systems by model-checking. In particular Timed Au-
tomata [2] have become much used for this purpose. UPPAAL [16] is a well-
known tool for modeling and verification using timed automata. Jagadish [21]
used UPPAAL to verify some TADL timing constraints, transformed into timed
automata, for periodic events. Examples include the delay constraint. UPPAAL
has also been used for verifying timing constraints expressed in the AUTOSAR
Timing Extensions [7, 9], which build on the TADL timing constraints.

Our approach, using translations into Presburger formulae, is quite different
from model checking. It allows the use of decision procedures that eliminate
quantifiers through projections, which allows parametric solutions in the form
of quantifier-free formulas. For timing verification this can be valuable in early
design phases where system parameters are not yet fixed. Possibly parametric
model checking of timed automata can be used for the same purpose [14], but this
remains to be investigated. Furthermore our approach can be directly extended
to continuous time. For this kind of time the use of projection-based decision
procedures will yield a lower complexity, whereas the opposite holds for model
checking.

We know few other attempts to verify timing properties by deciding Pres-
burger formulae. Amon et al. [4] capture the logic of timing diagrams in a form
that resembles our constraint language but without event variables. This sub-
language corresponds to Presburger formulas.

CCSL [5] is a timing constraint language in the UML profile MARTE [20]
for modeling and analysis of real-time systems. CCSL can specify clocks, and
relations between them. Yin et. al. [23] describe how to translate a specification
in a subset of CCSL into a Promela model for verification in the model checker
SPIN. Ning and Pantel [13] proposed a framework for verifying timing properties
of MARTE models through model checking over Timed Petri Nets.

7 Conclusions and Further Research

We have shown how to verify a number of TADL2 timing constraints under
the condition that the constrained events are periodic with jitter. The TADL2
constraints then express timing requirements, whereas the periodicity and jit-
ter of the events may stem from an implementation where tasks are triggered
with some fixed periodicity. Such implementations are common in safety-critical
systems, in domains like automotive and avionics. TADL2 has been developed
within the automotive domain, with its typical timing requirements mind, and
it forms the basis for the AUTOSAR Timing Extensions. It can therefore be of
great practical interest to have methods to verify whether or not such periodi-
cally scheduled systems will meet their timing requirements expressed as TADL2
constraints. Our work provides a step towards this goal.

The translations to Presburger formulas, and their proofs of correctness,
follow a common pattern. An obvious topic for future research is to find a larger
fragment of TiCS for which the translation is correct.

We believe that the ability to obtain symbolic results, constraining design
parameters, can be very useful. This is convenient in early design phases where all
parts of the system are not yet fixed, and it facilitates a design space exploration
where the system is optimised under the given timing constraints.

A possible concern is the extremely high worst-case complexity for solving
Presburger formulas. However, our experience is that timing constraints in do-
mains like automotive often are gathered into a conjunction of rather simple
constraints, like delay or synchronisation constraints. The translated Presburger
formula will then be a conjunction of simple constraints, each involving only
a few variables. The solver can then solve these individually and intersect the
results, which is likely to be much faster than the worst case. A topic for future
research is to make larger case studies to see whether this is indeed the case.

8 Acknowledgments

This work was partially supported by VINNOVA through the ITEA2 TIMMO-
2-USE and ITEA3 ASSUME projects. We would also like to thank Johan Nord-
lander for interesting discussions.

References

1. Abadi, M., Lamport, L.: An old-fashioned recipe for real time. ACM Transactions
on Programming Languages and Systems 16(5), 1543–1571 (Sep 1994)

2. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In: Proc.
Logic in Computer Science. pp. 414–425. IEEE (Jun 1990)

3. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–203 (Jan
1994)

4. Amon, T., Borriello, G., Hu, T., Liu, J.: Symbolic timing verification of timing
diagrams using Presburger formulas. In: Proc. 34th annual Design Automation
Conference. pp. 226–231. ACM, New York, NY, USA (1997)

5. André, C., Mallet, F.: Clock constraints in UML/MARTE CCSL. Research report,
INRIA (May 2008)

6. AUTOSAR: Homepage of the AUTOSAR project (2009), www.autosar.org/
7. AUTOSAR: Specification of timing extensions (2011), www.autosar.org/
8. Baruah, S., Buttazzo, G., Gorinsky, S., Lipari, G.: Scheduling periodic task systems

to minimize output jitter. In: Proc. Sixth International Conference on Real-Time
Computing Systems and Applications (RTCSA ’99). pp. 62–69 (1999)

9. Beringer, S., Wehrheim, H.: Verification of AUTOSAR software architectures with
timed automata. In: ter Beek, M.H., Gnesi, S., Knapp, A. (eds.) Proc. Joint 21st In-
ternational Workshop on Formal Methods for Industrial Critical Systems and 16th
International Workshop on Automated Verification of Critical Systems, FMICS-
AVoCS 2016. Lecture Notes in Comput. Sci., vol. 9933, pp. 189–204. Springer
International Publishing, Pisa, Italy (Sep 2016)

10. Blom, H., Feng, L., Lönn, H., Nordlander, J., Kuntz, S., Lisper, B., Quinton, S.,
Hanke, M., Peraldi-Frati, M.A., Goknil, A., Deantoni, J., Defo, G.B., Klobedanz,
K., Özhan, M., Honcharova, O.: D11 language syntax, semantics, metamodel v2.
Technical report (Aug 2012), https://itea3.org/project/timmo-2-use.html

11. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process.
Lett. 40(5), 269–276 (1991)

12. Cuenot, P., Frey, P., Johansson, R., Lönn, H., Papadopoulos, Y., Reiser, M.O.,
Sandberg, A., Servat, D., Kolagari, R.T., Törngren, M., Weber, M.: The EAST-
ADL architecture description language for automotive embedded software. In:
Giese, H., Karsai, G., Lee, E., Rumpe, B., Schätz, B. (eds.) Model-Based En-
gineering of Embedded Real-Time Systems. Lecture Notes in Comput. Sci., vol.
6100, pp. 297–308. Springer-Verlag, Schloss Dagstuhl, Germany (Nov 2007)

13. Ge, N., Pantel, M.: Time properties verification framework for UML-MARTE
safety critical real-time systems. In: Vallecillo, A., Tolvanen, J.P., Kindler, E.,
Störrle, H., Kolovos, D. (eds.) Modelling Foundations and Applications, Lecture
Notes in Comput. Sci., vol. 7349, pp. 352–367. Springer Berlin Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-31491-9_27

14. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. J. Log. Algebr. Program. 52-53, 183–220 (2002),
http://dx.doi.org/10.1016/S1567-8326(02)00037-1

15. Johansson, R., Frey, P., Jonsson, J., Nordlander, J., Pathan, R.M., Feiertag, N.,
Schlager, M., Espinoza, H., Richter, K., Kuntz, S., Lönn, H., Kolagari, R.T., Blom,
H.: TADL: Timing augmented description language, version 2. Technical report
(Oct 2009)

16. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. Journal on Soft-
ware Tools for Technology Transfer 1, 134–152 (1997)

17. Lisper, B., Nordlander, J.: A simple and flexible timing constraint logic. In: Mar-
garia, T., Steffen, B. (eds.) Proc. 5th International Symposium on Leveraging Ap-
plications of Formal Methods (ISOLA’12). Lecture Notes in Computer Science,
vol. 7610, pp. 80–95. Springer Berlin Heidelberg, Heraclion, Crete (Oct 2012),
http://dx.doi.org/10.1007/978-3-642-34032-1_12

18. Liu, C., Layland, J.: Scheduling Algorithms for Multiprogramming in a Hard-Real-
Time Environment. J. ACM 20(1), 46–61 (1973)

19. Mok, A.K.: Fundamental design problems of distributed systems for the hard-real-
time environment. Ph.D. thesis, Massachusetts Institute of Technology (May 1983),
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-297.pdf

20. UML profile for MARTE: Modeling and analysis of real-time embedded systems.
Tech. rep., OMG (Nov 2009), www.omg.org/spec/MARTE/1.0

21. Suryadevara, J.: Validating EAST-ADL timing constraints using UPPAAL. In:
Proc. 39th Euromicro Conference on Software Engineering and Advanced Appli-
cations (SEAA) (Sep 2013), http://www.es.mdh.se/publications/2988-

22. Verdoolaege, S.: barvinok: User guide. Technical report (Jan 2016),
barvinok.gforge.inria.fr/barvinok.pdf

23. Yin, L., Mallet, F., Liu, J.: Verification of MARTE/CCSL time requirements in
Promela/SPIN. In: Proc. 16th IEEE Int. Conf. on Engineering of Complex Com-
puter Systems (ICECCS 2011). pp. 65–74 (Apr 2011)

