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ABSTRACT

Mobile text messages (SMS) are sometimes used for authentication,
which requires short and reliable delivery times. The observed
round-trip times when sending an SMS message provide valuable
information on the quality of the connection.

In this industry paper, we propose a method for detecting round-
trip time anomalies, where the exact distribution is unknown, the
variance is several orders of magnitude, and there are lots of shorter
spikes that should be ignored. In particular, we show that using an
adaption of Double Seasonal Exponential Smoothing to reduce the
content dependent variations, followed by the Remedian to find
short-term and long-term medians, successfully identifies larger
groups of outliers. As training data for our method we use log files
from a live SMS gateway. In order to verify the effectiveness of
our approach, we utilize simulated data. Our contributions are a
description on how to isolate content dependent variations, and
the sequence of steps to find significant anomalies in big data.
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1 INTRODUCTION

Measuring and monitoring round-trip times (RTTs) of data packets
in a networked environment is important for at least two reasons:
(1) to maintain the negotiated service levels of quality and (2) to
minimize operational costs. To better understand the importance
of this monitoring, let us consider a scenario where a person wants
to login to an Internet bank.

(1) The customer goes to the bank website and enters a personal,
unique identification number.

(2) The bank finds this information in its customer database,
and sends a verification code as an SMS message to the
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Figure 1: An example scenario emphasizing the importance
of measuring and monitoring round-trip times: the bank
customer, the bank, two SMS brokers and some operators.

registered mobile phone for this customer. In most cases, the
SMS arrives to the mobile phone well within the negotiated,
stipulated time, but in some anomaly situations, the message
could be delayed for a considerable amount of time.

(3) The customer enters the verification code, completing the
login procedure.

There are many mobile network operators, and as the bank does
not want to maintain connections and agreements with all of them,
this service is outsourced to one or more “SMS brokers”. SMS bro-
kers (SBs) manage the SMS traffic between their customers and the
network operators. For increased reliability, the bank connects to
two SMS brokers (Figure 1). Assuming the cost for sending mes-
sages via SB1 is lower than via SB2, by default the bank sends all
messages via SB1. If the connection to SB1 is lost for some reason,
the bank quickly switches to SB2 in order to avoid delays in the
SMS deliveries. In the worst case it could take hours for the con-
nection to SB1 to be fully functional again, so without this switch,
the problem with SB1 would result in dissatisfied customers for the
bank as the verification codes would stay in the outgoing queue in
the bank’s SMS Gateway. The sooner the switch to SB2 can be made,
the smaller the delay seen by the bank’s customers. Using SB2 all
the time would not improve the situation, as SB2 could also become
unreachable for any number of reasons, e.g. broken hardware, or
problems at their Internet service provider.
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The bank customer is the only one who knows the exact delivery
time, and that is just for their own message. In order to get an
overall view, from this point on we will use a simpler measurement:
the RTT between the bank and the SMS broker.

In this paper we focus on detecting violations that fall some-
where between a few individual messages being slightly delayed
and a fully broken connection. Let us assume the operator normally
has two servers handling SMS traffic, and one of them temporarily
breaks. With incoming throughput to the SMS broker being con-
stant and outgoing throughput being halved, a queue of messages
may form. To prevent this queue from growing without bounds, the
SMS broker can throttle incoming traffic by delaying its responses.
Clients must implement proper windowing, so these delays will
cause them to delay their future requests.

The SMS system behaves much like a train of cars, in that we
can draw conclusions on the situation further ahead by observing
the car in front of us. If the car slows down, we can assume there
is a problem with the traffic in general. Provided the slow speed
persists, we might decide to choose an alternate route. Similarly,
the RTT towards the SMS broker provides the client (the bank) with
valuable feedback on the effective throughput of the entire chain
of SMS brokers and operators.

This paper addresses the situation when the absolute values of
the delivery time are not known. We know from earlier results [4]
that the RTT has very few anomalies, but when they happen, we
want to know as soon as possible. We have seen that there are
several shorter spikes in these RTTs, so our research objective is
to develop a method of automatically finding longer periods of
outliers in RTTs while ignoring these short uninteresting spikes.
In particular, we examine the variation of the RTTs in a production
system of an SMS broker between their own system and several
external operators.

Section 2 describes the context in more detail and Section 3 de-
scribes related work for RTT measurement and anomaly detection.
Our approach is described in Section 4. We then describe our case
study in Section 5, and the results in Section 6. Section 7 discusses
these results, and the paper ends with conclusions and future work
in Section 8.

2 BACKGROUND AND TERMINOLOGY

Figure 2 shows the simple base scenario of the network traffic as
seen from the SMS Gateway software used by the SMS brokers.
The filled arrows represent SMS messages, the unfilled arrows are
responses, and A, B etc. are points in time. The SMS Gateway only
knows about the times B, C, E and H. The arrow from J to K is dashed,
as we do not know when this event occurs. The difference between B
and C shows the processing time required for an incoming message,
while the difference between E and H shows the full RTT to the
operator. We will examine both these differences, as anomalies
between B and C reveal problems in the local environment and
anomalies between E and H reveal problems in the network or with
the remote node. The difference between C and E is how long the
message sits in the outgoing queue, waiting to be sent. From the
bank customer’s point of view, the login request starts at some point
before A, and the verification code arrives to the phone at K. The
delivery of the message to the mobile phone and the response sent
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Figure 2: The network traffic between a client, an SMS Gate-
way, an operator and a mobile phone.

back to the SMS Gateway happens in parallel, so the relationship
between H and K is undefined.

In many cases, monitoring of response times is required as a way
of making sure the system works as expected. According to our
industrial experience, one of two methods are commonly used for
this monitoring. 1) Visualize selected measurements on a display,
which is simple to implement but requires a human to look at the
display. This is easily forgotten if anomalies are rare. 2) Utilize tools
based on Simple Network Management Protocol (SNMP), reporting
detected anomalies without requiring human interaction. A draw-
back is that those checks are usually trivial with static tolerance
levels, e.g. whether a single RTT is longer than 1 second or whether
the processing queue contains more than 1000 elements.

Once an anomaly has been detected, some fault localization tech-
nique [22] should be applied to find the root cause of the problem.
This is however outside the scope of this paper.

While SMS brokers reduce the number of accounts needed, the
combined network traffic becomes more difficult to analyze. Some
brokers specialize in operators in a particular region, decreasing
the number of accounts but increasing the number of intermediate
nodes. Broker handling of messages varies, e.g. they may store the
messages on disk for safety, or wait for acknowledgment from the
next node before responding back to the previous. These factors
incur variability in response times, even between the same nodes.
We assume that if a node uses a server cluster, all these servers are
homogeneous, giving consistent RT Ts.

2.1 Terminology
We will now define the concepts discussed in this paper:

Node: Common term for clients, operators and SMS brokers.

Downstream/Upstream: Downstream is as ordered in Figure 2,
i.e. client to SMS broker to operator to mobile phone. Up-
stream is, obviously, the reverse direction.

Request: A data packet containing an SMS message, including the
sender, recipient and message body, or a delivery report.

Response: Acknowledgement of a received request.

PDU: Protocol Data Unit, refers to both requests and responses.

Delivery report: A data packet sent as confirmation of successful
message delivery to the recipient or rejection by a node.

Round-trip time (RTT): For outgoing traffic, RTT is the interval
between when the request is sent and the response comes
back. For incoming traffic, RTT is the interval after receiving



a request until the response is sent. In Figure 2, these are the
intervals from E to H and from B to C respectively.

Throughput: The number of messages received and forwarded
by a node, per some specified time unit.

Window size: The number of requests the client sends before
waiting for a response.

Outlier: A single RTT measurement significantly higher than
usual for a specific connection. Responses arriving earlier
than usual is both very rare and typically not a problem.

Anomaly: A larger cluster of outliers. This is defined in more
detail in Section 4.4.

3 RELATED WORK

Earlier studies have focused on either RTT measurement or anom-
aly detection, so we will describe these groups of papers separately.

3.1 RTT measurement

For RTT measurement, existing work can be structured according
to what protocol they analyze. A relatively common layer for RTT
measurements is TCP, as it is used for many applications and there-
fore enables analysis of large amounts of data. Here we find an
examination of several different TCP implementations [18], and a
description of the experiences using the tool Tstat [16].

TCP includes an ACK packet which, similarly to our response
PDUs, provides an easy way to calculate the RTT. The RTT can
then be either approximated using just the SYN/ACK pair used to
initiate the connection [12] or more correctly using also the data
packets and their responses [26]. Martin et al. [15] took this further
by using the minimum and average values of the RTT for both
the SYN and data packets to separate the physical latency from
the server side processing time. The packet-pair strategy was then
generalized for raw IP traffic [27].

At the application layer, which is most similar to our work, we
have studies on HT TP traffic by Mosberger and Jin [17] using their
tool httperf, and Halepovic et al. [9] who examined the RTTs
from mobile clients to web servers. The throughput values given by
httperf had an average close to the maximum, which corresponds
to an average RTT being close to the minimum.

In some cases, the minimum and maximum RTT values are the
most interesting [8], in which case there is no need to examine
the distribution in more detail. Papers that have analyzed the data
deeper, have found variances in RTT for TCP traffic between 1 mil-
lisecond and 200 seconds [2, 11]. In an analysis for Controller Area
Networks, the type of network used in real-time environments,
the data had a good fit with the Gamma distribution [28]. Taken
together, most papers that have examined the distribution of RTT
values, explicitly or implicitly describe it as exponential in some
way. This is consistent with our findings.

3.2 Anomaly detection

Shanbhag and Wolf suggest using multiple anomaly detection algo-
rithms in parallel [21], and using the combined result as the trigger.
Even though we do not use multiple algorithms, we use all relevant
data fields in the PDU to calculate the expected values with as much
precision as possible.

E2EProf, as described by Agarwala et al. [1], is similar to our
approach as it also uses time-series analysis, of which exponential
smoothing is one of the methods, to analyze the performance of
each subsystem of an application. They define a “spike” as a local
maximum, exceeding a threshold of the mean plus three times the
standard deviation. For testing, they used httperf.

Bayesian Principal Anomaly Detection (BPAD) warns for indi-
vidual outliers [10], and because these occur too frequently, it does
not suit our context.

Between the years 2000 and 2010, there were several papers [13,
14, 19] on using Principal Component Analysis (PCA) for anomaly
detection. Even though the method worked fine, it was difficult to
find the right sensitivity [5].

Wang et al. [25] stress that anomaly detection methods must in
some circumstances be “lightweight”, both in terms of the number
of metrics they require to run (the volume of data continuously
captured and used), and in terms of their runtime complexity. They
suggest smoothing the data, just as we use exponential smoothing
(Section 4.2), and detect anomalies using the Tukey method based
on “fences” and “hinges” [24]. This method splits the data into
quartiles separated at Q1, Q2 and Q3, and classifies anomalies in
multiples of the difference between Q1 and Q3. While different
from our method, it also uses the median instead of the mean.

4 APPROACH

In order to understand the RTT values, we first calculated the mean
and standard deviation of a few collections of RTTs (Section 4.1).
We then used exponential smoothing to get a mean value that gave
higher importance to newer RT Ts (Section 4.2). Some parts of the
variance turned out to be related to specific aspects of the message
data, so the exponential smoothing was further refined to isolate
these as adjustment factors (Section 4.3). Finally we calculated the
median of smaller and larger groups of RTTs as a way of identifying
outlier clusters (Section 4.4).

4.1 Mean and standard deviation

As mentioned in Section 2.1, the time spent by a node processing a
request can vary significantly, so the RTT varies from fractions of
a millisecond to multiple seconds. Calculating the mean from such
data does not give meaningful results.

The exact distribution of the RTTs is not known to us. However,
earlier work shows that it resembles a log-normal distribution, so
we calculate the mean and variance of the logarithms of the RTTs.

For efficiency, we use formulas based on those described by
Finch [7]. The formula used for the incrementally calculated mean
is shown in Equation 1. Here, x5 is the new value, and 7 is the
number of values so far. We use Equation 2 to get the variance Sy,
and Equation 3 for the standard deviation oy,.

1
HUn = Hn-1 + ;(lnxn ~ Hn-1) (1)
Sn =Sn-1+ (Inxp = pp—1)(Inx, — pp) (2

on = VSu/n 3)



4.2 Exponential smoothing

Over time, the effect of new values added to Equation 1 shown in
Section 4.1 will diminish. By instead using exponential smoothing,
we are able to analyze an endless series of data.

We calculate the expected value E,, using the well-known Equa-
tion 4, where n is the number of observations, and V}, is the nth
value. Or rather, V, is the logarithm of the measured RTT, and E,
is the logarithm of the expected value. The new value is the sum of
two terms based on the current observation and on the previously
expected value, respectively. The constant « is used to select the
scaling factor between them, where a lower value of a gives a more
stable E,,, as the effect from individual values of V}, is smaller. We
set E1 to V.

En=aVy,+(1—-a)Ep—1, n>1 (4)

4.3 Adjustment factors

As the traffic between SMS brokers uses Internet, network related
RTTs can vary both by time of day and day of week. While grouping
the data by hour gives a lower variance and therefore improved
anomaly detection, it also gives less data in each group, resulting
in reduced stability. Moreover, it disregards the similarities of RTTs
during consecutive hours.

Communication protocols for SMS consist of fields with key-
value pairs which specify how the SMS should be handled, so we
assume their values might affect the RTT. To minimize the variance,
each unique combination of fields should be analyzed separately.
This strategy leads to a combinatorial explosion, and requires large
amounts of data for satisfactory stability of E,. In the financial
domain Double Seasonal Exponential Smoothing [23] is sometimes
used, basing the result on time values, e.g. day of month and month
of year. The idea is to get a single average value for the entire dataset,
with a small number of adjustment factors. Similar approaches have
also been used in network contexts [6]. We use a variation of this
method, but with field values instead of time values.

We need one adjustment factor per field value, and use the syntax
F? for the nth value of the adjustment factor for field value v. The
value of F{’ is set to 0, representing the case when the RTT is
identical for all values. The adjustment factor can be either additive
or multiplicative, and because of the exponential nature of the RTT
distribution, multiplicative adjustments seem to make the most
sense. However, as the values of E, and V, are logarithms, the
actual adjustment needs to use addition. The calculation of the
effect from a specific field value is shown in Equation 5. We want
the expected value E,, to be free from these variations, so Equation 4
is modified to instead use the adjusted value of V};, as shown in
Equation 6.

Fy =a(Va —En) + (1 - a)FY_, (5)
Ep=a(Vn - F;l),l) +(1—a)Ep-1 (6)

For the more general case, we see the difference between the
expected value E, and the measured value V,, as the sum of all
adjustment factors for all fields. We can then update the adjustment
factors using the same exponential smoothing as in Equation 4. This
is shown in detail in Algorithm 1, lines 11 to 19. For simplicity we

use the same scaling factor « as for the expected value in Equation 4,
but it is possible to use different scaling factors for each adjustment
factor.

4.4 Medians

Even with « as low as 0.0001, the wide range of values in the input
data renders E,, too unstable to be useful in detecting anomalies. A
more reliable reference point is given by the median, in our case
calculated using the Remedian [20] method. The algorithm is simple
but effective, using k arrays A;, each of length b.

(1) Store the first b values in Ao, where typically b < 10.

(2) Calculate the median of Ay and append the result to A;.

(3) Repeat steps 1 and 2 until A; contains b values. Calculate
the median of them, and append the result to A;.

(4) Repeat the previous steps up to Ay for all i less than some k,
appending the median of A;_; to A;.

The median of Ay is now an estimate of the median of the full
series of values. The number of operations required to find the
median of b values is fixed for each b, giving an execution time
complexity of O(n) for n values. We can think of it as a software
version of multiple connected Geneva drives [3].

The value we append to Ay is Ej, the most recent measurement
with all adjustment factors removed. Using arrays with b = 5 values
each achieves a good balance between stability, which requires more
values in each array, and sensitivity, which requires fewer values.
This way Ag has the median of the most recent 5 values, A; of 25
values, Ay of 125, etc.

We can now define an anomaly as a cluster of outlier measure-
ments that increase the median of A3 above twice the median of As.
To avoid repetitive notifications, each notification suspends further
ones until the median of A3 goes below the median of As. A period
of large values that is long enough to affect the median of A3 this
way occurs sufficiently seldom, as shown in Section 6.3.

4.5 Summary

Algorithm 1 combines the steps described earlier in this section.
The algorithm is implemented as an extension to our existing tool
called ELFA (EMG Log File Analyser - initially introduced in [4]).
The method described here has several benefits.

(1) All calculations are done in constant time, depending only
on the number of adjustment factors. This is necessary as
we need to be able to handle continuous traffic with up to
1000 measurements per second.

(2) The sensitivity is easily adjusted, even online.

(3) It is independent of the frequency of values.

(4) The expected value is calculated from all observations, not
just from an artificial subset.

(5) Adjustment factors can be added and removed online as
needed.

(6) For each connection we need to persist only the base value
E, and the non-zero adjustment factors FY to be able to
resume a paused analysis.

(7) Itis self-adapting, using the most recent RTT values for each
individual connection as the basis for detecting outliers.
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ALGORITHM 1: Find Outlier Clusters

input :A list of data points, each one consisting of a list of key-value
pairs and a measured value V.

output:A list of start and end points for anomalies.

// Initialization.

forallAdo A «— 0

haveReported «— false

// Clear all Remedian arrays.

outliers «— 0
expected «— 0
foreach possible key do
foreach value used by key do
‘ adjustments[key,value] «— 0
end
end
foreach data point dp do
// Update the expected value from measurement(dp), minus
the current adjustment factors.
be—0
foreach (key,value) in dp do
‘ b «— b + adjustments[key,value]
end
// Normal exponential smoothing.
expected «— «a * (measurement(dp) — b) + (1 — «) * expected
// Update the adjustment factors.
foreach (key,value) in dp do
// Assume all other adjustment factors are correct,
and calculate what is left.
diff «—
measurement(dp) — (expected + b — adjustments[key,value])
// Update the adjustment factor for this key-value
pair.

adjustments[key,value] «—

a = diff + (1 — a) * adjustments[key,value]
end

// Update the Remedian arrays.
ie—20

Append expected to A[0]

while A[i] is fullandi+1 < 6

do

Append median(A[i]) to A[i + 1]
Ali] «— 0

ie—i+1

// We have 6 arrays

end
// Find start and end points for anomalies.
if not haveReported and A[5] has been filled at least once and
median(A[3]) >2 = median(A[5]) then
Add (start’, timestamp(dp)) to outliers
haveReported «— true

end

if haveReported and median(A[3]) <median(A[5]) then
Add (Cend’, timestamp(dp)) to outliers

haveReported «— false

end
end
return outliers

5 CASE STUDY DESIGN

To evaluate our approach for detecting anomalies in the RTTs,
we undertook an industrial case study. Specifically, we wanted to
investigate and exemplify how log files generated by the production
system of an SMS broker can be utilized to identify anomalies in
RTTs between itself and several external operators.

5.1 Data collection

We examined data from the Enterprise Messaging Gateway (EMG),
an Infoflex Connect AB product used by many SMS brokers. The
data was taken from existing log files as they contained the data we
needed without requiring modifications to the core product with a
risk of introducing bugs. The amount of data per operator varied
between 33 and 497 MB.

In this study we selected one of the most commonly used proto-
cols for SMS traffic, SMPP (Short Message Peer to Peer). Each PDU
starts with a header, comprised of the operation number, a transac-
tion number, a status and the length of the data section. Following
the header is the data section, consisting of a sequence of key-value
pairs, where the keys and their order depend on the operation. As
responses can arrive in an undefined order, the transaction number
from the request must be exactly duplicated in the response.

The EMG log files contain information on whether each PDU
was sent or received, the timestamp, which connection was used,
the operation name, the transaction number, and all key-value fields
from the data section.

6 CASE STUDY RESULTS

This section presents the results of the industrial case study. In
particular, we first discuss how different characteristics (keys) of
the data and messages sent affect the RTT (Section 6.1). Second,
we discuss how using certain adjustment factors enabled higher
accuracy in the outlier detection (Section 6.2). Third, we detail
the results of applying the anomaly detection algorithm to a large
dataset of network traffic (Section 6.3).

In the presented results, data is analyzed for three different op-
erators, referred to as “O1”, “02” and “O3”.

6.1 RTT for selected keys

To explore how individual keys affected the RTTs, we counted the
number of unique values used by each key. This revealed three
distinct categories.

Message specific: 11 keys, e.g. destination numbers and message
bodies. We assume these values are unique for each message.

Groups: 11 keys, e.g. whether a delivery report is requested, the
character encoding, and similar keys with a very limited
set of values. We identified “data coding”, “esm class” and
“registered delivery” as having the largest effect on the RTTs.

Constants: 4 keys that are either not supported by EMG, or ig-
nored by most recipients, and therefore always sent with the
same value.

Next we describe the key “data coding” in more detail, and how
its value affects the RTT. All RTT values in this section are shown
with their mean and one standard deviation up and down, to give
an indication of their relative positions and spread.



Table 1 shows the RTT grouped by data coding. The values in
the first column have the following meaning.

0 Text message, using the GSM character encoding IA5.
8 Text message, using the character encoding UCS-2.
240 Special messages, e.g. configuration settings.

245 8 bit data, e.g. ring tones.

With the exception of the values 240 and 245 to operator “O1”,
the RTT distributions for different values are clearly separated. The
operators seem to perform some time consuming processing of
UCS-2 texts, as those RTTs are significantly longer than for IA5
texts. “N/A” means the value was not used with that operator.

Value 01 02 03
0 | 9.3/9.7/10 | 8.1/8.2/8.4 | 440/466/493

8 23/25/28 21/24/27 | 651/673/697
240 | 3.6/3.7/3.7 | 3.5/3.5/3.5 N/A
245 | 3.2/4.9/7.7 N/A | 329/358/390

Table 1: RTT in milliseconds, grouped by data coding.
The three values are ;i — 0, p and p + o, respectively.

The RTTs when grouped by the “esm class” and “registered
delivery” keys showed similar patterns, with a ratio of up to 3 for
some values. This motivates us to show the results with a deeper
analysis using the adjustment factors.

6.2 Adjustment factors

The adjustment factors for the message key values were mostly con-
sistent with the results in Section 6.1. The “data coding” adjustment
factors are shown in Table 2. As the values represent the difference
in exponent, a value of 1 corresponds to a ratio between the RTTs
equal to e.

For O1, whether data coding is 0 or 8 gives an RTT that varies
by a factor of e?-92=(-0-46) ~ 3 97 UCS-2 data requires twice as
much space as IA5, but even if we adjust for this, there is still a
remaining factor of 3.97/2 ~ 1.99. We see a similar pattern for 02,
with adjustment factors —0.13 and 1.30 for data codings 8 and 240.
The “esm class” and “registered delivery” keys also showed a clear
correlation between the RTTs and the adjustment factors.

Value 01 02 03
0 | -0.46 (9.7) | -0.13 (8.2) | -0.10 (466)

8| 09225 | 1.30(24) | 0.11(673)
240 | -1.12(3.7) | -0.87 (3.5) N/A
245 | -0.03 (4.9) N/A | -0.25 (358)

Table 2: Adjustment factors, by data coding. The value inside
parentheses is ; from Table 1.

6.3 Anomaly frequencies

Figure 3 uses blue circles to show the RTTs for 288,515 outgoing
requests to O1, over a period of approximately two months. Most
measurements are around 10 milliseconds (1e+04 microseconds),
but RTTs of up to several seconds are common enough that they

are not considered outliers. The black, green and red lines show
the medians from A;, A3 and As, respectively, as described in Sec-
tion 4.4. The black line shows the median of the 52 = 25 most recent
measurements. Even with the large number of measurements above
1e+06 microseconds at Index 240,000, there is still enough data with
lower values to keep the median below 1e+05 microseconds. The
green line shows the median of 25 values from the black line, i.e.
252 = 625 measurements. It stays significantly calmer, peaking only
for indices 18,000, 190,000 and around 240,000, all corresponding to
wider peaks of the black line. The red line shows the median yet
another factor of 25 up, for 253 = 15, 625 measurements. Although
some noise remains, the values shown by the red line (As) can be
used for comparisons with those shown by the green line (A3).

The intervals that satisfy our condition for anomalies, i.e. when
the median of A3 is more than twice the median of As as described
in Section 4.4, are marked with red lines at the bottom of the graph,
surrounded by grey dotted rectangles. These lines perfectly mark
the sections with many slow responses.

Despite the large variance shown in Section 6.1, using adjustment
factors and medians provides a base level that is relatively stable.
The area containing outliers for O2 is shown in Figure 4(b), where
the blue dots have been removed for clarity. The end point of the
marked area is quite far away from the starting point, indicating
low precision of our method. This is the trade-off for high recall
and avoiding multiple adjacent groups of outliers. There are no
round-trips at 196,000 shorter than 5000 microseconds, causing A3
(shown by the green line) to increase from 4267 microseconds to
8229. This makes Az more than twice the value of A5 (shown by the
red line), i.e. 8229 > 2 % 3964, satisfying our condition for outliers.

The effect of the adjustment factors is illustrated in Figure 4(a)
and Figure 4(b). Both figures show the same data, without and
with adjustment factors, respectively. The black and green lines in
Figure 4(b) are more stable, reporting one anomaly instead of three.

The algorithm detected no anomalies in the traffic towards O3.

For validation, we created simulated log files. The RTTs were
randomized with a log normal distribution and a minimum value
of 1000 microseconds. After at least 20,000 roundtrips, a group of
up to 4095 entries with up to half a second slower responses was
added. The results from the analysis on one such file are shown
in Figure 5. There were three groups with slow responses, one at
48,515 with 2488 entries, one at 82,120 with 1222 entries, and one
at 9133 with 192 entries, corresponding to the three blue peaks.
Given there must be at least 625/2 = 313 entries for our algorithm
to report an anomaly, only the first two peaks are reported.

The red line is almost perfectly flat, showing the Remedian [20]
is stable.

7 VALIDITY THREATS

Below we discuss the threats to the validity of our study.

Internal: We see two possible internal validity threats. First, al-
though the 8 option keys we discarded in Section 6.1 showed no
significance in the RTTs in our preliminary results, a more ad-
vanced analysis might show an effect. Second, any implementation
errors were mitigated by carefully examining the program output,
manually comparing it with the raw data in the log files.
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10000 20000

ol | ‘F |
w”l

5000

RTT in microseconds

2000
1

T T T T T T T
196000 200000 206000 210000 215000 220000 225000

Index

(a) RTT and medians for O2, without adjustment factors.

RTT in microseconds

10000
1

’ L L #ﬁ‘ thjﬁm

.W_m. i W P ..L_II
+

T T T T T T T
195000 200000 205000 210000 215000 220000 225000

5000

Index

(b) RTT and medians for O2, with adjustment factors.

Figure 4: RTT and medians for O2 with and without adjustment factors.

External: The analyzed log files in this paper all contain SMS
traffic over SMPP, but the approach with exponential smoothing
and the equations in Section 4.2 should be usable in any system
where parameter values affect which parts of the code are executed,
and therefore also the response time. When calculating the median,
the sensitivity can easily be changed by adjusting the array length,
and selecting which arrays to compare.

Reliability: We consider the reliability threat to be small, as we
have seen similar RTT distributions for connections to several
operators around the world.

Construct: The system model used in this paper is somewhat

simplified, abstracting the network traffic into logged “send” and
“receive” events. In reality, an outgoing PDU requires multiple steps:

(1) The data structure with the information to be sent is created.

(2) The data is packed into a byte array that can be transmitted
on a socket.

(3) The data in the data structure is logged.

(4) The byte array is sent to the operating system kernel.

(5) The operating system sends the byte array to the network
device.

(6) The network device transmits the byte array to the network.
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Figure 5: Simulated RTTs, with medians and outliers.

The timestamp used for the PDU comes from step 3, ignoring
any delays caused by the subsequent steps. The operating system
used is Unix, which does not provide a simple way to find the exact
time for step 6. Instead we assume that delays are small compared
to the network transmission and application processing times.

A limitation of the Remedian (described in Section 4.4) is that
only value sequences that start on multiples of 5" are considered, so
the number of outliers required to trigger an anomaly notification
varies. We do not consider this a problem, as the algorithm must
always be adapted in order to achieve the desired sensitivity.

8 CONCLUSIONS AND FUTURE WORK

Anomaly detection in production systems is valuable for ensur-
ing service levels towards customers. Making use of our domain
knowledge, we developed an algorithm that reduces noise, enabling
the detection of larger clusters of outliers. The algorithm is imple-
mented as an extension to our tool ELFA which calculates RTTs
between different communicating systems.

Even when the average RTT is within acceptable limits when
analyzing data from the live production environment of an SMS
broker, our approach can be used to identify conditions which have
an unreasonable effect. A relevant example would be the UCS-2
handling (see Table 2, the factor when the parameter is 8) by O1
and O2. Whilst being functionally correct, it suggests the UCS-2
handling could possibly be made more efficient in those systems.

RTT anomalies may also be possible to detect by observing
their side effects, such as a queue of outgoing messages being
formed. The higher the throughput normally is, the longer the
queue can be while maintaining an acceptable delivery time, so
such an algorithm would have to take the current throughput into
account. The throughput is not logged by EMG, so we could not
use this method.
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