
Adopting a Software Component Model in Real-Time Systems Development

Frank Lüders
ABB Automation Technologies, Control Platform Products
Lugna Gatan, Building 357, SE-721 59 Västerås, Sweden

frank.a.luders@se.abb.com

Abstract

Component-based software engineering (CBSE) and

the use of (de-facto) standard component models have
gained popularity in recent years, particularly in the
development of desktop and server-side software. This
paper presents a motivation for applying CBSE to real-
time systems and discusses the consequences of adopting
a software component model in the development of such
systems. Specifically, the consequences of adopting
Microsoft’s COM, DCOM, and .NET models are
analyzed. The most important aspects of these models are
discussed in an incremental fashion. The analysis
considers both real-time systems in general, and a real-
life industrial control system where some aspects the
COM model have been adopted. It is concluded that
adopting these models makes it possible to meet real-time
requirements, but that some overhead must be expected
and that special precautions may have to be taken to
prevent loss of real-time predictability.

1. Introduction

Component-based software engineering (CBSE)

denotes the assembling of software products from pre-
existing smaller products, generally called components.
In particular when this is done using standard or de-facto
standard component models and supporting technologies
[1]. A component model generally defines a concept of
components and rules for their design-time composition
and/or run-time interaction, and is usually accompanied
by one or more component technologies, implementing
support for composition and/or interoperation.

In recent years, the use of component models has
gained popularity in the development of desktop and
server-side software. Two popular models in desktop
applications are Sun’s JavaBeans [2] and Microsoft’s
ActiveX controls [3], where the latter is built on top of the
more basic Component Object Model (COM) [4]. Both of
these are particularly suited for components to be used
with visual composition tools. The best-known models in
the server domain are Sun’s Enterprise JavaBeans (EJB)
[5], Microsoft’s COM extension COM+ [6], and the
Object Managements Group’s new CORBA Component

Model (CCM) [6]. These models offer similar support for
transactional processing and persistent data management.

This paper discusses the possibilities of using such
component models in real-time systems. In particular, the
feasibility of using COM, the most basic of these models,
and its distributed extension is analyzed and illustrated
through a case study. Microsoft’s latest model .NET [8] is
also briefly discussed. Section two presents motivations
for adopting a component model, both in real-time
systems generally and in a real-world industrial control
system. Section three discusses the implications of
adopting different aspects of a particular component
model. An overview of related work is given in Section
four. Finally, Section five concludes the paper and
outlines future work.

2. Motivation

The general motivation for component-based software

engineering is the prospect of increased productivity and
timeliness of software development projects. Indeed, this
is as desirable for real-time and embedded software as for
any other application. It could also be argued that some
characteristics of CBSE make it particularly attractive for
real-time systems. For instance, real-time software often
requires more extensive testing, so the use of pre-tested
components may be particularly time saving in the
development of such system. Another example is that
many embedded systems, such as mobile telephones,
could benefit from reuse of components across products
and models. Conversely, there are also barriers to CBSE
particular to real-time and embedded systems. Most
obviously, there may be a risk that component models
and technologies may introduce unacceptable overhead or
loss of predictability.

An example of a real-time system where the use of a
component model has been useful is the industrial control
system by ABB called ControlIT (http://www.abb.com).
This product is a modular controller consisting of a
central processing unit with two expansion buses. One
bus is for I/O modules of different types and is used to
connect the controller to physical signals. The other bus is
for communication interfaces and allows the controller to
communicate with other devices using different media

and protocols. The controller also has two built-in serial
ports and redundant Ethernet ports.

ABB’s development organization is globally
distributed, and the interest in component models first
arose from a wish to make it easier for different
development centers to add I/O and communication
support to the system. It was decided to redesign the
system’s architecture so that all code particular to a
certain I/O module, communication interface, or protocol
resides in a separate component called a protocol handler.
To achieve this, rules and formats for interaction between
these protocol handlers and the rest of the system had to
be decided on. In other words, a component model was
needed. In the following analysis of adopting different
aspects of a component model, the usefulness and
liabilities of each particular aspect in connection with
protocol handlers will be discussed. The use of a
component model to support integration of protocol
handlers in ABB’s control system is further described in
[9], where it is demonstrated that the new architecture
supports distributed development and reduces the time
required to implement I/O and communication support.

3. Adopting Microsoft Models

Among the most commonly used component models

for desktop and server applications are Microsoft’s
Component Object Model (COM) and its extension
Distributed COM (DCOM) [10]. There is also great
interest in the company’s new generation of technologies,
commonly denoted .NET, which also defines a
component model [8]. This section explores the
possibilities of using these models in real-time systems.
The most important aspects of these models will be
discussed in an incremental fashion, assuming that it may
be desirable in some situations also to adopt the models in
such a fashion.

3.1. COM Interfaces

A key principle of COM and other component models

is that interfaces are specified separately from both the
components that implement them and those that use them.
COM defines a dialect of the Interface Definition
Language (IDL) that is used to specify object-oriented
interfaces. Interfaces are object-oriented in the sense that
their operations are to be implemented by a class and
passed a reference to a particular instance of that class
when invoked. The code that uses a component does not
refer directly to any objects, however. Instead, the
operations of an interface supported by an object are
invoked via what is known as an interface pointer. A
concept known as interface navigation makes it possible
for the user to obtain a pointer to every interface
supported by the object. For a further description of this
topic, see e.g. [10].

COM also defines a run-time format for interface
pointers. What an interface pointer really references is an
interface node, which in turn, contains a pointer to a table
of function pointers, called a VTABLE. Typically, the
node also contains a pointer to an object’s instance data,
although this is up to the implementation (of the
supporting component technology). This use of
VTABLEs is identical to the way that many C++
compilers implement virtual functions. Thus, the time and
space overhead associated with accessing an object
through an interface pointer is the same as that incurred
with virtual C++ functions. This time overhead is very
modest. The memory overhead should also be acceptable,
perhaps except for the most resource constrained
embedded systems. Figure 1 illustrates the typical format
of interface nodes.

Figure 1. Typical format of COM interface nodes

interface pointer

interface node
instance data

VTABLE

method code

method code

method code

method code

For most real-time systems, a more serious concern
than these modest overheads is that interface navigation
introduces a possible source of run-time errors. If the user
of a component asks an object for a pointer to an interface
that the object does not support, this will not be detected
during compilation. It may be argued, in fact, that this is
the principal difference between interface navigation and
interface inheritance in traditional object-oriented
programming. This can be seen as a necessary price to
pay for the otherwise desirable reduced compile-time
dependence between components.

Most real-time systems are based on multi-tasking and
are often built on top of a real-time operating system
(RTOS) using some kind of priority-based scheduling.
Developers of components for real-time systems will
generally need to make assumptions about how their
components will be used in a multi-tasking environment.
The safest option will be always to assume that an object
can be concurrently used by several tasks, and guard all
methods with the necessary synchronization. For reasons
of efficiency, however, it may be more desirable to
require the code that uses the component to provide any
necessary synchronization. The exact circumstances
under which such protection is necessary are thus an
important part of the component’s documentation.

The use of COM IDL to specify interfaces and
VTABLEs to implement interface pointers work well for
protocol handlers. The concept of multiple interfaces per
object with interface navigation is useful since different
protocol handlers must provide different functionality.
The object-oriented nature of COM interfaces where each
interface pointer refers to a particular instance of a class
also matches the needs of the ABB control system.

Multiple instances of the same protocol handler are
useful, e.g. when a controller is equipped with two
identical communication interfaces, linking it to two
separate networks of the same type. The latest version of
the control system uses COM interfaces, but not the other
parts of COM discussed below.

3.2. Instantiation and Dynamic Linking

The previous section stated that the code of a COM

component is implemented in classes, without discussing
how instances are created. Also, nothing was said about
how and when the code in different components is linked
together. COM defines a policy for instantiation, which is
intended to ensure that different components can be
installed in a system at different times. When a
component is installed, information about it must be
registered somewhere in the system, linking the identity
of its classes to the code that implement these. COM also
requires a run-time library, called the COM library, to be
installed on the system. When some code wants to use a
component, it uses an operation provided by the COM
library to ask for an instance of a class and an initial
interface pointer to it. If the code of the component is not
already loaded into memory, the COM library uses the
registered information to locate the code and load it
before an instance is created. This process is illustrated in
Figure 2.

Thus, creation of an instance involves searching the
information about registered classes and possibly loading
of code. This leads to a noticeable overhead when
compared to instantiation in for instance C++.
Furthermore, this overhead will vary, depending on

Client Component

COM Library Registry

1) Request object by
class and interface

2) Look up component

3) Load component if necessary
and request object

4) Return interface
pointer

5) Invoke
operations

Figure 2. Instance creation and dynamic loading of code in COM

whether the code implementing a class has already been
loaded or not. This variability can be eliminated,
however, by designing the software such that all
components that may be used will be loaded at start-up.
Note that removal of instances is subject to the same
variability, since the COM standard states that code can
be unloaded when the last instance that rely on it is
removed.

A benefit that follows from COM’s way of creating
instances is that the code that implements a component
can be built independently of any code that uses the
component. Since instantiation involves passing the
identity of the desired class as a parameter to a system
operation, it is a possible source of run-time errors, which
is not present during instantiation in traditional object-
oriented programming, since attempting to instantiate a
class that does not exist will result in a compilation error
in this case. Again, this is a necessary price to be paid for
decreased coupling.

COM’s principle of instantiation is well suited for
creating instances of protocol handlers, since no
knowledge of the set of available protocol handlers
should be built into the system. The overhead associated
with looking up classes and dynamic loading of code is
expected to be tolerable, especially since the software is
designed such that protocol handlers need only be
instantiated and deleted during program download. Thus,
the extra time taken by this way of instantiation will not
interfere with the continuous operation of the system. An
additional benefit of using this technique for instantiation
is that protocol handlers can be deployed (and updated)
independently of the rest of the system. Future versions of
the control system may include a COM library and
employ dynamic linking of components. It is possible that

a commercial component technology, such as
WindRiver’s implementation of COM for the VxWorks
RTOS (http://www.windriver.com) will be used.

3.3. Location Transparency with DCOM

DCOM is an extension of COM, which allows

component-based applications to be distributed across
memory spaces or physical machines. This is realized
using auxiliary objects known as proxies and stubs. When
some code asks the COM library to create an instance of a
class that is implemented in a component in a different
location, the instance is created in the remote location
along with a stub. The code that asked for the instance is
passed an interface pointer to a proxy object, created on
its side. When an operation is invoked via this interface
pointer, the proxy translates this to a remote procedure
call (RPC) to the remote stub, which in turn invokes the
corresponding operation on the real object. It may also be
necessary to create a proxy-stub pair at other times than
object instantiation. This happens when an interface
pointer is passed as a parameter to an operation of an
object in a remote location. This process is known as
marshalling. Proxy and stub code is usually generated
automatically from IDL specifications. Figure 3 illustrates
the use of proxy and stub objects

The ability to deal with memory spaces may not be of
great consequence to real-time systems, since real-time
operating systems do not traditionally use memory
spaces. The ability to deal with such may, however, be
useful in parallel processor architectures. DCOM may be
useful in simplifying the implementation of distributed
real-time systems. The transparency to the programmer of
accessing remote objects is not completely valid for real-

Client

Component

Proxy

Stub

Operation invocation

Operation invocation

Remote procedure call

Machine border

Figure 3. Use of proxy and stub objects in DCOM

time systems, however. Since the timing of object
operations will differ between local and remote
invocations, real-time software developers will still need
to consider whether their code uses components in
another location or not. It is also useful for developers of
components to be aware of whether their components will
be remotely accessed. For instance, one may consider
exploiting the ability to define asynchronous interfaces
for such components. An additional benefit of using
DCOM in real-time systems is that it may simplify the
implementation of communication between these systems
and COM-based desktop applications, such as operator
stations.

In addition to the extra time overhead associated with
remote invocation and marshalling, DCOM also requires
more space than COM, to store the proxy and stub code
as well as the RPC mechanism. The proxy and stub are
generally quite small and executes relatively quickly,
however, so the time and space overhead is mostly due to
the RPC mechanism and underlying protocol stack.
Therefore, using DCOM does not result in much of an
overhead for distributed real-time systems, where RPC or
some other communication mechanism would be needed
anyway.

A possible reason for using DCOM in ABB’s control
system, is that protocol handlers could be located in the
communication interfaces or I/O modules they support,
rather than in the central processing unit. The usefulness
of this is not obvious, however, especially when
considering the required additional overhead. Thus, there
are no current plans to adopt DCOM in the system.

3.4. The Next Generation: .NET

The name .NET is used by Microsoft to denote a

comprehensive set of new technologies. This includes a
new component model, intended to replace COM/DCOM.
A notable development is that .NET moves the
responsibility of providing certain functionality from the
components to a more sophisticated run-time system. In
particular, COM/DCOM requires components to provide
a considerable amount of “house-keeping” functionality
that is taken care of by the .NET run-time. Much of the
flexibility that follows from having such implementations
in each component is maintained under .NET, where the
operation of the run-time system with respect to
individual components can be affected by setting
declarative attributes.

A potential advantage of this development is increased
reliability, since it may be assumed that more effort may
be invested in ensuring the quality of a run-time system to
be re-used in a large number of systems. Another
attractive consequence of having more code in a common
run-time is that the total size of the software may
decrease. Obviously, this advantage of grows with the

number of components in the system. On the other hand,
using a sophisticated run-time system, possibly without
using much of its functionality, may lead to unnecessarily
large software. This is a particular problem for resource
constrained embedded systems. Fortunately, Microsoft
has defined a special compact version of .NET that limits
this problem somewhat. What is assumed to be the
greatest strength of .NET is the potential for increased
development productivity. This relies both on the
aforementioned run-time system with its associated
libraries, and on advanced development tools. As usual,
this gain is achieved at the expense of some run-time
overhead. While it seams clear that this cost is acceptable
for desktop software, the corresponding question for real-
time systems is more open.

4. Related Work

There are some work on software component models

and real-time or embedded systems in recent literature.
This work is dominated by efforts to define component
models particularly targeted at real-time embedded
systems or even narrower application domains. Examples
include Philip’s Koala component model for consumer
electronics [11], the component model for industrial field
devices developed in the PECOS project [12], the
commercial product ControllShell [13], which is based on
visual composition and automatic code generation, and
the more academic ACCORD approach [14] of aspect-
oriented component-based development of real-time
systems. Work on using “mainstream” component models
in real-time systems is less common. One example is [15],
which also discusses COM. This work, however, focuses
on extensions to COM rather than the consequences of
using the existing model in real-time systems.

5. Conclusion and Future Work

This paper has discussed the idea of using a software

component model in real-time systems. In particular,
using Microsoft models, both from the perspective of
real-time systems in general and from that of ABB’s
control system. In general, it has been seen that each of
the levels of adopting the models that have been
discussed, introduces some degree of time and space
overhead. In addition, new potential sources of run-time
errors are introduced, corresponding to compilation errors
in traditional object-oriented programming. It is
concluded that COM/DCOM may be used for real-time
systems, provided that any overhead is acceptable or can
be compensated by hardware, and that the software
designer takes care that the potential run-time errors are
not allowed to materialize and result in a loss of
predictability.

The major conclusions to be drawn from the
discussions in this paper are as follows. COM interfaces,
which provide a way to separate the specification of
interfaces from component implementation, carry with
them a very modest time and memory overhead.
Compared to interface inheritance in object-oriented
programming, COM interfaces introduce a potential
source of run-time errors. COM’s mechanism for
instantiating objects and loading code at run-time has a
considerable overhead when compared to instantiation in
for example C++. This overhead is subject to a certain
variability, which may be avoided by careful application
design. DCOM is an extension of COM that allows
applications to access COM objects across memory
spaces and physical machine boundaries. The time and
space overhead associated with this is dominated by the
underlying communication mechanisms. The new .NET
platform promises increased development productivity,
but it remains to be seen to what extent it is suitable for
real-time systems.

The immediate future work planned as a continuation
of this paper is to strengthen the analyses with empirical
evidence by conducting experiments and collecting
measurements. Preferably, this should be done on a real-
time platform using a commercial or self-made COM
implementation. In the longer perspective, an intriguing
idea is to develop a COM-based component model
particularly intended for real-time software. This idea is
primarily inspired by how COM+ supports the
implementation of functionality such as transactional
processing, which is considered a major challenge in
distributed information systems. Corresponding
challenges for real-time systems include issues such as
concurrency, synchronization, and timing. In addition to
easing the implementation it would be desirable for such
a model to support compositional reasoning, i.e. the
deduction of a system’s properties from the known
properties of its parts. A natural starting point for
achieving this is the existing work on prediction enabled
component technologies (PECT).

6. References

[1] C. Szyperski, Component Software – Beyond Object-

Oriented Programming, Addison-Wesley, 1997.

[2] Sun Microsystems, JavaBeans Specification, Version
1.01, 1997.

[3] D. Chappell, Understanding ActiveX and OLE, Microsoft
Press, 1996.

[4] Microsoft Corporation, The Component Object Model
Specification, v0.99, 1996.

[5] Sun Microsystems, Enterprise JavaBeans Specification,
Version 2.0, 2001.

[6] D. S. Platt, Understanding COM+, Microsoft Press, 1999.

[7] Object Management Group, CORBA Components,
Version 3.0, Report No. formal/02-06-65, 2002.

[8] J. Lowy, Programming .NET Components, O’Reilly &
Associates, 2003.

[9] F. Lüders, Use of Component-Based Software
Architectures in Industrial Control Systems, Technology
Licentiate Thesis, Mälardalen University, Sweden, 2003.

[10] F. E. Redmond III, DCOM – Microsoft Distributed
Component Object Model, IDG Books, 1997.

[11] R. van Ommering, J. Kramer, J. Magee, “The Koala
Component Model for Consumer Electronics Software”,
IEEE Computer, March 2000, Vol. 33, No. 3.

[12] O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A.
Black, P. Müller, C. Zeidler, T. Genssler, R. van den
Born, “A Component Model for Field Devices”,
Proceedings of the First International IFIP/ACM Working
Conference on Component Deployment, June 2002.

[13] S. A. Schneider, V. W. Chen, G. Pardo-Castellote,
“ControlShell: Component-Based Real-Time Program-
ming”, Proceedings of the IEEE Real-Time Technology
and Applications Symposium, May 1995.

[14] A. Tešanović, D. Nyström, J. Hansson, C. Norström,
“Towards Aspectual Component-Based Development of
Real-Time Systems”, Proceedings of ölsakfjölskdjf alskdfj
2001?.

[15] D. Chen, A. Mok, M. Nixon, “Real-Time Support in
COM”, Proceedings of the 32nd Hawaii International
Conference on System Sciences, 1999.

[16] S. A. Hissam, G. A. Moreno, J. Stafford, K. C. Wallnau,
“Enabling Predictable Assembly”, Journal of Systems and
Software, Volume 65, Issue 3, 2003.

