
Improving Continuous Integration with Similarity-based Test
Case Selection

Francisco G. de Oliveira Neto
Chalmers | University of Gothenburg

Gothenburg, Sweden
gomesf@chalmers.se

Azeem Ahmad
Linköping University
Linköping, Sweden
azeem.ahmad@liu.se

Ola Leifler
Linköping University
Linköping, Sweden
ola.leifler@liu.se

Kristian Sandahl
Linköping University
Linköping, Sweden

kristian.sandahl@liu.se

Eduard Enoiu
Mälardalen University
Västerås, Sweden

eduard.paul.enoiu@mdh.se

ABSTRACT
Automated testing is an essential component of Continuous Inte-
gration (CI) and Delivery (CD), such as scheduling automated test
sessions on overnight builds. That allows stakeholders to execute
entire test suites and achieve exhaustive test coverage, since run-
ning all tests is often infeasible during work hours, i.e., in parallel to
development activities. On the other hand, developers also need test
feedback from CI servers when pushing changes, even if not all test
cases are executed. In this paper we evaluate similarity-based test
case selection (SBTCS) on integration-level tests executed on con-
tinuous integration pipelines of two companies. We select test cases
that maximise diversity of test coverage and reduce feedback time
to developers. Our results confirm existing evidence that SBTCS
is a strong candidate for test optimisation, by reducing feedback
time (up to 92% faster in our case studies) while achieving full test
coverage using only information from test artefacts themselves.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation; Software maintenance tools; Maintaining software;

KEYWORDS
Similarity based test case selection, Continuous integration, Auto-
mated testing

ACM Reference Format:
Francisco G. de Oliveira Neto, Azeem Ahmad, Ola Leifler, Kristian Sandahl,
and Eduard Enoiu. 2018. Improving Continuous Integration with Similarity-
based Test Case Selection. In AST’18: AST’18:IEEE/ACM 13th International
Workshop on Automation of Software Test , May 28–29, 2018, Gothenburg,
Sweden. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3194733.
3194744

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AST’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5743-2/18/05. . . $15.00
https://doi.org/10.1145/3194733.3194744

1 INTRODUCTION
Automated test optimisation has beenwidely researched in academia,
due to their successful cost reduction by minimising, selecting or
prioritising test cases [21]. There has been a recent increase in the
number of studies using similarity/distance information from test
cases to guide the optimisation. Numerous techniques improve di-
versity of varied information such as execution traces [17], model
elements [4, 7, 12], test input [9], or manual tests [13, 15] across
the different levels of testing.

In a recent study, Henard et al. state that the similarity-based
techniques, along with combinatorial integration testing, perform
the best among the black-box testing techniques [14]. But what are
the key elements behind similarity-based test optimisation? The
underlying assumption is that, when testing a software system, we
should search for a diverse set of test cases [9, 10, 13] that are able
to exercise several yet distinct parts of the code base. This ensures
breadth in coverage, thus allowing the techniques to remove similar
or very redundant test cases.

Then, optimisation becomes a candidate solution for companies
aiming to lever their development processes by reducing redundan-
cies in sets of test cases, while catering for high test coverage. On
the other hand, discarding test case is an inherent risk of optimisa-
tion approaches [21] since defects can remain undetected when the
test case supposed to reveal such defect is not exercised. Therefore,
practitioners should be aware of the trade-offs when deciding to
adopt automated optimisation in their test processes.

Alternatively, one can instrument continuous integration (CI)
and/or delivery (CD) pipelines to provide automated and continuous
testing thusmitigating the risks caused by discarding test cases. This
accelerates development, since developers should receive feedback
from integration level testing on built packages of the system under
test (SUT) [2]. This is currently automated in servers instrumented
with, for instance, Jenkins1 or Bamboo2.

Therefore, our goal is to investigate the synergies between CI and
similarity-based test optimisation. We collect data from two compa-
nies from distinct domains and evaluate the trade-offs of introduc-
ing similarity-based test case selection (SBTCS) to CI pipelines. The

1https://jenkins.io/
2https://www.atlassian.com/software/bamboo

https://doi.org/10.1145/3194733.3194744
https://doi.org/10.1145/3194733.3194744
https://doi.org/10.1145/3194733.3194744
https://jenkins.io/
https://www.atlassian.com/software/bamboo

AST’18, May 28–29, 2018, Gothenburg, Sweden de Oliveira Neto et al.

selection is performed on automated integration-level test cases,
which are specified in natural language3.

In a case study, we compare the performance of three different
similarity functions and random test selection, with respect to two
dependent variables: test coverage and time to execute the selected
subset. The selection uses only the test cases themselves, such that
no additional software artefact is needed such as the source code
or requirements specification. Results reveal that SBTCS is able to
significantly reduce the time (e.g., up to 92%, from 3.75 hours to 17
minutes) required to execute integration tests on CI servers while
achieving full test coverage of different criteria from test artefacts
(test requirements, dependencies and steps). This helps developers
to receive faster feedback when validating builds of the SUT, during
ongoing development activity.

On the other hand, limitations in our datasets hindered analy-
sis of failure detection, hence limiting our conclusions about the
effectiveness of the obtained time reduction. Nonetheless, in our
case studies, the entire test suite is executed every day during the
night on the CI servers, so that developers have information about
detected defects at the beginning of each working day.

This paper has the following structure. Section 2 provides a sum-
mary of existing techniques and studies involving SBTCS. Due to
limited space, we do not present details on how the similarity mea-
sures are calculated, or how the selection is performed; instead we
refer to Hemmati et al. [12] and Cartaxo et al. [4] for a detailed
description of the SBTCS. Section 3 presents our case study, such
as our planning, variables, factors, and details about the case com-
panies. Results and validity threats are then discussed on Section
4, followed by Section 5 where we summarise our findings and
answer the research questions. Lastly, where we draw conclusions
and discuss future work.

2 BACKGROUND AND RELATEDWORK
Similarity-based test case selection has been reported as a promis-
ing test optimisation approach for white-box and black-box ap-
proaches [5, 13, 14, 17]. The goal is to remove similar test cases in
order to increase diversity of the test set, based on the underlying as-
sumption that similar test cases exercise similar parts of the source
code, hence being more likely to reveal the same defects [4, 13].
Therefore, by reducing the size of test suites and increasing diver-
sity, we are likely to execute fewer test cases and still uncover a
variety of defects.

In order to measure the similarity between two test cases, we
use similarity measures, also named similarity functions. A simi-
larity function receives two pieces of information as input (two
test cases in our context) and returns a number (often between 0
and 1) indicating the degree of similarity between the two inputs.
When two test cases have similarity 0 they are completely different
test cases, whereas a similarity value of 1 indicates identical test
cases. Note, however, that there is a continuum between 0 and 1,
resulting in a scale, instead of a binary attribute. So, we would
like to have a set of test cases with low similarity values. Alterna-
tively, some techniques use the concept of distance between test

3The test case descriptions are written using natural language but later in the CI
pipeline, test frameworks are used to automatically execute the test cases

cases [9, 10] which can be simply a complement to the similarity,
i.e. distance(Ti ,Tj) = 1 − similarity(Ti ,Tj).

Considering that the similarity is measured between pairs of test
cases, the techniques usually calculates the similarity between all
pairs of test cases, resulting in a similarity matrix, from which the
test cases are then automatically selected by i) identifying the most
similar pair of test cases (e.g., highest value in the matrix), and then
ii) removing one of those two test cases. The matrix is then updated
by removing information from the discarded test, and the next
most similar pair is identified, hence repeating the process until the
matrix is left with the desired amount of test cases [3, 4, 12].

Note that similarity can be measured in terms of different prop-
erties of a test case, such as textual steps [3, 4, 12], modifications [7],
and historical failure information [17]. Therefore, one of the main
elements of similarity-based test optimisation is the choice of an
appropriate function able to quantify the similarity between two
test cases in terms of those different properties.

Cartaxo et al. [4] and Hemmati et al. [12] investigated similarity-
based test case selection in the context of model-based testing
(MBT). Their techniques aim to increase diversity of model ele-
ments, such as transitions or states, that represent steps or con-
ditions in abstract test cases. Similarly, de Oliveira Neto et al. [7]
evaluated SBTCS when modifications are performed on those mod-
els, so that regression test suites include a diversity of test cases
covering all model modifications. Their experiments show that
SBTCS techniques perform better (especially when compared to
random) in terms of coverage and defect detection, and argue that
the similarity functions are quite general and applicable beyond
MBT [4, 7, 12]. Our case study confirms their findings since SBTCS
has good performance, even if model information is not provided.

Other studies use similarity functions to prioritise tests, instead
of selecting them [13, 17]. In their case study with open source
data, Hemmati et al. reveal that, for black-box testing, risk-driven
selection outperforms SBTCS for rapid releases of software in terms
of average percentage of fault detected (APFD), a widely used met-
ric to evaluate test prioritisation techniques [18]. Their findings
are limited to black-box approaches and test prioritisation which
contrast to our study that focus on integration level test selection.

In connection to the performance of SBTCS, there are several
studies evaluating the use of different similarity functions for test
case selection [5, 12]. Results show that distinct functions perform
significantly different in finding defects [5, 7] depending on the
type of information that they are employed. For instance, the Lev-
enshtein function [5, 12] is based on the edit distance between two
string, thus being suitable for capturing similarity on text-based
test scripts, whereas Jaccard Index [5, 12] is suitable for sets of test
information, and the Normalised Compression Distance (NCD) [9]
is more general and can be used on any type of data. Our case
study confirms the differences in performance among the different
similarity functions when using different types of information.

3 CASE STUDY
We perform a case study with the objective of exploring the benefits
of using similarity-based test case selection to leverage continuous
integration by providing fast and meaningful feedback on inte-
gration test activities. This case study was performed with data

Improving Continuous Integration with Similarity-based Test Case Selection AST’18, May 28–29, 2018, Gothenburg, Sweden

collected from two companies located in Sweden. The first is a
security and video surveillance company, whereas the second is an
automotive company.

Since this is an exploratory case study, our objective, at this stage,
is not to assess the quality of their CI pipelines and activities, rather
we use our results to describe each case and point to particular
aspects of their automated testing processes that can be improved.
Therefore, we focus on the following research questions:

RQ1: How can SBTCS lever test feedback on CI pipelines?
RQ2: What are the trade-offs in selecting and executing fewer test

cases during software builds?
RQ3: Is there a difference between similarity functions in selecting

integration-level automated test cases?

We visited each company to interview testers and understand
the relations between the CI pipeline and their test activities to
answer RQ1. In addition, practitioners exported test data from their
CIs, including test case specifications, execution logs, and build
information (time stamps, executed test cases, etc.) which we use
to answer RQ2 and RQ3. Since each company provided specific
archival data, we consider two distinct units of analysis to draw
separate conclusions and then discuss on the overall results.

In this case study we consider three distinct attributes in a test
case: test requirements, test dependencies, test steps. A test require-
ment is an approval criterion, and therefore a functional assessment
of the SUT. An example of a test requirement is a system require-
ment that must be validated (e.g., a hardware element should re-
spond properly to network commands). In turn, test dependencies
represent functionality required for test execution, but excluded
from the approval criteria. In other words, they are setup elements
required for test execution. Note that in practice we should dis-
tinguish test cases that fail due to a defect from test cases that
fail due to a setup error (e.g., the hardware element being offline).
The problem with test dependencies is that one failure may cause
a chain reaction on the build process, and developers are unable
to validate their implementation due to problems, for instance, in
the environment setup. Lastly, test steps are the natural language
description of user actions and expected results created by a tester.
Since these are integration-level tests, this natural language descrip-
tion is eventually translated into executable test code.

We evaluate the different test selection techniques based on the
coverage of test requirements, dependencies and steps in relation
to the reduction of the test suite. The goal is to see whether fewer
test cases can be executed without reducing coverage. In other
words, we want to see how far can we reduce sets of test cases
and still provide sustainable coverage to ensure thorough test re-
sults. Additionally, we analyse how the test selection affects the
execution time on the CI servers. In order to measure effectiveness,
one should ideally measure how many defects the selected subset
reveals. However, the data provided had limited and incomplete
failure information. Hence, we cannot draw conclusive results re-
garding defect detection rates of the investigated techniques. A
summary of our case study planning is presented in Table 1.

Table 1: Our case study planning according to guidelines pre-
sented by Runeson and Höst [19].

Objective Explore
The context Automated testing in CI pipelines
The cases Surveillance Company

Automotive Company
Theory Similarity-based test case selection.
Research questions RQ1, RQ2 and RQ3
Methods Third-degree data collection:

Archival data and metrics
Selection strategy Companies with instrumented CI pipelines
Unit of Analysis 1: Surveillance Company:

Coverage and Time
Unit of Analysis 2: Automotive Company:

Coverage

Executed overnight

Automated
integration tests

Continuous
Integration

server

Trigger a system build

Figure 1: Summary of the CI process in the case companies.

3.1 Case companies
We conducted interviews with both companies to understand their
CI activities and tools, such as how do they automate their integra-
tion tests, the bottlenecks in test executions, if and how test suites
are optimised (i.e., selected or prioritised), and how do developers
get feedback from this test infrastructure. For both companies, we
identified a similar process, described in Figure 1.

Integration test cases are pushed to a continuous integration
server that runs tests whenever building a new version of the SUT.
Across its life-cycle, the test suite has grown to an extent where
the execution of all test cases takes a long time (e.g., several hours),
such that developers often have to optimise the test execution by
selecting a subset of test cases. Alternatively, the entire test suite
executes overnight.

Due to Non-Disclosure Agreements (NDA), we cannot present
examples of test cases and coverage criteria provided by the compa-
nies. Instead, a summary of the data collected from both companies
is given in Table 2. Since the data from each company include dif-
ferent information, we divide our analysis into two distinct unit of
analysis, as suggested by Runeson and Höst [19].

Note that the test cases do not have a one-to-one coverage rela-
tionship with requirements, dependencies and steps. In fact, there
is a lot of redundancy in the test sets, since the same requirements
or dependencies are covered by different test cases. Therefore, we
aim to increase diversity in coverage while removing very similar
test cases.

The practical significance of our investigation is to support de-
velopers in receiving faster feedback by testing their implemented

AST’18, May 28–29, 2018, Gothenburg, Sweden de Oliveira Neto et al.

Table 2: Summary data from test artefacts collected from the
case companies.

Property Surveillance Company Automotive Company

Test cases: 1096 1972
Test requirements: 158 —
Test dependencies: 384 —
Test steps4: — 1093
Total execution time: 225 minutes (3.7 hours) —

changes on the built version of the system. Therefore, instead of
waiting for the entire overnight execution, we integrate the SBTCS
to the CI server, and allow automatic selection of a smaller and
diverse subset of test cases. Developers are then provided with
faster feedback on integration and system level tests. Note that we
still expect testers to test their modifications locally before pushing
source code to the CI server.

4 RESULTS
We evaluate the selection techniques in terms of percentage of
covered requirements, dependencies and steps as we reduce the
size of the test suite by 5%. This allows us to see how coverage is
affected as we execute fewer test cases.

Our factor is the selection technique, which we assign four levels.
We chose random selection (RDM) as a control group, whereas the
remaining three levels are different similarity functions used in
studies reported in literature [5, 9, 12, 13, 17]: Normalised Leven-
shtein (NL), Jaccard Index (JI) and Normalised Compression Dis-
tance (NCD).

4.1 Unit of Analysis 1
Our results for Unit of Analysis 1 are presented in Figure 2. When
considering coverage of test requirements and dependencies, both
the JI and NL techniques outperform RDM and NCD by providing
higher and more sustainable coverage as we reduce the number of
test cases. Note that both techniques are able to remove up to 85%
(931/1096) of test cases and still cover all distinct test requirements
(Figure 2(a)). In other words, even if a developer is working locally
in an isolated test requirement, she can push her modifications
to the CI server and get feedback from all test requirements by
executing only 15% of the test suite.

Similarly, when considering test dependencies, NL and JI out-
perform the other selection techniques. The main distinction be-
tween test requirements and dependencies is that each test covers
a single test requirement, whereas each test case may have several
dependencies. Consequently, more redundancy is expected on test
dependencies. Nonetheless, JI and NL were able to remove up to
65% (712/1096) of test cases and still cover all distinct combina-
tions of test dependencies required to execute the test cases. That
means that a developer can test all combination of test setups, in
the integrated system, with many less test cases.

Surprisingly, NCD has shown inferior results when compared to
RDM. Studies indicate that the compression can hinder NCD when
used on small strings [9]. The test requirements in our dataset are
short strings, which may actually be a benefit for NL since the edit

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
JI 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 66 31
NL 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 66 31
RDM 99 97 96 92 92 85 85 88 81 84 78 77 74 68 66 59 48 42 27
NCD 92 85 82 77 70 64 61 60 56 55 49 46 42 38 34 29 22 11 6

0

10

20

30

40

50

60

70

80

90

100

%
	o
f	c
ov
er
ed
	te

st
	re

qu
ire

m
en
ts

%	of	removed	test	cases

Coverage	of	Test	Requirements

(a)

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
JI 100 100 100 100 100 100 100 99 99 99 99 99 99 85 71 57 43 28 14
NL 100 100 100 100 100 100 100 100 100 100 100 100 100 85 71 57 43 28 14
RDM 97 96 92 92 88 79 78 77 71 68 63 61 59 52 44 36 30 23 13
NCD 90 81 73 65 59 54 51 47 42 39 33 27 24 20 15 11 9 8 4

0

10

20

30

40

50

60

70

80

90

100

%
	o
f	c
ov
er
ed
	te

st
	d
ep
en
de
nc
ie
s

%	of	removed	test	cases

Coverage	of	Test	Dependencies

(b)

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
JI 208 205 196 185 179 173 168 164 134 118 108 105 87 84 59 36 19 14 6
NL 189 181 158 142 140 138 131 125 106 86 60 54 44 34 28 24 17 13 7
RDM 198 195 185 161 150 147 131 130 116 102 101 70 75 70 52 40 24 18 11
NCD 202 197 196 182 174 165 158 140 125 120 93 87 80 75 60 55 51 33 24

0

50

100

150

200

Ti
m
e	
to
	e
xe
cu
te
	th

e	
te
st
	su

ite
(m

in
ut
es
)

%	of	removed	test	cases

Time	reduction

(c)

Figure 2: Results from test selection using data from the
Surveillance Company. Test requirements (a) and dependen-
cies coverage (b) and time reduction (c).

distance provides a fine-grained similarity value. However, we are
only able to draw conclusive results when executing the techniques
on a variety of datasets.

In terms of time (Figure 2(c)), the first conclusion is that none
of the techniques affect time reduction, since, as expected, time

Improving Continuous Integration with Similarity-based Test Case Selection AST’18, May 28–29, 2018, Gothenburg, Sweden

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
JI 98.9 97.3 96.6 96.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0 94.1 84.3 63.9 32.3 6.1
RDM 98.0 97.7 95.4 91.0 87.5 90.3 81.9 77.6 78.5 74.7 68.7 67.0 66.5 55.2 42.2 52.9 37.5 29.0 27.1
NL 100.0 100.0 100.0 100.0 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4 98.9 93.6 77.9 54.3 22.7
NCD 61.2 58.6 52.4 45.9 43.5 35.9 32.3 31.4 25.2 20.1 17.3 16.9 14.6 10.1 8.8 7.3 5.8 4.0 2.4

0

10

20

30

40

50

60

70

80

90

100

%
	o
f	c
ov
er
ed
	te

st
	st
ep
s

%	of	removed	test	cases

Coverage	of	Test	Steps

Figure 3: Results from Automotive company regarding cov-
erage of test steps as we select fewer test cases.

decreases linearly as we remove test cases. On the other hand,
by combining results from time and coverage we see the benefits
of SBTCS in CI pipelines. Note that the entire test suite executes
overnight, since developers cannot wait, on average, 225 minutes to
receive feedback from testing on a system build. In practice, Figure
2(a) shows us that a developer can validate all test requirementswith
only 15% of the test cases, which requires 17 minutes to execute.
In case developers want to make sure all of the test setup and
requirements are exercised at least once, Figure 2(b) shows us that
an average of 44 minutes is needed, by executing only 35% of test
cases. In addition to the benefits of full coverage with less time, the
selection of test cases (i.e., up to 80% using NL, JI and NCD), itself,
with respect to test requirements and test dependencies takes less
than one minute (an average of 20 seconds on our implementation).
We believe that scalability is feasible, since they run on quadratic
time5 because of the similarity matrices, but we plan to explore
further the extent of that scalability in future work.

Unfortunately, we could not assess this size reduction with re-
spect to failure detection, since the provided data lacked reliable
defect information. Certainly there is the risk that some of the dis-
carded tests would reveal important defects, but remember that all
of the test cases will still execute overnight. Therefore, developers
will have feedback on exhaustive coverage the next day, in case
some of the defects slip through.

4.2 Unit of Analysis 2
Our results for Unit of Analysis 2 are presented in Figure 3. Unfor-
tunately, the case company could only provide information on test
steps at this point. Nonetheless, the results are insightful, particu-
larly when comparing the results between both units of analysis.

Similarly to results from Surveillance Company, NL outperforms
the remaining similarity functions by providing high and sustain-
able test step coverage. Note that, for Automotive, test cases are
also integration-level test cases described using natural language.
Figure 3 shows that NL can consistently cover 99% (1082/1093 steps)
of distinct test steps even after removing 75% (1479/1972) of the
most similar test cases. If compared to the random selection at
5For instance, Marzal and Vidal [16] show that for strings of lengthm and n, NL seems
to have time complexity O(m ∗ n2).

this threshold of removal, more than half (58% = 634 steps) of
unique test steps would be discarded. In turn, steps are short strings
hindering again NCD’s performance.

Unfortunately, we lack complementary results from Automotive
(e.g., time and failure) to contrast our coverage results. Nonethe-
less, the value is again in the prospects in using SBTCS to allow
developers to get faster feedback from CI servers with reliable and
thorough test coverage.

5 DISCUSSION
One of the main shortcomings of our case study is the focus on
coverage, without contrasting information on detected defects. Cer-
tainly, coverage information alone leads to limited conclusions,
since we cannot assess the quality of the coverage achieved with-
out seeing how many defects are detected. On the other hand, we
focus on CI and the time required to provide test feedback from CI
servers back to develop. In practice, developers often perform and
test their changes locally, but those changes cannot be integrated
in the master branch unless they pass all of the tests on a CI build.

The value of our approach is not to replace the overnight exhaus-
tive test execution. Rather, we aim to provide developers with a
preview of that execution, allowing them to prioritise code changes
(i.e., which modifications should be pushed to the master branch)
throughout their development day. Note that for the Surveillance
Company, the SBTCS using NL reduced the feedback time by 92%
and 80% while covering the complete sets of test requirements and
setup configurations respectively.

In addition, developers can choose to be even safer by selecting
higher thresholds for subset sizes (e.g., 50% of test cases) that take
an average of one hour to execute which developers can spare, for
instance, during lunch time. So, even though there is a benefit in
having thorough coverage, we also enable control of systematic
testing using the CI servers. That allows stakeholders to reduce
risks with redundant test cases, which is a benefit seen in other
studies using SBTCS [4, 5, 7]. Based on the data analysis and the
discussion, we answer our research questions.

Another interesting finding is the consistence of the SBTCS se-
lection techniques, even though they were used in different case
companies. In fact, the results align with findings from other studies
SBTCS that shows coverage advantages even after removing more
than half of the test suite [4, 7]. For instance, in one of their case
studies, Cartaxo et al. reduced by 50% the test execution time while
still exercising all of the model’s transitions, i.e., full test coverage.
They used however a different similarity function, named a basic
counting function [3, 4, 7, 12, 17], whereas our best results are with
the Normalised Levenshtein function.

RQ1: How can SBTCS lever test feedback on CI pipelines? Our case
study shows that SBTCS provides stakeholders with a sustainable
test coverage even when test sets are significantly reduced. There-
fore, we can instrument CI servers to include a test selector interface
where developers can input a desired subset size that suits their
time constraints. The goal is to execute fewer test cases, so that
developers can get faster feedback on integration tests before, for
instance, pushing their code to a master branch.

AST’18, May 28–29, 2018, Gothenburg, Sweden de Oliveira Neto et al.

RQ2: What are the trade-offs in selecting and executing fewer test
cases during software builds? Test selection techniques in general
are susceptible to the risk of discarding test cases, since ideally
one should execute all the test cases [21]. Even though SBTCS pro-
vides complete coverage even with smaller subsets, the complete
coverage does not imply that all defects will be detected. In sum-
mary, the trade-off is to, on one hand, decrease the feedback time
with sustainable coverage, while, on the other, mitigate the risk of
discarding test cases. Our approach assumes that the entire test
suite is executed overnight. Hence, failures should be reported the
next day so that developers can debug and revert their changes if
necessary. Unfortunately, our data lacked failure information to
properly assess this conclusion, but we are currently investigating
these trade-offs with the case companies by collecting more data.

RQ3: Is there a difference between similarity functions in selecting
integration-level automated test cases? Yes. Our results from both
case studies confirm that similarity functions perform differently
depending on the type of property analysed in the test case [5].
For instance, NCD performed worse than NL and JI since data
extracted from all of the three properties (steps, requirements and
dependencies) were small string descriptions. We believe that using
longer strings (e.g., a concatenation of all three properties) can yield
better results with NCD. Alternatively, the conclusions would be
different since the properties would not be evaluated in isolation
anymore.

One of the caveats when using string distances is that they are
based only on lexicographic information, and do not capture seman-
tics [15]. For instance, in our case studies, both JI and NL performed
similarly with very few differences in terms of coverage. Coutinho
et al. measured a statistically significant difference between JI and
NL on their three case studies [5], which contrast to our results.
This contrasting conclusion can be attributed to the labels in the
test cases. When looking at the data provided by authors6, we noted
that their test descriptions are transition labels, from synthesised
models [6] using two real applications as references. Consequently,
their test sequences are arbitrary labels (e.g., “A”, “AA”, “ABX”),
whereas ours are actual natural language descriptions written by a
tester when designing the test case. The semantic content of the
test cases is not captured in any of the approaches (ours included),
but lexicographic information such as length or the different labels
used can yield differences in performance. Therefore, we intend to
include more similarity functions and distinct artefacts in future
work, in order to collect more evidence regarding the trade-off in
applying different similarity functions on a variety of artefacts.

Despite the limitations in our data, the analysis show consistent
benefits when using SBTCS in CI pipelines. In addition, this is an
exploratory study with practitioners, with whom more promising
studies are planned. We hope to collect more data and include
companies from a variety of domains, to better understand the
boundaries of the applicability of SBTCS.

We aim to foster technology transfer of our approach by using
the technology transfer model introduced by Gorschek et al. [11],
composed of 7 steps (Figure 4). Our case study includes results from

6http://sites.google.com/site/distancefunctions/

Industry

Academia
2

1

3
4

5

6
7

Problem	
Foundation

Study	State-
of-the-art

Candidate	
Solution

Validation	in	
Academia

Static	
Validation

Dynamic	
ValidationRelease

Solution
Problem/
Issue

Figure 4: Technology transfer model proposed by Gorschek
et al. [11].

step 4 (validation in academia), and studies are currently moving
towards step 5 (static validation), where we intend to introduce the
candidate solution to stakeholders (e.g., testers and developers) and
perform interviews, to assess our instrumentation of the CI servers.

5.1 Threats to validity
We discuss threats to validity in terms of conclusion, construct,
internal and external validity threats, in accordance to empirical
software engineering guidelines [20]. The different types of validity
explore distinct limitations in our case study, for each we present a
mitigating strategy.

Our construct validity is limited by the choice of dependent
variables. Ideally, test optimisation is assessed in terms of failure
information, even if mutation is employed on the source code to
indicate defect detection [1]. However, our data did not include
source code or reliable failure information. We mitigate this threat
by limiting our findings to coverage and time, which are two desired
properties in any CI pipeline [8]. Additionally, we chose only a
limited set of similarity functions as levels to our factor. We argue
that including more similarity functions, at this point, would not
add much value to our findings, particularly since our case study is
exploratory with respect to SBTCS applied to CI.

Most of the internal validity threats are related to the execution
of the test selection (i.e., implementation of the techniques), as
well as the consistency of data collected from practitioners. We
mitigate the first threat by thoroughly testing the implementations
of the similarity functions with unit tests, whereas the second threat
comprise data automatically generated by CI servers that monitor
test activity. Nonetheless, two of the authors checked the data for
inconsistencies, such that the inconsistencies of failure data were
detected in those sessions.

Our conclusion validity is connected to the findings regarding
our research questions. We use actual time and coverage data ex-
ported from CI servers with our collaborating practitioners, so we
mitigate the threat to draw conclusions on outdated information.
In addition, we presented and validated the results to practitioners
that confirmed our findings. Nonetheless, this is an exploratory
case study, which, at this point, discouraged us to pursue statistical
tests to compare the different levels of our factor. However, a more
thorough quantitative analysis is planned for future work.

http://sites.google.com/site/distancefunctions/

Improving Continuous Integration with Similarity-based Test Case Selection AST’18, May 28–29, 2018, Gothenburg, Sweden

Lastly, the external validity of our case study is limited by the
amount of companies involved. Once more practitioners join the
studies, we can extend the reach of our findings by including more
CI pipelines and different types of test cases. However, such inves-
tigation would be risky without the initial results, presented in this
paper. Still, we use actual data from industry whereas other studies
have similar findings using data from open source projects [13, 17]
or synthesised models [5, 6].

6 CONCLUDING REMARKS
In this paper we report on a case study that investigates the trade-
offs in using similarity-based test case selection in continuous inte-
gration pipelines. We use three different similarity functions (Jac-
card Index, Normalised Levenshtein, and Normalised Compression
Distance) on integration level test cases described in natural lan-
guage. The test cases automatically check builds of a system under
test on CI servers.

Our results with two industrial partners reveal a significant
reduction in time (up to 92% faster) required to get feedback from
tests on a built version of the SUT. Despite reducing the size of
the test suite by 85%, 65% and 70%, we are still able to provide
full coverage of, respectively, test requirements, dependencies and
steps.

In addition, our findings reveal differences and similarities with
respect to usage of similarity functions on different types of test
artefacts, which confirm results by some previous studies [7, 9] and
provide a contrast to the study by Coutinho et al. [5]. Nonetheless,
the benefits of using SBTCS to increase the diversity of a test set
is confirmed by our results, hence contributing empirical evidence
on the performance of similarity-based test optimisation.

On the other hand, the effects of discarding test cases on the
defect detection rates are not explored in our study, and are planned
for future work. Currently, that information is not a big risk to
our practitioners, since the CI servers execute the entire test suite
overnight. Therefore, developers are able to identify any slipped
bugs the next day, while obtaining the benefit of faster feedback
provided by the SBTCS techniques that are instrumented on the CI
servers.

Furthermore, we continue to collect data from industrial partners
interested in levering their CI pipelines through similarity-based
test optimisation. In addition to the smaller subsets, the similarity-
based optimisation is able to point out redundancies in a test set,
thus being a candidate to support other test activities such as test
design and maintenance. In summary, our contributions are a step-
ping stone to test automation on companies adopting lean and
agile methodologies, since SBTCS provide faster development feed-
back by removing waste (i.e., accumulated redundancies) from test
repositories.

ACKNOWLEDGMENTS
We thank the participants in our reported case study for their avail-
ability to clarify questions about the dataset, and the engaging and
insightful discussions. This work was supported by the Chalmers
Software Center7 Project 30 on Aspects of Automated Testing.

7https://www.software-center.se/

REFERENCES
[1] J. H. Andrews, L. C. Briand, and Y. Labiche. 2005. Is Mutation an Appropriate

Tool for Testing Experiments?. In Proceedings of the 27th International Conference
on Software Engineering (ICSE ’05). ACM, New York, NY, USA, 402–411. https:
//doi.org/10.1145/1062455.1062530

[2] Jose Campos, Andrea Arcuri, Gordon Fraser, and Rui Abreu. 2014. Continuous
Test Generation: Enhancing Continuous Integration with Automated Test Gen-
eration. In IEEE/ACM Int. Conference on Automated Software Engineering (ASE).
ACM, New York, NY, USA, 55–66.

[3] Emanuela Gadelha Cartaxo, Francisco Gomes de Oliveira Neto, and Patrícia DL
Machado. 2007. Automated Test Case Selection Based on a Similarity Function.
GI Jahrestagung (2) 7 (2007), 399–404.

[4] Emanuela G. Cartaxo, Patrícia D. L. Machado, and Francisco G. de Oliveira Neto.
2011. On the use of a similarity function for test case selection in the context
of model-based testing. Software Testing, Verification and Reliability 21, 2 (2011),
75–100. https://doi.org/10.1002/stvr.413

[5] Ana Emília Victor Barbosa Coutinho, Emanuela Gadelha Cartaxo, and Patrícia
Duarte de Lima Machado. 2016. Analysis of distance functions for similarity-
based test suite reduction in the context of model-based testing. Software Quality
Journal 24, 2 (01 Jun 2016), 407–445. https://doi.org/10.1007/s11219-014-9265-z

[6] Francisco Gomes de Oliveira Neto, Robert Feldt, Richard Torkar, and Patrícia
D. L. Machado. 2013. Searching for Models to Evaluate Software Technology.
In Proceedings of the 1st International Workshop on Combining Modelling and
Search-Based Software Engineering (CMSBSE ’13). IEEE Press, Piscataway, NJ,
USA, 12–15. http://dl.acm.org/citation.cfm?id=2662572.2662578

[7] Francisco Gomes de Oliveira Neto, Richard Torkar, and Patrícia D.L. Machado.
2016. Full modification coverage through automatic similarity-based test case
selection. Information and Software Technology 80 (2016), 124 – 137. https:
//doi.org/10.1016/j.infsof.2016.08.008

[8] P.M. Duvall, S. Matyas, and A. Glover. 2007. Continuous Integration: Improving
Software Quality and Reducing Risk. Addison-Wesley. https://books.google.se/
books?id=MA8QmAEACAAJ

[9] R. Feldt, S. Poulding, D. Clark, and S. Yoo. 2016. Test Set Diameter: Quantifying
the Diversity of Sets of Test Cases. In 2016 IEEE International Conference on
Software Testing, Verification and Validation (ICST). 223–233. https://doi.org/10.
1109/ICST.2016.33

[10] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal. 2008. Searching for Cognitively Di-
verse Tests: Towards Universal Test Diversity Metrics. In 2008 IEEE International
Conference on Software Testing Verification and Validation Workshop. 178–186.
https://doi.org/10.1109/ICSTW.2008.36

[11] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin. 2006. A Model for Technology
Transfer in Practice. IEEE Software 23, 6 (Nov 2006), 88–95. https://doi.org/10.
1109/MS.2006.147

[12] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. 2013. Achieving Scalable
Model-based Testing Through Test Case Diversity. ACM Trans. Softw. Eng.
Methodol. 22, 1, Article 6 (March 2013), 42 pages. https://doi.org/10.1145/2430536.
2430540

[13] H. Hemmati, Z. Fang, and M. V. Mantyla. 2015. Prioritizing Manual Test Cases
in Traditional and Rapid Release Environments. In 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST). 1–10. https:
//doi.org/10.1109/ICST.2015.7102602

[14] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon. 2016. Comparing
White-Box and Black-Box Test Prioritization. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). 523–534. https://doi.org/10.1145/
2884781.2884791

[15] Yves Ledru, Alexandre Petrenko, Sergiy Boroday, and Nadine Mandran. 2012.
Prioritizing test cases with string distances. Automated Software Engineering 19,
1 (01 Mar 2012), 65–95. https://doi.org/10.1007/s10515-011-0093-0

[16] Andres Marzal and Enrique Vidal. 1993. Computation of normalized edit distance
and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence
15, 9 (Sep 1993), 926–932. https://doi.org/10.1109/34.232078

[17] T. B. Noor and H. Hemmati. 2015. A similarity-based approach for test case prior-
itization using historical failure data. In 2015 IEEE 26th International Symposium
on Software Reliability Engineering (ISSRE). 58–68. https://doi.org/10.1109/ISSRE.
2015.7381799

[18] G. Rothermel, R. H. Untch, Chengyun Chu, and M. J. Harrold. 2001. Prioritizing
test cases for regression testing. IEEE Transactions on Software Engineering 27, 10
(Oct 2001), 929–948. https://doi.org/10.1109/32.962562

[19] Per Runeson and Martin Höst. 2008. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engineering 14,
2 (2008), 131–164. https://doi.org/10.1007/s10664-008-9102-8

[20] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell,
and Anders Wesslén. 2012. Experimentation in Software Engineering. Springer
Publishing Company, Incorporated.

[21] S. Yoo and M. Harman. 2012. Regression testing minimization, selection and
prioritization: a survey. Software Testing, Verification and Reliability 22, 2 (2012),
67–120. https://doi.org/10.1002/stvr.430

https://www.software-center.se/
https://doi.org/10.1145/1062455.1062530
https://doi.org/10.1145/1062455.1062530
https://doi.org/10.1002/stvr.413
https://doi.org/10.1007/s11219-014-9265-z
http://dl.acm.org/citation.cfm?id=2662572.2662578
https://doi.org/10.1016/j.infsof.2016.08.008
https://doi.org/10.1016/j.infsof.2016.08.008
https://books.google.se/books?id=MA8QmAEACAAJ
https://books.google.se/books?id=MA8QmAEACAAJ
https://doi.org/10.1109/ICST.2016.33
https://doi.org/10.1109/ICST.2016.33
https://doi.org/10.1109/ICSTW.2008.36
https://doi.org/10.1109/MS.2006.147
https://doi.org/10.1109/MS.2006.147
https://doi.org/10.1145/2430536.2430540
https://doi.org/10.1145/2430536.2430540
https://doi.org/10.1109/ICST.2015.7102602
https://doi.org/10.1109/ICST.2015.7102602
https://doi.org/10.1145/2884781.2884791
https://doi.org/10.1145/2884781.2884791
https://doi.org/10.1007/s10515-011-0093-0
https://doi.org/10.1109/34.232078
https://doi.org/10.1109/ISSRE.2015.7381799
https://doi.org/10.1109/ISSRE.2015.7381799
https://doi.org/10.1109/32.962562
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1002/stvr.430

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Case study
	3.1 Case companies

	4 Results
	4.1 Unit of Analysis 1
	4.2 Unit of Analysis 2

	5 Discussion
	5.1 Threats to validity

	6 Concluding Remarks
	Acknowledgments
	References

