What are the needs for components in vehicular systems?
— An industrial perspective —

Anders Moller
Milardalen University
CC Systems AB

anders.moller@mdh.se

Abstract

During the last few years, component based software
engineering for embedded systems has received a large
amount of attention. Often, however, the approach has
been to adopt existing component technologies to be more
suited for embedded systems. These "embeddified" versions
of desktop/Internet technologies seldom find their way into
the embedded systems market, for instance, due to timing
unpredictability and high resource demands.

Our hypothesis is that there is no one-component tech-
nology suitable for all segments of the embedded systems
market. Instead, we believe that different segments of the
embedded systems market may be best served by different
component technologies. In this paper, we focus on the
market for heavy vehicles, such as wheel loaders, dumpers,
and forest harvesters. Our approach is to study companies
within this market segment and find their requirements on
a component technology. In this paper we present initial
findings from interviews with senior technical staff at two
Swedish companies within the studied segment.

1 Introduction

This paper presents initial results of an ongoing
project called "Component Technology for Heavy Vehicles"
(HEAVE). The goal of the project is to identify, define and
evaluate a software component technology within the busi-
ness segment of heavy vehicles.

A component technology consists of a component
model, an infrastructure (so called middleware), and tools
for creating, composing and analysing components. During
the last decade, the PC-/web-oriented software engineering
community has achieved tremendous progress in compo-
nent oriented software construction. Today, it is possible
to download components on the fly and have them exe-
cuted within the context of another program such as a web
browser or a word processor. Software developing com-
panies can purchase off-the-shelf components and embed

Joakin Froberg
Miilardalen University
Volvo Construction Equipment

Joakim. froberg@mdh.se

Mikael Sjodin
Milardalen University

mikael.sjodin@mdh.se

them into their own software products. Technologies like
CORBA [9], Java Beans [14], .NET [6], and other com-
ponent models are used on a day-to-day basis in systems
software development. However, existing component tech-
nologies are not applicable to most embedded computer
systems. They do not consider aspects such as safety, tim-
ing, and memory consumption that are crucial for many em-
bedded control systems. Some attempts have been made to
adapt component technologies to embedded systems, like
Minimum Corba [10] for example. However, these adap-
tations have not been generally accepted in the embedded
systems segments. The reason for this failure is mainly due
to the diversified nature of the embedded systems domain.
Different market segments have different requirements on
a component technology, and often these requirements are
not fulfilled simply by stripping down existing component
technologies.

2 Project Outline

Instead of starting from an existing technology and try-
ing to "embeddify" it, this project take a different approach
in that it will start unbiased and identify the specific require-
ments on a component technology for the heavy vehicles
segment.

It is important to keep in mind that the embedded sys-
tems market is extremely diversified in terms of require-
ments placed on the software. For instance, it is obvious that
software requirements for consumer products, telephony
switches and avionics are quite different. Hence, our fo-
cus on one single market segment. It is important to realise
that the development of a component technology is substan-
tially simplified by focusing on a specific market segment.
Within this market segment, the conditions for software de-
velopment should be similar enough to allow a lightweight
and efficient component technology to be established.

When the requirements are understood, we will study to
what extent existing technologies fulfill those requirements.

We will also assess to what extent existing technologies can
be adapted in order to fulfil the requirements, or whether
selected parts like tools, middleware, message-formats and
file-formats can be reused if a new component technology
needs to be developed.

Once we have a better understanding of the requirements
and understand to what extent existing technologies fulfil
those requirements, we will make a specification of a suit-
able component technology. The specification will cover is-
sues like component representation, interface descriptions,
middleware functionality, component interoperability, mes-
sage formats, etc.

From the specification, we will build a test-bed imple-
mentation of the component technology, reusing as much
as possible of the existing technologies. The test-bed will
be used to evaluate the component technology, and for a pi-
lot project implementing some functions in a real vehicle
environment.

3 Requirements Capture

To better understand the needs in the business area of
heavy vehicles, this project has started with interviews with
senior technical staff at two Swedish companies, Volvo
Construction Equipment [15] and CC Systems [2]. Both
companies develop on-board electronics and software sys-
tems for heavy vehicles, like dumpers and combat vehicles.
They experience similar problems, related to the develop-
ment of software for embedded real-time systems. By co-
operating in this research project, in enabling a component
technology for heavy vehicles, their joint desire is to im-
prove the development process of on-board software sys-
tems.

3.1 Technical background

Distributed systems in mobile applications become more
and more complex; vehicles are equipped with advanced
electronics both as means of improving their capacity and
functionality, and as a mean to decrease production costs
(i.e. replacing mechanics with electronics). The electronic
systems developer faces challenges of shorter development
time and keeping the electronics part of the product cost to
a minimum.

Companies often develop new systems in an evolution-
ary way, i.e. new systems are partially based upon previ-
ously developed systems. Typically, a company also de-
velops a product line, i.e. a variety of related systems. A
product-line approach to development is an effort to create
an overall development process taking into account a whole
product line. The aim is to avoid suboptimisation and lift
the focus from single products. By focusing on the soft-
ware architecture, developers want to get a high-level view

of the system’s properties. A product-line architecture ap-
proach is an overall strategy to address both the objectives
of the product-line and its software architecture, in order to
achieve system quality attributes, reduce development cost,
shorten time-to-market, and reduce maintenance cost.

Not having a well specified development procedure to
coordinate development in terms of processes, methods and
technology, makes development expensive. One way of
reducing time spent on development is to reuse software
components and architectural solutions between products.
There are different aspects of the advantages of using a
component-based approach. These aspects can be divided
into operational properties (e.g. reliability, safety, and real-
timeliness) and development properties (e.g. reusability,
scalability, configurability, and maintainability). One of
the most important resulting effects of using a component-
based approach is a shorter and more predictable develop-
ment time.

Common desktop/Internet component technologies,
such as COM, Java Beans and CORBA, are considered unfit
for use in the on-vehicle control systems because of their ex-
cessive resource usage and unpredictable timing behaviour.
However, selected parts (like tools and message formats)
and ideas from these technologies can be reused.

To have companies actually using a component based
software approach, the component models and middleware
must be fit for their specific needs. Aiming to high, by try-
ing to find the component technology, that can be used in
all distributed embedded real-time systems, will most likely
lead to yet another flexible but far to memory and time con-
suming model unfit for the companies needs.

3.2 CC Systems

CC Systems (CCS) is developing and supplying ad-
vanced distributed embedded real-time control systems with
focus on mobile applications. Examples of control systems,
including both hardware and software, developed by CCS
are forest harvesters, rock drills, and combat vehicles.

3.2.1 Company background

Systems developed by CCS are characterised by rough en-
vironments, safety criticality, high functionality, and the re-
quirements on robustness and availability are high. In the
future, CCS focus on being a platform supplier (hardware,
device drivers and middleware), as a complement to be-
ing a specialised application development company. The
companies using the platform developed by CCS should de-
velop their own applications, using market leading tools and
methods (e.g. Rapsody, IEC 61131-3 [3]).

CCS” goal is to use a component-based approach to-
wards software construction, to enhance the ability to reuse

and analyse applications and because it reduces the degrees
of freedom for application developers. This reduction in
freedom, in turn, will minimise the risk for software errors,
because component assembly can only be done in a prede-
fined manner.

CCS expect that future systems will need a higher degree
of configurability and greater ability to integrate third party
software. Use of a component approach will facilitate the
needed flexibility.

3.2.2 Techical Future

The component model used, preferably based on a standard
modelling language like UML, UML-2 or RT-UML should
be platform independent and provide support for integration
with third party software.

The component model should preferably be based on
passive components focusing on a pipe-and-filter solution.
A component should be open source, i.e. no binaries, and
should be platform independent. In order to support plat-
form independency the components are not to use the oper-
ating system primitives or processor features directly. Com-
ponents can, for example, be a gathering of objects using
a common API. The components should be configured at
compile-time to make them smaller and easier to analyse
statically. All components must have a pre-calculated worst
case execution time, making it possible to schedule tasks
off-line, to check if the tasks meet their deadlines, and to
analyse the end-to-end timing behaviour of the complete
system.

Some important questions need answers: What is the
reason why existing component technologies for embedded
systems are not used more frequently? Is it possible to use
selected parts of the existing CBSE techniques (like tools
and message formats) to develop a specialised heavy vehi-
cle component technique? Is it possible to reach analysabil-
ity of an end-to-end system using many different levels of
safety integrity levels, i.e. safety critical, real-time critical,
and information systems? Is it possible to use a subset of
CORBA, by retaining selected parts like message formats
for example, to provide an opportunity to communicate with
other, more powerful, nodes running for example a full ver-
sion of CORBA.

3.3 Volvo Construction Equipment

Volvo Construction Equipment (VCE) is one of the
world’s major manufacturers of construction equipment,
with a product range encompassing wheel loaders, excava-
tors, articulated haulers, motor graders, and more. What
they all have in common is that they demand appropriate
technical solutions and equipment that can help them to im-
prove their performance. This project only focuses on the

on-board electronics and software systems part of VCE’s
business area.

3.3.1 Company background

VCE develops both on-board electronics and software. The
systems are distributed embedded real-time systems with
typically some five nodes, communicating via CAN. An-
other characteristic is that the software must perform in an
environment with limited resources.

To accommodate reuse of software components and
methodology between products, VCE has incorporated a
component model for the real-time application domain.
However, VCE wishes to strengthen its competence with
component based software development in general. The re-
sulting component technology will be used to extend their
current practises within components engineering. They ex-
pect that achieving a higher competence and better approach
to component based software engineering will significantly
reduce software related costs.

Today VCE uses the real-time operating systems Rubus
(from Arcticus Systems). Rubus encompasses, besides an
operating system, a component model and tools to compose
components into distributed real-time systems. All Rubus
components have a known worst case execution time, and
Rubus provides a tool to off-line produce static schedules
for component execution. Hence, Rubus provides a good
foundation for building component-based distributed real-
time systems.

The design of VCE’s current software architecture was
done with the intent of using it for a relatively long time.
The architecture was to be a base for development of sev-
eral products over time. In order to be successful in the de-
velopment effort, the desired properties (such as timeliness
and memory consumption) of the system were considered
already on the architecture stage.

3.3.2 Technical Future

VCE uses software component both to develop the infras-
tructure that applications execute upon (this infrastructure
can be viewed as a kind of middleware), as well as for the
actual applications executing on the infrastructure. Today,
a typical software component is a rather big entity (e.g. a
component for transmission control).

Analysing the software components source code using
tools like Lint is important to reduce the risk of software
failures in components. Memory usage and worst-case
execution-time are other important non-functional proper-
ties which needs to be statically analysed.

All in all, analysability and testing is a very important to
VCE. The component model used at VCE today gives some
support for analysing timing related issues. However, some
support, like end-to-end timing analysis is not supported by

tools (and is hence performed manually). VCE are also
interested in functional testing of the components and the
complete systems. Automatic generation of test cases are
considered as an highly desirable tool for the future. Also
tools for on-line monitoring the software and debug tools
are considered important.

The only model of computation supported by the Rubus
component model is the "pipes-and-filter" model. However,
VCE has seen little (or no) need for other models of com-
putation. This reflects the fact that most software in VCE’s
system is control related

There are no urgent needs for communication with third
party software components. However, VCE is interested in
having the opportunity to use third party software inside the
components and also, taking the long view, to communi-
cate with other (third-party) hardware nodes running, e.g.,
CORBA.

Today, VCE uses a component-based approach for devel-
opment of their product line. One significant problem that
has emerged due to the component-based approach is ver-
sion and variant management. Shifting to component-based
software-engineering causes novel problems for administra-
tion of the components’ life-cycles. That is, new processes
are needed to administer variant development and feedback
of component modifications to projects using the compo-
nents.

4 Related Work

Technologies like COM/DCOM [5], CORBA [9, 8], Java
Beans/Enterprise Java Beans [14, 13], .NET [6] readily
available and used by developers on a day-to-day basis.
However, these technologies have all been developed for
the PC-/Internet-market, and are usually not applicable for
embedded control systems.

The IEC 61131-3 [3] standard allows component based
development of simple control-applications. The port-based
objects [12] approach goes one step further and allow
reusable components to be interconnected by means of in-
put and output ports. The Rubus operating system (by Arcti-
cus [1]) provides an implementation of port-based objects
that can be executed in a distributed environment.

The European research project PECOS (PErvasive
COmponent Systems) [11, 7] focuses on the architectural
issues of component-based software construction for em-
bedded systems. PECOS has an architectural focus and its
ambition to target the complete embedded systems market.
This will probably cause their results not to be directly ap-
plicable to our studied market segment. However, PECOS
will serve as one important source of information for this
project.

Within the software engineering community, AOP has
recently received a large amount of attention [4]. AOP

provides a mechanism to configure software (or compo-
nents) at compile-time. Since this configuration is done
at compile-time, unnecessary functionality may be stripped
away; yielding a smaller run-time version of the compo-
nents than would configuration during run-time.

5 Contribution

The scientific contributions of this project are mainly the
study of actual requirements from an industrial perspective
and the survey of to what extent those requirements are ful-
filled by existing component technologies. In addition, the
implementation of a test-bed and a pilot project will have a
scientific value, illustrating how a technology based on in-
dustrial requirements can be used to solve problems that are
not solved by commodity technologies.

For the participating companies the specification of a
component technology that is suitable for the considered
market segment will be the main contribution. The test-
bed implementation and pilot project will also provide valu-
able insight into how the new component technology can be
used at the participating companies. An indirect contribu-
tion for the participating companies is also the increased
competence within component-based software construction
gained.

6 Summary

In this paper we have described work in progress within
a project called "Component Technology for Heavy Vehi-
cles". The project goal is to investigate the need and re-
quirements for component based software-engineering for
software for heavy vehicles.

The approach of this project is to start from actual re-
quirement on a component technology and focus on a sin-
gle market segment (in this case the segment for heavy ve-
hicles). After requirement has been documented the next
step is to define a component technology that satisfy those
requirements. The goal in this second phase is to reuse as
much as possible for existing component technologies. Ex-
amples that will be considered for reuse are message for-
mats, middlewares, interface description languages, etc.

We have presented two companies that develop on-board
electronics and software for heavy vehicles. Examples of
the type heave vehicles considered by these companies are
wheel loaders, dumpers, forest harvesters and bandwagons.
The companies respective technical background was de-
scribed are we could see that for a component technology to
be applicable the whole systems development context needs
to be considered. That is, not only the specific properties
of components and middleware needs to be addressed, also
issues like component life cycles, variant handling, static

(i.e.

off-line) analysis, and testing needs to be considered

to some extent. Its however important to keep in mind that
a component technology alone cannot be expected to solve
all these issues. Nevertheless, for a component technology
to be accepted in this market segment it cannot introduce
difficulties in these important (non-functional) domains of
systems development.

References

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]
[12]

[13]

[14]

[15]

Arcticus Systems. The Rubus Operating System. http:/-
www.arcticus.se.

CC Systems. http://www.ccsystems.se.

IEC. Application and Implementation of IEC 61131-3,
1995.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. L.,
J.-M. Loingtier, and J. Irwin. Aspect oriented programming.
In 17*" European Conference on Object-Oriented Program-
ming, volume 1241 of LNCS, pages 220-242. Springer Ver-
lag, 1997.

Microsoft. Microsoft COM Technologies. http://www.-
microsoft.com/com/.

Microsoft. .NET Home Page. http://www.microsoft.com/-
net/.

P. O. Miiller, C. M. Stich, and C. Zeidler. Building Reli-
able Component-Based Software Systems, chapter Compo-
nent Based Embedded Systems, pages 303-323. Artech
House publisher, 2002. ISBN 1-58053-327-2.

Object Management Group. CORBA Component
Model 3.0, June 2002. http://www.omg.org/technology/-
documents/formal/components.htm.

Object Managment Group. CORBA Home Page. http://-
www.omg.org/corba/.

Object Managment Group. Minimum CORBA 1.0, August
2002. http://www.omg.org/technology/documents/formal/-
minimum_CORBA .htm.

PECOS Project Web Site. http://www.pecos-project.org.

D. B. Stewart, R. A. Volpe, and P. K. Khosla. Design of Dy-
namically Reconfigurable Real-Time Software Using Port-
Based Objects. IEEE Transactions on Software Engineer-
ing, 23(12), 1997.

SUN Microsystems. Enterprise Javabeans Technology.
http://java.sun.com/products/ejb/.

SUN Microsystems. Introducing Java Beans. http://-
developer.java.sun.com/developer/onlineTraining/-
Beans/Beans1/index.html.

Volvo Construction Equipment. http://www.volvoce.com.

