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Abstract The importance of efficient software testing procedures is driven by an ever
increasing system complexity as well as global competition. In the particular case of man-
ual test cases at the system integration level, where thousands of test cases may be executed
before release, time must be well spent in order to test the system as completely and as effi-
ciently as possible. Automating a subset of the manual test cases, i.e, translating the manual
instructions to automatically executable code, is one way of decreasing the test effort. It is
further common that test cases exhibit similarities, which can be exploited through reuse
when automating a test suite. In this paper, we investigate the potential for reducing test
effort by ordering the test cases before such automation, given that we can reuse already
automated parts of test cases. In our analysis, we investigate several approaches for priori-
tization in a case study at a large Swedish vehicular manufacturer. The study analyzes the
effects with respect to test effort, on four projects with a total of 3919 integration test cases
constituting 35,180 test steps, written in natural language. The results show that for the four
projects considered, the difference in expected manual effort between the best and the worst
order found is on average 12 percentage points. The results also show that our proposed pri-
oritization method is nearly as good as more resource demanding meta-heuristic approaches
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at a fraction of the computational time. Based on our results, we conclude that the order of
automation is important when the set of test cases contain similar steps (instructions) that
cannot be removed, but are possible to reuse. More precisely, the order is important with
respect to how quickly the manual test execution effort decreases for a set of test cases that
are being automated.

Keywords Software-testing · Test-case automation · Prioritization · Reuse · Effort

1 Introduction

Several studies, e.g., Asaithambi and Jarzabek (2013), Engström and Runeson (2013), and
Greiler et al. (2012a), have shown the presence of similarities or overlaps in test cases. Even
though similarities, both within and among test cases, can be identified, our previous study
(Flemström et al. 2015) showed that these overlaps can be scattered all over the set of test
cases and could not be trivially removed. Further, the study indicated that test cases seldom
overlap entirely. If these test cases are expressed in natural language and at some point in
time translated to automatically executable code, the work of automating the similar parts
again is possibly wasteful.

Figure 1a illustrates how the manual test effort is reduced over time due to test case
automation (ignoring the effort of executing the automated test cases). The line A illustrates
how the manual effort would decrease over time if the test cases were automated in a steady
pace, considering each part of the test cases in isolation, i.e., not considering any reuse. At
point (c) in time, the automation work is completed and no more manual effort is required
for a system test. Given that we can efficiently reuse already automated parts of the test
cases, using a technique such as the one suggested in Flemström et al. (2016) to identify
reusable parts, the automation work could be finished earlier. In Fig. 1a, this is illustrated as
the point in time (b).

We argue that, by combining similarity-based reuse with a more efficient ordering strat-
egy, an earlier reduction of the manual test execution effort can be achieved. This is

Fig. 1 Manual test execution effort reduction over time due to test case automation
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illustrated in Fig. 1a by the slopes B and C that represent two different automation orders,
whereas C gives the earliest manual effort reduction. In the collaboration with our industrial
partners, we have observed that test cases are performed manually if they are not entirely
translated to executable code. This is illustrated in Fig. 1b.

In this paper, we present a strategy for decreasing manual test execution effort by order-
ing the test cases for automation, using knowledge on test similarities. We further present an
industrial evaluation of our approach for four large-scale systems in the vehicular embedded
software domain. The main contributions are as follows:

– A formal definition of the test case automation problem.
– A fast, time deterministic, and easy-to-implement automation ordering heuristic for test

case automation prioritization.
– A large industrial case study with four industrial projects in the vehicular embedded

software domain.
– A thorough computational evaluation of the approach, in which seven prioritization

methods (five heuristic and two meta-heuristic) are compared.

The results of the evaluation show that for the four projects considered and random initial
ordering of test cases, the best and the worst orders found differ on average 12 percentage
point in expected manual test effort.

The results also show that our proposed prioritization method is nearly as good as more
resource demanding meta-heuristic approaches at a fraction of the computational time.

The paper is organized as follows. In Section 2, we present a selection of previous work
and some preliminaries about test cases. In Section 3, we present our approach, followed by
an industrial case study in Section 4. The results of this industrial case study is presented in
Section 5. The threats to validity are discussed in Section 6, followed by conclusions and
future work in Section 7.

2 Background

In this section, we outline the previous work that has an direct or indirect bearing on the
work described in this paper, and discuss the preliminaries and context of the work. Finally,
we give an overview of the problem we address.

2.1 Previous work

Several papers in the past dealt with test case automation from different perspectives, see
e.g., Anand et al. (2013), that surveys techniques for automatic generation of software test
cases. Further, Ramler and Wolfmaier (2006) analyze test automation from a cost-benefit
perspective. Another class of related papers deals with decision-support to determine the
optimal degree of automation adoption, such as a simulation model (Garousi and Pfahl
2015) or using a search-based approach (Amannejad et al. 2014). Our work focuses on the
industrial test case automation (scripting) order problem based on reuse; therefore, hereafter,
we review works appearing in the literature dealing with (i) similarity-based approaches for
test cases and (ii) test case prioritization.

(i) Similarity-based approaches for test cases: Several research efforts have been devoted
to find and group similarities in test-related artifacts using different methods, e.g., test sim-
ilarity exists in several dimensions in the context of software product lines (Engström and
Runeson 2013). One approach is by using clone detection in test cases (see, e.g., Asaithambi
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and Jarzabek (2013) and Basit and Jarzabek (2009)). Another technique, used to make the
similarity comparison easier, is to record and analyze the execution trace of test cases rather
the test cases themselves (Greiler et al. 2012b). The major drawbacks of this method are the
instrumentation of the production code and the difficulty to get reliable traces from man-
ual test cases (an extensive overview of finding software clones can be found in Roy et al.
(2014)).

Similarity-based algorithms have also been applied to regression test case prioritization,
based on the distances between pair-wise test cases (Wang et al. 2015), using historical
failure data (Noor and Hemmati 2015) or topics models (Thomas et al. 2014). Research
effort have also been devoted to similarity-based selection techniques, in particular, in the
model-based domain (Hemmati et al. 2013). Another class of related papers represents the
opposite direction of test similarity research and measures the diversity between two test
sets (Shi et al. 2016; Feldt et al. 2015). These techniques may be used as an inverse indicator
of test case similarity.

(ii) Test case prioritization. Several papers in the past dealt with regression testing (an
extensive list can be found in the survey (Yoo and Harman 2012)). Considerable research
effort has been devoted to prioritize test cases with test execution information, that includes
the total coverage of code components, the coverage of code components not previously
covered, or the ability of test cases to reveal faults in the code components that they cover
(see Rothermel et al. (2001) for a comparison of these techniques).

Most existing prioritization approaches are based on single-objective optimization
models and are focused on greedy algorithms. However, some recent papers focus on
multi-objective optimization, e.g., (i) with resource-awareness (Wang et al. 2016) and (ii)
minimizing coverage-based criteria, such as the average percentage of coverage achieved,
average percentage of coverage of changed code, and average percentage of past fault cov-
erage (Epitropakis et al. 2015; Strandberg et al. 2016). Evolutionary algorithms have also
been applied to test case prioritization with single-objective optimization (Li et al. 2007),
as well as with multi-objective optimization (Wang et al. 2016; Epitropakis et al. 2015)
(for which swarm algorithms and hybrid ones have also been used (Wang et al. 2016)).
Few approaches have addressed time constraints in the context of test case prioritization
(Marijan 2015). Some research effort has been spent to deal with the test execution time,
adopting for example a genetic algorithm to reorder test suites in light of testing time con-
straints (under the assumption that all the tests have the same execution time) (Walcott et al.
2006). Other approaches are integer linear programming (Zhang et al. 2009) and knapsack
solvers (Alspaugh et al. 2007). The effect of constraints (on time to setup testing, time
to identify and repair obsolete tests, and human time to inspect results) on test prioritiza-
tion has been analyzed in Do et al. (2010) and Do and Rothermel (2006). Moreover, in Do
et al. (2010), Do and Rothermel (2006), and Tahvili et al. (2016), it has also been defined
an economic model to evaluate costs and benefits of prioritization techniques—in terms
of the cost of applying the methodologies and how much revenue they help organizations
obtain.

Our approach can be used complementary to other ones aimed to reduce human
involvement in writing test oracles and evaluating testing outcomes (Barr et al. 2015).

The focus of this paper is at system integration testing level, for which, especially in the
case of manually performed test cases, there is no or little industrial data or evidence to
show test similarities and how these can be used for reducing test effort. The paper allows
practitioners to exploit knowledge on test similarities for decreasing test case automation
as well as manual test execution effort. Furthermore, we provide empirical evidence of the
usage of our approach in a real-word context.
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2.2 Preliminaries

The focus of this paper is system integration level testing. This kind of testing aims to ensure
that a combined (integrated) set of subsystems behaves according to the system specifica-
tion. In our context, we regard a test case as a series of test steps that should be executed in
a specific order. A test step consists of a stimulus and an expected reaction. A stimulus con-
sists of one or more manual instructions, such as “Press the button A.”. The purpose of the
stimulus is to eventually put the system under test into a state where it is feasible to verify
the associated requirements. The verification is performed as per the instructions in the cor-
responding reaction. If the observable output of the system matches the specified reaction,
the test step is considered “passed,” if not, it is marked “failed” in a testing protocol and a
trouble report is written.

In our context, such system integration test cases are either expressed as manual or auto-
mated test cases. The manual test cases comprise a set of instructions, targeting a human that
should perform some actions and verify the response of the system according to the instruc-
tions. In contrast, the automated test cases do not require manual intervention. We use the
term test case automation for the process of translating each such individual stimulus to an
automatically executable script, that requires no human intervention.

An example of a system integration test case is shown in Table 1. The manual instruc-
tions are presented in the column “Stimuli” whereas the corresponding automated code is
presented in the rightmost column. The purpose of the column “Test step ID” is to facil-
itate identification of similar test steps with respect to stimuli. If the ID is the same, the
stimuli of the test steps are considered the same. An example of this are the step numbers
3 and 6, that have the same ID. Looking at the stimuli column, we can see that they indeed
express the same thing, although slightly reworded. Although we use the technique origi-
nally described in our previous work (Flemström et al. 2016) to identify such similar test
steps, any similarity function that returns the same numerical value for each two similar test
steps can be used. For this paper, we have only considered the stimulus of the test steps. The
approach, however, is still the same: first neutralize some of the natural language issues,
such as formatting, stop words (e.g., this, the) and word order for each step. Each resulting
distinct test step is then assigned a unique test step ID as shown in the Test step ID column
of Table 1. The whole test cases can then be expressed as a series of test step IDs. The exam-
ple in Table 1 would result in the sequence [1024, 2033, 2311, 2517, 4211, 2311, 3210].
The test steps in bold denote the above mentioned similarities. The column Automated code

Table 1 Obfuscated example test case, with automated test steps

Step Stimuli (reaction omitted) Test step ID Automated code

1 Initial state: Train is ready to drive 1024 train init(READY)

2 Run the train at speed 1234 km/h 2033 speed set(1234)

3 Status set to faulty for sensors XYZ for the
motor car axle x

2311 fault inject(XYZ,x)

4 Set XYZ status to non faulty 2517 fault clear(XYZ)

5 Set slide XYZ status as active 4211 slide status(XYZ,1)

6 Set status to faulty for sensors XYZ for
motor car axle x

2311 fault inject(XYZ,x)

7 Clean up.... 3210 reset()

This test case would be encoded as [1024, 2033, 2311, 2517, 4211, 2311, 3210]
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illustrates how the automatically executable code could look like for the corresponding test steps.
Given that the similarity between steps #3 and #6 was known, the automated code for step
#3 could have been reused when automating step #6. In this paper, we denote such reuse as
similarity-based reuse, or just reuse for short. Such similarities are, however, not restricted
to those occurring in the same case, as in the example, but in general, span several test cases.

2.3 Problem statement

In some of our partner organizations, the system integration testing is performed manu-
ally during the first release cycles of the developed software system. When the system has
reached an acceptable level of completeness and stability, a subset of the test cases, T , is
selected and automated with the purpose of reducing manual test execution effort. Such
automation work is performed over time with a subset of the testing crew, while the normal
testing activities in the project must continue in parallel. Thus, there is a high probability
that the system needs to be tested before all the test cases have been automated. Further,
due to the many people involved, as well as regulatory issues, there exists a certain amount
of similarities (or overlaps) in the test cases. Such similarities occur often due to copy-paste
reuse of the manual test cases. Our intuition is that by reusing the automated versions of
similar test steps, not only can the automation effort be reduced, but by carefully planning
the automation work order, it should be possible to reduce the manual test execution effort
in a quicker pace.

3 Reducing manual test execution effort using similarity-based reuse
and automation order prioritization

In this section, we present the underlying assumptions and definitions that finally leads to
our suggested approach to automation order prioritization. In Section 3.1, we present the assump-
tions that the rest of the work relies on. Based on these assumptions, we define test case automa-
tion in Section 3.2 . In Sections 3.3 and 3.4, we explain the theoretical framework on how
to measure manual effort and how to compare the effect of different automation strategies.
This theory is further exemplified in Section 3.5. A formal problem formulation is given
in Section 3.6, and lastly, we present a heuristic simple, fast, and deterministic ordering
algorithm in Section 3.7. Table 2 summarizes the symbols used throughout the paper.

3.1 Assumptions

Our approach makes the following explicit assumptions and simplifications:

– All test cases are independent.
– Manual test cases are written in natural language.
– The automation work is performed sequentially and at a rate, λ test steps / hour. This

implies that all test steps are considered equal with respect to automation time.

Software Qual J (2018) 24:1421–14491426



Table 2 Main notation adopted in the paper

Symbol Description

T The set of manual test cases that we want to automate.

|τ | Number of test steps in the particular test case τ .

||T || Number of test steps accumulated for all test cases in T .

σ Automation strategy, resulting in an automation order as an ordered list

of the indices in T such that i, j ∈ σ, i �= j, τi ∈ T , τj ∈ T .

Practically we see σ = {reuse/no − reuse, orderingalgorithm} −→ σ1, ..., σn

τσi
The i:th test case index in the order of σ

τi The test case in T with index i. τi ∈ T , i = 1..|T |
γ Average manual test execution rate (test steps / hour).

λ Average automation rate (test steps / hour).

t0 The point in time where we start automating the test cases in T .

t Point in time when a system test is performed.

– The rate λ is constant until all test cases have been automated.
– A test case is considered to be a manual test case until all its steps have been scheduled

for automation and automated.
– The effort of executing an automated test case is not considered.
– The effort of verifying and adapting a reused test step is not considered.
– During a system test, the execution of remaining manual test cases is performed

sequentially and at a rate, γ test steps / hour.
– The rate γ is constant until all manual test cases have been executed.
– We approximate the effort for reusing an automated step to zero for the reason that this

effort is substantially less than searching for the corresponding commands and signal
names in the test automation framework manuals.

In this paper, for sake of simplicity, we have only considered the test stimuli. However,
the approach is trivially extended to include the expected response part of a test step as
well. This can be done without essentially changing the overall approach/model structure,
but with the side effect of increasing the solution’s complexity.

3.2 Test case automation

Automating a set of manual test cases involves translating the instructions into their auto-
matically executable counterpart (automation code). While these manual instructions are
written in natural language, the automation code is typically expressed in some form of
script or visual programming language. This automation code can sometimes be reused if
we can keep track of similar manual test steps that have been automated before.

For such automation work, we envision a tool where the tester can automate one manual
test case at a time, step by step, having the manual instructions to the left and the corre-
sponding script code attached to the right as illustrated in Table 1. If the user encounters
a test step that is similar to a test step that has been automated before, the corresponding
script code is presented to the user as a suggestion.

How fast the automation work is completed depends on many factors. In this paper, we
shift the focus from the automation rate (γ ) in favor of the automation order (σ1, .., σn)
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given a decision to reuse. The automation order describes how we schedule the test cases for
the automation work, i.e., the sequential order of the test cases. With reuse, in this context,
we mean similarity-based reuse, where the automation code of similar test steps is reused.

A well-chosen automation order is an order where as much of the test cases as possible
gets automated, as early as possible, and with the least required effort. This automation
order can be determined manually, or by an algorithm. An example of such an algorithm
is given in Section 3.7. Other algorithms search for an optimal solution using an objective
function that measures how good a given automation order is. An example of an objective
function is given in Section 3.6.

We denote this process of creating an automation order the automation strategy (σ ).
The concept of automation strategy may be extended to include more aspects such as sub
system prioritization and selection of test cases. In this paper, however, we primarily focus
on the automation order and the necessity of similarity-based reuse. The effect of different
automation strategies will be further discussed in Section 3.3.

The context given above leads us to the following observations: The set of manual test
cases T is sequentially automated over time, using some automation strategy σ . Given that
we can regard the same test case as either manual or automated, this means that T can
always be divided into two partitions: The remaining (not wholly automated) manual test
cases TM and the wholly automated test cases TA.

Definition 1 A test case is wholly automated when (i) the test case has been scheduled for
automation according to the decided automation order, (ii) all its steps have been translated
to script code, and (iii) all reused step scripts have been verified and adapted until they are
suitable for the current test case.

From Definition 1, it follows that a test case is not considered to be wholly automated
even if all of its steps are similar to steps that has been automated before. According to
the above definition, such a test case is still considered to be a manual test case until the
test case has been scheduled for automation, and all steps have been properly validated
and adapted to the current test case. However, in our model, such validation and adaptation
effort is approximated to zero, since it is considered to be much less than the automation
effort. This has the effect that such a test case will be “immediately” automated as soon as
it is scheduled for automation, but not before that.

Let us consider a practical example of the reasoning above: The test cases Tx and Ty

contain one test step each. These test steps are similar to each other. At some point in time,
we wholly automate Tx . As a consequence, the test step in Ty is already automated. How-
ever, this test case is scheduled to be automated later, so it will continue to be considered
as a manual test case. Whenever we reach Ty in the automation order, Ty is immediately
considered wholly automated. Notably, a successful prioritization strategy would place Ty

close to Tx .
We now formally define the set of wholly automated test cases at any particular time

t , given an automation rate of λ test steps / hour and an automation order σ , defined by
a sequence of test cases (τσ1 , .., τσn) in the set of test cases T . From Definition 1 and the
assumption that verification and adaptation time is zero, the set TA(T , t, λ, σ ) of wholly
automated test cases at time t contains exactly the elements in the longest prefix (τσ1 , .., τσi

)

for which the number of unique test steps therein is less than λt . From the assumptions and
Definition 1, we have that k(i), the total number of automated test steps at position i in σ , is

k(i) =
∣
∣
∣∪i

j=1τσj

∣
∣
∣ . (1)
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Using (1), we can then simply define TA(T , t, λ, σ ) as follows.

Definition 2 The set TA(T , t, λ, σ ) of wholly automated test cases up to time t is

TA(T , t, λ, σ ) = {τσ1 , . . . , τσi
}, (2)

where i = argmaxi (k(i) | k(i) ≤ λt).

3.3 Measuring manual execution effort

To understand how the choice of automation strategy affects manual test execution effort,
we first consider the examples in Fig. 2. The examples illustrate how test case automation
reduces the manual effort over time for a set of test cases T , given a constant automation
rate (λ). The y-axis shows how much of the initial manual effort is left, expressed in number
of test steps, where ||T || is our notation for the total numbers of test steps in T . The x-axis
shows the time, from the start of automation.

In the first example, “No Reuse, Any Order” (σ ), the automation strategy is to automate
all steps of the test cases in isolation, in any order. The time it takes to automate a test case
is not dependent on the test cases we have automated before. Thus, how quickly the manual
effort is reduced is determined by the automation rate (λ), the choice of “no reuse”, but not
the automation order.

In contrast, when considering similarity-based reuse, the automation work may be fin-
ished quicker than in the case of not considering reuse, despite the same automation rate
(λ). The reason for this is that fewer test steps will need automation. This in turn results in
a much quicker reduction of the manual effort.

The order affects how fast the effort is reduced because the time it takes to automate a
test case now depends on the test cases we have automated before, i.e., how many already
automated test steps we can reuse. Theoretically, it should be possible to find an order so we
reduce the manual effort as early as possible. This is illustrated in the example (σ ′) in Fig. 2.
Given the same λ, different automation orders would result in different slopes. Some orders

Fig. 2 Manual test execution effort reduction over time, using different automation strategies
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will be more beneficial than others with respect to early manual execution effort reduction
or total effort reduction.

If we perform a system test before the automation work has even started (i.e., before
t0), the required manual execution effort is clearly equal to the effort of executing all the
test cases in T manually. If we can wait to test the system until all test cases have been
automated, there would be no manual execution effort required at all. At tj and tk in the
same figure, the required manual effort to test the system would be Ėσ

j and Ėσ
k , respectively.

In the remainder of this section, we will elaborate on how to estimate that effort.

Definition 3 The manual test execution effort for a set of test cases, T , measured in number
of test steps is defined as follows:

em(T ) =
|T |
∑

i=1

|τi |, (3)

where T is a set of test cases to be manually executed.

The goal of this section is to present a measure of the manual test execution effort if
we perform a system test before the automation work has finished, say at time t . Using
Definition 3, this effort corresponds to the effort of executing the set of test cases that has
not yet been wholly automated. Since the set of wholly automated test cases can be found
using Definition 2, we can measure the effort as follows:

Definition 4 The effort of executing all remaining test cases at time t is as follows:

Ė(T , t, λ, σ ) = em(T − TA(T , t, λ, σ )), (4)

where t denotes the point in time where the test starts. TA(T , t, λ, σ ) is the set of wholly
automated test cases up to that point in time (t), given the automation strategy σ and the
automation rate λ. T is the original set of manual test cases that should be automated.

3.4 Comparing approaches

As the manual effort reduction from the set of automated test cases TA(T , t, λ, σ ) varies
over time, we base our comparisons on the manual test execution effort we can expect on
average over the duration of the test automation process. To illustrate the principle, we could
take some samples of the manual effort in Fig. 2 according to Definition 4 at the points tj

and tk . This yields an average of Ē =
(

Ėσ
j + Ėσ

k

)

/2.

Intuitively, the more samples, the closer Ē will be to the true mean. Since an effort
reduction can only take place whenever a test step has been automated, we sample after
each time a test step has been automated in order to get a true mean of the manual effort.
Sampling more often would not yield a different answer since we divide by the number of
sample points and the required effort does not change during automation of a single step.

We further define a constant automation rate, approximated to λ = 1 step per time
unit, which gives us that the automation effort as well as the manual test execution effort
for one test step is equal to one time unit. Thus, by using the Definition 4 and sampling
at each finished test step t = {0, .., ||T ||}, where T is the set of test cases that are sub-
ject to automation, we argue that this will capture (i) that a fully automated test case
does not contribute to effort reduction until its fully automated and (ii) that an early effort
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reduction (with respect to manual test execution effort) will contribute more to the total
effort reduction since reduction will cumulatively contribute to each subsequent system test.

Definition 5 The average expected manual test execution effort (in % of original manual
effort of T ) is as follows:

Ē(T , λ, σ ) = 100

||T ||2
∑

t∈{1,..||T ||}
Ė(T , t, λ, σ ). (5)

||T || is the total number of test steps in the set of test cases T and Ė(T , t, λ, σ ) is the
required manual test execution effort at time t , given the automation rate λ and automation
strategy σ according to Definition 4.

3.5 An example of similarity-based reuse

To understand in more detail how similarity-based reuse and automation order contributes
to the overall effort reduction, let us examine the example in Table 3 from an automation
effort perspective and from a manual test effort perspective. For the sake of simplicity, we
set both the automation rate and the execution rate to 1 (λ = 1, γ = 1) in this example.

Table 3 describes three imaginary test cases A, B, and C. The characters in the attached
sequences, e.g., [a, b, c] and [x, y, z], symbolizes test steps. Each such test step corresponds
to some manual action, e.g., “Turn Ignition Key to II,” that is subject to be automated.

Given these prerequisites and a traditional approach, where each test case is automated
in isolation, a total of nine test steps would require automation. However, if we examine
the test sequences, some stimuli are repeated trough out the set of test cases. The stimuli a

occurs in A, but also in B. It should thus be possible to save automation effort if we keep
track of similar test steps in such a way that we can reuse the corresponding automated
script. The automation effort for the given case can thus (theoretically) be reduced to the set
of distinct test steps S = [a, b, c, d, x, y, z] and the automation effort is thus |S| = 7 steps.
The total automation effort will always be constant with respect to the automation order.

To better understand how the manual test execution effort varies depending on the
automation order, we go ahead and automate the test cases in Table 3, first in the order
A, B,C and then in the order C, B, A .

The work is illustrated in Fig. 3. On the y-axis, we find the required manual test execution
effort over time. This effort is reduced over time, as the proportion of automated test cases
grows. The test effort reduction for an automated test case occurs when it has been scheduled
for automation and wholly automated, which gives the staircase shape of the slope. The x-
axis describes the time spent on automating test steps with the resolution of one automated
test step. The dotted lines are visual aids to facilitate comparing the resulting effort reduction
slope for different automation orders. Further, the gray shadow under the manual effort is
for also for clarity.

Table 3 Example test case set T
Case ID Length Stimuli sequence

A 3 [a,b, c]
B 3 [a,b,d]
C 3 [x, y, z]
Total 9
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Fig. 3 Different automation orders give different slopes

Before we have automated anything (t = 0 in Fig. 3), the test effort is always equal to
the effort of manually executing all test steps of all test cases: |A| + |B| + |C| = 9 steps
in total. Starting with order A,B,C (Fig. 3a), we get an effort reduction of |A| = 3 steps
when all steps in A have been automated. So between t = 3 and t = 4, the remaining
manual effort is 9 − 3 = 6 steps. Next up is test case B. Since the steps a and b are already
automated, the test case is already complete after automating test step d. The last test case,
C, contains three new test steps and thus takes three time units to completely automate. If
we sample the expected manual test execution effort after each finished test step we would
thus get Ē = 100 · (9 + 9 + 9 + 6 + 3 + 3 + 3 + 0 + 0)/92 = 52%. The practical meaning is
that, a full system test at a random point in time between t = 0 and t = 9, would on average
require 52% of the initial manual effort.

Figure 3b illustrates the manual effort reduction over time when automating the test cases
in the order C, B, A. Here, the information on overlaps cannot be used until the very last
test case, which gives Ē = 100 · (9 + 9 + 9 + 6 + 6 + 6 + 3 + 0 + 0)/92 = 59%.

3.6 Formal problem definition

The problem considered in this paper is to find the automation strategy for a set of test
cases T , that gives the lowest average expected manual test execution effort (Ē). The
automation strategy is fixed to similarity-based reuse where the sought parameter repre-
sents the ordered sequence of test cases (that are subject to automation), denoted as σ .
The automation of each test case follows Definition 5. The approach developed in this
paper solves a restricted version of the full problem, since we assume that the initial
effort of automating a test case, as well as the reuse effort for any step, is zero. Fur-
ther, we assume that all test steps take exactly one unit of work time to execute and to
automate.

Definition 6 Let T be a set of test cases that should be automated over time. Find the
sequence σ which minimizes the fitness function (derived from Definition 5).

Fit(T , λ, σ ) = ||T ||2
100

Ē(T , λ, σ ) =
∑

t∈{1,..||T ||}
Ė(T , t, λ, σ ) (6)
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3.7 Potential/effort prioritization

There are several off-the-shelf algorithms that, given an objective function as in Definition
6, are capable of returning an optimized order. However, we expect these to be too time-
consuming and complex to use in an on-line tool situation. In a situation where several
persons are performing the automation work in parallel, the prioritization algorithm must be
re-run each time a new test case is to be picked for automation to make the automation work
appear as sequential to the algorithm, since the algorithm does not take parallel automation
into account. Therefore, we propose a simple and time-efficient heuristic algorithm, detailed
in Algorithm 2, that attempts to arrange the test cases in such a way that the automation
effort is spent in order to give as much manual effort reduction as early as possible.

The input to this algorithm is a set of test cases that should be automated. The output
is the order σ that they should be automated in to give the assumed largest and earliest
expected manual test execution effort reduction.

The basic idea is to successively rank all remaining test cases in the set and pick out the
highest ranked one until the set is empty. The rank is constructed for each test case in the
set using two factors. The first factor is its potential of reducing the number of manual test
steps, which is at least its own length, but can be more if the contained test steps are repeated
in other test cases. The second factor is the required automation effort for the test case. If
many of its steps have already been automated, the effort will be less. The ranking factor is
thus the ratio potential/effort score. In more detail, the potential/effort calculation function,
depicted in Algorithm 1, estimates the possible potential for a particular test case τ as the
gain of automating τ plus potential future gain, considering the set of already implemented
test steps as well as the set of remaining manual test steps. The information on future gain
is derived from the occurrence map O that associates each distinct step with its number of,
not yet, automated occurrences in the total set of test cases T . With O[s] = 3, we thus mean
that the step s occurs three times in T . The practical implication is that if we automate s,
we will get a future potential gain of 3. If the count is zero, i.e., O[s] == 0, the step s

has already been automated. The effort required for reusing an already automated step, e.g.,
validating it for usage in this particular test case, is considered to be substantially less than
automating the test step again. Therefore, the validation effort is neglected. Given the above,
we can describe the set of test steps that has to be automated as SA := s ∈ τ : O[s] > 0.
Each of these steps will each give a potential future gain of O[s] when automated. If all test
steps in τ have already been automated |SA| will be zero. To avoid division by zero, we use
a sufficiently small number here in such cases. A small number will result in a high ranking
of test cases that require no effort, making sure that we schedule “effortless” test cases as
early as possible.

Definition 7 The potential/effort (P/E) value for a test case is given by the following:

P/E(τ ) = gain + potential

effort
=

|τ | + ∑

s∈SA

O[s]
max(|SA|, 1/∞)

SA := s ∈ τ : O[s] > 0,

where O is the step occurrence count map for T , TC is the current test case, and SA is the
set of test steps that requires automation effort.

Given the following example:

t0 = (aabcd), O[s] = {a : 5, b : 0, c : 0, . . . , d : 0},
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we get SR = {a} the gain t0 = 5 and the potential 5. The effort is 1 since only one test step
has to be automated. The P/E value is thus 10.

Going back to the ordering of test case problem, Algorithm 1 has three internal structures
of interest. Tc is the set of test cases that has not yet been scheduled for automation. To is
the ordered list of test cases scheduled for automation. O is a map, keeping track of each
unique test step and the number of time this particular test step occurs in the original set of
test cases T . If O[s] is zero, this indicates that the step s already has been included in the
test cases of To.

The algorithm starts with counting the occurrences of each unique test step into a occur-
rence map O. Next, it iterates through all unprocessed cases and calculates the P/E score
for each test case, and the test case with the highest P/E value, tbest, is chosen. This test case
is added to the list of automated test cases and also removed from set of unprocessed test
cases. Lastly, all steps in the chosen test case are considered to be implemented and marked
with a zero in the occurrence map to signal that they have been implemented. The process
continues until all test cases have been ordered, i.e., the set of unprocessed test cases is
empty.
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4 Industrial case study

We have conducted an exploratory industrial case study, following the guidelines by Rune-
son and Höst (2009). The objective of the case study is to evaluate to what extent the
automaton order is a viable criterion when prioritizing test cases. We evaluate the aver-
age expected manual effort, as per Definition 5, using optimized automation orders from
a number of algorithms. The result is compared to automating test cases without consider-
ing similarity-based reuse, where the order does not matter. The considered algorithms are
random order, shortest first, longest first, P/E prioritization, stochastic hill climbing, and a
standard genetic algorithm.

In particular, we investigate the following research questions:

– RQ1: What effect does similarity-based reuse have on the test effort for real-world
projects, not considering a particular automation order?

– RQ2: How much does the order, in which we automate test cases, affect the test effort?
– RQ3: How do different ordering approaches (random order, shortest first, longest first,

P/E prioritization, stochastic hill climbing and a standard genetic algorithm) perform
with respect to affecting test effort?

4.1 Case study context

The studied case organization is active within the vehicular embedded systems domain.
The project development work is distributed among a set of international sites and depart-
ments, each responsible for a subset of the functionality that is finally integrated and tested
in our case organization. The integration test cases are primarily written in natural language
for manual test execution. Whenever the system is considered mature enough by the test-
ing steering group, a subset of the test cases is automated. The reason for waiting with the
automation work is that their integration process is performed in a number of incremental
(internal) release cycles, where new sub systems may be added in each release cycle. During
this process, the system gradually grows but also gets more and more stable. The practition-
ers express that during the early cycles, faults occur in unexpected places in their system,
and that such faults are hard to catch using automated test cases. Thus, the automation work
may be postponed until the system has reach a certain level of stability.

4.2 Units of analysis

The units of analysis in our case study are the test cases of four different projects (P1, P3,
P4, P5) at the case organization. The project P2, not included in this study, is well known
to be very similar to P3, and was only used for verifying that the similarity function and the
results of the tested approaches were consistent.

The details of the different projects are presented in Table 4. Projects P1 and P5 are
two large projects, whereas P3 and P4 are substantially smaller. The potential automation
reduction for each project is given in the column Reduction potential. This is the fraction of
possibly redundant test steps. With redundant, we mean that if a test step has already been
automated, the work of automating it again would be redundant work. The Distinct Recur-
rence column describes the probability of a test step from the group of distinct test steps to
occur more than once. Intuitively, this column describes how big fraction of the distinct test
steps are repeated more than once in order to sum up to the Reduction potential (e.g., 37% in
P1). The last column (which is an interpretation of Fig. 4) describes the probability of a test
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Table 4 General metrics of the units of analysis

Project Test Test Distinct Reduction Distinct Short test

cases steps steps potential (%) recurrence (%) probability

P1 1327 11,665 7331 37 17 Low

P3 285 1812 1362 24 11 High

P4 337 2365 1657 29 18 High

P5 1684 17,372 11,485 33 12 Low

SUM 3919 35,011 23,180 31.5 (Avg)

case to be short (up to five test steps). Even though all projects have a rather high probabil-
ity, P1 and P5 show a lower probability and thus define the LO level. Correspondingly, the
HI level is defined by P3 and P4 (all in Fig. 4). This probability distribution of test length
of the test cases is detailed in Fig. 4 as pair combinations of the four projects. Notable is
that there are two groups of projects that are similar with respect to test case length: P1 and

Fig. 4 Probability distributions with respect to number of test steps. The darker area is where the bars overlap
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P5 have a low fraction of really short test cases, whereas P3 and P4 show a larger fraction
of really short test cases (less than ten test steps). The distribution of individual step lengths
is roughly the same for all the projects.

Another, possibly, important feature is that in P1 and P5, the preparatory1 steps of the
test cases have been more standardized than in P3 and P4.

4.3 Variables and measurements

The independent variable recorded in this study is as follows:

– Applied automation strategy.

The following dependent variables are recorded:

– The average expected manual execution effort (Ē) as per Definition 5.
– Execution time of the prioritization algorithm (given by the automation strategy). The

execution time is measured (in wall-clock seconds) from the point in time the algorithm
is given the list of test cases in random order as input until the list of prioritized test
cases has been returned.

4.4 Assumptions and simplifications

To be consistent, we apply the same assumptions on the industrial evaluation as in Section 3.1.

4.5 Experimental settings

This section describes the experimental settings used in the industrial evaluation. Again,
with reuse, we always mean similarity-based reuse of automation code.

1. R0—No reuse and random order
The purpose of this experiment is to simulate the case where we do not reuse the
automation code of similar test steps and we further do not automate the test cases in
any particular order. This should yield an Ē of 50% and serves as the base comparison.

2. R1—Reuse with random order
The automation code of similar test steps is reused. The automation order is random.

3. SF—Reuse and shortest first
The automation code of similar test steps is reused. The shortest test case is automated
first and if two test cases are of the same length, the one that occurred first in the initial
order is picked.

4. LF—Reuse and longest first
The automation code of similar test steps is reused. The longest test case is automated
first and if two test cases are of the same length, the one that occurred first in the initial
order is picked.

5. P/E—Reuse and P/E prioritization
The automation code of similar test steps is reused. The automation order is decided by
the P/E algorithm, as described in Section 3. It orders the test cases by assigning a P/E
score to each test case. If two test cases have the same score, the one that occurred first
in the initial order is picked.

1Preparatory test steps prepare the system under test (SUT) to be tested.
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6. SH—Reuse and stochastic hill climbing
The automation code of similar test steps is reused. The automation order is decided
by the stochastic hill climbing algorithm. We use the implementation in the JAMES2

framework for solving the traveling salesman problem.
In this work, we have chosen the parameters as follows:

– Objective function—the function Fit(T , σ ) as defined in Definition 6.
– Time limit—60 s
– Evaluation limit—250,000,000 to ensure that the time limit is always used.

These values were chosen by observations of several initial experiments that showed
that a longer run time (> 60 s) did not significantly improve the result.

7. GA - Reuse and genetic algorithm (GA)
The automation code of similar test steps is reused. The automation order is decided
by a standard genetic algorithm. We use the implementation in the jMetal3 framework
for solving the traveling salesman problem. More specifically, the framework class
GeneticAlgorithmBuilder together with the class PermutationProblem
is used. This implementation can only use the PermutationSwapMutation and
PMXCrossover operators. The used selection operator is BinaryTournament
with the comparison operator RankingAndCrowdingDistanceComparator.
The other parameters stem from the results of a sensitivity analysis with population =
{50, 80, 100}, mutation probability= {0.5, 0.7, 0.9}, and crossover probability = {0.001,
0.008, 0.07, 0.1}. The sensitivity analysis was run with the largest set of test cases
(P 1). The difference between the highest and lowest average (of ten executions of each
parameter combination) was ∼ 7%. Since an increased population size is expected to
contribute to a better result at larger problems (Li et al. 2007), the parameters were
kept also for the smaller test case sets (P 2, P 3). The detailed set of parameters are as
follows:

– Individual—one permutation of the test case indices.
– Objective—Fit(T , σ ) as defined in Definition 6.
– Crossover probability—0.7.
– Mutation probability—0.1.
– Population size—50 individuals.
– Max evaluations—25,000.

The input to all algorithms in experiments 1–9 is a set test cases T and an initial order
σ1, ..., σn. The goal of each algorithm is to return an order σ ′

1, ...σ
′
n with the lowest possible

value Fit(T , σ ) as defined in Definition 6. The initial order σ1, ..., σn is always randomized
before being fed into the algorithms to prevent any bias from the initial order. The algorithms
in the list above were implemented from scratch in Java, where nothing else stated.

4.6 Execution and data collection procedures

The data from the DOORS data base was extracted into a sandbox environment, similar
to Flemström et al. (2016). After extraction, the major preparation steps included feature

2JAMES framework 5.2-SNAPSHOT (Nov 2016). http://www.jamesframework.org/
3Metal framework 5.1. http://jmetal.github.io/jMetal/
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extraction, removal of stop words as well as formatting characters and lastly encoding into
word vectors. Each distinct word vector was assigned an ID and each test case were encoded
accordingly. In this paper, however, we have only considered the stimuli part of the test
steps, thus ignoring the reaction part (for an example of an encoded test case, see Table 1).
Each step in a test case is now represented by a stimuli ID. If the IDs are equal, the steps are
considered to be similar.

When prioritizing test cases with the heuristic approaches, a priority value is assigned
to each test case. In the shortest first and longest first approaches, this priority value is the
number of steps in the test case.

There is always a risk that two or more test cases are assigned the same value (aka ties).
In such cases, the first encountered test case is always picked. To mitigate any bias due to
such effects, each of the algorithms was run with random start orders 100 times on each
unit of analysis (Arcuri and Briand 2014). The meta-heuristic algorithms also suffer from
randomness and thus, they were also run 100 times per unit of analysis. The dependent and
independent variables were recorded for each experiment.

5 Industrial case study results

The data from the studied projects were prepared as described in Section 4.6, resulting in
four sets of test cases. In summary, each test case was encoded as a series of numbers,
each number representing a distinct test step. If two numbers are the same, we suggest that
the automated code for that particular test step can be reused with substantially less effort
than automating that step again. Since it will take less time to automate the test cases, the
proportion of manual test cases will reduce quicker.

To compare how different automation orders affect this reduction, the Ē measure, intro-
duced in Section 3.3 was used. From a practical point of view, the Ē value allows us
to reason about the chance that a randomly chosen test case at a randomly chosen point
in time has to be carried out manually. Intuitively, the more of the available test steps
have been automated, the less the chance of ending up with manually executing a test
case.

Each project was studied in isolation to avoid bias from previously automated projects.
For a real setting, it would most likely be beneficial to consider all existing projects as
potential sources for reuse.

As recommended by Arcuri and Briand (2014), each experiment was executed 100 times
for each project, using a random automation order as start value. The compared algorithms
were no reuse with random order (R0), random order (R1), shortest first (SF), longest first
(LF), P/E prioritization (P/E), stochastic hill climbing (SH), and genetic algorithm (GA).

The results of these executions are presented in Table 5. The table shows four row-
groups, collecting the results from the experiments, for each project. The sub-rows in each
group are min, max, standard deviation, and mean for Ē followed by the algorithm mean
execution time in milliseconds. Since the frameworks we used measure time as wall-clock
time, values less than 1 ms is marked with “*”. The results for the different algorithms are
presented in corresponding column.

From Table 5 we observe that when similar test steps are not reused (R0), the manual
effort (Ē) is steadily around 50% for all the projects. This is expected since, if we do not
reuse any steps, all test steps are automated always. This in turn leads to each test case
having the same automation effort. The slight deviation from 50.00% is due to Definition 1
of wholly automated test cases, which gives a staircase-formed curve.
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Table 5 Expected manual effort (Ē) and average execution for the experiments

R0 R1 SF LF P/E SH GA

Project

P1 Mean 50.05 33.09 31.70 32.79 26.47 26.32 30.41

std 0.00 0.24 0.01 0.01 0.00 0.01 0.12

Min 50.05 32.55 31.68 32.77 26.47 26.30 30.14

Max 50.05 33.68 31.72 32.82 26.48 26.37 30.66

Exec 2 2 2 2 399 60,041 32,608

P3 Mean 50.28 39.19 39.49 37.67 33.45 33.19 34.88

std 0.00 0.44 0.03 0.02 0.00 0.02 0.13

Min 50.28 37.86 39.42 37.61 33.44 33.16 34.60

Max 50.28 40.20 39.57 37.73 33.46 33.27 35.16

Exec * * * * 9 63,313 5138

P4 Mean 50.32 37.26 36.82 35.38 30.47 30.29 32.50

std 0.00 0.55 0.02 0.02 0.00 0.03 0.15

Min 50.32 35.82 36.76 35.32 30.46 30.23 32.14

Max 50.32 38.32 36.87 35.43 30.48 30.36 32.87

Exec * * * * 15 60,812 7066

P5 Mean 50.05 34.07 32.01 35.24 28.54 28.46 31.88

std 0.00 0.21 0.00 0.00 0.00 0.01 0.10

Min 50.05 33.54 32.00 35.22 28.53 28.44 31.70

Max 50.05 34.54 32.02 35.25 28.54 28.49 32.12

Exec 1 2 3 2 840 60,039 46,954

Proj. avg. Mean 50.18 35.90 35.01 35.27 29.73 29.57 32.42

Exec * 1 1 1 316 61,051 22,941

*Means execution time less than 1ms

When reusing the automation code of already automated test steps, the automation work
should finish quicker. Intuitively, this would reduce the expected manual effort (Ē). Table 5
confirms that the Ē value is less for all experiments considering similarity-based reuse (R1,
SF, LF, P/E, SH, GA).

Further, from the same Table 5, it is evident that the stochastic hill climbing yields the
best result (returning an automation order with a low Ē). By running the algorithms with
negated Fit(T , σ ), we find that the stochastic hill climbing also yields the worst order of
the algorithms (included in Fig. 6 but not in Table 5). The difference between the best Ē

result and the worst result with the negated Fit(T , σ ) indicates the maximum effect we can
expect from the automation order, given the algorithms at hand. For the given projects and
algorithms, it was on average 12 percentage points in difference.

Software Qual J (2018) 24:1421–14491440



Figure 5 is a graphical representation of Table 5 with to the purpose of facilitating the
comparison between the algorithms. The y-axis shows the average expected manual effort
(Ē). The lower this value, the better performance of the algorithm. On the x-axis, we find
the experiments grouped by project. The vertical dotted lines are there for readability. The
green dots for each algorithm and project show the mean value of Ē from 100 executions
of the algorithm with random start orderings. The vertical thick lines in Fig. 5 are drawn
vertically from the min to the max value of each algorithm. Where the difference between
min and max is very small, these vertical lines are not visible. The worst case executions
(negated fitness function) of the algorithms are not considered in the figure.

Fig. 5 Min, max and average of expected effort (Ē) of 100 executions of each algorithm with random start
orderings. The algorithms are denoted random (R1), shortest first (SF), longest first (LF), P/E prioritization
(P/E), stochastic hill climbing (SH), and genetic algorithm (GA)
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From the Fig. 5, we see that the stochastic hill climbing (SH) always outperforms the others,
tightly followed by the P/E prioritization (P/E). The genetic algorithm performs significantly
worse than the stochastic hill climbing (GA) but still better than the remaining algorithms.

Notable in Fig. 5 is that, even though the standard deviation is extremely small for
non random algorithms, the algorithms perform slightly different in different projects. To
explain the differences in performance with respect to the projects, we collect some features
from the projects and the algorithm results in Table 6. The columns represent the projects.
The first row “SF vs LF” shows whether the shortest first or longest first was the best one of
the two. Since P/E prioritization (P/E) and stochastic hill climbing (SH) yielded a slightly
better result for two of the projects, these projects were marked with “H” in the rows “P/E
Performance” and “SH performance.” Correspondingly, an L on these two rows means that
the result was slightly worse for the marked projects. The “Short TCs” row is, for conve-
nience, the same as the “Short test probability” column in Table 4. The “Distinct O” is an
interpretation of the “Distinct recurrence” in Table 4. The two highest were assigned the
value H, and the two lowest the value L. The last row “Size” is a similar interpretation of
the number of test steps in Table 4.

A closer examination of Table 6 and Fig. 4 reveals that P1 and P5 have roughly the same
proportions of short test cases. P3 and P4 also have roughly the same proportions, but have
much more short test cases. Since the gain of an automated test case is counted earliest when
the whole test case is fully automated, a higher ratio of short test cases will contribute to an
earlier effort reduction, which may partly explain why shortest first gives more reduction in
P3 and P4.

The P/E prioritization performs slightly better in P1 and P4. Examining Table 6, P/E
does not seem to be that sensitive to the proportion of short and long test cases. Further
examining the occurrence distribution for the individual test steps, the probability that a
test step occur more than one time in project P1 and P4 is slightly higher than in project
P3 and P5. Since test steps that occur often are prioritized by the approach, a larger gain
may be “claimed” early, which possibly contributes to the better performance in P1 and
P4. As presented in Table 6, the chance of finding test steps that occur more than twice is

Table 6 Comparing experiment
result with project project
features

P1 P3 P4 P5

SF vs LF S L L S

P/E performance H L H L

SH performance H L H L

Short TCs L H H L

Distinct O H L H L

Size L S S L
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slightly less in project P3 and P5 than in P1 and P4; thus, there is less gain to find for those
projects, which should explain the slight decrease in performance for the P/E prioritization.
The stochastic hill climbing follows the same pattern and is probably also rewarded by a
high portion of recurring test steps. The size of the project seems not to matter since the hill
climbing performed well in one small and in one large project.

While the Ē value is useful for comparing one ordering algorithm with another, it does
not tell much about how the manual effort declines over time due to the on-going automa-
tion work. To better understand how the best and worst automation orders affect this effort
reduction over time, we have reported the resulting order from the stochastic hill climbing
for the best and worst Ē results in Fig. 6. The figure has four sub-figures, one for each
project. On the y-axis we find the remaining manual effort (i.e., the not yet automated test
cases). On the x-axis, we find the time from start of automation work, until the automation
work would have finished if we had not considered reuse.

Continuing with Fig. 6, the lower curved line, ending at t1 illustrates the best case with Ē

= 26% (for P1). The upper curved line, ending at t1 illustrates the worst case with Ē = 39%
(for P1). Due to Definition 1 of wholly automated test cases, small “spikes” appear on the
lines, like a staircase. Due to the relative scale, this is only visible for the small projects P3
and P4. The yellow area between the curved lines shows the span between the best and the
worst case. The shadowed area under the best case curve is for visual purposes only. For the
sake of comparison, there are two more lines plotted in the figure. The dotted lines ending
at t2 illustrate the case where we do not consider reuse. In this case, the corresponding Ē is
always approximately 50%. Lastly, the dotted red lines, ending at t1, are added as a visual
reference to facilitate the comparison.

From the figure, it is evident that the SH algorithm yields a consistent result for the
different projects with an average of 29% compared to non reuse that would yield 50%. The

Fig. 6 Remaining manual execution effort over time for SH (B) and SH+negated Fit(T , σ ) (W)
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difference between the best and worst order is on average 12 percentage points. The slope
from the P/E algorithm tightly followed the slope from the SH algorithm. It was hardly
possible to distinguish them from each other. From the slopes in the figure, we also observe
that both optimizing the Ē value and P/E prioritization give the earliest reduction since any
other order would result in a slope above the best case in the figure.

5.1 Execution performance of the prioritization algorithms

Finding the most efficient automation order is an important criterion when choosing the
algorithm for prioritizing the automation work. However, given that the algorithms should
be used in an on-line tool, it is also important to consider the computational efficiency.
In this section, we compare the two best algorithms, SH and P/E, and compare their
performance with respect to computational efficiency.

The execution time reported in Table 5 shows a relevant value for the P/E algorithm,
while the time reported for the hill climbing algorithm is tainted by the timeout. Since
the stochastic hill climbing algorithm in reality successively improves its solution, the
successive development of the result over time is more appropriate.

To find out how long time it takes for the hill climbing algorithm to reach the same result
as the P/E algorithm, we instrumented the stochastic hill climbing algorithm to emit the
current best Ē and the time stamp each time a new solution was found. To make sure that
we would not get a substantially better value if the stochastic hill climbing was left running
for a longer period of time, we doubled the time limit.

Figure 7 describes the successive development of the result for the P/E Algorithm and
the stochastic hill climbing algorithm. On the y-axis, we see the Ē value that would be the
result if the algorithm was stopped at that point in time. The time is shown on the x-axis
in milliseconds. The horizontal dotted red line shows the result of the P/E prioritization
algorithm. Before ta , there is no result available. Since the algorithm is deterministic and
only returns one result once it has finished, it will not give better or other results, even if run
multiple times. Thus, the line is vertical. The black lines show the successive development
for ten executions of the stochastic hill climbing on project P1. The algorithm performs
rather consistently and reaches the same Ē value as P/E at tb, at approximately 1 min.
Notably, the P/E algorithm is magnitudes faster than the hill climbing, which is an advantage
if used in an on-line tool.

6 Threats to validity

There are several threats to the validity of the industrial evaluation. One threat to the con-
struct validity of the method is that we have simplified the effort estimation of the individual
test steps. This could be a threat if the test steps differ substantially in length or the simi-
larities do not stem from copy-paste operations. Given more machine interpretable details
on the required effort for (i) automating and (ii) executing the test steps, we would have
got more accurate results. Concerning the internal validity, it is obvious that the resulting
effort reduction is dependent on the skills of the testers and the quality of the underlying
test automation framework. To mitigate this, we have used all test cases we could access.
This is a threat itself to the external validly, as in a real-world situation, only a subset of
the manual test cases are subject to automation. However, we prioritized the internal valid-
ity over the external validity in this case. Also even though we studied industrial projects
that are real-world and real-sized, the results are only generalizable to situations with
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Fig. 7 Solution development over time for the stochastic hill climbing together with P/E prioritization result.
The scale of the y-axis is % of initial manual effort and the time scale on the x-axis is milliseconds

similar characteristics with respect to similarities and test step lengths (referred to as
analytical generalization (Runeson and Höst 2009)).

The resulting effort reduction is, of course, dependent on both which test cases were
picked out for automation, as well as the number and distribution of system tests during the
period. Other threats would be if the test steps differ substantially in length or the similarities
do not stem from copy-paste operations. In case there is substantial variability in the length
of the test steps, one would like to know how bad the different curves would get. Given
the assumption that the length of the test steps is an indirect indication of test complexity,
another possibility is to help the test automation engineer by some visualization technique
once a variation in length is detected.

7 Conclusions and future work

When automating a set of test cases T without considering reuse, the order does not matter
to the average manual test execution effort. However, if it is possible to reuse the automation
code for similar test steps, order has an impact. Avoiding automating the set of test cases in
a totally random order decreases the average manual effort required if the system is tested
any time before the work of automating T is finished. Any of the studied approaches is
better than the random.
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This paper presents a fast, simple, and industrially scalable approach to prioritize the
test cases to be automated with the purpose of getting a big and early reduction of remain-
ing manual test effort until all test cases have been automated. Evidently, the suggested
P/E prioritization approach is comparable to the more standard stochastic hill climbing.
The simplicity of the P/E approach makes it a good candidate for integration in the exist-
ing industrial testing frameworks. Another major advantage, in many industrial settings, is
that our approach does not require any manual input for the prioritization or the similarity
tracking. Only the available manual steps (instructions) in the selected set of test cases are
required, together with the set of already automated test cases. These can be retrieved auto-
matically from the test case repositories. Since the approach is modular, the set of already
automated test cases may include all test cases in all available projects in order to increase
the level of possible reuse.

The technology transfer to companies take place in different steps (Gorschek et al. 2006).
The results of this study should be seen as one candidate solution. Once our company com-
mits to automate all of their manual test cases, a dynamic validation of the results provided
in this paper would yield more tangible benefits in future.

In this work, we have only considered the automation effort and future effort reduction
potential based on the number of steps in the test cases. The cost function can be further
developed to take into account the length of the test steps and possibly the complexity. Even
other criteria can be considered such as the code coverage and the ability of test cases to
reveal faults. These can then become a basis for different prioritization methods.

We also believe that there are other factors, equal or even more important, to fulfill when
automating test cases. Examples of such information are, as mentioned before, functional
dependencies, subsystem maturity, and level of importance. We argue that there is a need
to investigate how the known factors that can be automatically retrieved can contribute to
a more accurate model. Ultimately, we would like to know whether such model additions
improve the prioritization or not.

In summary, ordering of test cases for automation has shown to be one interesting piece
in the test effort reduction puzzle.
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