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Abstract—We investigate the effects on the execution time,
shared cache usage and speed-up gains when using data-
partitioned parallelism for the feature detection algorithms avail-
able in the OpenCV library. We use a data set of three different
images which are scaled to six different sizes to exercise the differ-
ent cache memories of our test architectures. Our measurements
reveal that the algorithms using the default settings of OpenCV
behave very differently when using data-partitioned parallelism.
Our investigation shows that the executions of the algorithms
SURF, Dense and MSER correlate to L3-cache usage and they are
therefore not suitable for data-partitioned parallelism on multi-
core CPUs. Other algorithms: BRISK, FAST, ORB, HARRIS,
GFTT, SimpleBlob and SIFT, do not correlate to L3-cache
in the same extent, and they are therefore more suitable for
data-partitioned parallelism. Furthermore, the SIFT algorithm
provides the most stable speed-up, resulting in an execution
between 3 and 3.5 times faster than the original execution time
for all image sizes. We also have evaluated the hardware resource
usage by measuring the algorithm execution time simultaneously
with the L3-cache usage. We have used our measurements to
conclude which algorithms are suitable for parallelization on
hardware with shared resources.

I. INTRODUCTION

Many industrial systems often use feature detection algo-

rithms in various applications ranging from face recognition to

autonomous vehicular systems. Detecting features in a frame

is a time-consuming process [5] because of the high number

of traversed pixels. The number of traversed pixels depends

highly on the feature detection algorithm goal, e.g., detecting

objects, corners, edges, blobs or key points. The number of

traversed pixels affects the application execution time, which

is often a limitation for time-sensitive real-time systems.
The process of feature detection stipulates that different

calculation sequences search for specific conjunctions between

pixels in a frame. The length of the feature detection sequence

varies significantly among the used algorithm. The number

of traversed pixels per frame grows if the feature detection

sequence is long leading to a further increased execution time.
One way of decrease the execution time of these calculations

is to parallelize the execution and use multiple CPU-cores at

the same time. The computations for a frame are often suitable

for execution on parallel architectures, where each CPU can

operate on a sub-frame (i.e. a partition of the original frame).

Luckily, almost all processors available today are, so called,

multi-core processors which have at least 2 CPU cores.
However, in a multi-core architecture, the computing units

compete for access to common hardware resources, such as

caches, memory banks and memory buses. This competition

lead to challenges in designing parallel software to avoid

bottlenecks in the data-flow and to prevent computing units

from interfering with each other. Examples of performance

problems related to parallel execution include cache trashing

(one core evicts data from the cache that is needed by another

core), cache-line ping-pong (a false-sharing problem when

cores that are seemingly unrelated manipulate data-elements

that are allocated close in memory), and DRAM starvation

(the DRAM controller may choose to serve only memory

requests from one controller for a while, since that brings up

the throughput of the memory system - at the expense of long

delays for some cores).

The ideal execution environment for a feature detection

algorithm running on a multi-core architecture is identified by

several properties. Minimizing the shared-memory congestion

side effects and interprocess synchronization time are the

most important ones. One possible solution to reduce the

harmful effects of shared resource congestion is to monitor

and understand the algorithm resource usage before-hand [15].

It is possible to obtain such knowledge by, for instance, using

Performance Measurement Counters (PMC) [7].

The knowledge of how feature detection algorithms such

as FAST, HARRIS or SURF affect the shared resources is

an important part when incorporating them into a multi-

core system, since it can give an indication on how well

the algorithm scales with parallelism opportunities offered

by multi-cores. Since the input data to such algorithms can

be relatively large, there is a possibility that the algorithms

may suffer from shared memory congestion and therefore

obtain an insignificant speed-up when utilizing multiple cores.

Therefore, it is possible that a feature detection algorithm

has such characteristics that it is better suited for running on

a single core, together with other general workloads instead

of reserving the several computational units of the computer

while achieving little execution time gains. However, the

success of applying a parallel paradigm to a feature detection

algorithm can however be an efficient tool to decrease the

execution time of such heavy workloads.

In this paper we study how the feature-detection algorithms

using the Open Computer Vision (OpenCV) library [4] be-

haves with respect to data-level parallelization in terms of

L3 cache usage on multi-core processors. OpenCV is one of

the most widespread libraries for image processing and hence
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these results should be valuable for a large community. The

main contributions in this paper include:

• We have evaluated how the feature detection algorithms

in the OpenCV features2d module [19] perform from data

partitioned parallelism with respect to speed-up.

• We have measured the performance of the feature de-

tection algorithms in the OpenCV features2d module

together with each algorithm hardware resource usage.

From these measurements, we deduced that the L3-cache

has the highest effect on the algorithm performance.

Outline: Section II give background information related to

feature detection algorithms and their resource usage. Detailed

information on our implementation is given in Section III and

the experiments in Section IV. We conclude the paper by

summarizing our conclusions in Section V.

II. BACKGROUND

It is possible to run image processing on multi-core systems

with the purpose of decreasing the execution time by us-

ing coarse-grained data parallelized algorithms [27]. Relevant

work include investigating how to parallelize feature detection

algorithms such as SIFT [10], [29], SURF [28], and Harris

[12] for performance increase. Applying these parallelization

techniques however require an in-depth investigation of the

algorithm functionality and also how to adapt the function-

ality parameters to the hardware in use. In this paper, we

have instead executed a generalized coarse-grained parallelism

model which can be applicable for speed-up gains without

studying the workload in detail. Since our approach does

not require in-depth knowledge of neither the hardware or

the software, it is also easy to migrate between different

hardware setups. In this paper, we have executed a generalized

coarse-grained parallelism model which can be applicable

even though the work-load is not studies in detail. To the

best of our knowledge, our paper is the first that investigates

the effects data-level parallelism has on the shared memory

using OpenCV feature-detection algorithms. The algorithms

investigated in this paper are well established feature detection

algorithms, available in the free and non-free branches of

features2d in the OpenCV library. We have used the default

algorithm tuning values which come with the OpenCV library

in order to have a reference for the comparison.

A. Feature detection

Feature detection is a way of distinguishing anomalies

in an image. Feature detection can be divided into 4 sub-

sets, edge detection, corner detection, object detection and

blob detection. In this work, we have used the common

interfaces class [19] of the OpenCV library which implements

11 different feature detection algorithms listed in Table I.

A feature detection algorithm is typically built upon a set of

mathematical rules which defines a corner. These mathematical

rules control not only how a corner is defined, but also how the

pixels in a frame are accessed. The main mechanism of every

corner detection algorithm is to traverse each pixel within a

frame. Detecting a corner in an image can become a costly

TABLE I: Our investigated feature detection algorithms.

Algorithm License Description
Harris [11] BSD Corner detector
FAST [23] BSD Corner detector
SIFT [16] Proprietary Object detector
SURF [3] Proprietary Object detector
ORB [24] BSD Object detector
BRISK [14] BSD Corner detector
MSER [17] BSD Blob detector
GFTT [26] BSD Corner detector
STAR [1] BSD Corner detector
DENSE [4] BSD Feature extractor
Simple blob [4] BSD Blob detector

Fig. 1: Example of FAST and Harris.

process in terms of hardware resources since frames become

larger as a consequence of higher resolution, which lead to

an increased amount of pixels which have to be traversed.

Larger frames can also potentially contain more corners, which

furthermore increases the processing time of an image.

Feature detection algorithms use different mechanisms for

detecting interest points in an image. There are although some

common stages for all algorithms. The first step is always to

read the input image file and translate it into a matrix filled

with RGB (Red, Green, Blue) data points, where each data

point represents a pixel. The second common step is to convert

the image in-to grayscale, which is translates the RGB values

to a matrix of pixel intensities, which represent values of the

brightness of the pixels. After this step, the algorithms begin

to execute their respective interest point detection mechanism.

The actual detection mechanisms differs a lot depending on

the algorithm. To exemplify a diversity, we have depicted the

mechanisms of two feature detection algorithms in Fig. 1. The

figure illustrates a Sobel filter (marked 1 with purple boxes)

which serves as one of the primary mechanisms for the Harris

algorithm and a Bresenham Circle (marked 2 with blue boxes)

which is the main mechanism of the FAST algorithm.

The second property all algorithms have in common is that

the entire image matrix gets traversed at least once. Algorithms

such as SURF and SIFT create new matrices that contain

results from the initial image matrix. The algorithm repeatedly

traverses the original image matrix until it has processed the
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Fig. 2: The fork-join model for parallelization of algorithms.

complete image. There can also be co-dependence between

the algorithms, meaning that one algorithm uses the results

given by another algorithm. For example, ORB uses the result

of Harris or FAST to detect objects. The last step of a feature

detection algorithm is to return the pixels considered to be

featured. OpenCV calls these features keypoints.

B. Parallel programming

There are various approaches reduce the execution time

through parallelism [21]. Designing a feature detection pro-

gram with a fork-join is one way of utilizing the core-level

parallelism, which is efficient due to the mechanics of these

algorithms. A fork-join model has two parts controlled by the

main thread. First, the fork section where one or several tasks,

feasible for parallelization, are allocated over the available

CPU cores. The main thread resumes its execution when all

spawned tasks have finished and entered the join section. Fig. 2

illustrates an example of the fork-join model utilizing 4 cores.

The fork-join model is a trivial way when trying to increase

the performance of feature detection algorithms since there are

no global variables shared. This means the algorithms can be

split up to work on sub-parts of an image without interfering

with another sub-part of the image.

C. Shared memory

Shared resource congestion is one of the major limiting

performance factor when running applications, such that the

application performance is correlated to the shared resource

usage [13]. The resource usage of an application is usually

measured by the Performance Monitoring Unit (PMU) [20],

such as Intel [15], and deduce resource bottlenecks [7]. The

application performance is typically [8, 9] measured in an

application-specific metric [2]. In this paper we are mostly

concerned with L3-cache usage because it is the first system-

wide shared resource, which makes it the first resource that is

eligible to suffer from multi-core memory contention.

It is difficult to correlate the cache usage to execution time

[6] when running applications on a HW with shared caches.

Sandberg et al. [25] focus on understanding and modeling the

execution behavior caused by a congested shared cache. It is

also possible to quantize how cache misses affect the system

performance by profiling the resource usage of a system [22].

Most non-dedicated computer systems utilize caches to be

able to access data quickly. However, the cache is often a

costly part of a processor, which limits the amount of available

to the CPU. The limited cache size force most CPU to

implement cache eviction policies to remove less-used data

from the cache and replace it with new data. One of the most

commonly known algorithms for replacing data inside a cache

is the Least Recently Used (LRU) policy. The LRU tracks

data usage, and the least recently used data is removed from

the cache and replaced with the new data when the cache

is congested. Multi-core systems often make use of a shared

cache when communicating between threads and processes.

Shared caches of a multi-core processor can, however, lead to

negative behavior when using policies such as the LRU policy.

When multiple threads access the same memory, the risk is

that one thread requests a block of data from the DRAM that

replaces the data which was about to be read by another thread.

Such congestion scenarios can lead to cache thrashing, where

several threads continuously replace each other’s data, which

in turn can lead to a significant system performance decrease.

Computers which execute corner detection algorithms and use

a fork-join model will, at some point, have to use the shared

resources, such as caches and memory. Shared caches may

not be a problem if the image fits into the local cache. Such

favorable scenario happens, for example, when the feature

detection algorithm can process the whole image in a single

iteration, i.e., before other processes replace the cache content.

However, the processed memory depends highly on the used

algorithm. We have focused to investigate the effects that

shared cache congestion causes on the speed-up gains when

using the OpenCV feature detection algorithms utilizing a

data-partitioned fork-join model.

III. APPROACH

Our study consists of two parts. The first part is a pro-

gram that implements the OpenCV algorithms and samples

the desired performance counters simultaneously as the test

execution time. The second part analyzes the measurements.

A. OpenCV feature detection

OpenCV provides an overlying feature detection class that

contains 11 different feature detection algorithms. We have

used a data-partitioned fork-join model for evaluating the

OpenCV library on multi-core systems. We have depicted the

execution model in Fig. 3.

Fig. 3 shows how the workload is distributed to the different

cores of our system. At the fork stage, each thread has its

affinity set to a core which is not in use by the algorithm,

which means thread 0 gets affinity 0 and therefore executes

on core 0 and so on. The thread affinity is furthermore used

for partitioning the Image. For partitioning the image, we

have chosen to divide each image on a height basis. The

threads work horizontally on the indexes calculated accord-

ing to equation (1) where Workx is the work indexes and

ImageSizex is the horizontal size of the image. The vertical

workload is calculated according to equation 3 and 4, where

UpperBound is upper vertical index bound, LowerBound is

the lower vertical index bound, ImageSizey is the size of the
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Fig. 3: The image data is partitioned to support the fork-join model where parallelization is supported.

entire image and aff is the core affinity of the current thread,

which is indexed between 0 and n-1, where 0 is the first core

and n-1 is the last core.

Workx = ImageSizex (1)

if(aff) = 0, UpperBound = 0 (2)

if(aff) > 0, UpperBound =
ImageSizey
aff + 1

(3)

LowerBound =
ImageSizey
aff + 2

(4)

B. Performance Monitoring

We have implemented a system function that simultaneously

monitor the resource usage and performance of an application.

Fig. 4: The algorithm performance measurement sequence.

1) Application Performance: We measure the execution

time of each algorithm using the high resolution clock chronox

(c++11 library) for measuring the algorithm execution time.

The placement of the timestamps are depicted in Fig. 4.

2) Resource Usage: We monitor the number of shared

cache misses by using the Performance API library (PAPI) [18]

which provide an interface towards the PMU [20]. We insert

PAPI start before the algorithm start and PAPI read when the

algorithm is finished, as depicted in Fig. 4.

IV. EXPERIMENT

We have run our experiments on a quad-core Intel R© CoreTM

i5-3570 processor running at 3.40GHz using g++ version 5.4

with -pthread, -std=c++11 and -O3 as compiler arguments.

The HW specifications are listed in Table II. Streaming SIMD

Extensions (SSE) instructions are enabled by OpenCV as

default configuration.

We measure two different parameters in our test suite,

utilizing different amount of cores. The first parameter is

Application performance which measures the total execution

time of the feature detection algorithms utilizing 1, 2, 3 and 4

cores. We then use the execution time to calculate the speed-up

gained from using multiple cores compared to single core. The

second parameter is the execution-time measured per image

partition, which means we execute the same image partitions

but on single core and compare them to our per-core multi-

core respective values. At the same time, we also measure the

L3-cache misses which describes the shared resource usage

TABLE II: Hardware specifications Intel R© CoreTM i5-3570.

Feature Hardware Component
Core 4xIntel R© CoreTM i5-3570 CPU (Ivy Bridge) 3.4GHz

L1-cache

32 KB 8-way set assoc. instruction caches/core +
32 KB 8-way set assoc. data cache/core

L2-cache
256 KB 8-way set assoc. cache/core

L3-cache
6 MB 12-way set assoc. shared platform cache

MMU 64 Byte line size,
64 Byte Prefetching,
D-TLB: 32 entries 2 MB/4 MB 4-way set assoc. +
64 entries 4 KB 4-way set assoc.,
I-TLB: 128 entries 4 KB 4-way set assoc.,
L2U-TLB: 1 MB 4-way set assoc.,
L2U-TLB: 512 entries 4 KB/2 MB 4-way assoc.
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Fig. 5: Test images.

during the test execution. We have also measured the amount

of keypoints detected using single-core on a full image, to be

able to see what effects the amount of detected keypoints has

on the speed-ups gained.

In our tests we have used images designed to fit different

parts of the Cache memory of our test system Intel R© CoreTM

i5-3570k. The specification for our test images are listed in

table. We present the test image size variations in Table III.

We have also executed tests against different images, within

a similar environment. The images are presented in Fig. 5 and

follow the specifications presented listed in Table III.

The purpose of each test is to reveal the feasibility of

our data-partitioned program model when using the standard

OpenCV feature detection algorithms. The default parameters

of the STAR algorithm in the OpenCV feature detection suite

uses a specific set of image scales when executing the Lapla-

cian operator. Some of these image scales are so large that they

are not feasible for our smaller image variations, which results

in a non-proportional speed-up when partitioning small images

to even smaller image partitions. We have therefore exempted

these inaccurate STAR detector results.

A. Data partitioned measurements

An important behavior to observe when using data par-

titioned parallelism is the speed-up given by executing the

algorithm on multiple cores. This measurement gives us an

absolute value on how well the algorithm responded to our

proposed parallel data partitioned model. In this section, we

present and discuss the speed-up gained by utilizing 2, 3 and 4

TABLE III: Image size variations and their cache boundess.

Figure nr. Image Size Mem. Req. Cache boundness
1 103x103 32 KB L1-cache
2 209x209 131 KB 4 × L1-cache
3 295 x295 262 KB L2-cache
4 591x591 1 MB 4 × L2-cache
5 1431x1431 6.1 MB L3-cache
6 2862x2862 24.6 MB 4 × L3-cache

cores compared to 1 core. Each test on each core was repeated

500 times to provide a median of the execution times. The

median execution time is then used to calculate the speed-up

according to Equation (5), where S is the speed-up gained, t0
is the single-core execution time, ti is the execution time of

core i and n is the number of cores used.

S =
t0

{max(ti) : 0 ≤ i < n} (5)

Fig. 6 shows the speed-up of each feature detection algo-

rithm. The y-axis denotes the gained speed-up, and the x-

axis represents 3 test images, each one with 6 image size

variations. The first cluster of 6 image sizes belongs to the

image shown in Fig. 5 a, the second set to Fig. 5 b, and

the third set to Fig. 5 c. We categorize speed-ups into three

categories: The first is linear speed-up, where the resulting

execution time is equal to the single core execution divided

by the number of cores used. The second is sub-optimal speed-
up, which provides a smaller speed-up than the linear one. The

third and final is super-linear speed-up which provides a more

significant speed-up than a linear one.
To increase readability, we will refer to specific test cases

as Img #figure size where # is the figure number.
The numbers for the BRISK detector show a sub-optimal

speed-up using 4 cores. The achieved speed-up is small

when using the smallest image but increases with the image

size. However, the speed-up is at its peak at Img 1262KB ,

Img 21MB and Img 3262KB . When further increasing the

image sizes, the speed-up decreases again. We call this be-

havior a pyramid-like behavior.
The Dense Feature detector shows a small speed-up using

any of our multi-core tests, the peak speed-up is at roughly

70% faster than the original 1 core version. Furthermore, there

is no gain at all from using multi-core until increasing the

image size to 1 MB. The Smaller sizes of 32 KB, 128 KB, and

256 KB actually decrease the execution time compared to the

single core version. The Dense detector also shows a pyramid-

like behavior and has peak performance at Img 26.1MB and

peak speed-up at Img 124.6MB and Img 324.6MB , however,
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Fig. 6: Feature detection algorithm speed-up factors for various test-cases when running a multi-core test system.

the differences between the speed-ups are roughly 15%, mean-

ing it is small and could just be a coincidence.

The FAST feature detector has a low speed-up using the

smaller image sizes and the speed-up increases with the image

size. However, FAST reaches a sub-optimal performance at

each speed-up peak which is between 2 to 3 times speed-

up when using multi-core. The insignificant speed-up gained

on the smaller images can be explained as an effect of

the overhead gained by the data-partitioned parallelism. If

the overhead of an algorithm is dominant, initializing the

algorithm multiple times will make the algorithms parallelism

less efficient, or even worse (as seen in the Dense algorithm)

when using images so small that the work-load execution time

does not match the overhead execution time.

The GFTT feature detector has a similar speed-up result

for all three test suites. The smallest image has a speed-up of

roughly 50%, which is similar to the speed-up of the largest

image. Furthermore, the GFTT feature detector achieves a

close to optimal speed-up using the 1 MB image. Due to the

major speed-up differences, GFTT presents an even stronger

pyramid behavior than the Dense and BRISK feature detector.

The speed-up obtained by using 2,3 and 4 cores on Harris

are similar to the speed-ups of the GFTT feature detector

which is reasonable since it is based upon the same fundamen-

tals as GFTT. The 1 MB image provides the best speed-up,

however, in the Harris case a speed-up of almost 4 instead of

3. Furthermore Test suite 1 and 2 of the Harris test are similar

in the matter of speed-up behavior, but the 3rd test suite has

a lesser peak speed-up at the 1 MB image.
The speed-up obtained utilizing four cores using the MSER

feature detector show a different behavior from the other

feature detectors. The speed-ups illustrate a reverse pyramid

behavior, whereas the 32 KB image obtains a small super

linear speed-up and the other images show a lesser speed-up.

The trend is a speed-up to the 6 MB version of the images,

and then a stall of the speed-up.
The speed-up of ORB illustrate a small pyramidic behavior

with a peak at the 3rd size variation of each image. The speed-

up the progressively decreases as the image size increases.
The Simpleblob speed-up illustrates a small speed-up as

the image sizes increases. This is an on-going process as the

speed-up is lowest at the smallest image variation and highest

at the largest image variation. The exception is the test results

from Img 21MB , which provides a slightly higher speed-up

than the other 1 MB sizes.
The SIFT speed-up is the only algorithm which presents a

close to consistent speed-up on all of the frames. Although the

speed-up obtained from all frames is sub-optimal, the speed-up

gained from SIFT is close to the same on the 32 KB version

as the speed-up gained on the 24.6 MB version. This result

suggest that SIFT is a scalable solution for every image size.
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TABLE IV: Detected key points.

Image Size HARRIS SimpleBlob SIFT SURF ORB MSER GFTT FAST Dense BRISK
1 32KB 90 0 55 61 50 24 276 330 324 13
1 128KB 110 0 281 285 358 29 737 1184 1225 72
1 256KB 217 0 450 644 453 59 1000 2211 2500 173
1 1MB 613 3 1502 2341 500 187 1000 7264 9801 565
1 6MB 1000 9 5632 10945 500 743 1000 23828 57121 2214
1 24MB 1000 38 16652 33346 500 1989 1000 51253 227529 5898
2 32KB 81 0 56 65 56 33 200 280 324 12
2 128KB 137 0 185 321 339 66 489 868 1225 51
2 256KB 203 0 433 545 428 97 720 1355 2500 108
2 1MB 593 7 1459 1769 500 198 1000 4443 9801 363
2 6MB 1000 9 3645 7856 500 614 1000 22833 57121 853
2 24MB 389 15 4824 28929 500 1021 1000 71934 227529 1154
3 32KB 100 0 80 93 59 35 199 318 324 18
3 128KB 347 0 245 385 370 63 763 1151 1225 86
3 256KB 497 0 455 710 461 97 1000 1824 2500 154
3 1MB 1000 12 1581 2399 500 276 1000 6212 9801 537
3 6MB 1000 70 6015 8288 500 1043 1000 10831 57121 1447
3 24MB 1000 133 27472 41037 500 3084 1000 142727 227529 6782

The SURF detector illustrates a behavior which originally

expected for all algorithms, since the smaller images fit

entirely in the L1 cache and potentially could be processed

directly. SURF executes the 32 KB images at a super-linear

which gradually decreases when the image size is increased.

B. Keypoints detected

OpenCV denotes features detected as keypoints. Due to

the varying sizes of the images, there will be a variance

in detected keypoints even though the algorithm in scale-

invariant, simply because there are less pixels available. Table

IV presents the keypoints detected in each image variation

for each algorithm. Since we are using the default settings of

OpenCV, some algorithms use a threshold value of how many

keypoints can be detected at max, this occurrence can be seen

in the HARRIS, GFTT and ORB detectors. As the number of

detected keypoints increases with the image size, except for

the algorithms which have a threshold value, we can conclude

that the keypoint detection does not have a negative impact

on the speed-up gained by an algorithm. This occurrence is

especially clear in the FAST detector, which has a larger speed-

up at the largest frame with 21253 (image 1), 71934 (image

2) and 142727 (image 3) keypoints detected than the smallest

frame which only finds 330 (image 1), 280 (image 2) and 318

(image 3).

C. Execution time differences

We have measured the execution time of the program

when it is run in parallel and compared it to a Sequential

execution of the program to monitor any eventual losses in the

execution time of the parallel program due to shared memory

contention and overhead execution times. We executed this

test using 4 different cores, introducing synchronization points

between each core execution. The sequential version of our

program is depicted in Fig. 9. Our sequential version of the

program thus executes one image partition, running on one

core before executing the next image partition on another core.

The maximum execution time of the executing cores represent

the execution time of the entire program, since a program is

never faster than the slowest core. Each test was conducted

500 times to provide a median value.

Fig. 9: Sequential version of the test program.

We call the difference between our sequential execution

and our parallel execution ΔT , which is calculated according

to equation (6) where i is the core used, which are indexed

starting from 0 and n is the number of cores used. tp is the

median execution time using a parallel approach and ts is the

median execution time using a sequential approach.

ΔT ={max(tpi) : 0 ≤ i < n}−{max(tsi) : 0 ≤ i < n} (6)

ΔT allows us to quantify how much of the program exe-

cution time is affected by utilizing a multi-core architecture.

Fig. 7 illustrates the ΔT per core per image.

Fig. 7 depicts the ΔT on the y-axis using a logarithmic

scale w the x-axis represents 3 test images, each one with 6

different image variations, separated with a gray field. The

SURF algorithm performed worst in this test, with a ΔT
of roughly 900000 microseconds compared to the sequential

version using the largest image size.

FAST and Dense are the best overall algorithms according

to the ΔT calculations, where the majority of the values are

placed within the 80 microseconds range. There few outliers
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Fig. 7: Differences in execution time using parallel and sequential approach

ranging 2300 microseconds using our largest image sizes

which are small compared to the other algorithms.

D. Execution Characteristics

Given the different speed-up behaviors, there are certain

events occurring within the hardware, which limits the size

of the possible speed-up. We measured 16 different low-level

metrics to investigate possible bottlenecks. However, the most

important metric to measure is the first system-wide shared

resource, which in this case is the L3-cache, since it is the first

shared resource with least amount of memory which makes it

most likely to suffer from thrashing by other threads. We have

chosen to visualize only the L3-cache misses metric due to

space limitations. Fig. 8 depicts the total amount of L3-cache

misses for both the sequential and parallel versions plotted

on the left Y-axis, and the percentage deviation, denoted as

ΔC plotted on the right Y-axis. The L3-cache misses are the

measured median values from 500 executions, while ΔC is

calculated according to the total cache misses of all used cores

when run in parallel divided by the total cache misses of all

cores when run sequentially, denoted as ParallelMisses and

SequentialMisses in equation (7).

ΔC =
ParallelMisses(C1..4)

SequentialMisses(C1..4)
(7)

The ideal value of ΔC is 0% L3-cache difference which

indicates that no thrashing has occurred. If thrashing occurs

in the cache, the ΔC will increase. If the difference is negative,

it means the memory is efficiently re-used by other threads and

produces less L3-cache misses than the sequential version.

Compared to the other algorithms, FAST has a low L3-

cache usage, see Fig. 8, which is proportional to the amount

of corners detected. We can also observe that FAST suffers a

comparatively low amount of additional cache misses due to

memory contention. The largest ΔC are in the smaller frames,

but the difference in total is almost negligible. Since the speed-

up of FAST is independent on how many cache misses are

produced in L3-cache, we can conclude that FAST is non-

cache bound and therefore suitable for parallel executions.

Similarly to FAST, SIFT has a relatively low ΔC at the

6 MB image, which implies that SIFT re-use a lot of the

data of the 6 MB variation of the image. The speed-up of

SIFT remains unaffected by the ΔC indicating that SIFT is

computationally heavy but is not memory bound.

The SURF algorithm has a relatively high ΔC, especially

with larger image sizes. L3-cache misses reveal an increase of

800000 misses in total using the parallel version compared to

the sequential one. Concluding that SURF is cache bound is

further strengthened by Fig. 5, which depicts an insignificant

speed-up when executing on the largest image. It is debatable
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Fig. 8: L3 misses using parallel and sequential version.

how much the increased amount of corners affect the speed-

up; however, Fig. 7 reveals a ΔT of almost 1 Second for the

largest images, suggesting that the amount of corners detected

have small to possibly no effect on the speed-up.

The ORB algorithm has a fairly low ΔC for the larger

images and also shows a low ΔT version compared to the

other Object detectors. However, the ORB speed-up does not

correlate at all with these facts, wherefore we can conclude

that ORB is not L3-cache bound.

The Harris and GFTT algorithms are similar in regards of

Speed-up behavior, ΔC and ΔT . However, neither Harris nor

GFTT receive a speed-up boost despite the fact that the L3-

cache misses difference is considerably lower for the larger

image sizes which indicates that neither Harris nor GFTT are

L3-cache bound.

Dense has a high ΔC for all image variations. Although the

total number of cache misses are low, we must also consider

the execution time of Dense, which is also low. Since the

Dense algorithm presents a ΔT of roughly 3000, it loses 2/3

of its potential execution time when using parallel version.

Combining this with the fact that Dense has a high ΔC it is

an indication that the Dense algorithm is L3-cache bound.

BRISK shows a low ΔC as well as a low ΔT even though

BRISK has a fairly bad speed-up at the larger images. Due to

this fact, we can conclude that BRISK is not L3-cache bound.

The MSER algorithm can be considered L3-cache bound

due to the correlation between speed-ups gained in the larger

images and the ΔC. In Fig. 6, we see a stall in speed-

ups from Img 16.1MB to Img 124.6MB and Img 36.1MB

to Img 324.6MB . However, the figure shows a speed-up from

Img 26.1MB to Img 224.6MB .

A similar pattern can be detected in Fig. 8 whereas the ΔC
differs by 40% in Img 16.1MB , Img 124.6MB , Img 36.1MB

and Img 324.6MB , but only differs 20% for Img 224.6MB ..

SimpleBlob has an irregular behavior according to ΔC.

The differences for each test-case are common, but it is hard

to find any correlation between the ΔC and the speed-ups

gained. Simpleblob, however, has a high total amount of L3-

cache misses, and when adding the fact that SimpleBlob has

relatively small ΔT compared to its extensive execution time

(830000 microseconds), it indicates that SimpleBlob is not

observably bound to the L3-cache.

V. CONCLUSIONS

We have evaluated how default configured OpenCV feature-

detection algorithms perform when using a data-partitioned

parallel programming model for 2,3 and 4 cores. The algo-

rithms performed differently using our data-set. The Harris

algorithm obtained the highest speed-up at almost 4 times

faster than the original single-core performance. However, this

result depends heavily on the image size. SIFT was by far the

most stable algorithm showing a speed-up of roughly 3 times

the single core performance for all image sizes. SURF, on the

other hand, received the worst speed-up, basically insignificant
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for larger images, which are the most computationally heavy.

We have concluded that the parallelizing speed-ups of SURF,

Dense, and MSER, are correlated to L3-cache usage. Our mea-

surements suggest that a system designer should not co-locate

these algorithms with other L3-cache bound tasks. We have

also concluded that FAST, ORB, BRISK, HARRIS, GFTT,

SIFT and SimpleBlob are not L3-cache bound indicating that

they can be efficiently utilized on multi-core systems, even

though other tasks heavily load the L3-cache. We further

conclude that FAST, Dense, Harris, ORB, GFTT and BRISK

all suffer from various degrees of overhead penalties when

processing smaller frames.

A. Future work

We have used the default OpenCV parameters in this study,

which mean that results from the feature-detection may differ

due to different tuning. Therefore, further studies should try

to find an optimal tuning for each frame and execute the

the parallel feasibility tests described in our study. It is also

possible to investigate the feasibility of co-executing feature

detection algorithms on different cores. Running SURF which

we concluded to be L3-cache bound on one core and running

FAST which is not L3-cache bound on the three remaining

cores could potentially be an efficient approach when the

objective of a system is to detect both blobs and corners.
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