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Abstract

Most automation systems and other large industrial software systems
have long lifetimes� and customers expect these systems to be supported
as long as they are in operation� Furthermore� software components in
these systems may be reused in di�erent products� e�g� using a soft�
ware product line approach� Hence� the lifetime of software in individual
systems may be very long� several decades or even longer�

Software that is used for a long time will be exposed to frequent
changes as the system evolve over time� e�g� due to adding new function�
ality� error corrections� or changing the hardware platform� The larger
and older the system is� the harder it becomes to foresee the consequences
of changes�

In this thesis we present three di�erent techniques for managing the
evolution of large and complex real�time systems� The techniques are
based on analytical modeling� predicting di�erent quality properties� e�g�
temporal correctness� by analyzing a model of the software� The �rst
technique is a component model with analytical interfaces �ReFlex� that
allows us to predict di�erent properties of a component assembly� the
second is a probabilistic modeling language which is analyzed by simu�
lations �ART�FW�� and the third technique is an extension of classical
timed automata with a notion of real�time tasks �TAT��

Ideally� the analytical models should evolve together with the soft�
ware� However� since new features are often added and the implemen�
tation is often changed without updating the model� the model becomes
obsolete and predictions based on the model are no longer valid� By
applying the techniques proposed in this thesis� we can re�introduce an�
alyzability� Using ReFlex we can update the analytical aspects while re�
designing the system� Unless ReFlex has been used in the earlier design�
this will require a costly redesign of the complete system� but consistency
between the analytical model and the implementation will be ensured�
Using ART�FW or TAT the implementation will be kept untouched by
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introducing a separate model� The drawback is that an extra e�ort is
required to keep the model consistent with the implementation�

We have applied ART�FW in the re�engineering activity of a large
industrial system� The results indicate that the approach is indeed ap�
plicable on real systems�



To Pernilla and Gustav



iv



Acknowledgments

I would like to thank my supervisor Christer Norstr�om for giving me
the opportunity to enter deeply into interesting aspects of computer en�
gineering� Christer has been a great support and is always a source of
inspiration and motivation�

I would also like to thank Kristian Sandstr�om� Hans Hansson� Jukka
M�aki�Turja� Mikael Nolin� Dag Nystr�om� Wang Yi� and Jan Gustafs�
son for their valuable comments and suggestions that have increased the
quality of this thesis�

Thanks to Johan Andersson and Jonas Neander for the implementa�
tion of the ART�ML parser and the simulator� which was done as part
of their master thesis project�

Last but not least� thanks to the colleagues at the department of
computer science and engineering that all contribute to an inspiring and
creative working environment�

This work has been supported by MRTC �M�alardalen Real�Time
research Centre�� and ARTES �A network for Real�Time research and
graduate Education in Sweden�� ARTES is supported by SSF �Swedish
Foundation for Strategic Research��

v



vi



Publications

I have authored�co�authored the following publications

Articles in collections

� Henrik Thane� Anders Wall� Testing Reusable Software Compo�
nents in Safety�Critical Real�Time Systems� In the book Building
reliable component�based software systems� ����� Artech House
Publishers ISBN ��
��
�������

Conferences and workshops

� Christer Norstr�om� Anders Wall� Johan Andersson and Kristian
Sandstr�om� Increasing Maintainability in Complex Industrial Real�
Time Systems by Employing a Non�intrusive Method� Accepted for
publication at the NetObjectDays Conference in the Workshop on
Migration and Evolvability of Long�life Software Systems� Erfurt�
Germany� September ����

� Anders Wall� Johan Andersson� and Christer Norstr�om� Probabilis�
tic Simulation�based Analysis of Complex Real�Times Systems� In
proceedings of the �th IEEE International Symposium on Object�
oriented Real�time distributed Computing� Hakodate Hokkaido�
Japan� May ����

� Anders Wall� Johan Andersson� Jonas Neander� Christer Norstr�om�
and Martin Lembke� Introducing� Temporal Analyzability Late in
the Lifecycle of Complex Real�Time Systems� In proceeding of the
�th Conferance on Real�Time Computing Systems and Applica�
tions� Tainan� Taiwan� February �����

vii



viii

� Anders Wall� Magnus Larsson� Christer Norstr�om� Towards an Im�
pact Analysis for Component Based Real�Time Product Line Archi�
tectures� In Euromicro Conferance on Component Based Software
Engineering� September �����

� Anders Wall� Magnus Larsson� Christer Norstr�om� Ivica Crnkovic�
Using Prediction Enabled Technologies for Embedded Product Line
Architectures� In the 
th International Conference on Software En�
gineering Workshop on Component�Based Software Engineering�
May �����

� Anders Wall� Christer Norstr�om� A Component Model for Embed�
ded Real�Time Software Product�Lines� In the 	th IFAC confer�
ence on Fieldbus Systems and their Applications Nancy �France� �
November �����

� Anders Wall� Kristian Sandstr�om� Jukka M�aki�Turja� Christer
Norstr�om� Verifying Temporal Constraints on Data in Multi�Rate
Transactions� In proceeding of the �th Conferance on Real�Time
Computing Systems and Applications� Korea� December �����

� Christer Norstr�om� Anders Wall� and Wang Yi� Timed Automata
as Task Models for Event�Driven Systems� In proceeding of the �th
Conferance on Real�Time Computing Systems and Applications�
Hong Kong � December �����

Technical reports

� Anders Wall� Markus Lindgren� and Tage Tarkpea� Experiences
from Introducing UML and OO in an Organization� MRTC Tech�
nical Report� December �����

� Anders Wall� Joakim Fr�oberg� Christer Norstr�om� Using Analyt�
ical Models of Complex Real�Time Systems for Temporal Impact
Analysis� MRTC Technical Report� November �����

� Anders Wall� Kristian Sandstr�om� Christer Norstr�om� Product Line
Architectures for Embedded Real�Time Systems� MRTC Technical
Report� December �����

� Anders Wall� Software Architectures for Real�time Systems� MRTC
Technical Report ������ May �����



ix

� Henrik Thane� and Anders Wall� Formal and Probabilistic Ar�
guments for Reuse and Reveri�cation of Components in Safety�
Critical Real�Time Systems� MRTC Technical Report� January �����

� Anders Wall� Software Architectures An overview� MRTC Tech�
nical Report� October �����

Licentiate Thesis

� Anders Wall� A Formal Approach to Analysis of Software Architec�
tures for Real�Time Systems� Licentiate thesis� Dept� of Computer
Systems� Uppsala University and Dept� of Computer Engineering�
M�alardalen University� September �����



x



Contents

� Introduction �

��� Motivation � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Real�time systems � � � � � � � � � � � � � � � � � � �

����� Analytical models and analysis � � � � � � � � � � � �

����� Maintaining long�lived real�time systems � � � � � � 	

��� Contribution � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Component model with analytical interfaces � � � � �

����� Probabilistic modeling and analysis � � � � � � � � � �

����� Timed automata with tasks � � � � � � � � � � � � � �

��� The relation between the contributions � � � � � � � � � � � �

��	 Research method � � � � � � � � � � � � � � � � � � � � � � � ��

��
 Outline � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Software architectures� modeling and analysis ��

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Towards a de�nition � � � � � � � � � � � � � � � � � � � � � �


����� Software architectures� frameworks� styles and
patterns � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Architecture description languages � � � � � � � � � � � � � ��

����� Desired properties of an architecture description
language � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Semantics of an ADL � � � � � � � � � � � � � � � � ��

����� Examples of existing architectural description
languages � � � � � � � � � � � � � � � � � � � � � � � ��

��	 Architectural views � � � � � � � � � � � � � � � � � � � � � � ��

��	�� Logical view � � � � � � � � � � � � � � � � � � � � � � �	

��	�� Implementation view � � � � � � � � � � � � � � � � � �


��	�� Process view � � � � � � � � � � � � � � � � � � � � � �


��	�	 Deployment view � � � � � � � � � � � � � � � � � � � ��

xi



xii Contents

��	�
 Use�case view � � � � � � � � � � � � � � � � � � � � � ��

��	�� Architectural views An example � � � � � � � � � � ��

��
 Architectural analysis � � � � � � � � � � � � � � � � � � � � ��

��
�� Methods for architectural analysis � � � � � � � � � ��

��
�� Analysis of operational quality properties � � � � � �


��
�� Analysis of non�operational quality properties � � � 		

��� Existing analysis methods � � � � � � � � � � � � � � � � � � 	�

��� Architectural design � � � � � � � � � � � � � � � � � � � � � 
�

����� Architectural analysis An example � � � � � � � � � 
�

��� Discussion � � � � � � � � � � � � � � � � � � � � � � � � � � � 
	

� Product line architectures ��

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

��� Software product line architectures � � � � � � � � � � � � � 
�

��� Software product lines for real�time systems � � � � � � � � ��

����� Developing a product line architecture � � � � � � � ��

����� Product line architectural analysis � � � � � � � � � ��

����� Product design based on a product line architecture ��

��	 An example of a successful product line � � � � � � � � � � ��

��
 Mechanisms providing �exible architectures � � � � � � � � �	

��
�� Language primitives for variability and optionability �


��
�� Variability � � � � � � � � � � � � � � � � � � � � � � � ��

��
�� Optionability � � � � � � � � � � � � � � � � � � � � � ��

��� An example � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Organization� process� and business � � � � � � � � � � � � � ��

� Analytical models by construction ��

	�� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	�� Related work � � � � � � � � � � � � � � � � � � � � � � � � � ��

	�� Components� analytical interfaces and component assemblies ��

	���� Components and Assemblies � � � � � � � � � � � � ��

	�	 ReFlex A �exible real�time component model � � � � � � � ��

	�	�� The component model � � � � � � � � � � � � � � � � ��

	�	�� Assemblies and component instances � � � � � � � � ���

	�	�� ReFlex An example � � � � � � � � � � � � � � � � � ��	

	�
 Analyzing assemblies � � � � � � � � � � � � � � � � � � � � � ���

	�
�� Properties of an assembly � � � � � � � � � � � � � � ���

	�
�� The end�to�end temporal property � � � � � � � � � ���

	�
�� The version consistency property � � � � � � � � � � ��


	�
�	 Impact analysis � � � � � � � � � � � � � � � � � � � � ���



Contents xiii

	�
�
 A successful constructive and component based
developed system � � � � � � � � � � � � � � � � � � � ���

	�� A comparison of the component models � � � � � � � � � � ���

	���� Hierarchical composition � � � � � � � � � � � � � � � ���

	���� Speci�cation of variation points � � � � � � � � � � � ���

	���� Speci�cation of temporal constraints � � � � � � � � ���

	���	 Speci�cation of synchronization � � � � � � � � � � � ���

	���
 Predictable assemblies � � � � � � � � � � � � � � � � ���

	�� Discussion � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� Probabilistic modeling and analysis ���


�� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � ��



�� Related work � � � � � � � � � � � � � � � � � � � � � � � � � ���


�� The process � � � � � � � � � � � � � � � � � � � � � � � � � � ���


�	 The method � � � � � � � � � � � � � � � � � � � � � � � � � � ���


�	�� Measuring and processing data � � � � � � � � � � � ���


�	�� Modeling on di�erent levels of abstraction � � � � � ��



�	�� Simulating the system behavior � � � � � � � � � � � ���


�
 Model validity � � � � � � � � � � � � � � � � � � � � � � � � � ���


�
�� Validity of the simulation approach � � � � � � � � � ���


�
�� System identi�cation � � � � � � � � � � � � � � � � � �	�


�
�� Validation recommendations � � � � � � � � � � � � �	�


�� The ART�ML framework � � � � � � � � � � � � � � � � � � �	�


���� The modeling language � � � � � � � � � � � � � � � �	�


���� The probabilistic property language � � � � � � � � �	



�� ART�ML An example � � � � � � � � � � � � � � � � � � � � �
	


�� A robotic control system � � � � � � � � � � � � � � � � � � � ���


���� The model � � � � � � � � � � � � � � � � � � � � � � ���


���� The results � � � � � � � � � � � � � � � � � � � � � � ���


���� Validation results � � � � � � � � � � � � � � � � � � � ��



�� Comparing ART�FW with related work � � � � � � � � � � ���

	 Timed automata with tasks �	


��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Related work � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Timed automata with real�time tasks � � � � � � � � � � � � ���

����� Timed automata � � � � � � � � � � � � � � � � � � � ���

����� Extended timed automata with tasks � � � � � � � � ���

��	 Schedulability analysis as reachability analysis � � � � � � � ���



xiv Contents

��	�� Transformation from TAT to ordinary
timed automata � � � � � � � � � � � � � � � � � � � ���

��
 A case study with Uppaal � � � � � � � � � � � � � � � � � ���
��
�� Modeling the system � � � � � � � � � � � � � � � � � ���
��
�� Verifying schedulability and safety � � � � � � � � � ���

��� Comparing TAT and RTSL � � � � � � � � � � � � � � � � � ��	
��� Discussion � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

� Conclusions ���

� Future work �
�

��� ReFlex � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� ART�FW � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� ART�ML and product lines architectures � � � � � ���
����� Model validity � � � � � � � � � � � � � � � � � � � � ���

A Terminology ���

B The grammar of ART�ML in BNF ���

C The grammar of PPL in BNF ��


D The robot model ���

E The validation results ���

E�� Case � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

E�� Case � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

E�� Case � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

E�	 Case � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��




Chapter �

Introduction

In this chapter we motivate the work presented in this thesis and brie�y
describe the speci�c contributions�

��� Motivation

Software reuse and component based software engineering are consid�
ered to be the potential solution for developing software based product
faster� with higher quality� and to a lower price� This is true especially
in domains where time to market is very critical such as for consumer
products� e�g� cellular telephones� Delaying an introduction of a new cel�
lular telephone model on the market may cause huge losses in revenue�
losses of market shares and goodwill� Besides shortening development
time� properly handled reuse will also improve the reliability since code
is executed for longer time and in di�erent contexts �FP����

However� to make software reuse deliver� we must not only focus on
the development of reusable software components� The architecture must
also be taken into consideration� as well as processes and organizational
issues� By treating the architecture as a reusable asset in itself� it may be
reused across a product line� We will refer to such reusable architectures
as product line architectures �DKO�����Bos����CN����

We de�ne a product line to be a set of software products that share
a common technology platform as well as having common functionality�
A generic software architecture that constitutes the base on which all
products in the line are built� is called a product line architecture �PLA��
The major part of a product in a product line is typically based on
reusable assets� e�g� software components� architecture� requirements�

�



� Chapter �� Introduction

For each product a product architecture �PA� is derived from the PLA
upon product instantiation� Tailoring and adopting the architecture and
its components are used to construct products that belong to a particular
product line� The tailoring can be achieved by� e�g� parameterization
of generic reusable components and product�speci�c implementations of
software components� The way in which we develop products is a strategy
that belongs to� and is developed together with� the product line�

Applying a product line approach has more implications than just on
the software in itself� It will in�uence also the software tools� con�gura�
tion management �CM�� and the complete organization of the software
development departments� Thus� besides developing strategies for de�
veloping a product�s software� organizational strategies� strategies with
respect to development tools and CM� and education of engineers within
the organization� must be developed� Questions such as ownership of
product assets and education of engineers that develop generic software
and engineers that build products is essential� If the fundamental soft�
ware strategies are not adhered to� the lifetime of the investment in a
product line will be reduced� Consequently� the payo� due to reuse and
reduced maintenance will not come about� or at least it will be reduced�

����� Real�time systems

In this thesis we focus on component based development and product
line architectures for a particular domain of software systems real�time
systems� Real�time systems are characterized by their temporal require�
ments� Besides being functionally correct� i�e� exhibit the correct func�
tional behavior� they must also be temporal correct� By temporal correct
we mean the correct function is provided at correct time� Correct time
is not necessarily as fast as possible� but su�ciently fast� or slow� A
classical example of a real�time system is a control system for an airbag�
In�ating the airbag to late when a collision is detected results in the
driver hitting the steering wheel� Moreover� in�ating the airbag to early
may have the same result as the airbag is de�ated when the driver hits
the steering wheel and the dashboard� Consequently� temporal correct in
this context is� neither too fast� nor too slow� It is the temporal require�
ments of the system that de�nes exactly what a temporal correct system
is� Traditionally� we divide real�time systems into two classes hard real�
time systems� and soft real�time systems� Hard real�time systems are
those where the temporal correctness is critical� If they are violated the
consequences may be catastrophic� The airbag system described above is
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in this class� Hard real�time systems are often considered safety related�
or mission critical� Hence� the ability to analyze and predict the systems
behavior is crucial�

Soft real�time system on the other hand are those where the conse�
quences of an incorrect temporal behavior are not catastrophic� Typical
examples of such applications are cellular telephones and video stream�
ing� Violating a temporal requirement only results in poor audio� or
video quality�

Regardless of the system�s criticality� i�e� hard or soft� we would
like to provide means for analyzing the system with respect to temporal
behavior and resource utilization �CPU� communication buses� memory��
This is obvious when it comes to hard real�time systems� but the ability
to analyze a soft real�time system is also important� A typical example
is that we would like to analyze the e�ect of a maintenance activity� i�e�
adding new functionality� or changing existing functionality� with respect
to the resources in the system�

����� Analytical models and analysis

In order to enable system analyses we must have system models that
facilitate such analyses� In this thesis we refer the such models as analyt�
ical models� The analytical model of a system supplies the information
necessary for performing the required analyses� The information required
for analyzing a system�s temporal behavior are� for instance� execution
times of a piece of software and the frequency with which that piece of
software executes� We refer to an entry in the temporal analytical model
as a temporal attribute� The exact appearance of the temporal part of a
system�s analytical model is decided by the scheduling strategy that is
adopted by the real�time operating system�

A system�s temporal behavior is implemented by assigning temporal
attributes� e�g� by assigning period times and priorities to tasks in a
�xed�priority system� Consequently� in order to be temporal correct the
temporal attribute assignment must ful�ll the temporal requirements�
Temporal requirements may come in various forms and may be implic�
itly� or explicitly expressed� Implicit temporal requirements are derived
from the application and the environment in which it operates� Typ�
ical examples of such requirements are precision� control performance�
and system dynamics that eventually will be converted into temporal re�
quirements on the software� For instance� a control system that samples
a particular process must do so with a certain frequency in order to get a
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correct view of the process values of interest� Explicit temporal require�
ments are those expressed directly as temporal properties� e�g� a latency
requirement�

There exists an abundance of methods for analyzing a real�time sys�
tem�s temporal behavior� i�e� whether or not the system comply with its
temporal requirements� However� those methods often assume too sim�
plistic analytical models� Systems that have grown in complexity during
many years often exhibit complex temporal behavior which can not eas�
ily be captured by existing analytical models and analysis methods� For
instance� assuming worst�case scenarios� e�g� worst�case execution times�
may be a far too pessimistic assumption� Applying such a method on
some systems may gives a result that indicates that the system is not
schedulable� even though it is working properly� The reason for this is
that there are semantical couplings between di�erent software compo�
nents in the system which inhibit them from all executing their worst�
case execution time simultaneously� An example of such a dependency
is components that communicate with each other� Imagine two commu�
nicating components c� and c�� In the cases where c� sends a messages
to c�� it exhibit its WCET� However� c� exhibit an execution time less
than its WCET when receiving the message from c�� Taking this depen�
dency among c� and c� into consideration when analyzing the system�s
temporal behavior give as a result a feasible system which may not be
the case when always assuming WCET for all components� Moreover�
the correctness of a real�time system may not necessarily be expressed
in terms of temporal requirements� Such properties are not handled by
traditional real�time analysis� Another limitation of traditional analyses
is that they produce results that are of binary nature� i�e� schedulable
or not� They do not give any numbers on probability of failure� which
would be useful in many cases�

����� Maintaining long�lived real�time systems

Large and complex systems usually have long life cycles� i�e� system or
sub�systems live over decades� This is especially true when software is
reused as in a product line approach where components are reused over
and over again� During their lifetimes� systems are exposed to error
corrections and functional improvements� We refer to this activity as
maintenance� The complexity of the system makes it virtually impossi�
ble to foresee the consequences of altering the behavior or adding new
functions to it if no means for analysis exist� Consequently� the analytical
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models allow us to analyze the impact of a maintenance activity�

The long lifetime of a system also brings the problem of keeping
the analytical model consistent with the implementation� While study�
ing several complex real�time systems we have identi�ed two di�erent
types of analytical models the ones that are part of the components�
speci�cations� and the ones that live in parallel with the actual system�
Component models that facilitates� or requires� that analytical proper�
ties are speci�ed obviously enforce consistency of the analytical model
as it is updated as part of the maintenance activity� However� analytical
models that live in parallel with the implementation are exposed to the
risk of not being updated when the implementation is changed �compare
with system documentation which are often carelessly updated�� Hence�
we may arrive at a point where we have to re�introduce analyzability�
e�g� re�constructing the analytical model� Such a re�introduction can be
either intrusive or non�intrusive� The most extreme form of intrusivity
is a complete re�design and re�implementation of the system and its ana�
lytical model� Such an activity is costly and associated with many risks�
e�g� the new design may exhibit other de�ciencies� the introduction of
new technologies that can not be properly used� Nevertheless� systems
may arrive at a point where such costs and risks are justi�ed� A typical
scenario is when the system grows out of its architecture due to� e�g�
new features that was not foreseen when the initial architecture was con�
structed and which has been introduced by force rubbing out the initial
design rationales� Examples of such design rationales are maintainability�
reliability� performance� timing�

A not so drastic form of an intrusive approach is to restore the system
and its model� By restoring a system we re�construct the analytical model
and make as few changes in the implementation as possible in order to
get an analyzable system� Even though this is an intrusive approach� the
risks are minimized�

In a non�intrusive approach we re�engineer the system in order to
develop an analytical model of it� Hence� we do not touch the implemen�
tation of the system in order to increase maintainability� we only provide
means for analyzing the impact of maintenance� The most imminent risk
associated with this approach is that the analytical models may become
obsolete if the system evolves but the models do not� A non�intrusive
approach is� typically� applicable on systems that behave reasonable well
but where the impact of maintenance activities is hard to predict�

The problems we are targeting in this thesis are
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� How to develop complex embedded real�time systems using the
product line approach�

� What should a component model that facilitate the development
of complex embedded real�time product lines look like�

� How to construct� and re�construct� analytical models of complex
embedded real�time systems�

� How to analyze real�time systems that have a complex temporal
behavior which can not be captured and analyzed by existing ana�
lytical methods�

� How to increase maintainability of complex real�time systems by
introducing analytical models�

��� Contribution

The contributions in this thesis are a �exible component model �ReFlex��
for embedded real�time product lines and two di�erent approaches to
modeling and analysis of real�time systems probabilistic modeling� and
Timed Automata with Tasks �TAT��

The main scienti�c contributions are in essence

� A component model for predictable real�time systems with mech�
anisms supporting a product line approach� allowing speci�cation
and analysis on the general product� on the architecture level� and
on the speci�c product level�

� A method and a framework for re�introducing analyzability in com�
plex real�time systems by the use of probabilistic models� a proba�
bilistic query language� and simulations�

� An extension of the classical timed automata with real�time tasks�

����� Component model with analytical interfaces

ReFlex facilitates analysis of the temporal behavior as well as product
consistency� i�e� that a valid product is assembled in terms of component
versions and variants� The information necessary for the proposed analy�
ses resides in the analytical interfaces of the components� The analytical
interfaces are the analytical model of such a component assembly� Even
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though we present a couple of concrete examples of analyses that apply
to a real�time product line approach� we consider the analytical interface
approach a general framework in which we can provide any information
that we might �nd necessary for a particular analysis� By de�ning new
analytical theories� and specify the analytical interfaces that provide the
information required by these theories� we can extend the current frame�
work� The component model is memory e�cient in the sense that it do
not require a large� and complex infrastructure� e�g� request brokers�

ReFlex facilitates development and temporal analysis of embedded
real�time system product lines� The component model is based on the
concept of prediction enabled component technologies and port�based
objects �HMSW����SVK���� The model has been developed based on the
requirements from the embedded real�time systems domain� The most
important requirements that we have considered are

� speci�cation of temporal attributes

� memory usage

� analyzability and predictability

� variability

The temporal attributes are typically period times with which a com�
ponent executes� priorities� etc� Basically� the temporal attributes de�ne
the constraints under which components execute and is input to the anal�
ysis of a systems temporal behavior� Resources such as memory are usu�
ally scarce in embedded systems� Hence� we can not a�ord to implement
the system with a component model that requires a large and complex
infrastructure� such as request brokers� Mechanisms such as request bro�
kers that aim at providing �exibility by late binding will also introduce
unpredictable temporal behavior� Consequently� it is hard to foresee and
guarantee the temporal behavior of a system� i�e� the analyzability of the
system is in�uenced negatively�

We have to live without the �exibility through� for instance� late
binding� Nevertheless� our component model must provide some mech�
anisms for variability since it is to be used in product lines� Real�time
systems may exhibit two di�erent kinds of variability variability in the
functional domain� and variability in the temporal domain� The model we
propose provide functional variability by parameterization of the services
provided by the components� as well as allowing for specifying interfaces



� Chapter �� Introduction

that must be implemented when making an instance of a component�
Temporal �exibility is supported by separating the temporal constraints
from the component�

The price one usually has to pay when requiring an analyzable system
is that it is di�cult to add software that do not completely conform
with the existing architecture� However� this may also be a bene�t since
resistance in the architecture itself will ensure that the initial design
objectives implemented in the architecture is kept intact� There is a
fundamental tradeo� between analyzability and �exibility� The more
open and �exible the system is� the less analyzable it becomes and vice
versa�

����� Probabilistic modeling and analysis

The probabilistic modeling and analysis approach is targeting modeling
analysis of large and complex real�time systems� A complete framework
called ART�FW has been developed which includes a modeling language
�ART�ML�� a probabilistic requirements language �PPL�� a simulator�
and a set of tool for system measurement and data processing� The
analyses are based on simulations of models where execution times are
speci�ed as statistical distributions� The simulator produces statistical
distributions that describes the tasks temporal behavior� e�g� start times�
stop times� response times� The simulation approach also allows us to
specify starvation requirements on message queues in a system� PPL is
a requirement language which allow us to specify temporal requirements
which are veri�ed against the simulation results� The stringency of� and
con�dence in� a simulation approach in contrast to an analytical approach
is also discussed�

ART�FW provide a non�intrusive approach to the introduction of
analyzability in a real�time software system as the analytical model is
separated from the implementation� In this thesis we present a method
for introducing analyzability using ART�FW which covers measuring of
the system� constructing models based on the measurements� validating
the model� and analyze the simulation results�

One of the mentioned risks with a non�intrusive approach is that the
model may� eventually� become obsolete as the system evolves� In order
to manage this risk we need to incorporate the modeling as a part of
the development process� The process of developing and maintaining
analyzable systems through models is discussed in this thesis as well�

The probabilistic modeling and analysis approach has been success�
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fully applied in a case study from which we report in this thesis� This
case study was performed at ABB Robotics in V�aster�as� Sweden� ABB
Robotics develops� and manufactures industrial robots and it is their
complex control software that has been modeled and analyzed�

����� Timed automata with tasks

Timed Automata with Tasks is an extension of the classical timed au�
tomata �AD�	�� The extension consists of the possibility to model real�
time tasks as timed automata processes� Timed automata models can
be mathematically veri�ed by model checking� We have shown that we
can transform the schedulability problem� i�e� the problem of proving
that all tasks in a real�time system submit to their speci�ed deadlines�
into a reachability problem which has been proven decidable for timed
automata� With TAT we can model complete systems� i�e� both the
control software and the environment that the software controls� This is
a desired property of a modeling language for real�time systems as the
systems often interact� and control a physical process� Moreover� the
temporal requirements on a real�time system is often derived from the
temporal characteristics of the physical process� TAT allows us to ver�
ify the complete system� i�e� the temporal requirements on software in
interaction with the physical environment�

However� TAT do not scale properly which makes it less feasible for
complete models of very large systems� The scalability problem is not
due to the modeling technique as such but rather a matter of tools and
representations available today that can not cope with the large state�
spaces�

��� The relation between the contributions

The modeling methods proposed in this thesis aim at providing models of
embedded real�time systems that allow us to analyze di�erent properties�
e�g� temporal correctness� As a synergistic e�ect of providing analyzabil�
ity we can improve the maintainability of the system as it permits us to
analyze the e�ect of changing the system� i�e analyzing the impact of the
changes� In Table ��� the modeling languages are compiled in a way that
emphasize their features�

The problem of predicting the impact of a maintenance activity usu�
ally becomes evident late in the system�s life cycle� Consequently� an im�
plementation exists but no correct analytical models are present� Even
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ART�FW ReFlex TAT

SW architec�
ture model

ART�ML component as�
semblies

Timed au�
tomata

HW architec�
ture model

simple no no

Environment
model

no no yes

Requirements
language

PPL no Temporal logic

Analysis
method

Probabilistic
simulation

analytical
methods

Model check�
ing

Table ��� The modeling languages and their features�

though there initially where correct models of the system� the models
may become obsolete if they do not evolve with the system� This is sim�
ilar to the problem of keeping documentation consistent with a system�
The problem is rather insidious since the consequences in terms of han�
dling the system�s complexity often arise after many evolutions when the
system has grown considerable� Finally� the consequences of changing
the system can not be easily foreseen without a model� In order to pro�
mote analyzability and� consequently� provide the ability to analyze the
impact of changing the behavior� we must re�engineer such a system� By
re�engineering we mean identifying and modeling the system�s architec�
ture� measure its temporal behavior� and construct a valid system model�
We say that such models are constructed by re�engineering� ART�FW
and TAT provide non�intrusive methods to the re�engineering approach�
Both ART�FW and TAT is similar in the way that models produces a
state�space which is checked by expressing properties that re�ect the re�
quirements� and veri�es the properties against the state�space� However�
ATR�FW generates the state�space for a particular model by running
many simulation scenarios which results in distributions that describes
the temporal behavior of the system� while in TAT� the complete state�
space is explored� i�e� every path of execution through the network of
timed automata processes�

Note that the re�engineering approach is a continuous activity� To
use this approach successfully the analytical model must be maintained
during the complete life cycle of the system� If the analytical models are
not continuously maintained� the e�ort of making the model can not be
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justi�ed�

ReFlex� on the other hand� provides an intrusive method since the
system must be re�implemented using the ReFlex component model� On
the other hand� since the analytical model is part of the implementa�
tion in ReFlex� the problem of ending up with inconsistent and obsolete
models is minimized�

Ideally� software systems are designed through models� Designing
systems through models is the ideal software development approach since
it promotes means for early assessment of the design as well as means for
managing systems� complexity� Moreover� by specifying components and
interfaces early in the development phase� the integration of the system
becomes very smooth� given that the implementation conforms to the
restrictions speci�ed in the component speci�cation phase� We refer to
this as by construction� The di�erent methods proposed in this thesis
can all be used in a by construction approach� However� ReFlex enforces
that the models are kept intact through out the lifetime of the system�

��� Research method

Research is a continuous and iterative process of observing a phenomenon�
�nding relevant questions� formulating hypotheses� test whether or not
the hypotheses holds� and evaluate the results� There are di�erent ways�
or methods� for carrying out the research activities� Often the results
raise new relevant questions�

In this work the questions arise from both in existing results from
academia and from the industrial point of view� Basically� by studying
real�world systems and identify the problems we have found our ques�
tions� Note that the question that we �nd are dependent on what we are
looking for� Consequently� we have no intention of �nding� and solving
all existing problems� However� we must make sure that the questions
are general in the sense that they have a broader relevance than just for
the studied system� We have assured the relevance� and the generality of
our research questions by examining several systems in order to see that
the questions apply� and by carrying out literature studies� Studying ex�
isting literature will also establish the academic relevance of the research
questions�

Given the set of relevant research questions we have formalized hy�
potheses which are possible solutions to the problems that are being
solved� This activity have in our case included implementation of tools
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and methods� Again� by studying existing literature we can establish the
approach in an academic perspective as well as its uniqueness�

Finally� we have veri�ed our hypotheses by testing them on systems
and analyzing the results� i�e� we have performed case studies� We say
that we verify the hypotheses� not the research results� The reason for
this distinction is that we consider the result from verifying the hypothe�
ses as part of the research result� As research is an iterative process we
may �nd new relevant and interesting research questions when evaluating
the veri�cation activity� or we may narrow the scope of the questions�

��� Outline

Chapter � provides a state�of�the�art description of the software archi�
tecture domain� The software architecture domain is rather broad so we
have chosen to focus on architectural description �models�� and architec�
tural analysis� In Chapter � we discuss software product lines in general�
and software product lines for embedded real�time systems in particular�
It also brie�y discuss organization� processes and business matters which
are very important issues in a product line approach�

The contributions in this thesis is presented in Chapter 	 through
Chapter � which are all organized in a similar way an introductory
discussion� related work� the contribution and �nally a discussion and
comparison between the contribution and the related work�

ReFlex is presented in Chapter 	 which introduce a constructive ap�
proach to provide analytical models of a system� The ART�FW is pre�
sented in Chapter 
 which also discuss the re�engineering approach to
analytical models� In Chapter � the TAT extension to ordinary timed
automata is described�

Finally� chapter � and Chapter � provide conclusions and future di�
rections of the research presented in this thesis�
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Software architectures�

modeling and analysis

In this chapter we present a state�of�the�art description of the software
architecture area� Emphasis is on architectural modeling and architec�
tural analysis�

��� Introduction

The number of projects in industry developing software is constantly
increasing� Software is not only replacing old and well�established tech�
nologies� but also increasing in size and complexity� To manage the
complexity� engineering methods for constructing software are needed�
i�e� software engineering� Software engineering has been established as
a broad discipline that covers topics ranging from requirement engineer�
ing� design� implementation� maintenance� and veri�cation and valida�
tion� An established engineering practice is taken for granted in many
engineering disciplines but not in the software community� In order to
be considered an engineering practice� it must be possible to construct
models that can be analyzed and veri�ed� Moreover� design methods are
needed including established techniques that have been proven successful
as well as tools supporting the methods� The part of software engineering
that focuses on high�level design and analysis is called software architec�
tures�

Edsger Dijkstra pointed out� in a paper from ���� �Dij���� the im�
portance of partitioning and structuring software� in contrast to just
focusing on programming to produce the correct functionality� This is

��
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what software architecture� and software architectural analysis are all
about� It deals with how to structure a software system and how to
evaluate that structure with respect to di�erent non�functional require�
ments which expressed in terms of quality properties� Typical examples
of quality properties are� maintainability� reliability� performance� etc�
The interest in the software architecture �eld has increased lately due to
the increased functionality provided by software systems� the increased
size and complexity� and the increased cost of developing and maintain�
ing software products� Today� industry is aware of the bene�ts of being
able to analyze and verify software constructions in an early phase of the
development process� If a software development project diverges from
the functional requirements or the non�functional requirements� and if
those divergences are not detected early� the cost of revising the design
in the end of the project will be signi�cant due to redesign� Almost
�� percent of the cost for developing a software product are spent after
the initial design and implementation phases �CN���� These �� percent
are spent on maintenance� which includes error detection� correction and
evolutionary development�

Not only does a structured description of a software system constitute
a basis for architectural analysis� it can also improve the productivity of
new members in a project� The architecture provides a simple and holistic
view of the whole system� This is very important since complex system
usually engage a lot of people� all with unique competencies� at di�er�
ent stages of the development process� Since designing real�time systems
usually require multi�disciplinary knowledge� it is very important to have
an architectural description that can be understood by software engineers
as well as control and mechanical engineers� Furthermore� many software
projects employ a lot of consultants� Consultants may have little knowl�
edge of a company�s product line and need a quick brie�ng in order to
get productive and cost e�cient�

The complexity of software systems also causes problems when main�
taining and correcting errors in a software product� It is seldom possible
to� in advance� be aware of all the side e�ects that a particular correction
may give rise to� If an architectural description is at hand� it could give
some guidance on what modules are most likely to be a�ected by the
correction� This is highly related to evolutionary development� If the
architecture of the software construction is violated� it ceases to exist in
its former shape� The construction still has an architecture� but as long
as the architecture is not explicitly� and correctly described� it is of little�
or no use� Consequently� the architectural description may� and should�
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evolve as the construction that it describes evolves�

��� Towards a de�nition

There are almost as many de�nitions of software architecture in the lit�
erature as there are software architects and designers� We mention a few
examples

The IEEE has the following de�nition of architecture �IEE���

Architecture the fundamental organization of a system em�
bodied in its components� their relationships to each other
and to the environment and the principles guiding its design
and evolution�

Bass et al� propose the following de�nition �BCK���

The software architecture of a program or computing system
is the structure or structures of the system� which compromise
software components� the external visible properties of those
components� and the relationships among them�

In �Pau�	�� the following de�nition is given

Software architecture not only re�ects how the functional re�
quirements are met� but addresses

� non�functional requirements

� design rationale

� architecture style

Yet another de�nition is provided in �Cle���

A view of a system that includes the system�s major compo�
nents� the behavior of those components as visible to the rest
of the system� and the ways in which the components interact
and coordinate to achieve the system�s mission�

One property that seems to be common among almost every pro�
posed de�nition is that the software architecture describes a system by a
composition of its components and their interrelationships� However� by
component in this context we do not mean a software component as in
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COM or CORBA� but rather a software entity� This software entity may
very well be a traditional software component� but is could also be a sub�
system or a software module� In addition� software architectures should
provide a high level description� i�e� a more abstract level than the level
that algorithms and data structure provides� However� de�ning a soft�
ware architecture only as a syntactical representations of software entities
and their interconnections in the software systems is not su�cient� To
be useful� additional information must be present in the description� in
particular the semantics of software entities and connections� Di�erent
domains of software systems have di�erent semantics of their software
architectural description� A domain de�nes the class of applications� to
which a product belongs� e�g� desktop applications and industrial control
applications� As a consequence� there will be variations in the de�nitions
of software architectures depending on the domain� Furthermore� the
de�nition also depends on the aim of the architectural description� e�g�
support for architectural analysis� representation or description of the
designed system� It is probably impossible to unify software designers in
one single de�nition as it depends on the aim of the architecture and the
domain in which it is used� What we can state is that software architec�
ture is a description of the software structure and methods to evaluate
and compare design solutions�

����� Software architectures� frameworks� styles and

patterns

Architectural patterns� also referred to as architectural styles� are identi�
�ed and named due to being successful architectural solutions to particu�
lar design problems �BMR�����SG���� Examples of architectural patterns
are pipes�and��lters� client�server� model�view�controller� and layered ar�
chitectures�

Design patterns on the other hand� are small collections of objects and
classes which solve common problems in the design� applied on a slightly
lower level than the architecture itself �GHJV�	�� Moreover� a design
pattern must specify the problem it solves� the way it is constructed and
the consequences of using it� Usually� a software architecture is imple�
mented with a lot of di�erent design patterns� These patterns appear
within the components in the overall architecture�

The advantage of both architectural patterns and design patterns is
that they allow engineers to communicate design solutions in a common
language as names and behavior of the patterns are agreed upon�
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A framework can be seen as an �architectural mould� for a particu�
lar product domain� or a part of a complete architecture� e�g� the user
interface for a software system� It is a library� for instance� a class li�
brary� which when properly reused results in a particular architectural
pattern� or style� Frameworks are common in the human�machine inter�
face community where the designer� for instance� inherits a dialog class
and customize the concrete sub�class to get the desired behavior� An ex�
ample of such a frameworks is Microsoft Foundation Classes �MFC� and
Visual C��� Frameworks can also be designed for a variety of domains
such as control systems� database applications� etc�

Apparently� there are commonalities between software architectures�
frameworks and patterns� There are however distinct di�erences as well�
Patterns are language independent descriptions� i�e� they can be im�
plemented using any desired programming language� Frameworks� on
the other hand� are partially abstract implementations in a particular
programming language� To use a framework in a reasonable way� that
particular language has to be used in the concrete implementation of the
application�

��� Architecture description languages

Communication among software engineers is crucial� Without means for
communication� important information into� and from the design phase
might accidentally get lost� resulting in misinterpretations� Moreover�
a system designer must be able to communicate with customers� other
project members and management in an unambiguous way� An unam�
biguous architectural description is also a necessary condition for per�
forming architectural analysis� A parable is the building trade� where
building architects transform the customer requirements into a design�
This design must be described in a way the building constructor un�
derstands in order to do mechanical strength calculus and for building
workers to use as a blueprint� When developing software� a software engi�
neer formalizes the customer requirements� Based on the requirements� a
high�level design is described in a language that is commonly understood
by customers and designers� The common language is a necessity in or�
der to communicate and discuss design solutions� As output from the
high�level design phase� one or several candidate architectural solutions
are produced�

To verify that the non�functional requirements of the system are met
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by the architectural solutions� the architecture has to be analyzed� Hence�
the description language used in the high�level design must support the
required analysis methods� Once a software architecture is constructed
that ful�lls the requirements� the architectural description is used as a
blueprint when implementing the system� In addition� an architectural
description makes maintenance easier since it facilitates the understand�
ing how parts of software systems cooperate� Thus� the parts of a soft�
ware system� i�e� components and sub�systems� a�ected by a correction
are detected in advance�

����� Desired properties of an architecture description

language

Languages for architectural description are called Architecture Descrip�
tion Languages �ADLs�� There is an abundance of ADLs� each of them
with its own speci�c syntax� semantics� expressiveness and purposes
�EHL��	� �LKA���� �Ves�	� �BRJ��a�� An ideal ADL should however�
provide six classes of properties composition� abstraction� reusability�
con�guration� heterogeneity and analysis �SG����

By composition is meant that a software system should be described
as a composition of software entities and connections� Furthermore� soft�
ware entities and connections must also be described in a way that clearly
and explicitly describes the exact role of each element�

Any model is only justi�ed if it provides some level of abstraction�
If not� we would simply use the most exact model instead� i�e� the im�
plementation� Nevertheless� even if the level of abstraction should be as
high as possible� it must provide the details necessary for communicating
and analyzing the architecture�

As software entities may be reused in di�erent applications that are
described using di�erent description languages� the architectural descrip�
tion must be able to adopt to reuse� That is� it should be possible to
reuse descriptions of entities� connectors and architectural patterns in
di�erent architectural descriptions�

Heterogeneity provide the possibility of combining di�erent heteroge�
neous architectural patterns in a single system� For instance� it must be
possible to have both a pipes�and��lter pattern where the components
also can access a shared data base� Another example is that every layer
in a layered architecture might be implemented by using any other archi�
tectural structure� Heterogeneity also means that software components
that are implemented in di�erent programming languages can be com�
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bined in an architecture� This is a result of the abstraction requirement
on an ADL described above�

Con�guration means that the architectural structure among software
entities in the system should be separated from the structure within the
software entities� This enables us to understand� reason� and change the
architecture without having to examine each individual component in
detail� Moreover� the language should also support the speci�cation of
dynamic recon�guration if such is possible during runtime�

Finally� as high�level analysis is one of the primer justi�cations for
using software architectural description techniques� the architectural de�
scription must support di�erent kinds of analyses� Thus� the architec�
tural description must provide the level of details necessary for perform�
ing the required analyses�

Considering the desired properties of an architectural description
above� how can a software architecture be described� One possibility
is a plain textural description in a natural language� However� natural
languages tend to be ambiguous� making them really hard to interpret
in a consistent manner� By using a formal language an unambiguous de�
scription is obtained� With formal languages it is possible to use math�
ematics when modeling� analyzing� and verifying the architecture� The
disadvantage of using formal languages as architectural descriptions are
that most of them requires a lot of experience and mathematical skill�
Consequently� such a description may be su�cient and useful at some
stage in the design process but not for communication with partners in
a project without a computer science background�

Graphical representations are usually intuitive and relatively easy to
understand� Even very inexperienced engineers can get a feeling for how
a system is constructed by interpreting a graphical representation of it�
Such a description also permits analyses and quality predictions to be
made as described later in this report� However� it is very important that
the semantics of each graphical construction is clearly� unambiguously
de�ned� This approach has been adopted by many of the available ADLs�
where the software design is constructed using components and their
interconnections in a 	th generation language manner as illustrated in
Figure ����

����� Semantics of an ADL

The architectural description in Figure ��� provides only the information
that there are three software entities in the system� which are connected
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Component A

Component B Component C

Figure ��� A graphical software architecture description�

to each other� The connections could indicate a class hierarchy or a
network communication link over a distributed hardware architecture�
As stressed by Clements and Northrop �CN���� it must be known exactly
what the software entities are� what the connections mean and what the
position of the components imply� i�e� a well�de�ned semantics� If the
semantics is not clear the architectural description is quite useless�

One single architectural description language can not �t the desired
level of abstraction for every di�erent software domain and application�
There is for example a big di�erence between designing a real�time sys�
tem with hard� and soft temporal requirements compared to designing
a desktop application such as a word processor� Consequently� we need
a di�erent description language for every application domain� all with
their unique constructions�

Even though there must be di�erences in the architectural description
depending on the application domain� there might exist a least common
denominator� Such a least common denominator could� for instance�
consist of software entities and connections� But the signi�cance of a
connection or a software entity could be domain speci�c�

If the ADL has an unambiguous semantics� design tools for archi�
tectural analyses can be developed �SEG����LPY��a�� However� analysis
of quality properties usually requires more information than just the ar�
chitectural structure� This additional information is provided by the
architectural views and is discussed in ��	�
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����� Examples of existing architectural description

languages

There exist several architectural description languages for real�time sys�
tems� Typically they di�er in their expressiveness and formality�

One example of an ADL for real�time systems is MetaH �Ves�	��
MetaH provides means for specifying real�time processes� referred to as
tasks� that can be either periodic or aperiodic� communication among
tasks� modes and composites of processes and modes that are called
macros� Furthermore� the hardware allocation of processes and char�
acteristics of the hardware such as channels that are used for commu�
nication among processors can be speci�ed� As the temporal properties
of tasks and modes are provided in the models� MetaH support di�erent
kinds of real�time analyses such as schedulability analysis� There exist
a graphical tool that supports the modeling in MetaH and analysis of
real�time software architectures described in MetaH� The schedulability
analysis in this tool is based on rate�monotonic �LL����

Even though UML was not initially designed to be an ADL it is
used as such in industry today� UML is an acronym for Uni�ed Mod�
eling Language� and is a language primary intended for the description
of object�oriented design� e�g� classes� objects� use�cases� sequence di�
agrams �BRJ��a�� However� now there are constructions in UML for
subsystems and components as well� The language is constantly under
development and among the most recent arrivals is the scheduling and
performance pro�le that is intended for the design of real�time systems�
The language is quite �exible as it allow an user to de�ne the seman�
tics by using stereotypes� A stereotype de�nes the exact meaning of a
particular construction�

In Section 
�	 we propose an ADL called ART�ML that is suitable for
large and complex real�time Systems �WAN����� ART�ML has construc�
tions for describing tasks as well as communication and synchronization
among them� Tasks can be triggered by events in the system or be
periodic� Furthermore� ART�ML allows execution times of tasks to be
speci�ed as distributions� i�e� a set of di�erent execution times and their
probability of occurrence� Simulation is used as a method for analyzing
di�erent properties of an architecture modeled in ART�ML� Typically�
temporal correctness and performance is analyzed�

What ADL to use is determined by the type of system that is devel�
oped and the type of analyses that are of interest� For instance� if the
temporal behavior is of vital importance� the ADL must provide mecha�



�� Chapter �� Software architectures� modeling and analysis

nisms for modeling the temporal aspects of an architecture� and in way
that makes analysis of the temporal behavior possible� In Section ��	 the
views and aspects of an architectural description is discussed� Quality
properties� and analysis of these are further discussed in Section ��
�

��� Architectural views

An architectural view is a description that is seen from a given perspec�
tive and omits entities that are not relevant to this perspective� It is like
a slice cut through the architectural description that brings out partic�
ular information� The di�erent perspectives are important for di�erent
stakeholders in a software development project� For instance� a project
manager requires di�erent information about the software architecture
than a software engineer�

There exist no agreed upon standard set of views� nor a standard that
de�ne their names� Moreover� a view is not justi�ed if it is not useful
in the development process� Hence� we can de�ne and name any view
that make sense in our own software development project� Examples of
possible and relevant views are

� the structure of the main software entities� e�g� sub systems� com�
ponents

� the allocation of software to threads of execution

� communication among software entities

� temporal related information� i�e� period times� release times

� allocation of software to hardware

� data �ow among software entities

� description of the software entities� functional behavior

The list is not by any means complete� it only gives examples of po�
tential views among which some are of importance for real�time systems�
e�g� information about the temporal behavior�

One of the most widely accepted model for architectural views are
variants of the ��� view model �Kru�
� �HNS��� �Kru���� The variants
di�er slightly in terms the views� names and contents� The success of
the 	�� model is mainly due to its close relation to the Uni�ed Modeling
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Language �UML�� which has become a de facto standard in the industry
�BRJ��a�� The variant of 	�� view model in the Rational Uni�ed Process
�RUP�� de�nes 
 views Logical view� Implementation view� Process view�
Deployment view� and �nally the ���� view which is calledUse�case view�

 

Logical View Implementation View 

Process View Deployment View 

Use-Case View 

Figure ��� The 	�� view model

It is not easily� or maybe even not possible� to de�ne and decompose
all important issues of a software system into distinct views� It seems
that there are always issues that cut across all� or several� views� This
is also true for the 	�� model� For this reason we introduce the notion
of view aspects� A view aspect emphasizes a particular important issue
of a view� and may very well exist in di�erent shapes in several views�
For instance� communication among software entities in the logical view
of the architecture has a di�erent meaning than communication between
the same software entities in the process view or the deployment view�

This thesis deals with modeling and analysis of real�time systems�
Hence emphasis is on the logical view and the process view� However� we
will also touch on issues related to the deployment view� In relation to
this we will present aspects that are important in the real�time systems
domain� More precise� we de�ne three di�erent aspects

� temporal aspect

� communication aspect

� synchronization aspect
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����� Logical view

The logical view addresses the functional requirements of a system� It
identi�es subsystems� components� and classes� The logical view can be
hierarchically speci�ed� i�e� what components are part of which sub�
system� Moreover� dependencies among the entities in this view is also
visible here�

The overall architectural structure and style is provided� i�e� the
highest level of abstraction in an architectural description� This is the
natural starting point for designing a software system�

As design on the highest level of abstraction is rather rapid� it is pos�
sible to design several competing architectures for evaluation and com�
parison� Once a software architecture satisfying the quality requirements
is selected� it is settled� Depending on the required analyses� more views
might have to be modeled in order to make a correct design decision�

The hierarchical decomposition in the logical view may� eventually�
reach its bottom in some kind of state diagrams that provide an ab�
straction of the implementation� i�e� a model of the behavior� Such a
description may constitute the basis for formal veri�cation� Some possi�
ble descriptions on this level are state machines� e�g� Statechart �HN����
There exist tools that provide automatic veri�cation as well as code gen�
eration facilities based on these types of diagrams�

In the design methodology called Module Approach to Software Con�
struction� Operation and Test �MASCOT�� the logical view is modeled
with a diagram called the decomposed component level view �Mas�� This
view provides a decomposition of a sub�system into its main constituents�
i�e� its tasks�

The object�oriented methodology for real�time systems called Hard
Real�Time Hierarchical Object�Oriented Design �HRT�HOOD�� also has
a logical view that is provided by the so�called parent�objects �BW�	��
A parent�object is a component on its highest�level that may be further
decomposed�

UML have a notation for describing packages which basically is a
collection of model elements that constitute a sub�system� Moreover�
UML provides a component diagram in which components and depen�
dencies among them can be visualized� The contents of components and
subsystems are modeled with class diagrams and object diagrams� For
the lowest level of abstraction in the logical view we can use statechart
diagrams in UML�
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Temporal aspect of the logical view

In real�time systems� the temporal behavior of the software entities are
of vital importance� The temporal aspect of the logical view includes
execution times of the components� The execution times are required to
being able to guarantee the temporal correctness� The execution time of
a software entity my be given as a requirement� i�e� a time budget that
must be kept during implementation� or it can simply be the product of
a particular implementation �NSG�����

Communication� and Synchronization aspect of the logical view

Dependencies among entities modeled in the logical view indicate that
there exist a relation among them� The semantics of the dependencies
decides the exact meaning of the dependency� The data �ow constitute
the communication aspect in the logical view�

����� Implementation view

This view describes how to organize source code� data �les� executables
and other accompanying artifacts in the development environment in
terms of packaging and con�guration management� Typically� ownership
and release strategies are addressed here�

Moreover� requirements on e�g� distributed development� may require
a particular mapping of software entities onto executables and and source
code �les in order to minimize the con�icts that arise when a �le is
updated simultaneously by di�erent engineers� This can be compared
with a requirement on the software that result in a particular functional
decomposition�

The aspects we are interested in for real�time systems provides no
information in the implementation view� Hence� we describe it brie�y�

����� Process view

The process view addresses the concurrent behavior of a system at run�
time� In the real�time community we like to think of this as assigning
tasks to software components� The tasks determine the execution of the
software� Moreover� interactions between processes and tasks are visible
in this view� Interaction in this view may be in the form of synchroniza�
tion and�or interprocess communication�
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Temporal aspect of the process view

The temporal aspect of the process view is concerned with modeling of
the temporal behavior of tasks� As the correctness of a real�time system
not only depends on correct function� but also temporal correctness� the
temporal constraints must be present in the architecture� By tempo�
ral correct we mean not too early and not too late� In order to verify
whether or not tasks in a real�time application will be schedulable� i�e�
all temporal requirements are ful�lled such as all deadlines are met� we
need an aspect that de�nes the temporal attributes� the temporal aspect�

The temporal aspect of the process view contains data such as release
time i�e� the earliest start time of a task� the deadline i�e� the latest com�
pletion time of a task� the period time �the frequency� of a task� etc� We
say that a task model determines the exact content of the temporal view�
The exact appearance of a task model varies depending on the execution
strategy� The execution strategy de�nes the rules that determine what
task to execute�

As an example of di�erent task models consider a periodic task that
samples a sensor in a process� As the sampling should be performed with
some speci�c frequency in order to obtain a correct view of the process�
a period specifying the interval between two consecutive executions of
the sampling must be speci�ed� In contrast� if the application is purely
event triggered� i�e� tasks have arbitrary release times� there is no need
for specifying period times� Instead� the minimum inter�arrival times
must be speci�ed for the tasks�

HRT�HOOD has a temporal aspect that is divided into two parts� one
that describes the execution strategies for a class and one that provides
the temporal attributes� The execution strategy can be either cyclic or
sporadic� Depending on the execution strategy� classes can be assigned�
e�g� period times� minimal inter�arrival times� and deadlines�

It is possible to annotate sequence diagrams with timing information
in UML� Components or objects can also be stereotyped in order to model
temporal properties of software� For instance� the stereotype active� may
indicate that component or object has its own thread of execution and
the naming convention of an instance de�nes the temporal attributes�
For example� an object with the name Task����� means that task runs
with the frequency �� ms and has priority �� Note that this is not part
of the standard� but rather de�ned by individual development projects�
This is only one example out of many possible way of how to specify
temporal attributes in UML�
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Synchronization aspect of the process view

As real�time systems are multi�tasking systems having several tasks run�
ning concurrently� it is necessary to synchronize access to shared resources
in order to avoid inconstancy� This is an aspect of the process view that
we refer to as the synchronization aspect� Tasks that uses a shared re�
source must mutually exclude each other� i�e� only one task can use the
resource at the time� Synchronization is also required in order to ful�ll
some of the temporal requirements� e�g� precedence requirements� Prece�
dence requirements are concerned with the order in which tasks executes
in a system�

The solution domain provides several techniques for handling mutual
exclusion in real�time systems� e�g� semaphores� signals� or separation of
task in time�

Communication aspect of the process view

Allocating software entities that exchange data between each other to
di�erent tasks introduce the need of interprocess communication �IPC��
This is modeled in the process view as a communication aspect�

In MASCOT� communication aspect and synchronization aspect is
modeled using paths along which entities communicate� A path can in�
dicate a dependency to commonly used data� or a dependency to another
entity that results in a sending�receiving of messages� UML uses sequence
diagrams for describing communication and synchronization among ob�
jects� Relations and dependencies among components and objects can
also be stereotyped such that they indicate a communication� or synchro�
nization relation�

Examples of formal languages that can be used for modeling com�
munication and synchronization among processes are CCS or Timed au�
tomata �Mil��� �AD�	�� Timed automata can be used for real�time sys�
tems as it provides a notion of time as well as concurrency� We have also
developed an extension of timed automata that de�nes the concept of a
task which we call timed automata with tasks �TAT� �NWY���� In this
work we can reason about schedulability problems of systems modeled
as timed automata which now has resulted in a new tool called TIMES
�AFM����� CCS is a process algebra with which it is possible to model
concurrent systems� Such algebra is useful when modeling communi�
cation and synchronization� which is essential when designing real�time
systems�
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����� Deployment view

The deployment view shows how software is allocated to hardware re�
sources in a system� If the system is distributed� i�e� a set of intercon�
nected and geographically separated CPUs� or a multi�processor system�
i�e� a set of interconnected and geographically collected CPUs� there
might be requirements of pre�allocated functionality among the nodes
in the system� Moreover� performance requirements may result in allo�
cation of software close to the physical process it controls� Hence� the
deployment view may also contain I�O units� The allocation of software
in a system will a�ect the �nal architecture and the performance of the
application�

Yet another reason for describing the hardware in the software ar�
chitecture is the issue of portability� If software should be easy to move
between di�erent types of platforms� the dependencies to the hardware
and the operating systems must be encapsulated from the rest of the
software system� One can discuss whether this is a software architectural
view or not� it is more associated with a system architecture� However� as
long as hardware has an impact on the software architecture� we consider
it important in the system description�

Processor 1

Processor 2

Figure ��� The processor allocation in the deployment view

Communication aspect of the deployment view

Communication buses are also important resources in the deployment
view� The presence of a communication bus indicates the need for in�
terprocessor communication� i�e�� communication and synchronization
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among software entities becomes evident� Hence� this is the commu�
nication aspect of the deployment view�

In the Yourdon Structured Method �YSM�� the allocation of func�
tions to hardware processors is called the processor environment model
�Coo���� Besides the function allocation� this view reveals the data that
will be communicated among the processors� The deployment diagram
in UML describes the allocation of software onto hardware�

����� Use�case view

This view contains the key requirements on the architecture� The key
requirements are used to drive the design of the architecture� A partic�
ular structure in the logical view of the architecture is usually the result
from ful�lling a key requirement� e�g� reusability� maintainability� It
is desirable that the intention of an architectural solution can be visi�
ble in the description� i�e� tracability between the solution domain and
requirements �N�G����

In UML there exists use�case diagrams which is used for this view�

Temporal aspect of the use�case view

Temporal requirements can origin from many sources� and they may
take many forms� The most intuitive ones are explicitly stated in a
requirements speci�cation and may very well have their origin in user
issues such as responsiveness of a feature�

When it comes to control systems� the temporal requirements are
often derived from the processes they control� A typical example of such
a requirement is sampling frequencies� Moreover� temporal requirements
may be due to control performance� For instance� in order to achieve
good control performance it is desirable that the jitter is minimized� i�e�
minimizing the variations in the periodicity of task �T�����

����	 Architectural views
 An example

As an example of how an model architecture and by utilize the architec�
tural view and the view aspects� consider a real�time system that controls
the water level in a tank� The system samples a water level sensor� takes
a decision whether to let water out� or pour water into the tank� The
system actuates a pump or a valve if the level has to be adjusted� As
it is a real�time system� the temporal constraints on the system must be
modeled� i�e� the temporal aspect of the views� The ADL used in this
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example is invented for this example and has no claims� what so ever� to
ful�ll the required properties of a complete ADL�

First� the highest level of abstraction in the logical view of the ar�
chitecture is modeled by identifying the components in the system and
how they relate to each other interconnections� In this case� the arrows
between the components represents a data �ow� Hence� that data �ow
constitute the communication aspect of the logical view� The logical view
is shown in Figure ��	� While portability is crucial� the operating system
is modeled as a component as well in the diagram� The dotted arrows
indicates a dependency�

 
Sampling 
component 

Control 
component 

Actuate 
component 

RTOS 

Figure ��	 The �rst candidate architecture for a water tank controller

Moving on to the process view of our small control system architec�
ture� we decide that every component is assigned its own thread of exe�
cution� i�e� task� Moreover� in order to verify the temporal correctness
of the system we must populate the temporal aspect of the process view�
In this case we assume a periodic task model� i�e� we assign period times
and deadlines� The execution time of a software entity is determined by
the source code� Hence� execution times are part of the temporal aspect
of the logical view� In this example we use a table for modeling the tasks
and the task allocation� �Table �����

The components communicates their data between each other using
the communication mechanisms provided by the tasks� This is the tem�
poral aspect of the process view� The diagram for showing this aspect of
the process view has been omitted in this example�

The implementation view is of less interest in this small example�
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Task Period wcet Deadline allocation

Sampling task � ms 
� �s �� �s sampling component

Control task � ms ��� �s � ms control component

Actuate task � ms 
� �s � ms actuate component

Table ��� The temporal aspect of the process view

However� we have to allocate the software onto a hardware architecture�
The is rather simple in our system since it is a single processor system�
Consequently� the communication aspect of the deployment view is su�
per�uous� The diagram is depicted in Figure ��
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Actuate 
component 

RTOS 

CPU A 

Figure ��
 The deployment view of our architecture

In Section ������ we will revisit this example in order to analyze
whether or not the proposed architecture complies with the requirements�
e�g� temporal correctness�

��� Architectural analysis

One of the main incitement for using software architecture notation when
designing a software system is the ability to analyze and verify the de�
sign in an early stage of the development process� By comparing dif�
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ferent candidate architectures� con�dence in early design decisions can
be achieved� Such a comparison is done by comparing the results from
analyzing each architectural solution with respect to the architectural
requirements� Furthermore� architectural analysis enables the possibil�
ity to get software metrics based on the high�level design� e�g� the level
of coupling and cohesion within and between the di�erent modules that
constitute the software system �FP����

We have divided the quality properties of a software system into two
di�erent classes operational and non�operational� Operational quality
properties are those concerned with the runtime behavior of the software�
e�g� performance or reliability� whereas non�operational quality proper�
ties are concerned with the quality of the software itself� e�g� maintain�
ability or reusability�

����� Methods for architectural analysis

An architectural analysis process is divided into two stages� question�
ing and measuring� The questioning phase generates questions that are
answered by the measuring phase� Len Bass et� al� �BCK���� have
categorized the questioning stage in architectural review and evaluation
into three di�erent classes� namely Scenario�based� Checklist�based and
Questionnaire�based�

Scenarios are a set of cases where the software architect asks a lot of
�what if� questions that re�ect the requirements� Scenarios make quality
properties concrete in the view�point of the system� For instance� the
requirement that a system should have high performance is very general�
too general in order to make sense as a requirement� However� specifying
that it is high performance in terms of data latency� and even further�
minimizing storage latency in a certain data base to 
�� ms� is a scenario
that makes the requirement analyzable�

It is� however� not a trivial task to construct the right questions and to
know when to stop generating scenarios� This requires a lot of experience
and knowledge� which can be achieved by being involved in many design
projects� A scenario is always system speci�c� i�e� tailor�made for a
particular application in a domain� whereas questions that are valid for
all architectures in a particular domain resides in a checklist� The items in
the checklist can either generate scenarios or be veri�ed in the measuring
stage directly� As an example� consider the domain of safety�critical real�
time systems� The checklist probably contains the following items among
several other
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� Is the system schedulable�

� Is there error recovery code in the system to clean up after error
detection�

The �rst item is veri�ed directly by performing a mathematical schedu�
lability analysis� The second item is too general and therefore it must be
further decomposed into a set of speci�c scenarios before it can be an�
swered� As scenarios are system speci�c� they can stress di�erent types
of errors in speci�c modules residing in the system� One possible scenario
that origin from the second bullet above is

What happen when division by zero occurs in the control
task�

The scenarios can than be veri�ed by� for instance� simulation or
scenario execution� both described later in this chapter�

The questionnaire�based questioning typically stresses general logisti�
cal software architecture issues� These questions have usually very little
to do with the quality of the software itself� but are rather focused on
issues such as documentation and project organization� Although the
logistical questions do not examine the quality of the software product
itself� it has impact on the quality since good quality requires a mature
development process� Examples of such questions are

Is a standard architectural description language used�

or

Is the intended work distribution supported by the architec�
ture��

The measuring techniques available for architectural analysis are sce�
nario execution� simulation and prototyping� mathematical methods� and
experience based knowledge reasoning�

The idea with scenario execution is to �execute� a question stated by
a scenario on the architecture� By executing a scenario is meant that the
e�ects on the architecture imposed by a scenario is investigated� This
method is particular well suited for analysis of non�operational quality
properties�
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Simulation techniques often require a prototype implementation of
the architecture� Such a prototype should be as �thin� as possible� con�
taining only the information needed for the analysis to be performed�
The thinner the prototype� the earlier can the analysis be performed�
Instead of using a prototype as the base for simulations we can use a
model� i�e� a description of the software system in a modeling language
with a well de�ned semantics� In Chapter 
� we describe our language
for modeling of real�time systems and how we can use simulation for
analyzing the correctness� Simulation is a method targeting analysis of
operational quality properties�

Experienced�based reasoning can be used for any of the two classes of
quality properties� Actually� experienced�based reasoning is usually how
the software architecture evaluation is done in industry today� although in
a relatively unorganized manner� Senior programmers and experts have
the knowledge and know what a good design is� As an organization and
its development process mature� more of the formal evaluation techniques
will be adopted�

Mathematical methods can be used provided that a mathematical
model of the architecture can be delivered� Such a model could be in the
form of e�g� timed automata� More examples of mathematical measuring
techniques are the schedulability test for real�time systems and statisti�
cal reliability modeling� These methods give a clear yes� or no answer�
or a quantitative value that is comparable among all di�erent types of
software applications�

Figure ��� provides a schematic picture of how the di�erent evaluation
techniques relate�

Although measuring techniques might provide quantitative values�
these values must be treated carefully� The quantitative values should
be used as relative values when comparing competing software architec�
tures� Moreover� if scenarios or experienced reasoning was used to obtain
the measurements� the exact same set of scenarios and reasoning must
be used when evaluating the competing� or re�ned architectures� Oth�
erwise� the measures are not comparable� For instance� the result from
measuring� e�g� the reusability of a system� says nothing in isolation�
It only makes sense when comparing it with the results from measuring
competing architectures�
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Figure ��� Evaluation techniques and property characteristics

����� Analysis of operational quality properties

There exist operational quality properties in abundance� among which
properties of particular interest when designing safety�critical real�time
system is listed in Table ����

Besides describing the operational quality properties we also give rec�
ommendations of how to design a system with emphasis on a particular
ability� However� the design recommendations are not exhaustive� they
only suggest one or a few out of many possible design solutions or design
recommendations�

Performance

Certain operational properties of a software system� including perfor�
mance� are tricky or even impossible to predict using the architectural
description level only� Performance estimations must have the algorith�
mic solutions as input� As discussed in the introduction� software archi�
tecture is a description of the system on a higher level of abstraction than
algorithmic solutions and data structures� However� by using prototyping
and simulation techniques� performance in terms of� for instance� event
throughput or queuing length for events in a system� can be estimated
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Performance The systems capacity of handling data or
events�

Reliability The probability of a system functioning cor�
rectly over a given period of time�

Availability The probability of a system functioning cor�
rectly at any given time

Safety The property of the system that it will not en�
danger human life or the environment

Security The ability of a software system to resist mali�
cious intended actions

Timing The temporal behavior of a system�

Table ��� Operational quality properties

�GB���� Since such a performance measure is not absolute� it can only
be used when comparing di�erent architectural solutions�

Reliability

There are mathematical methods based on probability theories� such as
Markov models� for assessing reliability �Tra�
�� However� these theories
are developed for hardware where failures often are caused by physical
wear such as corrosion� overheating� etc� Such failures are probabilistic
in nature whereas software failures are mistakes �errors�� made in the
speci�cation� the design or in the implementation� These types of fail�
ures are certainly not probabilistic according to some distribution over
time� Furthermore� software can never be worn out� Attempts have been
made to apply the methods from the hardware community to software�
In software� the statistics are the numbers of errors in the program or
the likelihood of a failure in a point of time based upon the error distri�
bution in the past �FP���� To get such failure estimations� there must be
an implementation of the application or at least a prototype� Anyhow�
a description of the application on a lower level than the architecture
is needed� With heuristics from similar applications developed earlier�
experienced engineers can estimate the expected number of errors in the
components� Such estimations are very complex� giving rough metrics�
An alternative to directly measure the reliability of the architecture is to
measure the testability� The testability is a function of the e�ort required
in order to assure the required level of reliability or availability�
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Design recommendations� Reliability

There are three di�erent approaches to handle faults in order to achieve
a reliable system �Lap���

� Fault avoidance

� Fault removal

� Fault tolerance

Fault avoidance is about designing error free systems� This implies
the use of structured design methodologies such as formal methods or
semi�formal methods� Formal methods are based on mathematical mod�
els of the software system and the requirement speci�cation� These mod�
els form the basis when proving correctness of the model with respect
to the system speci�cation� There exists a wide range of formal meth�
ods and formal modeling languages� each supporting di�erent system
domains� Semi�formal methods are� as the name suggests� less formal�
i�e� they do not support techniques to exhaustively prove correctness
of the models� Instead� they o�er a structured way of reasoning� both
when designing models of the system and when analyzing the models�
The methods are usually based on some �formal� notation� e�g� Uni�ed
Modeling Language �UML� �BRJ��b�� ADLs� etc�� representing the sys�
tem model� Examples of such methods are object�oriented analysis and
design �OOA�OOD�� and software architecture techniques in general�

No matter how accurate the models are analyzed� there may still be
errors in the implementation� These errors usually originate from the
speci�cation and from the mismatch when mapping the models to the
source code� In order to improve reliability in the program� fault removal
techniques can be applied� Fault removal is basically the task of �nding
the errors by testing and removal of them by error correction� Under the
assumption that no new errors are introduced� the reliability will grow
as errors are corrected� This assumption is� unfortunately� seldom true�
implying that the whole system has to be re�tested after each increment�
The results from testing and re�testing can be used for statistically fore�
casting of the failure rate �and consequently the reliability�� of a software
system� Such a method is the reliability growth model� �rst proposed for
software by Jelinsky et� al� �JM���� There exist an abundance of di�er�
ent approaches to model reliability growth� they are all based on data
collected during testing� but di�er in the way the statistical model is
made�
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Some faults are impossible to avoid regardless of how accurate the
design and the tests are performed� If it is particularly important that
a certain module in the system does not fail� fault�tolerance can be in�
troduced� Fault�tolerance is a technique which can be interpreted in two
di�erent ways it could be the ability of a software system to tolerate
faults from its environment� e�g� the operator� hardware errors� etc�� or
it could mean that the system should be tolerant against design faults in
the software itself� The two di�erent fault�tolerance approaches are� nat�
urally� solved using di�erent techniques� For instance� to be fault�tolerant
against hardware errors such as electro magnetic distortion� redundant
hardware can be used� each with equivalent software running on them�
This solution will however not tolerate software faults� Di�erent ap�
proaches to be tolerant against software faults are recovery blocks and
N�version programming �Sto��� �CA����

Recovery blocks are based on acceptant tests of the calculated val�
ues� If the processed value is not accepted the program tracks back to
a recovery point where it is safe to continue the execution after having
restored the system�s state�

N�version programming is achieved by developing N di�erent versions
of the software� each developed by di�erent and isolated design teams�
All N di�erent versions run in parallel at runtime and their respective
results are voted upon� This technique has� however� been proven not
so successful since all di�erent versions of the software start out from
the same speci�cation� and since most design errors originate from the
speci�cation� they will contain common errors�

Even if the source code is absolutely correct� the compiler may still
produce erroneous binaries� Faults introduced by the compiler can be
tolerated by using the N�version approach� Each version has exactly
the same code� but they are all compiled using di�erent compilers� It
is important to note that the di�erent techniques discussed above can
be applied at any stage in the development process� For instance fault
removal can be used when verifying the designed architecture against the
system speci�cation� Fault�tolerance is also a matter of architectural de�
sign� The techniques for fault�tolerance discussed above are all achieved
using di�erent architectural solutions�

Safety

Safety seems� at a �rst glance� very similar to reliability� There is however
a clear distinction as safety is only concerned with failures that endangers
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human life and the environment� i�e� hazards� whereas reliability deals
with all failures regardless of their consequences� Moreover� safety is a
property of a system� not only the software� Hence� a reliable software is
not a guarantee for a safe systems� For instance� consider an industrial
robot� No matter how correct and reliable the software is� humans can
still get injured if they get close enough to the robot�

Before any safety analysis of the architecture can be performed� the
hazards must be identi�ed� This is done in a hazard analysis that is
a reasoning based method for �nding all hazards in the system that is
going to be designed �Lev�
��

There exist several techniques for assessing safety properties in soft�
ware designs� Most of them are scenario based and work either backward
or forward� If the method works backwards� the analysis starts with the
hazard as a scenario� trying to trace down the responsible component�
On the contrary� if the method works forward� the e�ects of an error in
a component is investigated�

Some of the most well known forward methods are Failure Mode
and E�ects Analysis �FMEA� �IEC�� and Hazard and Operability studies
�HAZOP� �Kle�
�� Both methods analyze the consequences of failures
in the components� One commonly used backward technique is called
Fault Tree Analysis �FTA� �Sto���� FTA starts with a hazard� trying to
determine its origin among the components� This kind of analyses give
an understanding of where in the architecture fault�tolerance techniques
should be introduced� or if already introduced� verifying whether the
intended fault�tolerance is achieved or not�

Design recommendations� Safety

Depending on the results from the safety analysis� changes in the design
may have to be performed� Di�erent design approaches to avoid catas�
trophic failures can be applied based on the severity of an accident caused
by the hazard� The di�erent approaches are �Lev�
�

� Hazard elimination

� Hazard reduction

� Hazard control

� Damage minimization
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The severity is a quanti�ed value that makes it possible to compare
and rank hazards� Typically� the severity is given in terms of the cost or�
lost lives� for the stakeholder if the accident occurs�

Substitution� decoupling� and simpli�cations achieve hazard elimina�
tion� By substituting a dangerous design possibility by a functionally
equivalent� but not dangerous solution� the hazard itself is eliminated�
For instance� if the system involves a very toxic chemical liquid� substi�
tuting the liquid with a non�toxic one eliminates the hazard� Moreover�
by decoupling safety�critical parts of the software from non�critical soft�
ware� the risk for an error in the non�critical part to propagate into the
safety�critical parts is eliminated� There exist some known architectural
solutions based on decoupling� e�g� safety kernels� �rewalls� hierarchical
architectures �Sto����

Hazard reduction reduces the likelihood of the occurrence of a hazard�
It might not be feasible or even possible� to eliminate the hazards� Then
the designer has to design the system in such a way that the hazard is not
very likely to occur� An example of hazard reduction is to erect a fence
around an industrial robot� preventing humans to come close enough to
get hurt�

Hazard control is applied in order to reduce the likelihood of an ac�
cident if a hazard arises� This can be achieved using fail�safe design�
i�e� the system should be designed to detect the hazard and then trans�
fer it into a safe state if it exists� There are� however systems where
no safe state exists� A typically example of such a system is airplanes�
These systems must keep operating even if something goes wrong� This
is achieved using fault�tolerance such as redundancy� It is essential that
an airplane keeps �ying even if one engine breaks down� i�e� the second
engine should be switched to operate the airplane� The performance will
of course be reduced� but the airplane can still be maneuvered to its safe
state on the ground�

Yet� if an accident still occurs� the consequences and losses must
be reduced� This is achieved with damage minimization that strives
to minimize the exposure of the accident to the environment or human
beings�

Availability

Reliability and availability are strongly correlated� According to the
de�nitions given in Table ���� reliability is the probability of a software
system functioning correctly over a given period of time and availability
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is the probability of a software system functioning correctly at any given
time� The availability is given by the displayed equation below

Availability � ��
MTTR

MTBF
�����

where MTBF is the Mean�Time�Between�Failure and MTTR is the
Mean�Time�To�Repair� i�e� time spent on service� The relation between
MTBF and MTTR is shown graphically in Figure ���� If any point of
time is picked randomly along the y�axis� there is a probability of having
correct functionality� i�e� the availability of the software system�

 

operating 

Not operating 

MTTR 
MTBF 

time 

Figure ��� Availability and reliability

Design recommendations� Availability

The recommendation given for reliability also apply to availability� More�
over� process related issues are important� Proper strategies for valida�
tion and veri�cation are crucial in order to maximize the MTBF� but
also designing the system for high testability� In order to minimize the
MTTR we must design an maintainable architecture� i�e� adding new
functionality as well as changing existing functionality should be as ef�
fortless as possible� Testability and maintainability is further discussed
in Section ��
���



	� Chapter �� Software architectures� modeling and analysis

Security

Security is concerned with protecting a software system from malicious
intended actions� e�g� intrusion by unauthorized users or locking out
unintended accesses to safety�critical parts of the system� The impor�
tance of security is constantly increasing as more and more systems are
becoming accessible via mobile terminals or have web�based interfaces�

A scenario�based method can be used for analyzing the security prop�
erty� Typically� such a scenario could reason about what happens if an
operator or a sub�module tries to access a protected region of the sys�
tem� Another possible way of analyzing software architectures from the
security point of view� is simulation� provided that the logical view of the
software architecture contains su�cient information regarding rules for
authorization and identi�cation�

Design recommendations� Security

A secure software system can be achieved by di�erent architectural solu�
tions safety�security kernels� �rewalls� etc�� which all are di�erent ways
of restricting the access to the system or sub�systems �Sto��� �Lev�
�� As
security can be achieved using di�erent architectural solutions� it can be
assumed that security is assessable by architectural analysis�

Timing

Real�time systems are characterized by their correctness criteria� Not
only should a real�time system deliver correct functionality� but correct
functionality at correct time� We refer to this criteria� or property� of a
software system as temporal correctness� A system is considered tempo�
rally correct if it complies with all its temporal requirements� �discussed
in Section ��	�
�� Typical examples of temporal requirements are dead�
lines and jitter�

We classify real�time systems according to the importance of com�
plying with the temporal correctness� We refer to the classes as hard
real�time systems and soft real�time systems� A real�time system is con�
sidered hard if it is of vital importance that no temporal requirement is
ever violated� The consequence of violating a temporal requirement in
a hard real�time system may be catastrophic� Applications that belong
to this class includes aircrafts� airbags� and control systems in nuclear
power plants�
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In soft real�time systems it is allowed to sometimes miss some of
the temporal requirements� For instance� we can allow the system to
violate a particular deadline every once in a while without catastrophic
consequences� Examples of application in this class are video streaming�
cellular telephones� and toys�

The information necessary for the veri�cation of temporal correctness
is provided by the temporal aspect of the software architecture� The at�
tributes in the temporal aspect re�ect the system�s characteristics which
often is referred to as execution strategies or scheduling strategies� Exam�
ple of such characteristics are event�driven systems� periodic system� and
�xed priority systems� We refer to the exact appearance of the temporal
aspect of the process view as a task model�

Several mathematical methods for analyzing the temporal correctness
exist� Each method di�ers in the assumptions they make about execution
strategies� and the task model� �LL����ABD��
��Bur����XP����

One of the most commonly used analysis methods are Fixed Priority
Analysis �FPA�� FPA in its simplest form assumes a task model which
consists of a period time and a priority that is assigned according to some
algorithm� e�g� rate�monotonic� Rate�monotonic assigns the task with
the shortest period time the highest priority �ABD��
�� Moreover� FPA
assumes that the worst�case execution time �WCET�� of the software is
known� By calculating the response time for each task� we can verify
that no deadline requirement is violated�

Simulation can also be used for analyzing the temporal correctness of
a real�time system� In Chapter 
 we will present a simulation based anal�
ysis framework that targets temporal correctness� This framework also
aims at analyzing other correctness criterion such as the non�emptiness
of message queues in a system� This is one of the biggest advantages with
the simulation approach that we can monitor any resource in a system�
not only the CPU�

Design recommendations� Timing

There are no architectural design issues that make a system more tem�
poral correct� Either the system is temporal correct or is it not� The
choice of a particular architectural solution in the temporal domain� i�e�
the scheduling strategy� is dependent on the temporal requirements� For
instance� if the system is purely event�drive it makes no sense to specify
period times for the task set� Instead we can chose an earliest deadline
�rst strategy �EDF�� which executes the task that has least time left until
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deadline� EDF assumes that deadlines are speci�ed as well as WCET�

In Figure ���� a classi�cation of di�erent scheduling strategies is il�
lustrated�

 Scheduling 

Preemtive/non-preemtive 

Run-time scheduling Pre-run-time scheduling 

Priority based 

Static priorities Dynamic priorities 

RM User defined RM + PCP EDF 

RM Rate Monotonic 
FPS Fixed Priority Scheduling 
EDF Earliest Deadline First 
PCP Priority Ceiling Protocol 
 

Figure ��� Classi�cation of scheduling strategies

The choice of scheduling strategy can also a�ect other properties of a
software architecture� For instance� as the execution order among tasks
are �xed when using time�triggered solutions� i�e� tasks are executed
according to a schedule that has been de�ned pre�runtime� it is possible
to reproduce an execution scenario which is essential when designing a
system with high testability �TH����

����� Analysis of non�operational quality properties

The number of non�operational quality properties is� as the operational
quality properties discussed in the previous section� very large� In Table
���� a subset of all such quality properties is listed� all being important
in a mature and modern design process for real�time systems�

A very simple but yet powerful method for analysis of non�operational
quality properties is the execution of scenarios� Many of the quality prop�
erties listed in Table ��� can be examined and analyzed by using scenarios�
The design recommendations given in this section is� as the case with the
design recommendations given in Section ��
��� is not exhaustive� They
are only examples and other possible solutions exist�
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Cost The cost for performing any action such as develop�
ment� evolution and veri�cation

Testability How easy it is to prove correctness of the system by
testing

Reusability The extent to which the architecture can be reused

Portability How easy it is to move the software system to a dif�
ferent hardware� and�or software platform

Maintainability The aptitude of a system to undergo repair and evo�
lution

Modi�ability How sensible the architecture is to changes in one or
several components

Table ��� Non�operational quality properties

Cost

Cost estimations are probably one of the hardest tasks for every large
software development project� Accurate cost estimation for the design
of a completely new system is extremely hard to make� Usually such
estimations are based on historical experiences with similar systems� If
no such experience is available� the estimation gets even more imprecise�

The software architecture description could help illuminate the cost
of developing a system or adding new functionality to an existing system�
Partly by being a structured description of the application� helping the
designer to get a full perspective of the application scope� but also by
providing techniques for analyzing the e�ects of adding new features to
an existing software system�

Testability

Testing is an essential activity in order to establish con�dence in that
the software is correct with respect to the speci�cation� Testing is also
used for obtaining some con�dence in operational quality properties such
as reliability� performance� etc� A lot of time� and consequently� money�
is spent in the testing phase of software development� To reduce the
amount of time needed for testing of the software� the architecture can
be designed so that it is easy to test� i�e� having high testability� The
testability is dependent on three individual properties observability� con�
trollability� and for concurrent systems and systems dependent on time�
reproducibility �Bin�	��
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In order for a test case to be useful� the result of it must be observed�
If the software entities in the architecture are considered as �black boxes��
i�e� only the interfaces are observable� The bigger interface� the more
visibility� Apparently� bigger interfaces give higher observability� thus
higher testability�

When performing a test� a particular input stimuli is given to the
system or a sub�system� This stimuli is the only way in which the test
engineer can control the path taken in the program� If the path taken only
depends on the input itself� maximum controllability is achieved� This
is of course not the case in general� There are often data dependencies
between di�erent modules such as global variables etc� If those data
dependencies� which are not controllable by the test input data� a�ect
the control �ow� the controllability is decreased� giving lower testability�

Finally� when testing concurrent system or real�time systems in gen�
eral� the order in which di�erent processes in the system are executed
will in�uence the observed result from a test� For instance� in a system
controlling the water level in a tank� there is one process sampling the ac�
tual water level and one process calculating how to adjust the water level
based on the measured value and some desired value� If the control pro�
cess executes twice without any intermediate execution of the sampling
process� the result of the control decision will be di�erent in the second
invocation than if the water level was re�sampled in between� To get high
testability� the order in which processes execute must be controllable or
deterministic� i�e� high reproducibility �TH����

Reusability

Reusing a software component to its full extent� without any modi��
cations� is extremely di�cult if not the domain in which the reuse is
intended is the exact domain of the component�s origin� When a com�
ponent or architecture is reused in the same application domain we call
it a domain�dependent reuse� When containers are reused� i�e� lists� ar�
rays� sets� etc�� they can be reused across di�erent application domains�
An example of such reuse is the Standard Template Library �STL� for
the object�oriented language C��� Reuse� which is possible across the
application domains� is consequently called domain�independent reuse�

When analyzing the level of reusability of a software component or a
part of the architecture� one must consider not only the original applica�
tion domain� but also how isolated and independent it is from rest of the
system� The less dependencies� the more reusable� and vice versa�
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The focus on reuse� in industry� has been intensi�ed due to the
potential cuts of cost� The time spent on implementation decreases
when reusing components� Furthermore� components can be bought
from third�party developers� Such components are called Commercial�
O��The�Shelf components �COTS�� However� constructing reusable soft�
ware is expensive� The business case must be clear and the extra cost
must by justi�ed by planned reuses�

Portability

To be able to analyze software architectures with respect to portabil�
ity� the infrastructure on which the system is going to run on has to be
modeled as well� This to unveil the dependencies between the software
components in the system and the infrastructure� As infrastructure we
consider the hardware� e�g� processors� A�D converters� as well as soft�
ware such as operating systems and communication protocols� If the
amount of direct dependencies� i�e� the number of components having a
direct connection to the infrastructure� is low� then the architecture as
whole is quite insensible to a change of infrastructure� Thus� having a
high degree of portability�

Design recommendations� Portability

Designing an architecture that is portable is all about isolating the depen�
dencies to the entity that is subject for being exchange� By introducing
an abstraction layer that hide� for instance� the operating system� we only
have to rewrite the abstraction layer when moving a software system to
another operating system� If the system uses a particular communication
component that provide a communication protocol� we may introduce a
proxy� that acts as a communication component for the system by provid�
ing an interface that remains unchanged even though the communication
component is exchanged�

Modiability

The Architecture�Level Modi�ability Analysis Method �ALMA� has been
developed by Bengtsson et� al� �Ben���� It is a scenario�based analysis
method that� given a set of change�scenarios� identi�es the a�ected com�
ponents� the impact on those components� and the ripple e�ect� The
input to such an analysis is a high�level architectural description in any
form as long as components� their interrelations� and their relations to the
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systems environment is present� The result from applying this method
is� as for any scenario�based method� dependent on the selection of sce�
narios� It is important that the correct� and important scenarios are
elected� The result can be presented qualitatively� e�g� a description of
the changes that are required� or quantitatively by ranking the e�ects�
e�g� a �ve level scale�

Design recommendations� Modiability

It is impossible to give any general recommendations on how to con�
struct a modi�able software system� It depends heavily on the predicted
changes� However� low coupling between software components minimizes
the ripple e�ect when changing a component�

Maintainability

Maintainability and modi�ability are strongly related� Maintenance in
software corresponds to a modi�cation in contrast to a mechanical con�
struction where maintenance could mean exchanging a broken part by a
new� equal part�

Kazman et� al� �KABC���� have proposed a methodology for vi�
sualizing the amount of changes required in the modules or in the ar�
chitecture when adding or changing functionality in the system� The
amount of changes in the software architecture enforced by adding new
functionality or error corrections� are referred to as maintainability� By
using scenarios developed from the requirements of the new function� the
existing architecture is analyzed� The concept of direct scenarios were
introduced meaning scenarios that are directly supported by the existing
architecture i�e� no major architectural changes are required� In contrast�
an indirect scenario exposes the need for architectural changes� which is
more di�cult and costly to achieve�

After having mapped the scenarios on the architectural structure and
determined if the scenario is direct or indirect� scenario interaction should
be revealed� Two or more indirect scenarios are said to interact if they
a�ect the same module� To make the potential architectural violations
and changes in the system visible� graphical representation of modules
were scaled graphically in the ADL according to the amount of indirect
scenario interactions�
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Design recommendations� Maintainability

As for modi�ability it is impossible to give any concrete recommendations
on how to design a maintainable software system� It depends on the types
of maintenance that are foreseen in the design phase�

��� Existing analysis methods

A method called Software Architecture Analysis Method �SAAM�� has
been developed at the Software engineering institute �SEI� at Carnegie
Mellon university� The purpose of SAAM is to analyze software qual�
ity attributes by examining competing architectures �KBAW�	�� To do
so� they partitioning the functionality in the architecture� i�e� identi�es
where in the di�erent architectures the functionality of the system is al�
located� The functional partitioning is system domain speci�c� Some
domains already have a well�de�ned functional partitioning� a typical ex�
ample of such a domain is compilers� Compilers are built with a front�end�
a parser� a code generator etc� However� nothing is assumed about how
functions are organized and structured� i�e� the architecture of the com�
piler� This partitioning gives a common description and common mod�
ules� each with the same functionality but organized in di�erent ways�
The communal description is an absolute condition for the comparison�
which aims to unveil how well a certain quality attribute� is adopted by
the architecture� Again� the analysis is based on scenarios� constructing
input for a tradeo� analysis�

A method for tradeo� analysis called Architecture Tradeo� Analysis
Method �ATAM� is also developed at SEI �KBK���� �CKK���� In fact�
ATAM is a continuation of the SAAM method described above� Basi�
cally� ATAM de�nes four phases presentation� investigation and anal�
ysis� Testing� and reporting� In the presentation phase di�erent stake�
holders present their knowledge in the evaluation group� The evaluation
leader presents the ATAM method� the project leader presents the busi�
ness goals that motivates the development e�ort and the evaluation� the
architect describes� and motivates the architecture� The architectural
styles� or as they are called in ATAM� the architectural approaches are
identi�ed in the investigation and analysis phase� Moreover� the quality
properties that are important for the system is identi�ed and speci�ed
down to the level of scenarios with their individual importance� This is
presented in a utility tree� The architecture is then analyzed based on the
high�priority scenarios in the utility tree� The result of this activity is
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the architectural risks� the non�risks� the sensitivity points� and the trade�
o�s� Risks are potentially problematic architectural solutions�decisions�
whereas non�risks are good architectural decisions� Sensitivity points are
properties of one or more components� or component relationships� that
are crucial for achieving a particular quality property� They indicate that
changing such a property can potentially endanger the architecture� A
tradeo� is a relation between two or more quality properties such that a
raised level of one� results in a lower level of another� Hence a tradeo�
is a sensitivity point that a�ects several quality properties� For instance�
a system may have requirements on performance and security� Raising
the level of encryption will give a more secure system� but as it requires
more computation� i�e processing time� the performance will go down�
In the testing phase are three di�erent classes of scenarios identi�ed and
analyzed use case scenarios that express in which way the system is
to be used� growth scenarios that represent ways in which the architec�
ture is expected to change� e�g� modi�cations� porting to a new OS�
and exploratory scenarios that represent extreme forms of growth� i�e�
dramatic new requirements� The last phase in ATAM� i�e� reporting� ba�
sically presents the results� i�e� the identi�ed approaches� the scenarios�
the utility tree� risks� non�risks� sensitivity points� and tradeo�s�

Architecture�Level Modi�ability Analysis �ALMA� is developed at
the department of Software Engineering and Computer Science at Blekinge
Institute of Technology �Ben���� ALMA consists of �ve steps goal se�
lection� software architecture description� scenario elicitation� scenario
evaluation� and interpretation� The goal selection activity establishes
the goal of the analysis� ALMA can target the following goals

� Maintenance prediction� i�e� the e�ort required to modify the sys�
tem to accommodate future changes

� Risk assessment� i�e� identifying the type of changes for which the
architecture is in�exible

� Software architecture selection� i�e� comparing two candidate ar�
chitecture with respect to modi�ability�

In the software architecture description step the architecture is de�
scribed in the level of details required by the analysis� Typically an ADL
should be used� Scenario elicitation is the process of �nding and select�
ing the change scenarios that are to be used in the evaluation step of
ALMA� The scenario evaluation step identi�es the components a�ected
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by the change scenarios� the impact on those components� and the ripple
e�ect� Finally� the interpretation step aims at drawing conclusions from�
and interpret the results from the evaluation step�

��	 Architectural design

Architectural analysis can� and should� be used as guidance when design�
ing a software system� A software system can be implemented in several
ways� all having di�erent architectural solutions� By using architectural
analysis� the architecture that ful�lls the requirements best can be cho�
sen� The work�ow for designing architectures for a system is shown in
Figure ����

 

Develop candidate 
architectures 

Develop scenarios 

Analyze the candidate 
architectures 

Evaluate the results 
and choose the best 
candidate 

Tune the architecture 

Figure ��� Architecture development and analysis process�

The �rst phase when developing a software system is to develop can�
didate architectures and a set of scenarios that re�ects the requirements
on the system� The number of scenarios to develop is related to the
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generation of ordinary test cases� Eventually� a state is reached where
the added value of a new scenario is less then the e�ort required to de�
velop the scenario itself� When this point in time is reached the scenario
generation should stop�

Now we have the candidate architecture and a set of scenarios� By ex�
ecuting the scenarios on the architecture a table with the desired quality
attributes can be constructed� In the table� all requirements are marked
with plus signs and minus signs to represent how well the architecture
ful�lls the requirements� If the result from the analysis is satisfactory�
the next phase is to do low�level design and implementation� However� if
the analysis results are not satisfactory� an alternative architecture must
be developed� or the best candidate must be modi�ed or tuned� It is
important that exactly the same scenarios are executed all over again on
the architecture in order to verify the new� or changed architecture� The
work of �nding a su�cient architecture is highly iterative� meaning that
the architecture can evolve by small steps until a reasonable solution is
found� Consequently� changes suggested by the analysis may result in
a complete redesign using a completely di�erent architectural style or
minor modi�cations in subsystems only�

The table produced in the analysis phase containing all the analyzed
quality properties constitutes the input to a tradeo� analysis� In a trade�
o� analysis the competing architectures are compared or the result from a
re�ned architectural solution is compared with the result from the anal�
ysis of the preceding generation of the architecture� The objective of
the tradeo� analysis is to choose the architectural alternative that best
complies with the ranking among the quality properties�

����� Architectural analysis
 An example

Let us revisit the example in Section ��	�� in order to give an example of
how to analyze and transform an architecture in order to better comply
with its considered requirements�

Besides the already mentioned temporal correctness� the system should
be easy to modify to run on di�erent platforms �real�time operating sys�
tem and hardware�� i�e� portability is an important issue�

Verifying the temporal behavior requires the temporal aspect of the
architecture� For this particular application� the period time� the esti�
mated WCET� and the deadlines for the three tasks is shown in Table
��	�

The temporal behavior is� in this case� veri�ed using Fixed Priority
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Task Period time �T� WCET �C� Deadline �D�

Sampling task � ms 
� �s �� �s

Control task � ms ��� �s � ms

Actuate task � ms 
� �s � ms

Table ��	 The temporal view

Analysis �FPA�� where the worst case response time for every tasks is
calculated� If the response times are less than the speci�ed deadlines
for all tasks� the system is schedulable �JP���� FPA requires priorities
to be assigned to the tasks� In this particular example� priorities are
assigned according to the rate monotonic algorithm where the task with
the shortest period gets highest priority �LL���� Rate monotonic gives
the sampling task high priority� the control task medium priority and the
actuating task low priority� The FPA formula is recursive and calculates
the worst case response time with respect to interference of the execution
of tasks with higher priorities� The recursion stops when two subsequent
calculations result in the same response time� i�e� a �x�point is reached�
The formula is shown below

Rn��
i � Ci �

X
�j�hp�i�

�
Rn
i

Tj

�
Cj �����

where �j � hp�i� denotes all tasks j with higher priority than task i�

The response times for the sampling task is 
� �s as no other task
interferes with it since it has the highest priority� The response time for
the control task is �
� �s� Finally� the actuate task has a response time
of ��� �s� If the calculated response times are compared to the speci�ed
deadlines� it could easily be veri�ed that the system is schedulable as the
response times for all tasks are less than corresponding deadlines�

To assess portability� scenarios can be used� For the matter of simplic�
ity� only one scenario is used in this example� namely Move the system
to another platform� The idea is to execute this scenario on the pro�
posed software architecture to estimate the number of component being
subjects to changes� As portability is the issue� the number of a�ected
components should be held to a minimum� In the architecture suggested
in Figure ��	� all the components interact with the real�time operating
system� Consequently� there are a lot of platform speci�c system calls
embedded in each and every component� giving poor portability since
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every component has to be changed as a result of a changed platform�
To increase the portability� architectural transformations have to be per�
formed� i�e� the software architecture has to be re�ned� One possible
transformation is to introduce a component that acts as an abstraction
layer between the all components and the real�time operating system�
This transformation is shown in Figure �����

 
Sampling 
component 

Control 
component 

Actuate 
component 

Proxy 

RTOS 

Figure ���� The logical view of the architecture after the proposed trans�
formation

The abstraction layer component provides the tasks with all necessary
services in order for them to perform their intended tasks� while hiding
the actual system calls� To verify the new architecture according to the
requirements� the scenario has to be re�executed� Now the abstraction
layer component is the only one a�ected by a changed platform� i�e� a
maximal portability is achieved� However� the portability is achieved
at the expense of an increased overhead for system calls� Therefore�
the worst�case execution times for the individual task components must
be re�estimated and the FPA must be done all over again to verify the
temporal behavior of the system� The phenomena that quality properties
might a�ect each other in a negative manner� is referred to as tradeo��

��
 Discussion

Software architecture is part of what generally is referred to as software
engineering� Software engineering also includes a lot of other techniques



��� Discussion 



like software metrics� formal methods� test methodologies� etc� Thus�
software engineering is an umbrella for all techniques and methods needed
to establish a �science of engineering� practice in the software commu�
nity� Software architectures are an important part of software engineering
since it deals with high�level modeling and evaluation� The software ar�
chitecture community is still very young� but the recent interests from
the industry have launched a lot of research activities in academia� Es�
pecially relevant are the software architecture analysis methods as the
analysis provides the information for early design decisions�

Tool support for architectural development and evaluation is poor�
It is possible to formalize knowledge in frameworks� guiding the designer
in both architectural transformations and in the tradeo� analysis� There
exist tools for some of the analyses� for instance tools for verifying the
temporal behavior in a real�time system �SEG���� �WAN����� but these
tools are still islands in the ocean called software engineering� We need
to discover� or build new islands and connect them to each other in
order to get complete suits of tools� supporting the complete software
development� and maintenance process� In mature engineering disci�
plines� such tool support is taken for granted� Software engineering tools
will probably appear as the software community gets more mature� it is
still very young� at least when compared to other traditional engineering
disciplines�
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Chapter �

Product line architectures

In this chapter we will present software product lines in general by in�
troducing current research and terminology� Moreover� we will discuss
matters that are of particular importance when applying a product line
approach to real�time systems� Non�technical issues such as business
strategies and organization are also very important issues that are brie�y
discussed�

��� Introduction

Today the trend in computer�based products� such as cars and mobile
phones� is shorter and shorter life�cycles� As a consequence� time spent
on development of new products or new versions of a product must be
reduced� One solution to this emerging problem is to reuse code and
architectural solutions within a product family� Besides shortening de�
velopment time� properly handled reuse will also improve the reliability
since code is executed for longer time and in di�erent contexts �FP����

Basically� the product line approach is about maintaining and devel�
oping an architecture and a set of reusable software components that is
common to a set of related products� By related products we mean a set
of product that share a considerable number of features� and variants of
the same features�

The notion of platforms also �ourishes in the community� Platforms
has been used synonymously with product line architectures� but it can
also mean a subsystem that is used in several products which does not
necessarily provide a particular architecture� A typical example of such
a platform is a communication platform that provides the mechanisms
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dual band wap tetris mp� modem Triple band

phone A X X

phone B X X X

phone C X X X X

Table ��� A feature matrix for a product line of imaginary cellular
phones

for data communication which is utilized by products that are developed
in isolation� Henceforth we will distinguish platforms from product line
architectures�

We say that features are the highest level of functional decomposition
of a software system� A feature is typically a function as being grasped
by an user of a system� or other stakeholders of the system� In general� a
feature collects a set of functional requirements and quality requirements
that together implement the feature� Quality requirements on features
are sometimes referred to as non�functional requirements� Examples of
quality requirements on a feature are reliability� availability� temporal
correctness� etc� An example of a feature taken from the automotive
industry is an automatic cruise control� This feature involves several
requirements regarding turning the cruise control on and o�� automatic
control performance� etc� Furthermore� there are requirements concern�
ing availability and timeliness�

There may also be a set of product�speci�c features� The software
reuse in the product line approach is typically within the scope of an
organization� or potentially� within a domain� In �Bos���� the author
suggest that a product line could be described in terms of the products
and their features� Such a description is called a feature matrix� In Table
��� the feature matrix of an imaginary product line of cellular telephones
is displayed� Typically a product line for consumer products such as
telephones� have products ranging from a low�end product to a high�end
version�

��� Software product line architectures

A software product line architecture is concerned with a set of explic�
itly allowed variations� whereas with a conventional architecture almost
any variation will do as long as the single system�s behavioral and qual�
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ity goals are met� A product line architecture is concerned with which
variations that are instantiated� since an instance is a product� Thus�
describing the allowable variations is part of a product line architecture�s
responsibility� as is providing built�in mechanisms for achieving them�
Identifying the points of variation is not a trivial task� Not only must
the variation points support the variations in the current product line�
ideally they should also support features planned for the future and even
unknown future features� Hence� designing a good product line archi�
tecture and reusable components requires engineers with great domain
knowledge and experiences from developing similar systems�

We can view the creation of a product based on the product line
approach as consisting of three di�erent phases the product line archi�
tecture phase� the product architecture phase� and the product instance
phase� The phases are depicted in Figure ����

 

Product Line Architecture 

Product Architecture 

Product 

Architectural pruning 

Apply other variation 
techniques e.g. 
parameterization 

Figure ��� The three di�erent phases of creating a product in the product
line approach�

However� product line architecture and the product architecture can
be identical� Hence the creation of a product may happen in two phases
only�

Product lines introduce other pressures on the architecture that have
to do with the variability that it must provide� Di�erent products in
a product line may have di�erent quality property requirements� For
example� one product may be highly secure but slow� whereas another
may be fast but in�secure� The architecture must be �exible enough to
support both� Moreover� products in a product line exist simultaneously
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and may vary in terms of their behavior� quality attributes� platform�
network� or in many other ways�

Support for variation can take many forms� Variation can be accom�
plished by introducing build�time parameters to a component� subsystem�
or collection of subsystems whereby a product is con�gured by setting
a collection of values� This type of variation assumes that all variants
have been envisioned� a priori� and accommodated in the existing code�
Conceptually� each combination�s parameter values should correspond to
a di�erent product in the product line�s scope� However� some parameter
combinations may be disallowed as semantically meaningless or outside
the scope� Conversely� some products in the scope may be achievable
only by a means other than setting parameter� The following list in�
cludes some of the most usual mechanisms for achieving variability

� Architectural pruning� i�e� removing super�uous parts of the archi�
tecture and extending the architecture with product speci�c com�
ponents�

� inheritance can be used when a method needs to be implemented
di�erently for each product in the product line

� extensions and extension points used when parts of a component
can be augmented with additional behavior or functionality

� parameterization can be used when a component�s behavior can be
characterized abstractly by a placeholder which is then de�ned at
build�time�

� con�guration languages can be used to de�ne the build�time struc�
ture of a system� including selecting �or de�selecting� components

� code generation can be used when there is a higher level language
that can be used to de�ne a component�s desired properties

In Chapter 	 our component model is described� It provides a set
of variation mechanisms as well as means for predicting the temporal
behavior and the correctness of the con�guration of an assembly of such
components�

��� Software product lines for real�time systems

In this section we describe how to employ the concept of product line
to embedded real�time systems� The use of the product line concept
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in the context of control systems for construction equipment vehicles is
also presented� The main objective when designing a PLA is to make
it �exible enough to incorporate and support all products de�ned as
being part of the product line� Moreover� the design activity involves
some degree of clairvoyance� since potential future products and features
have to be taken into consideration as well� Developing a PLA is indeed
an investment for the future� thus� �exible enough also embraces future
requirements�

When instantiating a product� the PLA is tailored via di�erent tech�
niques such as parameterization� and by populating the architecture with
components� The PLA approach has been used for soft real�time systems
�Bos���� where the timeliness is of less� or no� importance compared to
real�time systems in general� However� in systems where the temporal
correctness is of vital importance for the reliability of the product� the
temporal requirements and the temporal behavior must be included in
the PLA� These temporal requirements must not be violated when in�
stances of products are created�

We propose a set of methods that can be utilized in a design process
suitable for developing product lines for real�time systems� Ideally� the
process starts in a requirement�capturing phase where the requirements
from all products in the line are collected� Commonalities in functional�
and temporal requirements among the products will be considered when
the actual PLA is designed� The PLA is then analyzed� The objective of
analyzing the PLA is to gain con�dence in that the PLA is �exible enough
to be a base on which all products can be realized without violating any
temporal constraints�

To enable the use of a PLA and derivation of product architectures
from the PLA we need an adequate ADL� The ADL should have a precise
syntax and semantics to enable architectural analysis� including analysis
of� for instance� performance� maintainability� �exibility� and temporal
properties� Moreover� the ADL must facilitate constructions for mod�
eling of �exible components� The �exibility mechanisms speci�ed on
components constitutes the variation points that are used when product
architectures are derived from the PLA� i�e� when the PLA is tailored
for a particular product

David Stewart et al� have addressed the area of reusable compo�
nents for embedded systems and how to create a framework for building
systems based on components �SVK����Ste���� They have introduced a
component model that provides �exibility in component behavior� hence
reusability� through parameterization� In this paper� component reuse is
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Figure ��� The process of developing a product line based on a product
line architecture

accomplished by using additional techniques� not only through parame�
terization�

Moreover� we will discuss brie�y the development process in which a
product line architecture for embedded real�time products is constructed�
The process is iterative and includes architectural analysis of properties
that are of vital importance for a product line architecture� e�g� �exibility�
Moreover� the derivation of products from a product line architecture is
dealt with� The design process proposed in this paper is shown in Figure
���� where the process is divided into requirements capturing� product
line architecture development� and product development�
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����� Developing a product line architecture

Developing a product line architecture is done either in an evolutionary
or revolutionary way �Bos���� The evolutionary approach to product line
architecture design is conducted by a generalization of existing products�
whereas in the revolutionary approach� the common architecture is devel�
oped� rather than extracted from existing implementations� Independent
of whether the evolutionary or the revolutionary approach is taken� the
�rst step when developing a PLA is to capture the requirements for every
product in the product line� One way to do this is to organize and group
required functionality into features�

Scoping is performed on two distinct levels� product scoping and fea�
ture scoping� It is i vital importance that the products in a product line
have su�cient level of resemblance� If the products are too sprawling in
terms of functionality and behavior� the resulting product line architec�
ture will become to general� Hence� in order to instantiate a product a
majority of the components has to uniquely con�gured� i�e� very little is
reused as it is� This is especially important when introducing a product
line approach in an organization where the history of producing prod�
ucts is rather long� If this is the the case� experienced engineers tend to
consider too many di�erent systems when designing the architecture and
the software components�

Once the product scope has been decided� the features in these prod�
ucts have to identi�ed� As described in Chapter �� features of a product
line can be collected in a feature matrix� However� the feature matrix
shown in Table ��� speci�es the products and the features only� In em�
bedded real�time systems are resources� e�g� CPU� memory� communica�
tion busses� limited� It is important that features do not over�utilize the
resources available in the product line system architecture� Hence� we
extend the feature matrix to also specify resource utilization per feature�
In Figure ��� the multi�dimensional nature of a feature matrix for real�
time systems is shown� We refer to such a matrix as the resource�feature
matrix� The exact number of dimensions is decided by the resources in
the system architecture� For instance� if it is a single node system� there
is no need for specifying a communication bus utilization�

The features and their explicit� and implicit temporal requirements�
which contributes to the resource utilization� are identi�ed given the
system�s requirements speci�cation� An explicit temporal requirement
is a clearly expressed requirement such as an end�to�end deadline� An
implicit temporal requirement is derived from a functional requirement
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Figure ��� The multi�dimensional resource�feature matrix

or the controlled environment� For example� an accuracy requirement
for a robot must be translated to timing requirements for the services
involved and thus the accuracy requirement is implicit�

The utilization of any resource in a software system must not exceed
��� percent in order to be feasible� The resource utilization is� however�
a very coarse speci�cation� A CPU utilization less than ��� percent does
not guarantee a temporal correct system� By temporal correct we mean
that all temporal requirements are complied with� Examples of temporal
requirements are deadlines the must be kept� jitter constraints� or latency
requirements�

Consequently� the temporal correctness of the system must also be
veri�ed separately when more detailed information about the temporal
behavior is available� There exist an abundance of methods for verifying
the temporal correctness of a real�time system�as has been discussed in
Section ��
��� All of them makes di�erent assumptions about the task
model provided by the infrastructure� i�e� the real�time operating system�
Consequently� the selected method for schedulability analysis will vary�

Roughly� we divide the speci�cation of a product line architecture
into three di�erent views that provide di�erent level of abstractions� The
views are the feature view� the component view� and the implementation
view� In Figure ��	� we illustrate the di�erent views of a speci�cation as
well as how information �ows between those level of abstractions during
the life�cycle of a product�line�

The source code constitutes the implementation view of the functional
domain� In the temporal domain the implementation view is provided by
the temporal attributes available in the infrastructure� Just as the func�
tional requirements must be transformed into source code� the temporal
requirements must be transformed into the temporal attributes of the
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Figure ��	 The di�erent level of abstractions

chosen real�time operating system� Typical examples of such temporal
attributes are� period times� and priority� A temporal requirement such
as a speci�c deadline must be ful�lled by assigning� e�g� period times
and priorities to tasks� The functional implementation also contributes
to the temporal implementation as execution times are determined by
the source code�

The component view provides a decomposition of features into soft�
ware components and tasks� Tasks describes how components are to be
executed� i�e� in the temporal domain� Typically� attributes such as
o�sets� deadlines� period times� etc� is speci�ed here� Synchronization
among tasks� and communication among components is also a part of
this view�

Features are the highest level of functional decomposition in our
framework� A feature must not necessarily correspond to one single
component in the implementation domain� Several components typically
interact in order to exhibit the speci�ed behavior� A component may
also be involved in the implementation of several features� The architec�
tural language for real�time product lines proposed in Section ����� has
support for all three of the level of abstraction discussed here�

A pervading characteristic of modeling real�time systems is that not
only the functional domain has to modeled and analyzed� but also the
temporal domain� On the component level� and the implementation level
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the temporal domain is fairly straight�forward as described above� In the
feature view we specify resource consumption by estimating� or giving an
upper bound� of the computational resources that a feature� at maximum�
can utilize� Such a speci�cation is likely to be inaccurate� Thus feedback
from the component view and the implementation view is important�
Hence� a highly iterative development process is required�

Features are rarely independent from each other� A feature can for
instance depend on other features in order to deliver the desired func�
tionality� Another example of a relation between features is the mutually
exclusive relation� implying that only one of the related features can ap�
pear in the �nal product� If mutually exclusive features must co�exist in
the product� e�ort has to be made to resolve the con�ict� Features in
real�time systems will also exhibit dependencies related to the temporal
domain� For instance� consider the lock�free break feature and the anti�
slid feature in automotive vehicles� Both features need information about
the wheels� velocities� thereby having a shared temporal dependency re�
lated to the freshness of the sensor data� Such relations on features are
speci�ed in a feature graph� The list below unveils some relevant relations
between features

� Depends on� a feature depends on the presence of another feature

� Part�of� a feature is part of another feature

� Mutually exclusive� two feature may not coexist in the same product

� Con�icting� trade�o�s between quality requirements

� Optional� the feature is present in a subset of the product line

The relations among features can be visualized graphically in a feature
graph �Bos���� In ��
� is a feature graph for the imaginary cellular tele�
phone depicted� Note that not only functional dependencies are possible�
For instance� two features may mutually exclude each other because the
available memory in an embedded product is not big enough to encom�
pass both� or the available computational resources can not su�ciently
execute two of the features in the same product�

The feature matrix with resource speci�cation� and the feature graph
constitute the basis for deciding what features to include in the reusable
part of the product line architecture� and what features to consider prod�
uct speci�c� Typically� features that are common among a majority of the
products in the product line are included� i�e� are developed as reusable
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 A feature graph for the imaginary cellular telephone� m de�
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software components� Consequently� the product line architecture may
provide features that are super�uous for a speci�c product� Such features
that are considered product speci�c�

The product line architecture must be �exible enough to incorporate
product speci�c features upon product instantiation� Note that a product
line architecture for real�time systems must provide su�cient �exibility
in the temporal domain as well�

When the scope of the product line has been decided� the features
should be mapped to components that� together with their interrelations�
constitute the actual architecture� This part of the development process
is referred to as functional design� Components can be implemented
in both hardware and software� However� the focus of this thesis is on
software components�

When performing functional design of a PLA� the designer must take
into consideration that features may have di�erent implementations for
di�erent products� Depending on how implementations di�er� the cor�
rect mechanisms for obtaining the desired �exibility must be selected�
In Section ��
� some mechanisms for �exible software solutions are dis�
cussed� For real�time systems we also have to consider �exibility in the
temporal behavior� A typical example of how the temporal requirements
in�uence the functional design is the following� Consider features that
are functionally equivalent between a set of products� If these products
will run on di�erent infrastructures� i�e� operating system and hardware
platform� the functionality may be partitioned among components in dif�
ferent ways to ful�ll the timing requirements� Moreover� in a high�end
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product we can partition a feature in such a way that it will be easy to
maintain while in a low�end product we have to make an architecture that
is focused on performance to be able to ful�ll the timing requirements
given the limited resources�

After the initial design activity� the product line architecture must
be analyzed in order to secure that the architecture is �exible enough to
facilitate all products in the product line yet temporal correct� If not suf�
�ciently �exible the architecture must be transformed� Thus� iterations
between analysis and design are required� Since our focus is on real�time
systems we would like to gain con�dence in that the architecture is suf�
�ciently �exible to be used in all products in the product line without
violating the temporal constraints�

����� Product line architectural analysis

In this section we will focus on early analysis of temporal properties of an
architecture as well as �exibility with respect to temporal correctness� i�e�
the architecture must be �exible enough and still be temporal correct�
Discovering that the real�time requirements cannot be ful�lled in a late
stage of a product development often implies a delay in the release of
the product on the market� Furthermore� such problems are often han�
dled by ad�hoc optimizations� which in turn decreases maintainability
and reusability� Positive experiences from making early analysis of tem�
poral behavior using architectural descriptions and estimates of temporal
properties have been reported in �NSG���� where a new control system
for construction equipment was developed by using a formal temporal
model� As the temporal attributes were established early for every task
in the system� e�g� execution time budget� period time� the integration
of the complete system was very smooth�

By analyzing the temporal behavior� for each product� based on the
product line architecture and the product speci�c features� we can extract
traditional real�time measurements such as system utilization� response
time for each feature� distribution of response times for a speci�c feature�
and jitter information for features� However� this information is not only
used for schedulability analysis� it is also used for analyzing the �exibility
of the PLA with respect to implementation constraints�

Moreover� robustness with respect to internal errors and erroneous
assumptions about the environment needs to be considered� Typical
analysis is based on scenarios� Examples include

� What will happen if a speci�c component overruns its time budget�
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� What will happen if events from the environment are generated in
a higher frequency than assumed�

To facilitate temporal analysis on the level of abstraction provided
by the architecture� we must have information about the temporal be�
havior of the components that de�ne the product line architecture� Such
information can in principle be attained in two di�erent ways� namely
by earlier implementations of the same or similar functions or by intelli�
gent guesses of the temporal attributes for completely new components�
The execution time for a component is normally measured on the im�
plemented component while the period time for a component is derived
from the requirements� However� if we do not know the execution time
for a component an estimate has to be made� This estimate is later used
as an additional implementation requirement for the component�

The closer we get to the architecture for the speci�c products� the
more con�dence we get in the predictions� Depending on the con�dence
in the temporal information� di�erent types of analysis can be performed�
such as

� Simulation� which can be used for exploring the system behavior
when the con�dence for the di�erent parameters are low or when
the system will operate in dynamic environment where the load is
hard to estimate �LNP��� �WAN�����

� Mathematical analysis which can be used when the product line ar�
chitecture or parts of it has estimates of execution times� temporal
properties such as period time� and the synchronization between
the components speci�ed� Mathematical analysis that can be used
includes �xed priority scheduling �ABD��
��Bur��� and pre�run�
time scheduling theory �XP���� Especially di�erent kinds of sensi�
tivity analysis are of interest to predict the remaining capacity for
product speci�c features �PDB����

Based on the result of the temporal analysis of the products� di�er�
ent actions can be taken� If the analysis indicates that the requirements
are ful�lled then the product line architecture is accepted� On the other
hand� if the analysis indicates that the requirements cannot be ful�lled
we have several options� As a result� the architectural has to be trans�
formed� Typically� the temporal attributes for a particular component is
changed� but it may also be necessary to reallocate features� i�e� mov�
ing them� completely or partially� to di�erent CPUs� Transformations of
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an architecture for embedded real�time product�lines can be any of the
following

� Modify the derived temporal attributes� e�g�� deadline and period
time� There are many ways to derive temporal attributes for the
product line from the requirements� which may give di�erent anal�
ysis results�

� tighten or relaxing resource speci�cations

� transform the architecture� For example� an architecture that is de�
signed for portability could experience a trade�o� situation� where
we have to decrease the portability to gain real�time performance�

� change the hardware architecture� e�g� add more memory

� renegotiate the requirements� If none of the options above are pos�
sible we have to renegotiate the requirements with the stakeholders�

Following any transformation is a re�analysis of all products� We refer
to this activity as regression�analysis� Regression�analysis is important
in order to maintain the �exibility in the architecture�

From the perspective of adding new features to future versions of a
product� we would like to have as much degree of freedom as possible
with respect to system resources� Thus� we can strengthen the notion of
�exible enough to be as �exible as possible� Consequently� we want the
system�s speci�cation to be as tight as possible� i�e� leaving as much slack
as possible on the resources for product�speci�c features�components and
future development and maintenance� Feedback from the test� and veri��
cation phase to the system speci�cation is consequently important� This
ensures a speci�cation that is indeed consistent with its implementation
and that potential over�estimations made initially will be reduced� How�
ever� note that iteratively feeding veri�cation results back to the design
model in order to de�ne an as �exible as possible� will delay time�to�
market �TTM�� and be more expensive than to settle with the �rst fea�
sible architecture� Yet another approach to increase the resource slack
available for future features is to increase capacity of the resources� Again
there is a tradeo� between �exibility and the product cost�

When a stable generic architecture is found through subsequent anal�
yses and transformations� the implementation phase can be initiated� Re�
member that the resource utilization speci�ed for every feature must be
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adhered to throughout the implementation� If they are violated the �exi�
bility and the temporal correctness cannot be assured� If it turns out that
the estimations of resource utilizations made in the speci�cation phase
are incorrect or too imprecise� the architecture must be transformed and
regression�analyzed�

����� Product design based on a product line architecture

Requirements for the product architecture have already been addressed
during the construction of the product line architecture� However� at
that point the focus was on the commonality between several products
belonging to the product family� The process of developing a product
focuses on product speci�c requirements and functionality not covered
by the product line architecture� i�e�� the product line architecture must
be tailored to cover the requirements of the product at hand�

The �rst step is to merge the product speci�c features with the fea�
tures provided by the product line architecture consistently� i�e� merging
the product�s and the product line architecture�s feature graphs� In this
process con�icts can occur� e�g� overlapping features� super�uous fea�
tures� temporal discrepancies�

When the feature con�icts have been resolved� the concrete prod�
uct architecture can be derived from the product line architecture� The
derivation involves architecture pruning� Although architectural analysis
has been performed at the product line architectural level� the resulting
product architecture provides more details� Thus we can make a more
detailed analysis of the architecture with respect to� for instance� the
temporal correctness�

The remaining step until we can release the product is to implement
the components that make up the architecture in such a way that the
temporal requirements are ful�lled� This step also includes component
testing� integration� and veri�cation of the integration� which have been
covered elsewhere when considering temporal estimates �NSG�����

��� An example of a successful product line

Volvo Construction Equipment �VCE�� has built a distributed real�time
system to control mainly the automatic gear box� the brakes and the
hydraulic systems in a product line of construction equipment� There
are �ve products in the product line Backhoe loaders� Wheel loaders�
Excavators� Articulated haulers� Motor graders� Each product has �ve
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computer nodes� All the �ve products are di�erent sized construction
equipment vehicles�

The requirements for a new generation product line were brought
to the development department� These requirements were evaluated to
derive the desirable features and their temporal requirements� The con�
struction of the product line architecture was in this case done strictly in
an evolutionary way� There was products and application knowledge al�
ready at the scene� Because of this� the process of extracting the features
was quite painless� The feature matrix did already� to some extent� exist
in the minds of some of the experienced engineers at the development
department� Examples of features in this product line are the control of
brake �uid pressure and automatic shifting of gears� The development
process was essentially equivalent to the process proposed in Figure ����

The mapping of features onto components� and the temporal at�
tributes� is speci�ed in con�guration �les� A con�guration tool uses the
con�guration �les in order to schedule the system and produce con�gu�
ration data for the operating system� An examples of such con�guration
data is time granularity in the system� Moreover� the synchronization and
communication between components are speci�ed in these �les� Thus� the
con�guration �les constitutes the architectural description� In order to
implement components with a correct temporal behavior� time budgets
were estimated� A time budget is a speci�ed maximum time that a com�
ponent can execute to perform its function� The fact that this was done
before the actual code implementation could have been a problem� but
based on experiences from earlier products the estimates turned out to
be quite good�

Each node of the distributed real�time system has separate con�gura�
tion �les and source code �les� These �les� however� are common between
products in the product line� All products have identical hardware and
software architecture and accordingly the con�guration and source code
�les are identical for the products� Hence� the executable for each prod�
uct is identical to its product sisters� This can be done in a relatively
straightforward way since the nodes have identical computer hardware�

The unique behavior of each product is instead de�ned by datasets� A
dataset is a set of parameters that control the program �ow� The program
checks the parameter values and calculates output accordingly� There
could� for instance� be a conditional invocation of a function depending
on a parameter value�

The temporal properties of this PLA would require great e�ort to
test if each product�node should be tested independently of the next�
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We would then have to test all the nodes in all the products and see
that all temporal constraints are intact� By designing the most advanced
system �rst� the tests could be simpli�ed� The most advanced model is
assumed to conform a superset of the functions of all systems� i�e� its
tasks should be the hardest to schedule� Successful testing of the most
advanced model indicates that the simpler models also will perform cor�
rectly time wise� This approach work well since the schedule is assuming
a minimum execution time and a maximum execution time� Any vari�
ations that are within that range will still behave correctly temporally�
In this particular case� the minimum execution time is assumed to be
zero� Hence� if a task is not executed at all� the product is still tempo�
ral correct� However� the execution of tasks may vary within the limits
speci�ed by release times and deadlines if the execution of another task is
excluded� i�e� jitter� If the jitter requirement is not explicitly speci�ed in
the temporal requirements the implementation in the temporal domain�
i�e� the schedule� could exhibit undesirable behavior�

Note that this does not cover the testing of the systems functional�
ity� Functionality was tested separately� In this respect� the mentioned
method might not be perfect� The method is in�exible when we want
to add products that include more functionality than the most advanced
product in the product line�

Designing the system to run the same executable for di�erent prod�
ucts could� however� also be too costly if we have a wider span of function�
ality between low� and high�end products� The low�end product would
have to include hardware capable of executing the high�end program�
even if most of the functionality is disabled� Given enough separation
between low� and high�end products� this could prove costly in terms
of memory� I�O and CPU� This could also be too expensive in product
lines where large amounts of units will be produced or even in small se�
ries products where system resources are scarce� For instance� mobile
phones are large series products where it would prove too expensive to
include even the least unnecessary hardware� For a product line archi�
tecture of quite similar products� these extra resources would probably
be acceptable�

The product line architecture at VCE can be illustrated by the left�
most �gure in Figure ���� All product architectures are derived within
the boundaries that the PLA de�ne� This gives the advantages� discussed
above� when testing the temporal behavior of the products� On the other
hand� we are somewhat limited in developing new products� The prod�
uct line architecture must be changed altogether if a product with more
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Figure ��� The relation between the functional sets of PLA and PA
respectively

features is to be developed�

The ADL used in this project only allows parameter�based deriva�
tion of product architectures� This requires a very homogeneous product
line� In Section ��
� we will discuss desirable properties of an ADL for
describing product line architectures�

��� Mechanisms providing �exible architectures

We need mechanisms� apart from parameterization� to obtain �exible
architectures� Consequently� we need a design language that supports
�exibility in component behavior� as well as �exibility in the systems
architecture� We will refer to �exibility as optionability and variabil�
ity� Optionability is the absence or presence of functionality� whereas
variability is the possible variation in functionality� In real�time systems�
there is also a need for variation of the temporal behavior� e�g� the period
time of a control�loop might vary between products in the same line�

An ADL for product line architectures should not only have language
primitives necessary for describing the structure of a software system�
Such a language must also restrict� and guide the process in which an
actual product is instantiated� to make sure that the product line archi�
tecture is not corrupted during implementation� Consequently� the prim�
itives that describe the functional� and temporal variations must have a
well�de�ned semantics� In Section ��
�� we propose language primitives
needed for an architectural description language in order to describe vari�
ability and optionability in architectures for real�time systems�
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Figure ��� The data interface and the control interface

����� Language primitives for variability and optionability

In this section� language primitives supporting the speci�cation of vari�
ability and optionability for product lines architectures for real�time sys�
tem is discussed� The primitives that will be discussed are components�
interfaces� and tasks�

A component is a computational unit having a data interface� a con�
trol interface� and a parameterization interface� Moreover� several com�
ponents can be composed in a composite component� The interface of
a component should be a separate language primitive so a speci�c in�
terface can be used for di�erent components as long as each component
implementing the interface conforms to it�

The data interface of a component represents the data��ow to� and
from the component and the control interface represents the control��ow
�see Figure �����

The control �ow is de�ned by associating one or more tasks to a
component� A task provides the thread of execution of a component�
Further� one task can control several components� which is bene�cial
when for example two components should be executed serially� and sev�
eral tasks can control one composite component which includes several
parallel sub�components� A task also de�nes the temporal behavior of a
component and can be either periodic or aperiodic�

The temporal parameters in the control interface are of two kinds�
the ones derived from the requirements such as deadline and release time
of the task controlling the component� and the execution time of the
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components controlled by the task� However� the execution time of a
component has to be speci�ed for the component implementing the func�
tionality and for a speci�c hardware platform� Such speci�cation can
either be based on real assessments or by intelligent guesses� as discussed
earlier� In the latter case an intelligent guess becomes an implementation
requirement of the component�

Furthermore� speci�cation of synchronization can be achieved by us�
ing semaphores for mutual exclusion relationship between di�erent com�
ponents and signals can be used to trigger the execution of another com�
ponent�

In the control interface of a composite component the temporal pa�
rameters of each composed component can be altered� As an example
consider an interface for a multi�rate feedback controller component� com�
posed by a sampler component� a controller component� and an actuator
component� Such an interface can specify period times for each of the
di�erent sub�components as well as control jitter constraints�

The parameterization interface speci�es the parameters that provide
functional variation in pre�implemented software components� Our com�
ponent model is described in more details in Chapter 	�

When de�ning an interface for a component that is not yet imple�
mented� and for which we suspect that the implementation can include
several sub�components� we can specify an utilization bound for each
platform it shall run on� The utilization can be speci�ed for any existing
resource� e�g� CPU� communication busses� memory�

Our component model which was developed in order to provide the
�exibility mechanisms discussed here� yet provide analyzability� is pre�
sented in Chapter 	�

����� Variability

Product line architectures for real�time systems can be varied function�
ally and temporally� Variations in component behavior and the systems
architecture itself constitute the functional variation� whereas variation
in the temporal behavior is related to tasks and their temporal attributes�

We have identi�ed three possible techniques for obtaining variability
of components� Basically� the techniques describe how interfaces and
implementations alters a components behavior between products

� The same interface� but di�erent implementation

� Di�erent interface and implementation
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� The same interface and the implementation is varied by parame�
terization

In order to describe the techniques listed above� we use the language
primitives discussed in Section ��
��� i�e� components and their di�erent
interfaces� To model a construction having the same interface but di�er�
ent implementations� we use the interface language primitive� Thus� in
the architectural description only the interfaces are present� Each prod�
uct instance of the architecture then has to implement the behavior by
providing one or more components that comply with the given interface
description� Hence� the components have to implement that particular
interface�

If parts of the interface� as well as the implementation of the interface
are di�erent between products in the product line� we cannot describe
this with the interface language primitive� For this purpose� we introduce
a language primitive called abstract component� An abstract component
indicates that the implementation of the component is tailored for each
product� Note that although the component is abstract� several products�
but not all� may share the same implementation of it�

The last identi�ed technique for obtaining variation in components
is parameterization� Here the same implementation is used throughout
the complete product line� but the components� behavior is controlled
by parameters� Consequently� the implementation must take all possible
behaviors into account when the component is designed� Di�erent be�
haviors does not necessarily correspond to di�erent control��ow in the
implementation� it can also be related to constants used in the calcu�
lations� For instance� a PID controller component could be provided
with the proportional gain� the integration time� and the derivative time
constants upon instantiation�

When the systems architecture is varied between product instances�
the product�line architecture describes how the system is to be organized�
As an example� consider a �re�alarm system where the number of smoke
detectors varies depending on the size of the building in which the sys�
tem resides� The smoke detectors in a product�line architecture for the
�re�alarm system are described as a multiple component� i�e� the exact
number of smoke detectors is decided upon instantiation of the product�
In Figure ���� the sensor is a multiple component that represents one� up
to n instances connected to the control component�

As discussed in the introduction of this chapter� real�time systems
can also be varied through their temporal behavior� The control inter�
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sensor control
1:n 1

Figure ��� A Multiple component

face of components provides this variability� By changing the tasks that
control a component through the control interface� the temporal behav�
ior of that component is varied� For instance� the execution strategy
and temporal attributes such as the period time can be altered� If such
changes are made to a task� the temporal correctness of the system must
be re�veri�ed�

����� Optionability

Optionability is concerned with the absence or the presence of functional�
ity in a system� We de�ne components to be the smallest software entity
subject to optionability� i�e� we can only add or remove complete compo�
nents� Components in our description language that� for some products
in the line� can be removed have a property called optional� The removal
of a component could result in partial use of an interface in the product�
line architecture� As a consequence of adding or removing components�
the temporal domain is a�ected� For instance� tasks are removed� added�
etc�

��� An example

In this section a small example is presented in order to make our discus�
sion more concrete� Keep in mind that although we are targeting small�
embedded systems� they are substantially larger and more complex than
this small example�

The example system is a PID control application� The product�line
currently consists of two di�erent products� one cheap low�end product
with an electrical sensor� and one high�end product featuring an optical
sensor� The feature matrix is depicted in Table ����
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electrical sensor optical sensor PID Signal

Low�end product X X X

High�end product X X X

Table ��� The feature graph for our control product�line

Furthermore� we have a non�functional requirement on the PID con�
troller that it must be reusable in several other applications where the
controlled system�s dynamics might be di�erent� The process values read
by the sensor must be processed� Thus we need a signal�process compo�
nent that� according to the requirements� should base its computations
on the ten latest sampled process values� Consequently� the sampling
component will have a frequency ten times the signal�process� and the
in�port to the signal�process must exhibit a bu�ered semantics� We must
take into consideration that the sampling part of our system must be dif�
ferently implemented for every product� Hence� the temporal constraints
such as frequency and deadline must be relaxed so that the execution
time of the di�erent services can ful�ll them�

Figure ��� shows the product�line architecture that ful�lls all require�
ments� In order to support both products� the sampling component is
speci�ed as abstract� Thus� the low�end product must implement its own
speci�c electrical senor sampling and the high�end must� consequently�
implement an optical ditto� The in�port on the signal�process component
has been speci�ed as a bu�er of size �
� which we suspect to be large
enough to also support future possible uses� The PID component pro�
vides �exibility through parameterization of the control constants� The
sensor component is also parameterized� The ratio between sampling
and signal processing is set through the parameter S�S� This since the
sampling component is responsible for executing the signal process com�
ponent via a signal to task E on every S�S invocation� The number of
invocations of the sampling component is kept track of in the state of the
aggregated sensor component� Keep in mind that Figure ��� shows the
product line architecture� In order to get an architecture for each and
every product� we must derive the product architecture from the product
line architecture �see Figure ����� In this particular case no architectural
pruning is necessary� However� we have to utilize the speci�ed points
of variation in order to get a product� In this example we have to im�
plement the sampling component and choose appropriate values for the
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Figure ��� The example product�line architecture

PID parameters� Note that the di�erent implementations of the sampling
components may be reused in � e�g� a prospective new future product�

Finally the designed product�line architecture must be analyzed in
order to verify� for instance� that the di�erent products indeed can be
implemented� Thus the architecture is �exible enough� Such an analysis
will also include the veri�cation of the temporal correctness� Hence�
verifying the temporal �exibility�

��	 Organization process and business

The product line architecture and the software components are� however�
only two of the aspect of a product line approach� The software archi�
tecture is one strategy that has to be de�ned when moving towards a
product line approach� However� we need a collection of strategies to
successfully implement a product line� Issues that concerns organization
of the development unit� processes� management education� and business
strategies are equally important in order to success with the product line
approach�

From the organizational point of view several implementations have
been studied with respect to software reuse in �Faf�	�� It is important
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that strategies for the responsible of the reusable assets is established�
In the list below some of the most crucial questions are listed

� who owns the architecture�

� who is responsible for developing reusable assets�

� how is the reusable software development �nanced�

� what is the business relation between producers and consumer of
in�house developed reusable software�

Ownership and responsibility are related issues� Responsibility of
reusable architectures and software components is crucial in order to
keep the architecture from degenerating� A person� a group of people�
or a department have to be appointed as the ones taking all decisions
regarding changes in the architecture and whether or not a component
should be incorporated into the the reusable assets� Typically� but not
necessarily� the set of reusable component grows as new features are
developed and implemented�

It is also a well known fact that it is more cumbersome and expen�
sive to develop reusable software than speci�c single product solutions�
Studies have shown that producing a reusable component ranges from
approximately ��� to 	�� percent of the cost of creating a non�reusable
version� and integration cost ranges from approximately �� to �
 per�
cent of the cost of creating a non�reusable version� The actual cost is
dependent on the complexity of the implementation and the complexity
of reusing it in an application �Fav����Mrv����

Certainly� no customer is willing pay the extra cost of developing
reusable and generic software as no extra value for him�her is added�
It has to be accepted on the manager level that the extra cost is well
invested money that will pay back after a number of reuses� A customer
should not be a�ected economically by the adoption of the product line
approach� but rather the opposite� Nevertheless� customers may be af�
fected� depending on how they are used to purchase systems� since the
absolute functionality and behavior will be somewhat restricted to what
the product line architecture can o�er� The impact is related to the type
of software system he�she is buying�

We classify di�erent software based product along an axis ranging
from pure a per customer based development to a pure consumer product
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developer� illustrated in Figure ����� Organizations that have custom�
based development produce an unique instance of a product for a major�
ity of their customers� e�g� trains� or systems for control and supervision
of power distribution� Moving along the axis we have products such
as industrial robots which are� to a large extent� produced as consumer
products� A company produces a �xed set of robot models� e�g� di�erent
sizes� and the customer themselves customize them as they program the
movement of the robots on their own� However� a large customer can
require a speci�c feature which is included on a customer basis in order
to get share of the market even though this is not the way business is
done in the general case�

The car domain is to be considered as consumer products but with
a speci�c set of optional features which is build upon customer request�
Typical examples of such options are automatic climate control� and
navigation system� The product variation is more of optionality than
variations in the behavior of common features�

Pure consumer products are typically presented as a product line with
cheaper low�end models and more expensive high�end models� Typically
the variations are in the set of provided features� However� the customers
themselves can not decide the exact con�guration of a product� but have
to choose among the available ones�

 Power control Trains Industrial robots Cars Cellular phones 

Custom-made products Consumer products 

Figure ���� Examples of di�erent approaches to sell and develop software
based systems

Basically� the less variation between products in a product line and
the less customer involvement in the production� the easier it is to adopt
the concept of product line architectures� Nevertheless� stories of success
exists from many di�erent domains and product characteristics� Some of
them have been described in �CN��� and �Bos����

Moving from a pure a per customer production of systems towards
a product line approach� will limit the variety of solutions that can be
o�ered to a customer� A product that is captured by the scope of the
product line and its intended use will be relatively cheap for a customer�
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Any divergences will� however� cost more� Consequently� the business
strategy in such a company� i�e� the way in which it does business� will
change� The customer has to be convinced that a standard solution
provides what they need� is relatively cheaper� and more reliable and
well tested�
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Chapter �

Analytical models by

construction

In this chapter we will present a component model for product line based
development of embedded real�time systems �ReFlex�� Moreover� we
present a framework for analyzing properties of component assemblies
based on analytical interfaces� The component model is specialized for
developing embedded real�time systems taking the product line approach�
The following requirements on a component model are in this context of
particular importance

� small infrastructure� i�e� memory e�cient�

� predictability with respect to temporal behavior�

� mechanisms for functional� and temporal variability�

� speci�cation of temporal attributes�

� mechanisms for concurrency control� e�g� synchronization� and

� analyzability

Memory is a scarce resource in most embedded systems� It does not
permit large and complex infrastructures such as request brokers for dy�
namically �nding components and interrogating components interfaces
at runtime� Moreover� such runtime capabilities a�ect the predictabil�
ity of a system� In order to have a predictable temporal behavior the
execution times must be known and �xed within speci�ed limits� Conse�
quently� runtime mechanisms which are not predictable at construction

�
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time can not be tolerated� Analyzability is required in order to establish
the temporal correctness of a system� as well as other desirable quality
properties�

��� Introduction

In order to analyze a software architecture with respect to a certain
property� the information needed for analyzing that property must be
provided by the architecture� From now on in this thesis we will refer to
this information as the analytical model of a system� For instance� the
information about period times� worst case execution times and priori�
ties are necessary for deciding whether or not a �xed priority system is
schedulable� Hence� period times� worst case execution times and priori�
ties has to be a part of the system�s analytical model�

In this thesis we present two di�erent approaches to achieve ana�
lyzable architectures for real�time systems� We refer to the di�erent
approaches as by construction and by re�engineering Ideally� the infor�
mation required by the analyses is provided in the construction phase�
i�e� when designing the system�s architecture� We refer to construction
of analytical models in such early phases as by construction� in contrast
to the re�engineering approach which we will describe in Chapter 
� In
a constructive approach� the analytical model is a product of the devel�
opment e�ort�

Moreover� we say that if the analytical model� i�e� the required infor�
mation� is provided by the software components themselves� the compo�
nents have analytical interfaces� The analytical interfaces of a component
provide means for reasoning about properties of a set of assembled com�
ponents� Hence� properties of a product that has been implemented with
a set of components can be derived from the properties of the individual
components�

Reuse is by far the most common argument for using component
based software development� The ultimate vision is that components are
mined and assembled into high quality software just as LEGO bricks are
put together to form larger objects� Now a days� the component based
software engineering community agrees on that this vision is more of a
utopia� Reuse will not happen simply by introducing software compo�
nents� it is far more complicated as it involves careful planning� manage�
ment and mature development processes�

Nevertheless� software components is a concept which raise the level
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of abstraction when constructing software based systems� The compo�
nent abstraction de�nes components in term of their interfaces� i�e� the
services they provide� and their contracts which describes the conditions
under which the components provide their services� Hence� it is pos�
sible to reason about composition of di�erent components independent
from the implementations� as the component encapsulates and hide im�
plementation issues from an user� Some argue that components should
be binary entities speci�ed by their interfaces �Szy���� while other claim
that components is just an abstraction of an implementation that enables
component based engineering of software� i�e� no matter if the compo�
nents are black boxes� gray boxes or white boxes �WN���� The component
model proposed in this thesis belongs to the class of white boxes� i�e� we
wish to develop our systems in a component engineering fashion� but still
have control of the implementation�

A component model speci�es the syntax and the semantics with which
components are speci�ed� It de�nes the type of interfaces available and
how interfaces are speci�ed� A language that specify interfaces are re�
ferred to as an Interface Description Language �IDL�� Both CORBA and
COM have their own IDLs� In Section 	�	 is our component model pre�
sented�

A component technology provides the infrastructure in which compo�
nents can be deployed� For instance� CORBA components require the
Object Request Broker �ORB�� in order to execute�

��� Related work

In this thesis we use the concepts and vocabulary introduced in �HMSW����
They have de�ned Prediction�Enabled Component Technology �PECT��
which add analytical information to a component model� A typical ex�
amples of such an analytical information is WCET� However� the work
is focused on how to establish con�dence in the analytical information
rather than on �nding relevant analytical properties� They have applied
PECT on a component model called COMTEK which is a new name of
the component model previously called WaterBeans developed at Soft�
ware Engineering Institute �PSW����

Fioukov et al� have presented work where they apply the concept of
analytical interfaces to the Koala component model in order to achieve
predictable assemblies �FEHC���� Their work is focusing on predicting
the consumption of static memory�
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There exist several component models for real�time systems� We have
studied three existing component models for embedded systems port�
base objects �SVK���� IEC 	��
� �IEC�
�� and Koala �vOvdLKM����
None of these models support early timing analysis and the support for
explicitly describing the temporal behavior in the architecture is limited�
Furthermore� neither port�based objects nor IEC ����� are developed
with the objective to support the product line architecture approach�
However� all three models provide good support for structural reuse with�
out considering the real�time behavior�

The Port�based object approach �PBO� was developed at the Ad�
vanced Manipulators Laboratory at Carnegie Mellon University� The
model is based upon the development of domain�speci�c components
that maximizes usability� �exibility and predictable temporal behavior�
Independent tasks are the bases for the PBO model� Independent tasks
are not allowed to communicate with other components� and thus com�
ponents are loosely coupled and are consequently� at least in theory�
easy to reuse� Although a system consisting of only independent compo�
nents does not exist� minimization of synchronization and communication
among components is a desired design goal� The data �ow is speci�ed
through in� and out�ports� Whenever a PBO needs data for its com�
putation� it reads the most recent information from its in�ports without
knowing about the producer of that data� When a PBO component
wants to make information available for other components in a system�
it store data on its out�ports� In order to make PBO components more
�exible and reusable a parameterization interface is provided� Through a
parameterization interface several di�erent application speci�c behaviors
can be implemented by a single component� Besides the data interface
and the parameterization interface discussed above� each PBO has an I�O
interface which are de�ned in terms of resource ports� Resource ports are
connected to sensors and actuators via I�O device drivers� which are not
PBOs� Hence� the details of accessing sensors and actuators are encap�
sulated by a PBO� In the model presented in this thesis we make no
di�erence between components that access external hardware� via device
drivers� and ordinary components that interacts with other components�
In Figure 	��� a PBO is depicted�

IEC ����� is standard for programmable control systems and a set of
associated tools e�g�� debuggers� test tools� programming languages� The
part of IEC ����� related to our work is concerned with the programming
language and is referred to as IEC �������� IEC ������� structures an
application hierarchically and provides mechanisms for executing an ap�
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Figure 	�� Port�based objects

plication and for communication between components� Components are
implemented in any of the languages proposed in the standard instruc�
tion lists� assembly language� structured text� ladder diagrams� or function
block diagrams �FBDs�� Structured text is a high�level language similar
to Pascal� while ladder diagrams and function blocks are graphical pro�
gramming languages� The most relevant and widely used language is
FBDs� The data �ow is speci�ed in IEC ������� function blocks by
connecting in�ports and out�ports� Out�ports contain the result from a
computation based on the input and the current state of the function
block� Real�time tasks can be associated with a function block� Tasks
can be either periodic or event�driven�

The structure of the IEC ������� model is shown in Figure 	���

Koala is a component model that has been developed by Philips Re�
search Laboratory for use in embedded consumer electronic products such
as TV sets� DVDs� and VCRs� The Koala framework provides an ADL�
an IDL� and a component description language �CDL�� The ADL makes
the architecture explicit when con�guring components into products �see
Figure 	���� The IDL describes the interfaces while the CDL have con�
structions for describing the interfaces a component requires as well as
provides� Koala also supports composed components� i�e� components
that that encapsulate other components� Concurrency and execution of
Koala components is implemented as a pump� which in essence is a queue
of messages and a function that processes the messages� A pump engine�
which corresponds to a real�time task manages a set of pumps and calls
the appropriate pump function whenever there is a message in the queue
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for one of the pumps� However� the temporal behavior of components is
not explicitly expressed in the framework�
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Figure 	�� An example of the Koala component model

None of the component models above completely provide the charac�
teristics that we require from our component model� They are especially
weak in the speci�cation of temporal behavior� e�g� period times� dead�
lines� execution times� Those attributes must be explicitly speci�ed in a
component model since they are required in order to analyze a system�s
temporal behavior� i�e� verifying that the temporal requirements are ful�
�lled� Moreover� in order for a component model to be suitable for a
product line approach we must be able to specify� and provide mecha�
nisms for variations� The variation points should also be visible in the
architectural description as discussed in Section ���� This is explicitly
dealt with in the Koala framework� but not in PBO� nor in IEC ������
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��� Components analytical interfaces and

component assemblies

Applying the concept of product line architectures requires architectures
and software components that are �exible� i�e� variations in features yet
analyzable� Variations can� as discussed in Chapter �� be obtained in dif�
ferent ways� e�g� applying variations in a �exible software architecture�
parameterization of existing components� by using di�erent implemen�
tations of components� In a product line architecture it is more likely
that the software architecture is a constant� while �exibility is achieved
through component variations� New functional� and non�functional re�
quirements will be implemented by adding new components or by using
di�erent variants of existing components�

The �exibility is not only speci�ed in the functional domain� Also
non�functional properties may be subject for variability� For instance� in
the real�time systems domain we are interested in the temporal behavior
of a system as it is considered correct only if it performs correct function
at correct time� i�e� temporal correctness� Consequently� by adding the
temporal domain we must not only manage functional �exibility but also
temporal �exibility� For instance� the frequency with which a particular
component executes may vary between a high�end product and a low�end
product due di�erent demands from the controlled process�

One of the main problems in constructing and maintaining a prod�
uct line architecture is to express and verify product properties derived
from the properties of the individual components� To be able to pre�
dict the product properties from the component properties� we de�ne
a prediction�enabled component technology �PECT� similar to the one
proposed in �HMSW���� In a PECT there are both a constructive model
and an analytical model� Examples of such analytical models on a com�
ponent are di�erent temporal attributes such as the frequencies with
which a component executes and the version dependencies among com�
ponents� While a constructive model deals with functional properties�
analytical models describe non�functional properties �both operational
and non�operational see Section ��
�� From the predictability point of
view� obtaining new functional features of the products is straightforward
as they come directly from the functional properties of components� On
the opposite� the non�functional properties of products are hard to pre�
dict� For example� adding components with new functional features may
a�ect the temporal correctness which in turn may degrade the quality of
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services of a product� Moreover� a product line strategy can be focused
on product families with the same functional properties� but di�erent
non�functional properties� e�g�� scalability� �exibility� and safety� For this
reason� the ability to derive non�functional properties from the properties
of the components plays a signi�cant role for product line architecture�
Furthermore� as developing software products according to the product
line architecture approach is based on reuse and repeatable processes� the
�ndings and measurements from previously developed product versions
can be taken as input to the method proposed in this chapter which may
give more accurate predictions�

We present a component concept that provides means for performing
an impact analysis� The aim of impact analysis is to predict the con�
sequences of altering a system� i�e� we want to analyze the impact of
a change� e�g� installing new features in a product� maintaining exist�
ing components� construct a completely new product based on reusable
assets within the product line�

This is especially important in a product line architecture perspec�
tive where components and architectures are reused and customized for
di�erent products� Moreover� this type of systems have long lifetime and
are therefore exposed to a large amount of maintenance� The analysis
presented in this chapter is based on the concept of PECT� which is inte�
grated into our component model developed for use in real�time product
line architectures� We demonstrate the analytical models by an example
showing how they can be used to derive properties of an assembly and
analyze the impact of� e�g� adding new features to a product� However�
the intention of this work is to provide a framework in which analytical
properties can be added to the model such that many other interesting
property of an assembly can be expressed and analyzed� In particular
we illustrate our approach by presenting how two di�erent non�functional
properties� temporal correctness� and version consistent� can be analyzed�

����� Components and Assemblies

An assembly is a speci�c con�guration of a set of components that also de�
�nes the components interconnections� The union of all its component�s
states gives the state of an assembly� Formally we de�ne an assembly as

Denition �� An assembly A is a tuple hC�A�� R�i� where C is the set
of all components in the product line� C�A� � C is the set of components
in A� and R� is the set of relations between components in C�A�
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Note that an assembly does not necessary correspond to a product�
While in some cases we are interested in properties of the product� in
some cases we may want to analyze properties of a sub�part of the com�
plete product� In both cases we will refer to an assembly� An assembly is
only a conceptual� and analytical view of a complete product that exists
for the analysis of a particular property� and has not necessarily a con�
structive correspondence� A typical example of a relation valid between
components in an assembly is data connection which will be further dis�
cussed in Section 	�	�

��� ReFlex� A �exible real�time component

model

In this section we present our component model �ReFlex�� that facili�
tates a component based development of embedded real�time systems�
using the product line architecture concept� Such a component model
constitutes the core entity in the architectural description language that
facilitates the management and generation of component based real�time
system� However� no syntax is presented� The graphical syntax used in
this chapter is for the clari�cation of concepts only� The ReFlex model
is shown in Figure 	�	� Ports� services� parameters� and tasks will be
explained and formally de�ned in this chapter�

The idea behind product line architectures is to create a generic ar�
chitecture that can be tailored for di�erent members of a product family
�DKO���� �Bos���� The tailoring can be achieved by parameterization of
generic components or by providing speci�c implementation of selected
parts� Components that must be speci�cally implemented for each prod�
uct will be referred to as abstract components� To use this concept for
non real�time systems is a challenge� and an even bigger challenge is to
employ this concept for embedded real�time systems that most often are
implemented on hardware that is very limiting in terms of memory� and
computational resources� Thus� the component technologies provided by
industrial state�of�the�art� e�g� CORBA� Jini� DCOM� cannot be used�

To be able to adopt the product�line architecture approach in real�
time systems requires that the component model supports the speci�ca�
tion of real�time attributes� Furthermore� the component model must
also support speci�cation of temporal attributes both on concrete and
abstract components� The reason for requiring support for speci�cation
of timing constraints on abstract components is to facilitate early analysis
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of the temporal behavior� Detecting design �aws early in the develop�
ment and especially timing errors is important to avoid costly re�design
in late phases of a project� A component model with a precise seman�
tic does not only support analysis at di�erent stages� it also enables the
development of tools that can generate code automatically�

service

-service : functionPtr
-input : port[]
-output : port

component

+execute()
-componentName : String

parameters

-parameterName : String
-parameterType : String

port

-portName : String
-type : DataType

task

1..n0..n

PeriodicTask

-periodTime : Time
-priority : Integer

Figure 	�	 The constructive component model

ReFlex is a continuation of the component model developed for the
Rubus RTOS �EMTP����� Rubus is a hybrid operating system in the
sense that it supports both preemptive static scheduling and �xed pri�
ority scheduling �FPS�� The statically scheduled part is concerned with
hard real�time requirements and is referred to as the Red part� whereas
the FPS part deals with soft real�time requirements and is referred to as
the Blue part� The component model in Rubus was de�ned for the red
part and is based on the same concepts as PBO� i�e� unbu�ered in�ports
and out�ports� Each component has one entry function that executes
when the component is scheduled� The entry function base its execu�
tion on the values of the in�ports� and produces data on the components
out�ports� The temporal attributes available in this component model is
period time� release time� and worst�case execution time� The worst�case
execution time is a static attribute that speci�es� or constrains the time
it takes to execute the entry function in the worst case� Deadline require�
ments are also speci�ed for every component� i�e� they de�ne constraints
on the time between start and completion of the component�s execu�
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tion� Finally� the Rubus component allow for speci�cation of precedence
relations and mutual exclusion� i�e� the order of execution among tasks
that control components� and synchronization among components� Given
the temporal attributes� the precedence relations and synchronization re�
quirements a tool generates a valid schedule in which every component
ful�lls its deadline requirement� if such a schedule exists� This component
model has been successfully used in several commercial complex systems
�NSG����� In Section 	�
�
� we will describe one of those systems in more
details�

Both PBO and FBD can be considered as special cases of ReFlex� By
parameterization and task assignment our component model can express
the very same properties� Thus� it is more general and expressive� We
also introduce the concept of abstract components and parameterization
interfaces as a way to specify variability� Furthermore� more complex
temporal requirements can be speci�ed in our model�

We consider a component as a description of an encapsulation of
services� de�ned in terms of its interfaces and its services� A service
provides the logic that describes a function that is provided by a com�
ponent� Encapsulated services can be implemented in any ordinary pro�
gramming language� whereas the component is implemented in a speci�c
component description language� Components can be hierarchically com�
posed� Consequently� a component may encapsulate other components�
sub�components� We will refer to such a construction as an aggregation�
which is the very same terminology used in DCOM�

A component in our framework can reside in one out of three di�erent
states� abstract component� concrete component� and component instance�
The di�erent states are depicted in Figure 	�
� Concrete components and
abstract components are both descriptions of encapsulations� However�
an abstract component has an interface but no implementation of the
behavior� The reason for having abstract components is to enable spec�
i�cation of components whose behavior must be tailored when reused
across di�erent applications� However� their interfaces are �xed�

A system is then generated according to the components and their in�
terconnections� When generating a component instance� the component
is dissolved into ordinary tasks and entry functions that can execute in
any real�time operating system that supports the task model of the com�
ponent� Thus� no special component infrastructure is required� Tasks are
speci�ed in the control interface of a ReFlex component �see De�nition
���� whereas the entry functions correspond to the services in a ReFlex
component�
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Figure 	�
 The component�s states

A task de�nes the temporal constraints under which one� or several
components executes� Concrete components together with tasks and pa�
rameterization de�nes the behavior� both functional and temporal� of a
concrete component�

����� The component model

In this section we will describe our component model called ReFlex which
is suitable for embedded real�time systems� ReFlex is based on the port�
based object concept� Ports constitute the data interface for compo�
nents as they de�ne what data the component expects and the data it
produces� However� port�based objects exhibit an overwrite semantics
while our ports also can have bu�ered semantics� Besides having data
interfaces� components in our framework have two additional interfaces�
control interface� and parameterization interface� The execution of� and
synchronization among services in a component is controlled through its
control interface� The parameterization interface de�nes the points of
variation of a component�s behavior�

Moreover� components can be hierarchically composed� thus a com�
ponent may encapsulate one or several other components� Furthermore�
components can be either concrete or abstract� A concrete component�
in its smallest constituent� encapsulates a service or other concrete com�
ponents� An abstract component on the other hand� exists as a design
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entity only� The abstract component indicates that when the component
is reused it must be rewritten� i�e� tailored for its new context�

Denition �� A component c is a tuple h I�c�� O�c�� C�c�� P�c�� F�c��
A�c�� sc i� where I�c� is the set of in�ports� O�c� is the set of out�ports�
C�c� is the control interface� P �c� is the a parameterization interface�
F �c� � f�� ���� fn is the set of services encapsulated by c� A�c� � c�� ���� cm
is the set of aggregated components encapsulated by c� and sc is the ag�
gregated state

A component�s state is a persistent property that only can be changed
by the services in a component� The state sc of component c� is the
recursive composition of all aggregated components states� Hence� sc �
sx � S�A�c�� where sc is the composed state of component c� sx is the
state contribution from c and S�A�c�� is the set containing the states for
all aggregated components� Typically� a state is de�ned by the internal
variables whose values are kept intact between subsequent executions�
The internal variable may change value due to being manipulated by the
services encapsulated by the component�

��������

����

service
aggregated
component

component

inport outport

��
state

Figure 	�� The component structure
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Data interface

The data interface de�nes the input to� and the output from a component�
We refer to input and output as ports� The data interface can consist of
several such ports� Ports can exhibit two di�erent semantics� overwriting
semantic and bu�ering semantics� When overwriting semantics is spec�
i�ed� data consumers with a frequency lower than the producers might
miss some data provided by the producer� On the contrary� if bu�ered
semantics is speci�ed data can be consumed in the pace of the consumer
as long as the bu�er is su�ciently large� Syntactically� the data interface
speci�es all ports in� and out from a component� each ports semantics�
and the mapping from each port to the services in the component� or
aggregated component� which require them�

Besides its semantics� a port is de�ned by its data type� A data type
is de�ned by its name and the number of bytes it requires�

Denition �� A data type t is a pair hname� sizei� where name is the
name of the type � and size � N is the size of the data type in bytes

For instance� in the C programming language� characters are de�ned
by the name char which is represented with one byte� i�e� hchar� �i�

Now we are ready to formally de�ne a port

Denition �� A port p is a pair h bu�er� type i� where bu�er � N � and
type is a data type

For instance� an integer port �	 bytes�� with overwriting semantics is
h �� h int� 	 i i� a real valued port with bu�er size �ve is h 
� h real� 	 i i�

A port acts as input to� and output from services encapsulated by
components� Consequently� the value on an out�port is decided by the
value of the in�port� the service associated with those in�ports and the
state of the component� Consequently� for component c the out�port out
can be described as out � f�in�� ���� inn� sc�� Formally we de�ne a data
interface for a component as

Denition �� A data interface for component c� is a set of in�ports
I�c� and a set of out�ports� O�c� Each service f � F �c�

S
F �A�c��

is a function inn � � � � � inm � sc � outi � s�c� where inn� � � � � inm �
I�c�� outi � O�c�� sc is the state of component c before executing f and
s�c is the updated state

A service can only acts as a producer of data for one out�port in
a component instance� However� it is possible to specify more than on
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producer for an out�port in a component� This is one of the possible ways
in which we can specify variation points� However� the set of services
speci�ed as data producers to the same out�port are mutually excluding
each other in the component instance� Component instances is further
elaborated on in Section 	�	���

 

inm 

inn 

in2 

in1 
out1 

outj  F(C(X)) 

F(X) 

inport outport 

Figure 	�� The component�s data interface

Data ports interconnect components� i�e� they de�ne the data �ow
through a set of components that constitute an assembly� We allow data
connections from one out�port to several in�ports� but not the other way
around� i�e� many out�ports to one in�port�

We de�ne the data��ow relation as

Denition 	� A data �ow connection� �� is a binary� anti�symmetric
relation among ports on components� such that if ci�ix � cj �oy then ci�s
in�port ix is connected to cj�s out�port oy

In Figure 	�� is two components depicted that are interconnected
through data ports� A�s out�port� out� is connected to B�s in�port in�
Hence� B�in � A�out �

Control interface

A components control interface speci�es the restrictions under which it�
self and its aggregated components execute� The control interface de�nes
the execution in terms of their temporal behavior�

In order to control the execution of components and aggregated com�
ponents we assign tasks to them� Tasks de�ne the temporal attributes
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Figure 	�� The data �ow connection between two components�

that control the execution of components� Depending on the schedul�
ing strategy� the actual attributes may vary� For instance� if the task is
event�driven� no period time is speci�ed� As components are �indepen�
dent� from tasks� any scheduling strategy can be applied on a component�
Thus� tasks that control the execution of components can be of any type�
i�e� periodic� sporadic or aperiodic� A task can be associated with one
or several components�

The services encapsulated by a component execute in a non�deterministic
order but under the restrictions implied by the task connected to the
component� However� if it is required that services in a component exe�
cutes di�erently in the temporal domain� they can be encapsulated in an
aggregated component which in turn can be assigned its own task�

We refer to the set of tasks in an assembly as a task set which de�nes
the temporal view of an assembly

Denition �� Taskset�A� is a tuple hT�R�
tasksi� where T is the set of

tasks assigned to the components in the assembly A and R�
tasks is the

relations between tasks in T

As suggested above� executing constituents of a component� or com�
ponents in an assembly in any order might not be su�cient� In order
to specify the exact execution order� precedence relations are required�
Moreover in order to restrict access to shared resources mutual exclusion
relations among tasks are desirable�

A precedence relation de�nes the order in which two tasks may exe�
cute components� We say that if task �n precedes task �m then �m may
start its execution earliest at the completion of �n� An example where
such a constraint may be necessary is in a sample�control�actuate loop�
The control component should only calculate new set�values after a new
process�value has been sampled�

We have introduced the notion of component instances earlier in this
chapter� We can also reason about executional instances� An executional
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instance corresponds to an execution of a component enforced by a task�
The �rst execution corresponds to the �rst executional instance� the sec�
ond execution corresponds to the second executional instance� etc� Con�
sequently executional instance n denotes the nth execution of the task�
When we say that a task �i precedes another task �j� we mean that �j�s
nth instance may start earliest at the end of �i�s n

th execution�
Formally we de�ne a precedence relation as

Denition �� A precedence relation� �� is a binary� transitive relation
among tasks such that if �i�� �j� then �j may start its nth execution
earliest at the end of �i�s n

th execution where i 	� j

Note that two tasks that executes periodically must have the same
period time in order to assure the precedence relation between them� If
the execution of tasks are event�driven� the precedence relation must be
maintained by other available mechanisms in the RTOS� e�g� signaling�

Another important synchronization constraint when designing con�
current real�time systems is mutual exclusion� Shared resources may be
accessed by one component at the time only� Examples of such resources
are global variables� databases� printers� We say that if �i mutually ex�
cludes �j� then �i is never allowed to execute while �j executes� and the
other way around� Formally we de�ne mutual exclusion as

Denition 
� A mutual exclusion relation� 
� is a binary� symmetric
relation among tasks such that if �i 
 �j� then �i is not permitted to
execute while �j executes nor is �j permitted to execute while �i executes
i 	� j

The tasks are assigned to components through the control interface
which controls the execution of the services in the component� Moreover�
the control interfaces of the aggregated components is also part of the
component�s control interface� Formally we de�ne a components control
interface follows

Denition ��� A control interface� C�c� for a component c� is C�c� �
Task

S
�ci�A�c�

C�ci�� where Task � � if F�c� � �� else Task � f �c g

So far� speci�cation of the temporal behavior of components with
tasks has been discussed� However� tasks do not specify the execution
time of services in components� Thus the execution time is speci�ed per
service� As services are not always completely implemented� e�g� ab�
stract components� the execution time may specify a budget that must
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be adhered to by the service when implemented� The execution times are
required when analyzing the temporal correctness of a software construc�
tion� We will discuss how to incorporate such analytical properties� such
as execution times� into our component model later on in this chapter�

Parameterization interface

The parameterization interface de�nes the points where the behavior of
an implemented component can be varied between uses� Such a point
is referred to as a variation point� In Section 	�	�� the control interface
that provides variability through the task independence was discussed�
i�e� the temporal constraints under which a component executes can be
varied� Through a components parameterization interface� behavior and
structure of a component can be varied� The constituents in a component
instance� i�e� services and aggregated components that are present in the
actual component instance� de�ne a component�s structure� The behavior
of a component is de�ned by the parameterization of each aggregated
component and service that is part of the components structure� As in�
ports� discussed in Section 	�	��� determines the dynamic behavior of a
service in terms of the calculated result� the behavioral parameterization
statically speci�es the behavior�

As an example� consider a navigation component for an autonomous
vehicle� Depending on the type of sensor� e�g� infrared sensor� bump sen�
sor� or radio� the algorithm for calculating and presenting sensor values
to the rest of the system will vary quite radically�

We have made a distinction between behavioral parameterization and
structural parameterization� Behavioral parameterization is concerned
with the behavior of services embedded by a component� Consequently� a
behavior parameter decides the exact behavior of a parameterized service�

Denition ��� A behavioral parameterization interface for component
c� Pb�c� is a set of tuples hf� pbi� where f is a service� and pb is the set
of parameters specifying the behavior of f 

The output� out� produced by a service f is� consequently� not only a
function of the service�s input in and the component�s state sc� but also
the behavioral parameters p�� ���� pn that controls the behavior of f �

out � f�in� sc� p�� ���� pn� �	���
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Besides controlling the actual behavior of a service� we can control
the structure of a component� i�e� which services and components should
be present in a component instance� We refer to this parameterization
as structural parameterization� This is similar to the switch concept
in the Koala component model� A structural parameter specify which
services and aggregated components that should be present in a compo�
nent instance if there are optional services and aggregated components or
competing services speci�ed in the component� By competing we mean
services that are speci�ed as having the same out�port� We specify the
exact structure of a component by associating a binary value with every
optional service and aggregated component� as well as with every com�
peting service� If the binary value is true the entity it is associated with
will be present in the component instance�

Denition ��� A structural parameterization interface for component
c� Ps�c� is a set of tuples hx� pi� where x is a service or aggregated com�
ponent� and p is binary true or false

By using De�nition �� and ��� we can now de�ne the complete pa�
rameterization interface for a component

Denition ��� A parameterization interface for component c� P �c� �
Pb�c��Ps�c�� where Pb�c� is c�s behavioral parameterization interface and
Ps�c� is c�s structural parameterization interface

����� Assemblies and component instances

Components are distinguished from instances of components� An in�
stance of a component is a function of a concrete component� its param�
eters and task assignment� Consequently� component instances consist
of fully implemented entities� Moreover� more than one service or ag�
gregated component can be speci�ed as data producer for the same out�
port in a component� In component instances such con�icts are resolved
through structural parameterization� Basically� every producer of data
to the same out�port mutually excludes each other�

Denition ��� An instance of a concrete component c� Instance�c�� is
a concrete component with parameterization and task assignments

An assembly consists of a set of component instances and their in�
terconnections� The interconnection we have de�ned is data �ow� An
assembly describes the software architecture that implements functional�
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and quality requirements of an application� Data �ow is speci�ed by
connecting in�ports and out�ports in a consistent manner� By consistent
is meant that all present in�ports are provided a data producer� i�e� an
out�port� Just as for services that produces data to an out�port� there
can only be one out�port connected to an in�port in an assembly� Rule 	��
below formally specify that restriction for an assembly of components

�ci� cj � C�A�  ci�ix � cj�oy  ��ck � C�A�  ci�ix � ck�oz �	���

Synchronization among components is speci�ed in the temporal view
provided by the task set in an assembly� This is also a type of intercon�
nections in an assembly but between the tasks in the task set�

����� ReFlex
 An example

Consider a fuel level feature� In the high�end product low fuel level is
indicated on a graphical display� while in the low�end product this is
indicated with a lamp� We identify the need for implementing three
components for this feature a sampling component� a �lter component
that pre�process the process value� and an actuator component that have
two di�erent functional behaviors� i�e� displaying low fuel level on a
graphical display� and displaying low fuel level with a lamp�

 

Sampling Filter 

Lamp 

GU 

Figure 	�� The components in the fuel level feature

The components communicate data through ports� which are de�ned
by con�guration language constructs� This allows for separation of com�
munication from the implementation code� As presented in Section 	�	��
we de�ne a port by its data type and its semantics� i�e� bu�ered or over�
writing� Below the speci�cation for the ports in our fuel level feature is
given� The TYPE de�nes the name of the data type and SIZE de�nes
the size of the data type in bytes
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PORT fuel �

TYPE � FUELMEASURE�

SIZE � ��

SEMANTICS � OVERWRITING�

�

PORT filteredFuel �

TYPE � FUELFILTERED�

SIZE � ��

SEMANTICS � OVERWRITING�

�

The data interfaces for out components is de�ned as

DATAINTERFACE IFuelSampling �

fuel outPort�

outPort aFunction��

�

DATAINTERFACE IFuleFilter �

fuel inPort

filteredFuel outPort

outPort anotherFunction�inPort�

�

DATAINTERFACE IFuleActuate �

filteredFuel inPort

yetAnotherFunction�inPort�

�

Tasks de�ne the temporal behavior of the components� In our imple�
mentation of the feature we use three tasks� one for each component� The
sampling component and the �lter component is periodically triggered�
while the actuator is triggered by the task that controls the �lter com�
ponent via a synchronization signal� This ensures that the precedence
relation between the �lter component and the actuator is maintained�
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TASK fuelSamplingTask

�

TRIGGER � PERIODIC

PERIODTIME � ����

PREEMPTION � DISABLED�

�

TASK fuelFilterTask

�

TRIGGER � PERIODIC

PERIODTIME � ����

PRECEDES �

SENDSIGNAL fuelActuatorTask

PREEMPTION � ENABLED�

�

TASK fuelActuatorTask

�

TRIGGER � SIGNAL

RECSIGNAL � fuelFilterSignal

PREEMPTION � ENABLED�

�

Finally� we specify the components and the parameterization inter�
faces�

COMPONENT FuelSamplingComponent�task�

�

IMPLEMENTS � IFuelSampling

IFuelSampling		outPort aFunction��

�



 Do something

�

�

COMPONENT FuelFilterComponent�task�

�

IMPLEMENTS � IFuelFilter
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IFuelFilter		outPort anotherFunction�IFuelFilter		inPort�

�



 Do something

�

�

The actuator component has two di�erent behaviors depending on
the product in which it is used� For this reason we have a parameter
that controls the exact behavior�

COMPONENT FuelActuatorComponent�parameter� task�

�

IMPLEMENTS � IFuelActuate

yetAnoterFunction�IFuelActuate		inPort�

�

if �parameter �� PRODUCT�HIGH�



 Do something

else if �parameter �� PRODUCT�HIGH�



 Do something else

�

�

Now we can specify the assembly that implements the fuel level fea�
ture by connecting the data ports between the component instances�
First we create component instances by assigning tasks and parameters
where required�

FuelSampling � FuelSamplingComponent�fuelSamplingTask�

FuelFilter � FuelFilterComponent�fuelFilterTask�

FuelActuator �

FuelActuatorComponent�PRODUCT�HIGH� FuelActuatorTask�

Next we connect the ports between the components

FuelSampling		IFuelSampling		outPort ��

FuelFilter		IFuelFilter		inPort

FuelFilter		IFuelFilter		outPort ��

FuelActuator		IFuelActuate		inPort
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«constructive»
Component

+execute()
-componentName : String

«constructive»
Port

-portName : String
-dataType : String

1..n

«constructive»
service

-service : functionPtr
-input : Port[]
-output : Port

0..n

«constructive»
Parameter

-parameterName : String
-parameterType : String

0..n

«analytic»
Property

-propertyName : String
-propertyType : String

«constructive»
Task

-precedes : Task
-mutex : Task

«constructive»
PeriodicTask

-periodTime : Time
-priority : Integer

0..n

Figure 	��� The constructive� and analytical model of a component

The assembly above implements the fuel level feature for the high
end product� In order to create an assembly for the low end product we
must make a di�erent instance of the actuator component� i�e� another
parameterization�

LowEndFuelActuator �

FuelActuatorComponent�PRODUCT�LOW� FuelActuatorTask�

��� Analyzing assemblies

So far we have de�ned the constructive part of our component model�
i�e� the mechanisms available for creating a component and interconnect�
ing it with other components in an assembly� However� in order make
analyses possible� e�g� the temporal behavior� we must add the infor�
mation required by the analyses� We say that this information belongs
to the analytical model of a component� The analytical model enables
analyses of an assembly based on the information provided by each single
component� In Figure 	��� the complete component model is depicted�
including both constructive and analytical parts� The di�erence from
Figure 	�	 is that components and ports can be associated with proper�
ties� The analytical model of a component is de�ned by its analytical
properties�
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The property class that is stereotyped as analytic provides the infor�
mation needed by the di�erent analyses we are interested in performing
on an assembly� We will refer to such a property as an analytical prop�
erty� An analytical property usually does not have a correspondence in
a component instance� A typical example of such a property would be
the execution time of a service of a component� The execution time is
derived from the source code� or by measurements� for the purpose of
modeling and analysis of a system and has no correspondence as such in
the execution at runtime� However� note that a task is a runtime mech�
anism and hence� it is a constructive part of a component� Still� some of
the attributes of a task are required when� together with some analyti�
cal properties� e�g� execution times� analyzing temporal properties of an
assembly� Properties on a port can be information about the data type�
e�g� size�

����� Properties of an assembly

The intention of our work is to provide a framework in which new prop�
erties of an assembly could be taken into consideration and predicted
for the purpose of analyzing the impact that the introduction of a new
component in the system have� The general idea is that if the model has
to be extended with a new predictable property� new analytic properties
can be de�ned and new property theories be developed� The property
theory de�nes how a particular property of an assembly is calculated�
e�g� theories for verifying the temporal correctness� For instance� if we
require an assembly to be type correct� i�e� the types of connected data
ports are correct� we must add a method for checking this property and
doing so requires an analytical property on data ports which carries the
type information� Furthermore� we are using the prediction technologies
in a product line perspective� i�e� we will discuss properties that are
important when developing and maintaining product line architectures�

There are several realistic scenarios describing activities that a prod�
uct line may undergo during its lifetime� We have not identi�ed all
possible scenarios but we will highlight some relevant cases and propose
examples of properties that are interesting from those scenario�s perspec�
tive�

Scenario �  New features will eventually be added to a product line
or a speci�c product within the product line� This new feature might
be implemented by a set of new components as well as new versions of
old components already existing as part of the reusable assets in the
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product line� Doing this� there is a potential risk that components could
end up being incompatible with components already used in the product�
both with respect to version and variants� This scenario is also related to
maintenance of a product that may alter the characteristics of a particular
component� This change of characteristics is possibly acceptable for one
particular product� but what are the consequences in the rest of the
product line�

Scenario �  As we operate in the real�time systems domain� we
are also interested in predicting the temporal behavior of an assembly�
Adding components to�� or changing components in a product or prod�
uct line� may violate the temporal constraints in the system� The reason
for violating the temporal constraints could be an over�utilization of the
available resources in the system architecture� A big share of existing
real�time systems are embedded systems� thus resources are usually lim�
ited�

Scenario 
  When an assembly of components is composed it is of
importance to be able to predict if all component interactions are type
correct� In a port based component model the components read the
outputs from other components at the start of the execution� If the
output type is not the same as the type of the input then we have a fault
which can lead to a failure of the system� Hence we want to predict if an
assembly is type correct before deploying it�

The scenarios discussed above also apply to the assembly of a new
product� based on pre�existing reusable components� We have to make
sure that the product is feasible both with respect to the functional
behavior and the temporal behavior�

To illustrate predictability of assemblies for the speci�ed component
model� we shall discuss two concrete examples of an assembly�s properties
from a real�time product line point of view consistent� and end�to�end
deadlines� These properties are of completely di�erent nature� Consis�
tent is typically a property of a complete product� End�to�end deadline
only concerns a subset of components in a complete product assembly�
Moreover� there can be several end�to�end deadline requirements within
the same assembly with respect to a subset of components from the full
assembly�

����� The end�to�end temporal property

The temporal correctness is of vital importance in the real�time systems
domain� Moreover� the temporal requirements on a real�time system are
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seldom presented in terms of the temporal attributes provided by the
RTOS or as simple deadlines for individual components� Typically they
are considered on a higher level� for instance jitter constraints and latency
for the control performance� end�to�end deadlines� response times� etc�
Designing a real�time system is partly a matter of transforming such high�
level temporal requirements to the attributes available in the task model
at run�time� typically considering priorities and period times� In our
approach the high�level temporal requirements are speci�ed as properties
on an assembly� e�g� end�to�end deadline� and the implementation of
those requirements� e�g� period times� priorities� execution times� are
speci�ed as analytical properties of components and in tasks associated
to components� A concrete example of a temporal property is end�to�end
deadline� An end�to�end deadline� denoted as Ae�e� speci�es a temporal
requirement on a set of components� It de�nes the maximum distance
between an input stimuli and the output response given� Typically� the
end�to�end property requirements in hard real�time systems must be met�
while in soft real�time systems a particular con�dence of meeting the
requirement may be su�cient� Statistical veri�cation of an analytical
properties can be performed to show how reliable the prediction actually
is� e�g� the con�dence in the estimated worst�case execution time�

Verifying that a temporal property of the assembly is feasible� we
verify that our implementation is correct� However� this veri�cation is
correct under the assumption that all prerequisites are satis�ed �For ex�
ample� the execution time of a component� which is a component prop�
erty�� Consequently� the correctness of a property of an assembly de�
pends on the con�dence we have in analytical properties� The concept
of credentials� as presented in �Sha��� includes a notion of con�dence
associated with a component property� The execution time can be stati�
cally analyzed given the source code� or empirically measured at runtime
�LBJ��
�� The analytical method� e�g� the formula that calculates a
property of an assembly� is referred to as a prediction theory� Empirical
validation of the prediction theory is also needed to prove the soundness
of the theory�

Figure 	��� shows an example where four components have been in�
stantiated from the model presented earlier in this chapter� The in�
frastructure in which those components will execute �the RTOS� has a
scheduling policy based on �xed priorities� The task model consequently
speci�es the level of priority and the frequency of each task� When de�n�
ing an assembly we also must specify how the assembly is build� There are
not only the properties of the components that determine the properties
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Figure 	��� Four components with precedence and connection relations

of an assembly� but also the assembly architecture� we must de�ne how
the assembly is built� For example� in an architecture with a pipes��lter
style the data �ows between components� i�e� the precedence relations�
must be speci�ed� In this example we de�ne the precedence property and
ports connections� We also add an analytical property that speci�es how
many times components are supposed to be executed� Component c� has
two preconditions� the �rst one express the precedence relation and the
second the connection of ports�

Figure 	��� shows four components where c� reads the out ports of
c� and c�� c� reads the out ports of c�� The execution of component c�
precedes the execution of component c� and the execution of component
c� precedes the execution of component c�� while c� can execute indepen�
dently� Below is the components described according to De�nition � on
page ��

c� � hf� P�� �� fo�g� f��� fo�g�� ��� s�i

c� � hg� P�� fi�g� fo�� o�g� g�fi�g� fo�� o�g�� ��� s�i

c� � hh� P�� fi�g� fo�g� h�fi�g� fo�g�� ��� s�i

c� � hx� P�� fi�g� fo	g� x�fi�g� fo	g�� ��� s�i

In our example we have two views of the assembly� one for precedence
among the tasks that control the components� and another that shows
how the components are connected through ports� The assembly in our
example according to De�nition � on page �� is

A � hfc�� c�� c�� c�g� fRConnection � f�o�� i��� �o�� i��� �o�� i��ggi
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The data connection view of the assembly is the following

AConnection � hfc�� c�� c�� c�g� RConnectioni

Moreover� the taskset for A is

Taskset�A� � hf��� ��� ��� ��g� fRprecedence � f�� � ��� �� � ��ggi

A view of the task set is

APrecedence � hfc�� c�� c�� c�g� RPrecedencei

We shell analyze a property of the assembly� namely end�to�end dead�
line� A�e�e� An end�to�end deadline in our framework de�nes the maxi�
mum distance between the earliest start time of a component cstart and
the latest completion time� i�e� the response time� of a component cend�
where there is a transitive precedence relation between �start that con�
trol cstart and �end that controls cend� There can� consequently� be any
number of components participating in an end�to�end deadline require�
ment as long as their individual order of execution is de�ned through the
tasks that control them� Since the execution order among the tasks in an
end�to�end deadline requirement is explicitly de�ned� we can express this
property as a function of the �rst component and the last component�
taking all components in a the assembly into consideration� We have to
consider the complete assembly as the execution of components that is
not part of the end�to�end requirement may interfere with the execution
of the components of interest� We have made a restriction in our inter�
pretation of an end�to�end deadline as we require a transitive precedence
relation between the �rst task and the last task� The reason for this is
to keep the analytical calculations as simple as possible� After all� we
intend to show how to specify properties of an assembly� not to solve the
problem of verifying complex end�to�end deadlines�

We can de�ne the property theory for our end�to�end property be�
tween a start component and an end component with a transitive prece�
dence relation among the tasks that control them� A�e�e�cstart�cend� as

A�e�e�cstart� cend� � ResponseT ime�cend�� StartT ime�cstart� �	���

Both cstart� and cend belongs to the assembly �cstart� cend � C�A���
ResponseTime�cend� is the maximum response time of cend�
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StartTime�cstart� is the earliest start time of cstart� and �start that con�
trols cstart precedes �end that controls cend transitively�

In our example assembly we would like to verify an end�to�end dead�
line between c� and c�� i�e� A�e�e�c�� c��� In the view Aprecedence of
A we can see that �� precedes ��� and �� precedes ��� Hence� �� pre�
cedes �� transitively� From equation 	��� we see that A�e�e�c�� c�� can be
calculated as

A�e�e�c�� c�� � ResponseT ime�c��� StartT ime�c�� �	�	�

Calculating the response time of components based on the attributes
provided in a �xed�priority based RTOS is done with response time analy�
sis
�ABR����� However� di�erent methods must be utilized if a di�erent
scheduling policy is provided by the RTOS� e�g� earliest�deadline��rst�
Thus� the de�nition of a particular property of an assembly may vary
due to mechanisms provided by the infrastructure in which the system
will execute�

In our particular example we are using �xed priority scheduling in
which we calculate the response time of component ci controlled by task
�i� R�ci�� as

Rn���ci� � ci�wcet �B��i� �
X

��j�hp��i�

�
Rn�ci�

�j�T

�
cj �wcet �	�
�

�where B is the blocking time� hp��i�� is the set of task having higher
priority than �i� �j�T is the period time of task �j� and cj �wcet is the
worst�case execution time of component ci�

The earliest�start time can also be calculated with the equation above
by assuming that all components execute as fast as possible� i�e� with
their best�case execution time �BCET�� Furthermore� the start time will
be approximately equal to the response time if we assume an execution
time equal to zero of the component whose earliest start time is subject
for the analysis�

The end�to�end property is a typical example of a property that may
be de�ned on only part of a complete product� In Figure 	��� it can be
seen that ��� �� and �� are connected with the precedence relation but ��
can execute anytime when in the ready queue� It is of importance to be
able to calculate the e�e property for c�� c� and c� only� Our proposal is



��� Analyzing assemblies ��


that the property shall be de�ned for parts of the assembly with respect
to a relation� In our example we can say that c� is independent from
the other components with respect to precedence� Hence A�e�e over
fc�� c�� c�g can be calculated with the response time of c�� By having
this notation it is possible to de�ne properties that re�ects parts of the
assembly�

As discussed above� di�erent task models will a�ect the set of analyt�
ical properties on components and how temporal properties of assemblies
are calculated� Equation � shows how to calculate the response time for
a system with periodic tasks and static priorities� However� if systems
are event based and uses the earliest�deadline �rst scheduling algorithm
new theories for verifying the temporal behavior are required� Thus�
components� assemblies and the execution model a�ect the property the�
ory� Hence� each of these has to be de�ned before we start reason about
temporal properties of assemblies�

����� The version consistency property

In a product line approach the handling of consistency is a ��dimensional
problem� A component in a product line may be compatible with� or de�
pendent on several di�erent variants of other components� For instance�
a GUI component for an embedded system could di�er between prod�
ucts in a product line� e�g� high�end products with a color display and
low�end products with monochrome displays� The color display and the
monochrome displays are variants of the same feature� i�e� the feature of
presenting information graphically to a user of the system� In turn� there
can exist several versions of every variant of a component� Typically new
versions emerge from error corrections and from new functionality being
added�

A version of a component can be de�ned by having an analytic prop�
erty on the component� Also dependencies between components are ex�
pressed through such a property� In our model we allow a component to
depend on several di�erent variants of a component but with only one
distinct version of each variant�

The consistent property� Aconsistent� is related to a capability to
predict consistency of an assembly� An assembly is considered consistent
if the versions of each component are correct according to the speci�ca�
tion of a product in the product line� The speci�ed features of a product
determine which components� and in particular which components ver�
sion should be included in a product� To be able to guarantee consistency
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Version

Variant

Figure 	��� The ��dimensional version�variant concept

we need to specify which versions of components a product depends on�

This idea of having version dependencies is very similar to how �NET
assemblies use meta�data to describe dependencies to other assemblies
�TL���� Dependencies can be expressed and assured using OCL con�
straints for the components� A new constraint has been added to all
components that state how the dependencies shall be evaluated and re�
garded analyzing the assembly�

For the purpose of predicting variant� and version consistency of an
assembly� we must introduce the analytical property depends on a com�
ponent� c�depends� The analytical property cdepends is a set contain�
ing all components and their variant and version� with which compo�
nent c consistently can be assembled with� Each tuple is on the form
hC� variant� versioni�

In many component models multiple versions of the same component
may not coexist� In those cases there is a risk that components are as�
sembled in an inconsistent way� by means of having the assembly include
two or more di�erent versions of the very same component� It is desired
to prevent such invalid assemblies by being able to predict whether an
assembly is consistent or not� The consistency of all variants and ver�
sions in an assembly can be calculated with the following formula� The
property consistent is of type boolean�

An assembly A is variant� and version consistent� A�consistent if
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A�consistent � �hhci� variant� xi� hci� variant� yii � V � V  x � y

�	���

V is the union of all component�s depends set described above in the
assembly �V �

S
�ci�C�A� ci�depends�� ci is a component in the assembly

�ci � C�A��� variant is a component�s variant and x�y are versions�
That is� the assembly is consistent if a component does not appear

twice with di�erent version in the union set of all dependencies� Note
that the property theory for consistency presented here only veri�es that
components are only assembled with compatible ones� To verify whether
or not a valid product has been assembled is a di�erent task which re�
quire information about what a valid product is in terms of components�
versions� and variants�

����� Impact analysis

Before the new component is added we want to predict the impact it
has to the system� For instance we want to calculate A�consistent and
A�e�e over fc�� c�� c�g and fc�� c�g� We refer to such an analysis as impact
analysis�

The e�e property� or any other temporal property of an assembly�
may be a�ected by adding new components to a product� Assume� for
instance� a �xed�priority scheduled system� The majority of the com�
mercial available RTOS belong to this class� Moreover� assume that
priorities are assigned to tasks according to the deadline�monotonic al�
gorithm� i�e� the task with the shortest deadline is assigned the highest
priority� Adding a component that has an unique deadline in such a
system may require the rest of the system to undergo a new priority as�
signment� unless it has the latest deadline� Consequently� it is important
to formalize the algorithm or strategy used for priority assignment as
a property of an assembly� If such formalization does not exist� evolu�
tion and maintenance of the system may become expensive� Note that
adding a component with lower priority than all existing components is
no guarantee for a temporal correct system� Such a component can still
a�ect the temporal correctness through� e�g� shared resources resulting
in priority inversion�

In order to predict the need for reassigning priorities in a �xed�priority
system we introduce a boolean property on an assembly expressing that
the pre�existing priority assignment still will be valid after adding a new
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inports = {I4, I5}
outports = {}
periodTime : Time = 40
priority : int = ?
deadline : uint = 15

«constructive»
C4 : Component

«precondition»
{C3.O3 = C4.I4,
C2.O2 = C4,I5 }

«precondition»
{C3.n_executed > C4.n_executed}

«precondition»
{C4.depends.includes(C3.version)}

Figure 	��� A new component c� is added to represent a new feature of
a product�

component� Apriority� The theory for this property varies according
to the strategy for assigning priorities� just as the theory A�e�e varies
depending on the scheduling policy� Adding a component ci will not
a�ect the priority assignment according to deadline�monotonic if

A�priority � �cj�ck � C�A�  ci�d � cj �d � ci�d � ck�d �	���

where ci�d and cj �d are the deadline for the task that controls the
execution of component ci and cj respectively�

We illustrate the problem of adding a new component to a product
line by continuing the example in Section 	�
��� We introduce a new
component c� which is dependent on the execution of c� and the output
from c� and c�� Such a component is presented in Figure 	���� The
component c� also expresses its version relation to other components�
Component c� depends on a particular version of c�� The dependencies
are expressed using a precondition that asserts that the correct version
of c� is in c��s depends on set�

Applying the property theory for A�priority indicates that the priority
assignment currently existing in the assembly must be revised as the new
component has an unique deadline that is shorter than the deadline for
component c�� Note that the priority of a task can only be decided in
relation to every other task in a system�
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In a similar way as described in this chapter we can de�ne� and apply�
any other important property theory in order to analyze the impact of
adding a new component to a system�

����� A successful constructive and component based

developed system

The product line approach described in Section ��	 is built using the
Rubus component model presented in Section 	�	� The component model
proposed in this thesis is a continuation of that model� The systems are
also developed in a constructive fashion� Typically� a system in the VCE
product line consists of approximately �� components that have entry
functions which execute between �� �s and � ms� In the initial develop�
ment of the system� or in the process of developing a new component�
the temporal attributes and requirements are speci�ed and the tempo�
ral behavior of the system� as well as synchronizations� is veri�ed based
on the information provided by the components� Moreover� an o��line
schedule� i�e� a dispatch table� is constructed based on the components
temporal attributes and requirements� Hence� the system can be tem�
porally integrated and veri�ed in an early stage even before any entry
function has been implemented� As a result of adopting this approach�
the time spent in the implementation phase and the integration phase
was reduced both when it comes to initial development an maintenance
activities such as adding new functionality� The method has been very
successful� More about the �ndings from introducing this technology can
be found in �NSG�����

As described in Section ��	� variations between di�erent products was
handled by datasets� i�e� parameterization� However� the parameteriza�
tion was done by assigning constant values to in�ports� Consequently�
there is no separation of data interfaces and con�guration� The notion
of composite components do not exist in the Rubus component model�
Components can not hierarchically encapsulate other components� Com�
ponents can only be encapsulated by a container which cannot have its
own thread of execution�

��� A comparison of the component models

In this section the expressiveness of the proposed component model is
compared to port�based objects� IEC ������ and Koala in order to show
that it is capable of specifying the same properties and in some cases�
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show that the semantics is more expressive� The comparison is made
based on the constructions for which we have speci�ed a semantic� i�e�
hierarchical composition� �exibility� temporal constraints� and synchro�
nization� It unveils that the proposed model can express the same prop�
erties as both IEC ������ the PBO model and Koala� However� our
model is more expressive when it comes to speci�cation of temporal at�
tributes and synchronization� The notion of abstract components is also
unique� When it comes to communication� IEC ������ PBO� and Koala
have some explicit constructions speci�ed� In our model communica�
tion among components can be implicitly speci�ed through� for instance�
shared memory protected by a semaphore� i�e� mutual exclusion�

��	�� Hierarchical composition

Hierarchical composition of component is essential for building reusable
components of convenient size� A hierarchical approach� i�e� the possibil�
ity to specify aggregated component� supports this by combining several
smaller components with a uni�ed and single interface to the rest of the
system� Our model comprises this concept by aggregated components�
In the IEC ����� standard� a function block can be composed by sev�
eral other function blocks� Thus� IEC ����� also can express hierarchical
composition� Koala also allows speci�cation of hierarchical components
called compound components� which corresponds to our aggregated com�
ponents� Port�based objects on the other hand� have no such concept�

��	�� Speci�cation of variation points

Beside the possibility of having components of suitable size� requirements
on their behavior and characteristics may vary between uses in di�erent
products in a product�line� This variation is accomplished through the
parameterization interface and the concept of abstract components in
our model� Through the parameterization interface� the behavior can
be varied without violating the encapsulating of the component� whereas
abstract components specify the need for a possible specialized imple�
mentations in a reuse situation� The port�based object model also has
a parameterization interface� But there is no equivalent to our abstract
components� Thus� in cases where only a common interface can be spec�
i�ed in the product�line architecture� port�based objects will fail to do
so� In IEC ������ there is no means for specifying �exibility explicitly�
although one may solve this by using ordinary input�data to a function
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block as a constant that specify some variable property� Koala has several
constructions that support diversity parameterization through ordinary
data ports which is referred to as diversity interfaces in the model� op�
tional interfaces� and switches� An optional required interface need not
to be connected� while an optional provided interface need not to be
implemented� Basically� a switch decide which components� among sev�
eral possible� that should be present in the deployed component� This
corresponds to our structural parameterization�

��	�� Speci�cation of temporal constraints

The temporal constraints on a real�time system is of vital importance
since correctness of such systems is de�ned to include both functional�
and temporal correctness� Furthermore� as many parameters as possible
is desirable when tuning the temporal behavior since this will minimize
the semantic gap between the high�level temporal requirements and the
task model provided by a real�time operating system� i�e� the infrastruc�
ture� In other words� it is desirable to model tasks in a way that mimic
the temporal attributes available in the infrastructure� e�g� period time�
deadline� o�set� If we consider component reuse across several di�er�
ent infrastructures we would like the model to support the union of the
temporal attributes provided by those infrastructures�

ReFlex components are completely independent from the task models�
there is only a relation between tasks and component or services in order
to specify the temporal constraints under which it must execute� IEC
����� have a similar approach where the task is separeted from the com�
ponent� However� the temporal attributes are predi�ned and restricted
to a very small number and they are quite simple which restricts the
choice of infrastructure� Typically they specify a period time and prior�
ities only� The port�based object model is equally weak on the ability to
express temporal constraints� But there are temporal attributes� i�e� the
period time in case of periodic execution� speci�ed in the actual compo�
nents� Thus� it is hard to use this model in an infrastructure that di�ers
from the one intended for the component� In the Koala framework is con�
currency and execution of components implemented as a pumps� which
in essence is a queue of messages and a function that processes the mes�
sages� A pump engine� which corresponds to a real�time task manages
a set of pumps and calls the appropriate pump function whenever there
is a message in the queue for one of the pumps� However� the temporal
behavior of components is not explicitly expressed in the framework�
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Generally� both IEC ����� and port�based objects have quite a tight
coupling to a speci�c infrastructure� whereas our proposed model and
Koala makes very few assumptions about the environment in which it
will execute�

��	�� Speci�cation of synchronization

Synchronization is an essential part of implementing the temporal re�
quirements of a real�time system� In our model mutual exclusion be�
tween components and services can be speci�ed� Moreover� precedence
relations specify and control the order in which components are executed�
In IEC ������ there is a semaphore concept that can implement a mu�
tual exclusion relation� but there is no equivalence to the precedence
concept� In the port�based object model� the concept of synchronization
among components is not de�ned� This is a major shortcoming of the
models when they are used in large and complex systems� The pump�
pump engine concept in Koala acts as dispatchers for events� Hence�
synchronization among components operating on the same pump is not
needed� However� if  inter�pump� communication is required� synchro�
nization is to be solved by the tasks� which as previously discussed� have
no correspondence in the component model or the ADL�

��	�� Predictable assemblies

The work presented in �HMSW��� is more focused on how to establish
con�dence in the analytical interfaces� whereas we have been focusing
on �nding analytical interfaces on components suitable for a product
line approach� Many other relevant properties of a component assembly
exists� e�g� memory consumption� bandwidth utilization� By identifying
the information necessary in the analytical interfaces� and by de�ning
correct property theories� such properties would easily integrate in our
work�

��	 Discussion

Another application of the ideas presented in this chapter is as a method
for handling dynamically con�gurable systems� Consumer�products such
as cellular phones may be con�gured�customized by the consumer him�
self� e�g� by downloading a new feature to the phone� Thus� the end�
customer assembles products based on a product line architecture� By
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distributing the analytical model together with the constructive software�
the system can itself predict the impact the new feature will have on the
system� Based on such an analysis the system can decide whether to
accept the new product as valid or not�
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Chapter �

Probabilistic modeling and

analysis

In this chapter we describe our probabilistic modeling and analysis frame�
work �ART�FW�� The simulations are based on analytical models of the
system made in our probabilistic modeling language ART�ML �Architec�
ture and Real Time behavior Modeling Language�� By using simulations�
we can de�ne other correctness criterion than satisfying deadlines as men�
tioned in Section ��
��� Moreover� instead of always assuming worst�case
scenarios� we can use execution time distributions� ART�ML also per�
mits the behavior of tasks to be modeled� i�e� on a lower level than the
software architecture� This permits a more precise model to be created
as semantic relations among components can be introduced� Further�
more� we introduce a requirements language called PPL in which we can
express statistical requirements which are veri�ed given the simulation
results� Hence� we have the possibility to feed more information back
from the analysis than just schedulable or not schedulable�

��� Introduction

Large and complex distributed real�time computer systems usually evolve
during a long period of time� The evolution includes maintenance and
increasing the system�s functionality by adding new features� Eventually�
if ever existed� the temporal model of the system will become inconsistent
with the current implementation� Thus� the possibilities to analyze the
e�ect of adding new features with respect to the temporal behavior will be
lost� For small systems this may not be that a big problem� but for large

��
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and complex systems the consequences of altering the implementation
cannot be foreseen� Introduce� or re�introduce� analyzability is the task of
re�engineer the system and construct an analytical temporal model of it�
We refer to this approach as providing analyzability by �re�engineering��
in opposite to the constructive approach described in Chapter 	�

Some of the systems that we have studied is of the nature that the
result from a FPA would be negative� i�e� by assuming worst�case scenar�
ios� the system will not be considered temporal correct by the analysis
in terms of meeting all its deadlines� Furthermore� a task may execute
components with great variations in execution times sporadically� To be
safe in FPA� the periodicity of sporadic tasks is modeled as having a fre�
quency equal to the minimum inter�arrival time� Thus� more pessimism
is possibly introduced�

FPA assumes a task model where deadline requirements are assigned
to every task� In one of the systems we have investigated the temporal
correctness is de�ned in terms of other criteria� Some of the tasks can
have their deadlines derived from these criteria� but not all tasks can
easily be assigned a deadline� An example of another correctness criterion
is a message queue that must never be empty �starvation��

Since traditional temporal models and analysis do not apply to all
complex real�time systems that we have studied� we have developed a
simulation�based analysis approach�

The tool suit �ART�FW�� in which the simulator is a part� also in�
cludes tools for measuring an existing system implementation� as well
as tools for processing measurements and analyzing the results gener�
ated by the simulator� The analysis is based on probabilistic properties�
Temporal requirement are speci�ed in a query language� the probabilistic
requirement property language� The result of such a query is the proba�
bility of complying with a temporal requirement�

The introduction of an analyzable model of a system brings a contin�
uous activity of maintaining the model� The model has to be consistent
with the current implementation of the system� i�e� the implementation
should be a true re�nement of the model� Consequently� our method
must be an integrated part of a company�s development process� An
alternative strategy is to� once that the temporal analytical model of
a system has been re�engineered� transfer to a component model that
support a constructive approach� e�g� the model proposed in Chapter 	�
This is� however� not always possible since such a transfer is associated
with costs and risks that cannot be tolerated in an industrial perspective�

Figure 
�� depicts the general activities required when creating and
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maintaining an analytical model� Note that the process described here
only concerns the method we are proposing� Important activities such as
veri�cation and validation of the implementation are omitted�

 

Yes No 
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Create a system model 
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designers/engineers 
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Add feature design to 
system model 
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the implementation. 
Update model 
 

A correct model exists 

Figure 
�� The process of constructing and maintaining an analyzable
system�

The details of the process depicted in Figure 
�� will be discussed in
Section 
���

��� Related work

Simulation can also be used for analyzing the temporal correctness of a
real�time system� A tool�suite called STRESS is presented in �ABRW�	��
The STRESS environment is a collection of tools for analyzing and simu�
lating the behavior of hard real�time safety�critical applications� STRESS
contains a modeling language where the behavior of the tasks in the mod�
eled system can be described� It is also possible to de�ne algorithms for
resource sharing and task scheduling� STRESS is primarily intended as a
tool for testing various scheduling and resource management algorithms�
It can also be used to study the general behavior of applications� since it
is a language�based simulator�

Another simulation framework called DRTSS is presented in �SL����
DTRSS is a high level simulation framework that allows its users to con�
struct discrete�event simulators of complex� multi�paradigm� distributed
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real�time systems� The DRTSS framework contains a set of algorithms
and protocols from which one can pick the appropriate ones and build
a simulator� New algorithms and protocols can be added to the original
set� It has support for searching for extremes in the timing behavior of
the simulated system� DRTSS has no language where task behavior can
be speci�ed� so the abstraction level of the simulation is high and �xed�
DRTSS is a part of the PERTS tool�suite� which was developed at the
University of Illinois at Urbana�Champaign� The PERTS tool�suite has
been commercialized by Tri�Paci�c Software Inc� �Tri��

Analytical methods for dealing with probabilistic temporal attributes
have been proposed in the literature� In �MEP���� an analytical method
for temporal analysis of task models with stochastic execution times is
presented� However� sporadic tasks cannot be handled� A solution for
this could not easily be found� Without �xed inter�arrival times� i�e� in
presence of sporadic tasks� a least common divider of the tasks inter�
arrival times can not be found�

Another analytical approach to probabilistic analysis is presented in
�LN���� Here they assume execution times and deadlines that both vary
over time in an unpredictable manner� while their arrival times are �xed�
Basically� the task model consists of a set of scenarios where every sce�
nario is associated with a probability� For instance� a task may arrive
with a certain execution time and deadline with a speci�ed probabil�
ity� Tasks execute probabilistically depending on several factors� e�g� the
scheduling algorithm� The paper proposes solutions for Earliest Deadline
First �EDF�� and Least Laxity First �LLF�� Even though the computa�
tional complexity of this solution has not yet been established� it seems�
intuitively� that it is quite large� Moreover� none of the proposed analyt�
ical approach solve the problem of de�ning the temporal correctness in
terms of starvation in message queues�

��� The process

The introduction of an analyzable model of a system brings a continuous
activity of maintaining the model� The model should always be consistent
with the current implementation of the system� i�e� the implementation
should be a true re�nement of the model� Consequently� our method
must be an integrated part of a company�s development process� In
this section we will brie�y describe the activities associated with the
analytical model� Figure 
�� depicts the general activities required in



��� The method ���

our method� Note that the process described here only concerns the
method we are proposing� Important activities such as veri�cation and
validation of the implementation are omitted�

The �rst activity in making an existing system analyzable with re�
spect to its temporal behavior is re�engineering of the system� Typically�
the re�engineering activity includes identifying the structure of the sys�
tem� measuring the system� and populating the model� By comparing
the result from analyzing the system using the analytical model with
the temporal behavior of the real system con�dence in the model can be
established� This is exactly the same procedure as used in developing
models for any kind of systems�

As the system evolves� each new feature should be modeled and the
impact of adding it to the existing system should be analyzed� This
enables early analysis� i�e� before actually integrating the new feature
into the system� Detecting �aws at an early stage is often more cost
e�ective than discovering the problem late in the testing phase of the
development process� Note� that such an approach requires a modeling
language that support models on di�erent level of abstractions� ART�ML
has this property which will be further described in Section 
�	� Modeling
of new features should be part of the company�s design phase�

Finally� when the new feature has been implemented and integrated
into the system� the model of that feature can be re�ned by feeding
back information from the implementation into the model� Hence� a
more precise model is implemented� This activity is typically performed
in conjunction with the veri�cation phase of a company�s development
process�

��� The method

When creating an initial model� M�� of an existing system� S� several
distinct activities which are depicted in Figure 
��� are required� First�
the structure has to be identi�ed and modeled� ie the tasks in the
system and synchronization and communication among them� In the
next step� we measure the system and populate the structural model
with data about the temporal behavior� Moreover� information needed
in the validation phase is collected� eg response times� When tuning
the model we simulate the initial model and compare the results with the
validation data collected in the previous step� In this step we may have
to introduce more details about the task behaviors in order to capture
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the system�s behavior accurately� There is a potential risk that we cannot
model the system�s behavior without introducing too many details� For
instance� there are so many implicit relations among the tasks that we
can not make a valid model without modeling the complete behavior of
the tasks involved� This� however� unveils the complexity of the existing
architecture� Consequently� the solution is rather to redesign the complex
architecture� Up until this point� the work of making a model is quite
straightforward�

To validate the usefulness of the model we have to perform a sen�
sitivity analysis� The sensitivity analysis should be based on foreseen
potential changes in the particular system� In the systems we have stud�
ied the following typical changes were identi�ed

� change existing behavior of a task which results in changes in the
execution time distribution

� add a task to the system

� change the priority of an existing task

By introducing the changes in the model as well as in the system and
comparing their behavior� we can increase the con�dence in the created
model� Any divergence between the behavior of the simulated model and
the system indicates that more details must be introduced in the model�
For instance� a change of the execution time in a task may result in a
time�out for another task that waits for a semaphore� This could indicate
that the semaphore behavior has to be introduced in the model as well�

Moreover� the accuracy of the model is dependent on the quality of
the measured data� The measuring of the data should a�ect the system
as little as possible� Too big probe e�ect on the system will result in
an erroneous model and might cause wrong decisions regarding future
developments�

A suitable notation is necessary for creating a system model� The lan�
guage has to support both the architecture �i�e� nodes� tasks� semaphores�
message queues�� and the behavior of the tasks in di�erent levels of ab�
stractions� It should be possible to compare the behavior of the created
model with the target system in an easy way in order to iteratively im�
prove the model to satisfactory level� as illustrated in �gure 
���

We use simulation in order to analyze the temporal behavior since our
notation not only describes the architecture of the target system� but also
the behavior of the included tasks� Simulation allows execution times
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Figure 
�� The work �ow of making an analytical model

expressed as distributions� We analyze the output from the simulator
by de�ning properties of interest� An example of such a property is the
probability of missing a deadline requirement on a task� Moreover� the
simulation approach allows us to de�ne non�temporal related properties�
e�g� non�empty message queues�

����� Measuring and processing data

Measuring data in a software system requires the introduction of software
probes if no hardware probes are used �Sho���� The data of interest is
resource utilization� e�g� task execution times� memory usage or sizes of
messages queues� We used software probes in order to log task switches
and message queues� The measured data is stored in statically allocated
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memory at runtime� in binary format� All formatting of the output is
done o!ine� writing to a �le at runtime is too time consuming� This
minimizes the probe e�ect� i�e� the part of the execution time that is
caused by the probe�

The output from the system is a text��le containing task switches�
time stamps� and the number of messages in di�erent queues� The size
of the output can be very big� several hundred kilobytes per monitored
second of execution� To manually analyze that data for developing a
model would be too time�consuming� We have therefore developed a tool
that extracts data from a log and computes the statistical distribution
of each task�s execution time� In table 
�� the result of processing data
from a task is shown�

In order to calculate the statistical distribution for a set of execution
times for a task� we divide all execution times into instance equivalence
classes �IEC�� by stratifying the execution times with respect to a thresh�
old� Formally we de�ne an IEC as

Denition ��� An instance equivalence class IEC is a subset of execu�
tion time instances of a task E� IEC � E� de�ned by its upper bound
max�IEC� � E and its lower bound min�IEC� � E and a threshold that
speci�es the interval between max�IEC� and min�IEC�

A task instance�s execution time is a member of the IEC In i� it is
larger or equal to min�In� but less or equal than max�In�� All instances
in an IEC in a model are represented as the average execution time of
the IEC which have the probability of occurrence equal to the number of
instances in the IEC divided by the total number of measured instances
for a task� For example� consider the �rst entry in table 
�� which express
that� with the probability of ���
 "� is the execution time for the task
������� time units� Consequently� the execution time of tasks in our
method is represented as a set of pairs consisting of the average execution
time of an IEC and its probability of occurrence�

Denition �	� The execution time for task t� texe� is a set of pairs�
hiec� pi where iec is the average execution time of an IEC and p is its
probability of occurrence

An algorithm was developed to automatically identify the boundaries
min�I� and max�I� for all IECs given a set of execution times for a task
and a threshold� The algorithm is recursive� Initially all instances are
sorted by their execution time using the quicksort algorithm� The sorted
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list constitutes the initial IEC� I� for the task� Next� the largest di�er�
ence in execution time between two adjacent instances in the sorted list
is located� If the largest di�erence is larger than a speci�ed threshold�
the list I� is split into two new IECs and recursive calls are conducted
with each of the two new IECs� Consequently� the threshold speci�es
mathematically how big variations there can be in execution times be�
longing to the same IEC� From the system modeling point of view the
threshold has two purposes� First� it can be used to �lter small variations
in execution times due to cache memories or branch prediction units� i�e�
independent from the control��ow� Moreover� threshold can also specify
the level of abstraction with which the temporal behavior is modeled�
A large threshold results in a more coarse�grained distribution� i�e� less
number of IECs for a task� Below the equation for �nding distinct IECs�
given a set of sorted execution times� is displayed�

�hxi� xi��i�hxj � xj��i � I� 

abs�xj � xj��� � abs�xi � xi��� �

abs�xj � xj��� � threshold � i 	� j �
���

As a result from applying the equation above on a sorted set of
execution time instances we may get two new potential IEC� Ik and
Ik�� where min�Ik� � min�Ik���� max�Ik� � xj � and min�Ii��� � xj���
max�Ik��� � max�Ix���� If no gap greater than the threshold is found�
the �nal IEC is already found and the recursion is stopped� When the
recursion is stopped� the largest and the smallest execution time in the
list is considered to de�ne the boundaries of an IEC�

This approach has been implemented in the ART�ML tool suit and
worked well with the characteristics of our data� However� the distance
between min and max in an IEC could be quite big if no gap greater than
the threshold is found in the sorted list of execution times� Theoretically�
all measured execution times may end up in the same IEC� We have three
possible solutions for such a scenario

� Reduce the threshold and try again

� Do not create any IECs �threshold � ��� use the entire set of in�
stances and assign each of them the probability of �

no�ofinstances
�

This solution results in a very detailed model

� Model such a task as a linear distribution with a max� and a min
execution time and uniformly assign probabilities in between them�
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An alternative strategy when constructing an IEC is to de�ne a
threshold that constrains the distance between max and min for every
IEC� This eliminates the problem discussed above� However� it still is
an abstraction of the temporal behavior� Moreover� instead of represent�
ing an IEC by its average execution time we can choose to use the IEC�s
maximum execution time� This makes the model more safe but also more
pessimistic�

The measured data can also be graphically visualized in a chronologi�
cal order� In Figure 
�	 such a graph is depicted� where in this particular
case� execution times �y�axis�� are plotted in the order in which the task
instances have executed� Studying such a graph may reveal executional
dependencies among tasks� If regular patterns are present in the execu�
tion times there may be an relation to other tasks� executions� In Figure

�	 we can see such a pattern� The execution time varies regularly be�
tween 
� ���
 and 
�
� ���
� A typical example of such a dependency
is communication among components� By examining the source code
we can model the message passing in the ART�ML model� Introducing
those dependencies will make the model more accurate with respect to
the implemented system�
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Figure 
�	 An example of measured execution times
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Table 
�� An example of statistical distribution of a task� N �
P

n�
were n is the number of instances in an IEC�

����� Modeling on dierent levels of abstraction

When creating a model of the tasks in the target system� a level of ab�
straction has to be chosen� That level de�nes the accuracy of the model�
The lower abstraction level� the more detailed and accurate model� There
is no point in using the lowest possible level of abstraction� i�e� a perfect
description� In that case� the actual code could be used instead� Using
an extremely high level of abstraction results in a model that is not very
accurate and therefore of limited use� The best result is something in
between these two extremes�

In the ART�ML language� very detailed models of task�s logical be�
havior can be made� theoretically perfect ones� By describing blocks of
code only by their execution time� the abstraction level is raised to a
higher level� The more code that is described by an execute�statement�
the higher level of abstraction� The highest abstraction�level possible is
if all code of the task is described using a single execute statement�

It is possible to use any level of abstraction when describing a task
using the ART�ML language� It is therefore possible to describe di�erent
tasks at di�erent levels of abstraction� This property of the language
enables the model to be improved �in terms of level of detail� task by
task�

The execution time distributions used also has di�erent levels of ab�
straction� The measured data from the target system is somewhat �ltered
when creating the distributions� The recorded instances are grouped into
equivalence classes� This causes data to be lost� The level of abstraction
is in this case the number of intervals used to describe the execution time
of the task� This level of abstraction impacts the accuracy of the model�

If there are multiple tasks in the system that is of no interest and do
not a�ect the behavior of other tasks� they can be modeled as a single
task at a maximum abstraction level� i�e� only by a single execution�time
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probability distribution� We refer to such a group of tasks as a composed
task� This reduces the complexity of the model without a�ecting the
accuracy of the result regarding the tasks of interest� However� it is
required that all tasks in a group has the same or adjacent priorities�
Moreover� tasks can only be grouped in such a way that no other modeled
task� i�e� task not being part of the group� has a priority within the
range of a group� For instance� consider a composed task consisting of
two tasks� Task �a with high priority� and task �c having low priority�
Moreover� consider task �b which is also part of the system and runs at
mid priority� Task �a should be able to preempt task �b� but not task �c
should not� Thus� the composed task has to run on di�erent priorities in
order to re�ect the control �ow of the implemented system�

Moreover� tasks that exhibit dependencies to the tasks of particular
interest may not be part of a composition if the dependency is required
in order to make a valid model of the system� For instance� task �a sends
a message to task �c which is a task that we are interested in analyzing�
By composing task �a with a task �b the frequency with which task �a
send its messages to task �c will be changed according to Equation 
���
On the other hand� the composition of task �a task �b is valid if we do
not need to model that dependency between task �a and task �c�

Formally� we can express the rules of grouping tasks into composed
tasks� i�e� assigning execution time distribution� period time and priority�
in a way that preserves the utilization of the CPU which the tasks in
the group contributes to� First the set of tasks to compose� C� have
to be normalized with respect to the period times� The composed task
will run with the shortest period time among the participating tasks�
Consequently� the period time of the composed task c is

c�T � min
t�C

�t�T � �
���

Normalizing the tasks in such a way that the CPU utilization is pre�
served requires re�calculating the execution times for all IECs described
in Section 
�	��� for all tasks in C�

�t � C�i � t�exe  i�iec �
c�T

t�T
i�iec �
���

The resulting execution time distribution for the composed task is
obtained by calculating the cartesian product� V� of all texe where t � C�
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i�e� t��exe � t��exe � ��� � tn�exe� Every n�pair which is part of the
cartesian product corresponds to an executional scenario� For instance�
hx�� x�� ���� xni corresponds to the scenario where task � executes for x��iec
time units� task � executes x��iec time units� and so on�

c�exe � fhiec� pij�v � V  iec �
X
�j�v

j�iec � p �
Y
�j�v

j�pg �
�	�

The �nal c�exe is obtained by merging pairs in c�exe that have equal
iecs �cmp� the generation of IECs described in Section 
�	���� For the
set of pairs� fhiec� p�i� ���� hiec� pnig � c�exe� of all pairs having the same
execution time� the merged pair remaining in c�exe is hiec�

Pn
i�� pi� wherePn

i�� pi is the probability that task c� executes iec time units�
Finally� the priority of the composed task c� cp� is assigned the high�

est priority of the tasks participating in the composition�

c�p � max
�t�C

�t�p� �
�
�

As an example consider the composition of two tasks �a and �b�
Task �a executes with the distribution �a�exe�f������
��������
�g� and
�a�T���� Task �b executes with the distribution �b�exe�f�����
�������
�g
and �a�T�
� Normalizing the execution of task �a� i�e� �a�exe�f��

	
�� ����
��

�� 	
�� ����
�g gives the cartesian product� V� equal to f����
����
�������
���

����
����
�������
����������
�� �����
����������
�������
��g� The cartesian
product V results in an execution time distribution for the composed
task� �c�exe equal to f���
�����
�� ���
�����
�� �������
�� �	�����
�g� �c�T
� 
�

The assignment of temporal attributes to composed tasks described
above is a coarse approximation of the system behavior� Ideally� all
tasks are modeled individually� However� in order to limit the modeling
e�ort� and to prune the state space� such approximations can be practical�
The result of applying the proposed rules may lead to situations where
execution times are longer than the period time� This corresponds to a
system overload which is possible in the implementation�

����� Simulating the system behavior

The simulation�based approach used in this work allows correctness cri�
terion other than meeting deadlines� An example of other correctness
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criterion could be the non�emptiness of message�queues� i�e� a starvation
property� One of the systems studied in this work had this criterion� If
a certain message�queue got empty� it was considered a system failure�

Simulation also allows us to specify arbitrary system cycles� FPA
assumes cycles equal to the Least Common Multiple of the period times
in the task set �LCM�� However� there exists systems� such as the robot
controller investigated as part of this work� where the cycle times are
determined by other criteria� For instance� in the robot case presented
in Section 
��� the system cycle is determined by the robot application�
i�e� the cycle time of the repetitive task of robot which it is programmed
to perform�

When designing the simulator� two di�erent approaches were identi�
�ed� The most intuitive was to let the simulator parse the model and
execute it statement by statement� The other approach was to create a
compiler that translated the high level ART�ML model into simple in�
structions and construct the simulator as a virtual machine that would
execute the instructions� A test was made to compare the performance
of the two approaches based on two prototypes� The virtual machine
solution performed signi�cantly better which is crucial for an analysis
tool� Currently� work is going on to improve the simulator even further
by compiling the code in the model�

The simulator engine is based on three parts� the instruction decoder�
the scheduler and the event�processing� The instruction decoder executes
the instructions generated by the compiler� i�e� it is the virtual machine�
Some of the instructions generate events when executed� Those instruc�
tions are described in more details in chapter 
����� but for the sake of
explaining the event�processing part of the simulator we will already now
introduce an instruction called execute� The execute statement describe
the partial execution time of the code in the target system� i�e� the execu�
tion time for a complete task or part of a task� An event contains a time
stamp� type of event� and an id of the source task� The time stamp spec�
i�es when the event is to be �red� Consequently� new decisions about
what task to execute are taken upon an event� The scheduler decides
which task that is to execute according to the �xed priority strategy�

It is the execute instruction that consumes time and drives the sim�
ulation forwards� First� an execution time is selected according to the
modeled execution time distribution that is passed as an argument to
execute� The current time is increased with that amount of time� or the
time when another event interferes with the execution� If an event occurs
during the execution of a task� the execution is suspended� the event is
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taken care of and the scheduler makes a new decision� The next time
the preempted task is allowed to execute� it will restart the execution
of the execute�instruction� remembering how much time it has left for
execution�

Since an execute instruction is necessary for pushing the simulation
forwards� there must always be a task that is ready to execute and con�
tains such a statement� Due to this� it is mandatory to have an idle�task
in the simulation that consumes time if no other task is ready�

��� Model validity

In this section we will discuss how to assure model validity� i�e� the
activity to establish con�dence in the constructed model� This is an
important and necessary part of constructing models�

����� Validity of the simulation approach

Existing analytical methods determines if the temporal behavior of a
system is safe or not� given that the analytical model is correct� e�g� that
the estimates of the WCET of the components are safe �But����ABD��
�
�LL���� In order to be safe the WCET is assigned a value that is as tight
as possible but slightly larger than the actual WCET� Such a method�
however� tends to over�constrain the system as the worst�case always is
considered� In Figure 
�
 a system�s temporal behavior is depicted as
sets� An analytical approach is pessimistic but safe� while simulation is
realistic but not necessarily safe� Analytical models and analyses found
in conventional scheduling theories are often too simple and therefore a
real system cannot always be modeled and analyzed using such methods�
Simulation is better from that point of view� By simulating the system
with realistic distributions of the execution times� we can demonstrate
that the system is correct� A disadvantage is that given the same correct
analytical model� we cannot be con�dent in �nding the worst possible
temporal behavior through simulation�

There may be many valid models of a single system� Observing and
measuring a systems behavior may give a system model that is valid given
that the assumptions do not change� We will exemplify the fenomenon
with a small physical experiment�

The experiment aims at deciding an equation �a model�� for calcu�
lating how high a ball bounces of the ground the �rst time after being
dropped from a certain hight� The equation is determined by repeatedly
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�
 The con�dence in analytical system analysis vs� simulation�
based analysis

dropping the ball from di�erent heights and measuring the hight of the
bounce� The resulting equation could relate the bounce proportionally
to the hight from which the ball is dropped� This is a completely valid
model as long as nothing is changed� We can even change the size of the
ball without making the model invalid� However� that model is too sim�
ple for capturing changes in� e�g� the material of the ball� or the material
in the ground for that matter�

We can transfer the physical experiment onto our method for analyz�
ing the temporal behavior of a complex system� We can convince ourself
that the model is valid by comparing the output from the simulator with
the values measured in the system� However� changing the model in
order to analyze the impact of adding new features to a system can� po�
tentially� invalidate the model� Whether or not the model is completely
valid becomes evident only after implementing the new feature� i�e� when
we have something to compare with� However� the more con�dence we
have in the model� the more con�dent can we be in the simulation results�
i�e� before implementing the new feature in the system� Continuously
maintaining and validating the model as part of the development process
is the way in which the model is iteratively re�ned and kept consistent�

To exemplify the model validity problem consider a computer system
with two tasks� �a and �b� Task �a sends a message to task �b and this
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message passing is modeled in ART�ML and the simulation results in�
dicates that the system is correct� Now task �c is added to the system
which also sends a message to task �b� This changes the temporal be�
havior of task �b� However� we only model the task �c as an execution
time distribution leaving the message passing out� As a consequence� the
simulations of task �b diverge from what we can observe in the changed
system� The model that initially was correct is now incorrect due to lack
of details�

����� System identi�cation

System identi�cation is a technique used in the domain of control the�
ory �Joh���� By measuring and observing the input�output relationship
between signals in the process a model can be determined in terms of a
transfer function� Validating models based on the system identi�cation
approach is somewhat related to testing� Typically� output signals simu�
lated using the model is compared with the output signals of the physical
process� Hence� the model is regarded as correct if the simulations and
the physical process generates approximately the same output�

Moreover� a method called residual analysis can be applied on models
of continuous systems� By observing whether or not the errors in the
prediction compared to the actual output� the residual� are independent
from the input signal� If not� it indicates that there are dynamics in the
system that is not yet in the model�

Testing the model with di�erent input signals and comparing the
prediction with the signals produced by the actual system is �ne if the
process is continuous in its nature� It is fair to assume that we can in�
terpolate the behavior in between the tested signals� However� computer
software is not continuous� they are discontinuous systems meaning that
the behavior may change dramatically as a result of small changes in the
system�

Our approach to model validation is similar to the one proposed in
system identi�cation� Our hypothesis is that potential discrepancies will
be exposed if we introduce changes in the system and the corresponding
changes in the model� Comparing the simulation results with the data
measured in the system will give us the possibility to settle the validity
of the model�

The model validation process we propose is depicted in Figure 
���
The �rst activity is to develop a set of change scenarios which should
re�ect typical� possible� and foreseen changes in the system� This cor�
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�� The process of validating the model�

responds to the scenario elicitation described in �Ben���� The set of
scenarios are system speci�c� i�e� they are valid only for the system for
which they were developed�

After having selected a suitable set of appropriate and concrete change
scenarios it is time to implement them in the model� By concrete we mean
that scenarios such as

change the priority of a task

� has to specify exactly what task to alter and what the new priority is
supposed to be�

Moreover� we have to introduce the proposed scenario in the system
as a prototype that simulates the changes� Hence� we do not implement
a complete functional change� We aim to mimic the temporal behavior
of the changes� For instance� for the scenario where the functional be�
havior of an existing task is changed� we only need to inject code that
simulate an increase or a decrease in execution times� Adding a new task
is similar� we do not implement the task�s behavior� we add the new task
and implement a piece of code that mimic the temporal behavior only�

Finally� we compare the results from simulating the changed model
to the behavior measured in the changed system� If they both behave
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the same way for every identi�ed change scenario we have establish con�
�dence in the model� However� if the behavior of the simulation and the
system diverge we must tune the model� Typically� more details has to
be introduced in the model� Examples of such details are a more detailed
model of the task�s logical behavior and executional dependencies among
task such as communication�

����� Validation recommendations

The abstraction introduced by composed tasks makes the model sensitive
to changes� e�g� adding new tasks� If the new task has a priority within
the priority range of a composed task� the composed task must be re�
modeled� Moreover� changing the behavior of a task that is part of
a composed task in the model requires re�modeling� Hence� it can be
fruitful to consider the change scenarios when constructing the model�
Likely changes should have as small impact as possible on the model�

The use of composite tasks in the model is also related to the intended
use� Is the intention of the modeling e�ort only to analyze current status
of the system� e�g� some tasks in the system� then large composite tasks
are acceptable� On the other hand� a model that evolves with the system
must utilize composite tasks carefully as we like to minimize the modeling
e�ort when changing the system�

��� The ART�ML framework

��	�� The modeling language

The modeling language that we have developed for modeling complex
real�time systems� ART�ML� is composed of two parts� the architecture
model� and the behavior model� The architecture model describe the
temporal attributes of tasks� e�g� period times� deadlines� priorities� The
architecture model also describes what resources there are in the system�

The behavior model describes the behavior of the tasks in the archi�
tecture model� Thus the behavior is encapsulated by the architecture
model� The behavioral modeling language is an imperative� Turing�
complete language close to Basic and C in its syntax as illustrated by
the following example

mainbox TASK�C�MAILBOX ��

mainbox TASK�C�MAILBOX ��
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const msgcode�ref�request �����

const msgcode�ack �����

task APERIODIC�TASK�C

trigger mailbox TASK�C�MAILBOX

priority �

behavior�

variable incoming�

incomming � ��

recv�incoming� TASK�C�MAILBOX�

timeout ����

if �incoming �� msgcode�ref�request��

recv�incoming� TASK�C�MAILBOX�

timeout ������

execute����������������������

send�TASK�B�MAILBOX� msgcode�ack��

�else�

chance�����

execute��������������������

�else�

execute�������������

�

�

�

Two constructs make ART�ML unique compared to other modeling
languages that we have been studied the execute�statement and the
chance�statement�

The execute statement describe the partial execution time of the code
in the target system� i�e� the execution time for a complete task or part
of a task� The execution time for a task is represented by a statistical
distribution� A probability distribution is implemented as a list of pairs
that corresponds to the calculated IECs described in Section 
�	��� Every
pair has a probability of occurrence and an execution time� When a task
performs an  execute� it supplies a probability distribution as parameter�
An execution time is chosen according to the distribution and the task is
put into  executing state�� When a task has been allowed to execute for
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that amount of time� the next statement� if any� in that task�s behavior
description is executed� In the example below� the execute statement
will execute �� time units with the probability of �� " and 
� time units
with the probability of �� "

execute��������� ���� �����

The chance statement implements a stochastic selection� Stochastic
selection is a variant of an IF�statement� but instead of comparing an
expression with zero� the expression is compared with a random number
in the interval �������� If the value of the expression is less than the ran�
dom number� the next statement is executed� If not� the else�statement
is executed if there is one� Stochastic selection is used for mimicking task
behaviors observed as a black box� For instance� we can observe that a
task sends a message to a particular queue with a certain probability by
just logging the queue� This can be model with stochastic selection such
that we send a message with the observed probability� For instance� it is
possible to specify that there is a �� " chance of sending a message

chance����

send�mbox�� msg�

The language has also support for message passing through the prim�
itives send and recv� Both can be associated with timeouts� Moreover�
binary semaphores can be speci�ed in ART�ML through semtake and
semgive� Semtake can be used in combination with a timeout as well�

In Section 
�� a more exhaustive example is presented where ART�ML
is used for modeling of the example system that was initially introduced
in chapter ������ The example also illustrates the method associated
with this approach� The complete grammar for ART�ML is presented in
appendix B�

��	�� The probabilistic property language

The impact of altering a component� or adding components due to new
features can be analyzed based on the simulation results� Basically� we
compare the result from simulating the extended system with simulations
performed without the extension� The di�erences constitute the impact�
For real�time systems there exists an overarching criteria somewhat par�
allel with the impact analysis� The utilization of available resources must
not exceed the upper limit and the temporal requirements must not be
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violated� Moreover� particular component may have temporal require�
ments associated with their execution that must be conformed to� Typ�
ically examples are deadlines and jitter� i�e� variations in periodicity�
The temporal behavior can also a�ect other requirements� In the case
study performed at ABB Robotics� the correctness of the system was
partly dependent on the non�emptiness of a particular message queue�
The temporal behavior of components in the system had in�uence on
this requirement�

The result of an impact analysis is in the form of the probability
of violating a requirement due to the modeled change of the system�
If the system is in the class of hard real�time systems� i�e� all temporal
requirements must always be ful�lled� Thus� the probability of complying
with a requirement must be ��

Even if all temporal requirements are ful�lled after changing the sys�
tem� there still is an impact� For instance� the response times of a com�
ponent may increase or decrease� The decrease and increase in response
times corresponds to the di�erences in response time distribution ob�
tained by simulating before and after changes in the analytical model�

The requirements are speci�ed in the simulation approach with a
probabilistic requirement property language� �PPL�� PPL can specify prob�
abilistic properties on tasks that control the execution of components and
on message queues over which components communicate� Given the num�
ber of times a requirement property has been violated the probability of
violating it can be calculated�

For every requirement property there must be a property theory
which is used for evaluating the simulation� As the property theory
for simulation is based on observations from simulating the system� the
property gets proportionately simple compared to the correspondence in
the analytical approach �HMSW���� For instance� checking the deadline
property of a task is done by comparing every observed response time�
i�e� the response time distribution� with the required deadline� If the
response time is greater than the deadline� the requirement is violated�
Given a response time distribution we can calculate the probability of
violating the deadline� As an example� consider the response time dis�
tribution displayed in Figure 
��� The probability of violating a deadline
requirement of �	 ms is equal to ����

The requirement property language supports the de�nition of prop�
erties as well as theories for calculating the property� i�e� de�ning the
property theory in terms of the variables available after a simulation with
a probabilistic property language� The probabilistic property language
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Figure 
�� The response time distribution of a task

speci�es properties based on the knowledge generated by the simulator�
and includes relation operators� �� ���� ���� 	�� the logical operators
���� the arithmetic operators �� �� the functions max and min� and an
instance operator� The instance operator binds a task to instances of
execution and enables specifying properties where the relative mutual
relation among instances of tasks is of importance�

The output generated by the simulator determines the properties
available for every task and message queue� Currently the simulator
generates the following temporal data about tasks and message queues
in a system

� Size of message queues at task switches� q�size

� Time when a task starts an execution� ��start

� Time when the execution of a task was interrupted

� Time when the execution of a task was restarted after an interrupt

� Time when a task has �nished its execution� ��end

The response time for a task� ��response� is not generated as such
but can be calculated as ��i��end� ��i��start�
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Properties are speci�ed as probabilistic statements� Specifying an in�
variant property� i�e� a property that should always be true� corresponds
to a probability equal to �� A property that veri�es that all instances i
of task � � ��i�� always meet a deadline of �� time units is expressed as
follows

P ���i��response � ��� � � �hard deadline�

If it is not critical that every instance of a task meet its deadline� we
say that the deadline is �rm� In our probabilistic property language we
can express a �rm deadline as

P ���i��response � ��� � ���
 �firm deadline�

The instance operator is used for distinguish di�erent instances of
the same task from one another� or to specify properties over the same
instance number of di�erent tasks� Separation is a property that speci�es
the minimum distance in time between two consecutive instances of a
task�

P ���i� ���start� ��i��end � ��� � � �separation�

A precedence relation speci�es the order in which two tasks should
execute�

P ���i��end �� ��i��start� � � �precedence�

The probabilistic statements may contain an unbounded variable� For
instance� the probability may be unbounded which gives as result the
probability of the statement being true� A property that speci�es the
probability of meeting a deadline equal to �� time units is

P ���i��response � ��� � X

We can also leave variables in the predicate unbounded� This could�
for instance� be used for feeding back temporal constraints to control
engineers� e�g� the feedback loop delay� The probabilistic property that
answers with what deadline will be met with a probability of ��� is

P ���i��response � d� � ���

Specifying �rm deadlines only in terms of the probability of missing
them may not be su�cient since deadline misses can be irregularly dis�
tributed� For instance� we can miss many consecutive deadlines and still
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ful�ll the temporal requirement since su�ciently many deadlines are met
in between bursts of deadline misses� In the probabilistic property below�
we specify that two consecutive instances of task � must not both miss
their deadline�

P ���i��response � �� � ��i� ���response � ��� � �

Correctness criterion for real�time systems may not only be speci�
�ed in terms of explicit temporal requirements� As discussed earlier in
this paper� the correctness of a system may be de�ned in terms of non�
empty message queues� Such an invariant requirement expressed in our
probabilistic property language would be as follows

P �queue�size � �� � � �non� emptiness�

Calculating the properties of a system is done o!ine from a simulation
point of view� i�e� it is done when the simulation has produced its output�
Thus� it will not in�uence the simulation performance� Moreover� the
output generated by the simulator is equivalent with the format of the
data measured on the real system� This makes it possible to apply the
probabilistic properties on the implementation as part of the veri�cation�
Consequently� con�dence in that the implementation is a re�nement of
the model can be established�

Grammar and semantics for the probabilistic property language

In this section we present the semantics for our probabilistic property
language �PPL�� The grammar of PPL is presented in Backus Naur Form
�BNF�� in appendix C�

We present the semantics of PPL in terms of ordinary set theory�
A property speci�ed in PPL explores the executional information about
tasks and message queues in a system� The set theory approach is appli�
cable since we can represent temporal data about tasks as pairs of task
instances and time stamps� Currently� every task is represented by three
ordered sets� start time� ending time� and response time� The start time
is when a task starts to execute� the end time is the time when a task
completes its execution� and response time is the time it takes for a task
to complete its execution�

Denition ��� ���i��start��� is a �nite totally ordered set of start times
of task � 
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Denition ��� ���i��end��� is a �nite totally ordered set of end times
of task � 

Denition �
� ���i��response��� is a �nite totally ordered set of re�
sponse times of task � 

The size of message queues are observed at every task switch and
instances makes no sense when in comes to queues� Thus� a message
queue is represented as a set of queue sizes�

Denition ��� queuesize is the �nite non�ordered set of observed num�
ber of messages simultaneously on queue

All data sets for tasks and message queues are created from the data
generated by a simulation or the data measured on the implemented
system�

The unbounded variable in an expression constitute the objective
of the query� Unbounded variables are scalar and represents either a
probability or an integer� PPL allows for only one unbounded variable
in every probabilistic expression� Thus� either a probability of satisfying
the expression or an value that satis�es the expression with a speci�ed
probability� Two unknown variables make the expression undecidable�

In the semantical rules given below the sets de�ned in de�nition ���
��� and ��� are generalized meaning that all sets apply to the rules� We
denote sets as capital letters and constants and unbounded scalars as
lower�case letters with the su�xes c for constants and v for unbounded
variables� Consequently� the unbounded variable x is denoted xv� and
the constant x is denoted xc

The arithmetic operators in PPL operates on the elements in an or�
dered set� In order to ensure that the �nite ordered sets on which the
arithmetic is applied have the same cardinality we only allow two di�erent
construction between an ordered set and a scalar� or between ordered
sets belonging to the same task� e�g� ��i��start � �� and ��i��end �
��i��start

Xi aritop Xj  fxi aritop xj  xi � Xi � xj � Xjg

Xi aritop xc  fxi aritop xc  xi � Xig

The label aritop is an arithmetic operator�
The semantics of the probabilistic properties in which the arithmetic

expressions may be a part of is presented below� As we must be able to
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reason about the relative ordinal of individuals in the sets we de�ne a
relative order operator�

Denition ��� x �n y is the relative order relation between x and y
such that n�� individuals are ordered in between x and y�

x �� y i� ��z  x � z � y

x �� y i� �z  x �� z �� y

x �n y i� �z����zn��  x �
� zn�� �

� ��� �� z� �
� y

Especially we say that x � X and y � Y have the same order in X
and Y respectively if x �� y�

In the semantical rules below we denote sets as capital letters� The
sets correspond to the sets de�ned in de�nition �� through de�nition
��� Note that since we cannot reason about instances and order when
it comes to queue sizes� as de�ned in de�nition ��� we specify a special
semantic rule for that case� We distinguish unbounded variables from
constants by subscripting unbounded variables with v� e�g� xv� and con�
stants with c� e�g� xc� If the relation operation in the rules below is not
explicitly speci�ed we refer to them as a relop�

There are two di�erent types of expressions properties without un�
bounded variables� and properties including unbounded variables� They
di�er mainly in the nature of their solutions� A property without un�
bounded variables are evaluated as true or false� i�e� whether or not
the property is satis�ed by the simulation results� A property with un�
bounded variable on the other hand� binds the variable to a value�

We start by describing the rules for properties without any unbounded
variables� There are three di�erent kinds comparing instances in a set
with a constant� comparing instances in two di�erent sets� and comparing
a message queue with a constant�

P �X relop� xc� relop� yc �
true if yc relop�

jfx�x�X�x relop� xcgj
jXj

false otherwise
�
���

P �X��i� relop� X��i� n�� relop� xc �
true if xc relop�

jfhx�yi�x�X��y�X��x�ny�xrelop�ygj
jfha�bi�a�Xi�b�Xj�a�nbgj

false otherwise
�
���
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For message queues we can not reason about instances� hence� we
cannot specify properties that compares two di�erent message queues
over time� We only allow comparison between a message queue and a
constant� However� as we will see later� the probability can be unbounded
in a message queue expression�

P �Xrelop�xc�relop�yc 

�
true if yc relop�

jfx�x�X�xrelop�xcg
jXj

false otherwise

�
���

The properties that includes unbounded variables can also be divided
into two di�erent classes properties with an unbounded probability and
properties with an unbounded variable in the comparison� Properties
with unbounded probabilities are rather simple to evaluate� Basically�
we calculate the probability of the property being true�

P �X�i� relop� xc� � xv  xv �
j fx  x � X � x relop� xcg j

j X j
�
���

P �X��i� relop� X��i�� � xv 

xv �
j fhx� yi  x � X� � y � X� � x �� y � xrelop� yg j

j fha� bi  a � X� � b � X� � a �� bg j
�
����

P �X��i� relop� X��i� n�� � xv 

xv �
j fhx� yi  x � X� � y � X� � x �n y � xrelop� yg j

j fha� bi  a � X� � b � X� � a �n bg j
�
����

Message queue properties with unbounded probability are equally
straight�forward to calculate

P �X relop� xc� � xv  xv �
j fx  x � X � x relop� xcg j

j X j
�
����

Unbounded variables in PPL are bounded to intervals� not scalar val�
ues� The reason for this is that there can be many valid bindings for a
variable that ful�ll a property� However� there always exists a minimum
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and�or a maximum valid assignment� For instance� the deadline require�
ment P �X�i��response � xv� � ���
� which is expressing the question
what deadline is ful�lled in �
 " of the executions have many possible
solution� However� there is one lower bound� i�e� minimum assignment
to xv that ful�lls the property� If the set X�response � f�� �� �� 	g�
than a deadline of � is complied with in �
 " of the cases� However�
a deadline of 	 or bigger is complied with in ��� " of the cases which
is greater or equal to �
 "� Consequently� the solution is to bind xv to
the interval ������ If we� on the other hand� change the property to
P �X�i��response � xv� � ���
� i�e� what deadline is ful�lled at most
�
 "� we get a di�erent interval� Given the same set� X�response� we
can see that a deadline equal to � give deadline misses in �
 " of the
execution� However� a deadline equal to � is also a valid solution� Hence�
the interval assigned to xv is ������

Moreover� we must restrict the way in which properties with an un�
bounded variable within the comparison is constructed� If not� we may
end up with expressions that are undecidable� For instance� the prop�
erty P�X�i� relop xv� � ��
 have no valid solution for xv if the set X
consists of three elements� Hence� expressions with unbounded variables
and a constant probability with a strict equality is only allowed in two
cases� i�e� equal to one� or equal to zero� We can always �nd bindings to
the variable that satisfy none� or all of the elements in a set� Moreover�
binding a variable to a value equal to elements in a set with a certain
probability may be undecidable� e�g� P�X�i� � xv� relop ��
� It is not
necessarily the case that the set X have enough elements with the same
value in order to ful�ll the property�

P �X relop xv� � �  xv � �j��� 
j fx  x � X � x relop jg j

j X j
� �

�
����

where X 	� �� and relop 	�����

P �X relop xv� � �  xv � ��� j� 
j fx  x � X � x relop jg j

j X j
� �

�
��	�

where X 	� �� and relop 	� � ���
There may exist several solutions for an unbounded variable as dis�

cussed above� Hence� we get as a result the set of possible solutions which
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is a subset of the set that is being analyzed� xs � X� from which we can
derive the interval that corresponds to the solution� Depending on the
relational operand� we construct the interval by taking max� or min of
xs� It depends on whether it is an assignment of the unbounded variable
that give at most a certain probability ���� or if it give at least a certain
probability ����

P �X relop xv� � xc  xv � ���max�xs�� 

xs � fx  x � X �
j fi  i � X � i relop xg j

j X j
� xcg �
��
�

P �X relop xv� � xc  xv � �min�xs���� 

xs � fx  X � X �
j fi  i � X � i relop xg j

j X j
� xcg �
����

��	 ART�ML� An example

In this section we will go through a small example where we apply the
method proposed in this chapter� The control system example that we
last visited in Section ����� has now been in use for quite a while� Mainte�
nance as well as new functionality has increased the complexity of the sys�
tem� Furthermore� the analytical models that initially was constructed
has become obsolete� Hence� we must re�introduce analyzability to the
system�

According to the proposed method we start by identifying the struc�
ture of the system� The system now consists of six tasks out of which
the three described in Section ������ i�e� the sampling task� the control
task� and the actuate task� and a new task which is part of the human�
machine�interface are of particular interest� Hence� those tasks will be
modeled in details while the other three will� if possible� be composed
into one composed task� The possibility of composing tasks is dependent
on their priority levels� i�e� non of the  important� three tasks may have
a priority level within the range of the composed� In our example we are
lucky� the task to compose all have lower priority than the other tree�
Consequently� only one composed task is required� In Table 
�� is the
identi�ed basic structure displayed� The trigger column indicates how
the execution of a task is triggered� All tasks are periodic except the
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Task Trigger Priority

Sampling task ���� �

Control task ���� �

Actuate task ���� �

HMI task QUEUE �

Other� ���� 	

Other� ���� 


Table 
�� The structure of the example system described as tasks� trig�
gering event� and priorities

HMI task which is triggered by the event that a message is put onto the
message queue named QUEUE� The priorities are still assigned according
to the rate�monotonic algorithm�

Note that no relations other than the priorities are found yet� How�
ever� we can see that the HMI task is dependent on QUEUE to which
we assume that other tasks in the system write� In order to construct
a valid model it may be required that more details about the relations
between tasks are identi�ed� e�g� communication among the tasks� How�
ever� while constructing models it is desirable to keep them on an as high
level of abstraction as possible while still producing a valid model� We
will� consequently� keep our model on this rather high level in the initial
modeling phase� The need for more details will be evident in the model
validation phase of our method�

Having identi�ed the structure of the system we have to populate
the model with details about execution times and communication behav�
iors� Execution times can be based on estimations� or if the system is
implemented� the execution times can be measured� In this particular
example we are constructing a model in a re�engineering fashion in order
to introduce analyzability� Hence� we have a system which we can mea�
sure� Note that by estimating the execution times of non�implemented
functions we enforce requirements on the implementation� If the result
from analyzing the system is correct� the system is also correct as long
as the assumptions made in the model holds also in the implementation�

We measure the system by executing the system and monitoring ex�
ecution times as well as events such as sending and receiving messages
on queues� For the reason of simplicity in this example we assume that
we collect only a small set of measurements from our system� The result
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Task Execution times �s QUEUE

Sampling task 
�� 

� 	�� 
� ���� ���� ���� ���

Control task ���� ���� ���

Actuate task 
�� 
�� 
	� 

� 	�

HMI task ��� �� ���� ���

Other� ��� ��� ��

Other� ��� ��� ��� ��

Table 
�� The measurements sampled in the example system

from the measuring phase is a set of execution times for every task to�
gether with information about the queues that has been accessed by each
task instance� In Table 
��� the collected measurements are shown� The
information about QUEUE in Table 
�� is compiled from continuously
monitoring the size of the queue for every instance of the tasks in the
system� An increased queue size indicates a task putting messages on the
queue� while a decrease indicates popping messages from a queue� The
notation x � y in the QUEUE column indicates that the size of QUEUE
was changed from x to y when a task instance was executed� From our
measurements we can see that the sampling task writes to QUEUE with
the probability of ��
� and that the HMI task reads from QUEUE with
the probability of ��

We start by calculating the IECs for all tasks� i�e� creating equiva�
lence classes for the execution times� This will �lter small variations in
execution times which are caused by� e�g� caches� Consequently we apply
the algorithm presented in equation 
�� to every task� The threshold is
set to � �s� Starting with the sampling task we have the following sorted
set of execution times f	�� 
�� 
�� 

g� Basically� the algorithm says
that we shall start with the initial IEC containing the shortest execution
time only� and if the distance to the second shortest is smaller than� or
equal to� the threshold� it belongs to the same IEC� Starting with an
initial IEC containing the execution time 	� only� the next value is 
�
which is within the tolerance of the threshold� Consequently� they belong
to the same IEC� The distance between 
� and 
� is also less or equal to
the threshold� However� the distance between 
� and 

 is greater than
� which results in a new IEC containing the execution time 

� We have
found two IECs �	�� 
�� 
�� and �

�� According to De�nition �� each
IEC is represented by its average execution time and its probability of
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Task IEC

Sampling task �
�� ���
�� �

� ���
�

Control task ����� ��

Actuate task �
�� ���� �
	�
� 	��

HMI task ����
� ��

Other� ���� ������ ���� �����

Other� �����
� ��

Table 
�	 The calculated IECs for the example system

occurrence� The average of �	�� 
�� 
�� is equal to 
� and its probability
of occurrence is equal to the number of instances in the IEC divided by
the total number of instances� i�e� ��	� The second IEC only contains
one instance which give an average of 

 with the probability of ��	�

Repeating the same calculations for every task we end up with the
IECs presented in Table 
�	�

Finally� before populating the model we have to calculate the tem�
poral properties of the task composed of Other� and Other�� Equation

�� suggests that the composed task shall be modeled with a period time
equal to the minimum period time of the composed tasks� In Table 
��
we can see that Other� have a period time equal to ���� �s� and Other�
has a period time equal to ���� �s� Consequently� the composed task
will be modeled as having a period time equal to ���� �s� Moreover�
the priority of the composed task shall� according to equation 
�
� be the
highest among the composed tasks which in this case is 	�

In order to preserve the processor utilization we must normalize the
IEC�s for the tasks in the composed task that initially had a di�erent
period time� In this example we must normalize the IECs of the task
Other�� Applying equation 
�� gives us the new IEC for Other� as
������������
� ��� which is equal to ��
���
� ���

The last step in order to arrive with a set of IECs for the composed
tasks we must consider every possible scenario of execution of the com�
posed task� Other� and Other� may execute according to two di�erent
scenarios

�� Other� executes for �� �s and Other� executes for �
���
 �s

�� Other� executes for �� �s and Other� executes for �
���
 �s

Those two scenarios will result in two di�erent IEC�s for the composed
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Task IEC

Sampling task �
�� ���
�� �

� ���
�

Control task ����� ��

Actuate task �
�� ���� �
	�
� 	��

HMI task ����
� ��

Composed ��	���
� ������ ������
� �����

Table 
�
 The structure of the example system described as tasks and
priorities

task which are calculated with equation 
�	� ��� � �
���
� ���� � ��� and
��� � �
���
� ���� � ��� The �nal set of IECs for our model is shown in
Table 
�
�

Below the model is shown in the ART�ML modeling language� The
IECs constitute the arguments for the execute�statement in all tasks�
Moreover� we have used the chance�statement to model that the sampling
task is sending a message on QUEUE with the probability of ��
� The
HMITask reads the QUEUE and put the value in the local variable named
incoming whenever a value is put in QUEUE�

system processor MicroController

variable input�

mailbox QUEUE ����

task SamplingTask

trigger period ����

priority �

behaviour�

execute������������������

chance�����

send�QUEUE� input��

�

�

task ControlTask

trigger period ����

priority �

behaviour�

execute ������������
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�

task ActuateTask

trigger period ����

priority �

behaviour�

execute �������������������

�

task HMITask

trigger mailbox QUEUE

priority �

behaviour�

variable incoming�

recv�incoming� QUEUE�

execute ����������

�

task COMPOSED

trigger period ����

priority �

behaviour�

execute ������������ ������������

�

task IDLE

trigger startup

priority ���

behaviour�

while����

execute���������������

�

endproc

endsys

For now we are satis�ed with a model on this high level of abstraction�
The model validation activity will unveil the necessity of adding more
details� Note also that the only resource we are analyzing is the CPU�
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Running the model in the simulator results in response time distri�
butions for the tasks� blocking times for the tasks� and execution times
for all tasks in the model� Moreover� the size of message queues over the
simulation time are generated� In Figure 
�� through 
��� is the response
times for the tasks plotted�
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Figure 
�� The response time distribution for the sampling task�

The size of QUEUE over time is displayed in Figure 
����

By comparing the output from the simulator� e�g� response times for
the tasks� with response times measured in the system we can validate the
correctness of our model with respect to the current system� However� as
discussed in chapter 
�
� we do not know how well the model will behave
when adding new functionality or maintaining existing functionality� In
order to increase our con�dence in the model we have to derive a set of
scenarios that re�ect likely changes� In this small example we assume
the only likely change is adding functionality to the control task� i�e�
an increase in the execution times� This is easily veri�ed by injecting
nonsense code that simulate the increased execution time� Again we
can compare the response times measured in the  changed� system with
the result from simulating the changed model� If they show reasonable
equivalence in their behavior� we can assume that the model is reasonable
correct�

Now that we have constructed a model that we believe is correct� we
can start using it for analyzing its behavior� e�g� verifying the system�s
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Figure 
�� The response time distribution for the control task�

temporal requirements� In order to verify temporal requirements based
on the simulation result we formalize the requirements into PPL queries�
For instance� in Table ��	 we see that the sampling task has a deadline
requirement speci�ed as �� �s� In PPL such a requirements would be
P�SamplingTask�i��response� ��� � �� Such a PPL query is true if every
instance of the sampling task has a response time less or equal to �� �s�
Moreover� we would like to verify the size of QUEUE never exceeds one�
In PPL such a requirement is formalized as P�QUEUE�size � �� � ��
Hence� the probability of the size being less or equal to one is one�

��
 A robotic control system

The method described in this chapter was a result from studying the
possibility of introducing analyzability in a large and complex real�time
system� The system we have investigated is a robotic control system
at ABB Robotics initially designed in the beginning of the nineties� In
essence� the controller is object�oriented and consists of approximately
� 
�� ��� LOC divided on 	���
�� classes organized in �
 subsystems�
The system contains three nodes that are tightly connected� a main node
that in essence generates the path to follow� the axis node� which controls
each axis of the robot� and �nally the I�O node� which interacts with
external sensors and actuators� In this work we have studied a critical



��� Chapter �� Probabilistic modeling and analysis

0,000000148

0,00000015

0,000000152

0,000000154

0,000000156

0,000000158

0,00000016

0,000000162

0,000000164

0 0,0002 0,0004 0,0006 0,0008 0,001 0,0012

Figure 
��� The response time distribution for the actuate task�

part with respect to control in the main node� The controller runs under
the preemptive multitasking real�time operating system WxWorks�

Maintaining such a complex system requires careful analyses to be
carried prior to adding new functions or redesigning parts of the system
not to introduce unnecessary complexity and thereby increasing both the
development and maintenance cost�

����� The model

We have modeled some critical tasks for the concrete robot system in
the main node �see Figure 
����� The main node generates the motor
references and brake signals required by the axis computer� The axis
node sends requests to the main node every 	�th millisecond and expects
a reply in the form of motor references� This depends on three tasks A�
B� and C� B and C have high priority� are periodic� and runs frequently�
A executes mostly in the beginning of each robot movement and has
lower priority� The �nal processing of the motor references is performed
by C� C sends the references to the axis node� Moreover� C is dependent
on data produced by B� If the queue between them becomes empty� C
cannot deliver any references to the axis node� This state is considered
as a critical system state and the robot halts� A sends data to B when
a movement of the robot is requested� If the queue between A and B
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Figure 
��� The response time distribution for the HMI task�

gets empty� the robot movement stops� In this state� B sends default
references to C� The complete case study is presented in �AN���� All
comments have been removed and variable names have been changed
for business secrecy reasons� The model is not complete with respect to
all components in the system� All tasks� other than A� B and C� have
been grouped into two dummy tasks according to the rules described in
Section 
�	��� One of the two dummy tasks has higher priority than A�
and the other has lower priority than A� This is one way in which we can
utilize di�erent level of abstractions in our model�

In appendix D� the the complete model for the robot controller is
presented�

����� The results

The model we made is quite an abstraction of the existing system� There
were approximately �� tasks in the system which was reduced to six in the
model� This level of abstraction was selected since there were three tasks
of particular interest which was modeled in detail� The rest of the tasks
were modeled as two composed task� Finally� an extern subsystem was
modeled as a task� The � 
�� ��� LOC in the existing implementation
was reduced to ��� LOC in the model�

A more detailed model would not only represent a more accurate
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Figure 
��� The task structure of the critical control part of the system

view of the system� it will also prune the state�space which the simulator
has to consider� For instance� removing impossible system states by
introducing functional dependencies among tasks will reduce the states
that the simulator must explore� Thus� the simulation time is reduced�

Despite our course�grained model� the result when comparing re�
sponse times produced by the simulator and the response times mea�
sured on the system is quite good� In Figure 
��	 and Figure 
��
� the
response times from the simulation and the real system are plotted� The
resemblance is obvious� However� methods for formally analyzing the
correctness of a model should be developed as a continuation of this
work�
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��	 The simulated response time distribution

����� Validation results

The results from the case study indicates that we have made one valid
model out of many which may be valid for the system in its current
state� However� we can not assume the model to be completely correct�
In order to validate the model and establish con�dence in the model we
must develop a set of change scenarios as described in chapter 
�
��� Our
initial list of scenarios was

� add�remove tasks to the system

� add�remove functional behavior in an existing task

� change the behavior of existing functionality� i�e� changing execu�
tion times

� change the priority of existing tasks

� change message queue sizes

� add shared resources

� change the period time of a task

� change the triggering condition of a task
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��
 The measured response time distribution

After interviewing engineers at ABB Robotics� the list was reduced
to only include the most likely changes add�remove tasks to the system�
add�remove functional behavior in an existing task� change the behavior
of existing functionality� and change the priority of existing tasks�

We developed four di�erent cases out of the scenarios

� Case � No change at all

� Case � Add a new task called dummy with a short� oscillating
execution time and low priority

� Case � Raise the priority of the dummy task drastically

� Case � Increase the period time for the dummy task and extend
its execution time

We model changes in a task�s functional behavior by changing its
execution time�

In Figure 
��� and Figure 
��� we see an example of the result from
the validation� We denote execution time by et and rt denotes response
time� The simulated behavior in Figure 
��� correspond quite well with
the behavior measured at runtime which is shown in Figure 
����

In general� by observing the results we see that our model indeed
capture the temporal behavior of the system quite well� The simulations
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follow the measured system over the change scenarios� However� there are
small di�erences in execution times between the model and the system�
Consequently� we need to tune the execution time distributions in our
model as it is too coarse grained� Moreover� we had to model yet another
composed task since the priority of the dummy task is within the range
of the low priority composed task�

However� the validation results is only informally reviewed� We need
to develop formal mathematical methods that de�nes the equivalence
between a simulation result an the real system behavior� This is fur�
ther discussed in Section ��� where possible and required future work is
presented�

The complete result from the validation is provided in appendix E

��� Comparing ART�FW with related work

None of the simulation�based approaches to analysis of a system�s tempo�
ral behavior that was described in chapter ��
��� i�e�
STRESS and DRTSS� conform completely to our assumptions and re�
quirements� STRESS has neither support for modeling distributions of
execution times or message queues nor a requirement language� DRTSS
has no language where the behavior of component can be speci�ed which
is necessary for modeling executional dependencies�

Moreover� none of the above mentioned simulation�based solutions
provide a property language that we have proposed for specifying prob�
abilistic requirements�

The computational complexity of analytical methods that support
probabilistic models is very high in comparison with a simulation ap�
proach� However� the analytical methods cover� as discussed in Section

�
� the complete system behavior which is not necessarily the case with
a simulation approach�
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Figure 
��� Measured execution times and response times for task A
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Figure 
��� Simulated execution times and response times for task A
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Timed automata with tasks

In this chapter� we extend the classic model of timed automata with a
notion of real time tasks� The main idea is to associate each discrete
transition in a timed automaton with a task� Intuitively� a discrete tran�
sition in an extended timed automaton denotes an event releasing a task
and the guard on the transition speci�es all the possible arriving times
of the event �instead of the so#called minimal inter�arrival time�� This
yields a general model for hard real�time systems in which tasks may be
periodic and non�periodic�

We show that the schedulability problem for the extended model can
be transformed to a reachability problem for standard timed automata
and thus it is decidable� This allows us to apply model�checking tools for
timed automata to schedulability analysis for event�driven systems� In
addition� based on the same model of a system� we may use the tools to
verify other properties �e�g� safety and functionality� of the system� This
uni�es schedulability analysis and formal veri�cation in one framework�
We present an example where the model#checker Uppaal is applied to
check the schedulability and safety properties of a control program in
automotive applications�

��� Introduction

In Chapter 
 we presented a probabilistic modeling language which was
analyzed using simulations� Furthermore� we have discussed the con��
dence that we can have in the analysis results when we use simulation
contra analytical methods given that we have a valid model �see Fig�
ure 
�
�� We know that the existing analytical methods for analyzing
the temporal behavior of a real�time system provide a safe result given

���
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that the model is correct� However� the models in existing analytical
methods are often too simple in order to capture a systems temporal
behavior� This was the motivation for developing the ART�ML modeling
language� However� we can never be sure that we capture the worst�case
scenario by simulation� Thus� the ideal framework would include a rich
modeling language that allow us to specify execution times as intervals
and in which we can model dependencies among tasks� and still allow
us to mathematically analyze the models� Our solution is to use timed
automata �AD�	��

The traditional approach to the development of hard real�time sys�
tem is often based on scheduling theory� There are various methods
�But��� LL��� Der�	� e�g� rate monotonic scheduling� which have been
very successful for the analysis of time�driven systems as tasks are pe�

riodic� To deal with non�periodic tasks in event#driven systems� the
standard method is to consider non�periodic tasks as periodic using the
minimal inter�arrival times as task periods� Clearly� the analysis result
based on such a task model would be pessimistic in many cases� e�g� a
task set which is schedulable may be considered as non�schedulable as the
inter�arrival times of the tasks may vary over time� that are not necessary
minimal�

In recent years� in the area of formal methods� there have been sev�
eral advances in formal modeling and analysis of real time systems based
the theory of timed automata due to the pioneering work of Alur and
Dill �AD���� Notably� a number of veri�cation tools have been developed
�e�g� Kronos and Uppaal �DY�
� BLL����� in the framework of timed
automata� that have been successfully applied in industrial case stud�
ies �e�g� �BGK���� LPY��b� LPY����� Timed automata have proved
expressive enough for many real�life examples� in particular� for event�
driven systems� The advantage with timed automata is that one may
specify very relaxed timing constraints on events �i�e� discrete transi�
tions� than the traditional approach in which events are often considered
to be periodic� However� it is not clear how the model of timed automata
can be used for schedulability analysis� In this chapter� we present an
extended version of timed automata with real�time tasks to provide a
model for event�driven systems� We show that the extended model can
be used for both schedulability analysis and veri�cation of other prop�
erties� e�g� safety and liveness properties of timed systems� This uni�es
schedulability analysis and formal veri�cation in one framework�

The main idea is to associate each discrete transition in a timed au�
tomaton with a task �or several tasks in the general case�� A task is
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assumed to be an executable process with two given parameters its
worst execution time and deadline� Intuitively� a discrete transition in
an extended timed automaton denotes an event releasing a task and the
guard �clock constraints� on the transition speci�es all the possible ar�
rival times of the associated task� Whenever a task is released� it will be
put in the scheduling queue for execution� We assume that the tasks will
be executed according to a given scheduling strategy e�g� earliest dead�
line �rst� Then a delay transition of the timed automaton corresponds to
the execution of the task with earliest deadline and idling for the other
waiting tasks�

Thus� the sequences of discrete transitions of an extended timed au�
tomaton will correspond to the sequences of arrivals of non�periodic tasks�
We say that such a sequence of tasks is schedulable if all the tasks can be
executed within their deadlines� Naturally an automaton is schedulable
if all the task sequences are schedulable� We shall show that under the
assumption that the tasks are non�preemptive� the schedulability prob�
lem can be transformed to a reachability problem for ordinary timed au�
tomata and thus it is decidable� This allows us to apply model�checking
tools for timed automata to schedulability analysis for event�driven sys�
tems� We present an example where the model#checker Uppaal is ap�
plied to check the schedulability and safety properties of a control pro�
gram in control applications�

��� Related work

Related work is provided by Fredette and Cleaveland which have de�ned
a timed process algebra called Real�Time Speci�cation Language �RTSL�
�FC���� RTSL is based on the syntax and semantics of CCS �Mil���� and
ACP� Furthermore� they use reachability analysis to verify whether the
system is schedulable or not� In RTSL there are predicates which raise
exceptions if� for instance a process misses its deadline� By verifying that
no exception states are reachable� they can decide if a system of processes
is schedulable�

��� Timed automata with real�time tasks

The theory of timed automata was �rst introduced in �AD��� and has
since then established as a standard model for real time systems� We
�rst give an brief review to �x the terminology and notation and then
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present an extended version of the model with tasks�

	���� Timed automata

A timed automaton is a standard �nite�state automaton extended with
a �nite collection of real�valued clocks� The transitions of a timed au�
tomaton are labeled with a guard �a condition on clocks�� an action�
and a clock reset �a subset of clocks to be reset�� Intuitively� a timed
automaton starts execution with all clocks set to zero� Clocks increase
uniformly with time while the automaton is within a node� A transition
can be taken if the clocks ful�ll the guard� By taking the transition� all
clocks in the clock reset will be set to zero� while the remaining keep their
values� Thus transitions occur instantaneously� Semantically� a state of
an automaton is a pair of a control node and a clock assignment� i�e� the
current setting of the clocks� Transitions in the semantic interpretation
are either labeled with an action �if it is an instantaneous switch from
the current node to another� or a positive real number i�e� a time delay
�if the automaton stays within a node letting time pass��

For the formal de�nition� we assume a �nite set of alphabets Act for
actions and a �nite set of real�valued variables C for clocks� We use
a� b etc to range over Act and X��X� etc� to range over C� We use
B�C� ranged over by g and later by � etc� denote the set of conjunctive
formulas of atomic constraints in the form Xi�m or Xi �Xj�n where
Xi�Xj � C are clocks� � � f�� ���� �g� and m�n are natural numbers�
The elements of B�C� are called clock constraints�

Denition ��� A timed automaton over actions Act and clocks C is a
tuple hN� l�� Ei where

� N is a �nite set of nodes�

� l� � N is the initial node� and

� E � N � B�C��Act� �C �N is the set of edges

When hl� g� a� r� l�i � E� we write l
g�a�r
�� l�

Formally� we represent the values of clocks as functions �called clock as�
signments� from C to the non#negative reals R�� � We denote by V the set
of clock assignments for C� A semantical state of an automaton is now a
pair �l� u�� where l is a node of the automaton and u is a clock assignment
and the semantics of the automaton is given by a transition system with
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the following two types of transitions �corresponding to delay#transitions
and action#transitions�

� �l� u�
d
���l� u� d�

� �l� u�
a
���l�� u�� if l

g�a�r
�� l�� u � g and u� � �r �� ��u

where for d � R�� � u� d denotes the clock assignment which maps each
clock X in C to the value u�X� � d� and for r � C� �r �� ��u denotes the
assignment for C which maps each clock in r to the value � and agrees
with u over Cnr� By u � g we denote that the clock assignment u satis�es
the constraint g�

	���� Extended timed automata with tasks

We shall view a timed automaton as an abstract model of a running
process� The model describes the possible events �alphabets accepted by
the automaton� that may occur during the execution of the process and
the occurrence of the events must follow the timing constraints �given by
the clock constraints�� But the model gives no information on how these
events should be handled� In many cases� for example in a control system�
when an external event occurs� some computation must be performed to
handle the event� A more concrete example is an interrupt handling
system� Whenever an interrupt signal occurs� the associated interrupt
handling program will be executed�

Now� assume that each action symbol in a timed automaton is asso�
ciated with a program called task� Let P ranged over by p etc� denote
the set of tasks� We further assume that the worst case execution time

and hard deadline of the tasks in P are known� We shall use clock con�
straints to specify the arrival times of the tasks� Thus� each task p in P

is characterized as a pair �c� d� of natural numbers with c � d where c is
the execution time of p and d is the relative deadline for p�

The deadline d is a relative deadline meaning that when task p is
released� it should �nish within d time units�

Denition ��� An extended timed automaton with tasks �TAT�� over
actions Act� clocks C and tasks P is a tuple hN� l�� E� T i where

� hN� l�� E� T i is a standard timed automaton�

� T  Act 	� P is a partial function assigning tasks to actions
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Semantically� an extended automaton may perform two types of tran�
sitions just as an ordinary timed automaton� In addition� an action tran�
sition will release a new instance of the task associated with the action�
Assume that there is a queue holding all the task instances generated
by action transitions and ready to run� The queue corresponds to the
ready queue in an operating systems� A semantic state of an extended
automaton is a triple consisting of a node �the current control node�� a
clock assignment �the current setting of the clocks� and a task queue �the
current status of the ready queue��

 x>2  a  x:=0 
x<4 
y>2 
a 
y:=0 

b 

m n 

Figure ��� An example timed automaton with tasks

Consider the automaton of Figure ���� Let p� and p� be tasks han�
dling the interrupt signals a and b respectively� Assume that the initial
state is �m� �x � �� y � ��� ��� where the clocks are � and the task queue
is empty� Then the automaton may demonstrate the following sequence
of transitions

�m� �x � �� x � ��� ���
�
�� �m� �x � �� y � ��� ���
a
�� �n� �x � �� y � ��� �p���
a
�� �n� �x � �� y � ��� �p�� p���

�
�� �n� �x � �� y � ��� �p�� p���
a
�� �n� �x � �� y � ��� �p�� p�� p���

�
�� �n� �x � 	� y � ��� �p�� p�� p���

b
�� �m� �x � 	� y � ��� �p�� p�� p�� p���

� � �

Note that several instances of the same task may be released� How�
ever� the number of copies may be bounded by the clock constraints� For
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example� in state �n� �x � 	� y � ��� �p�� p�� p���� no more instance of p�
will be released because the clock values will not satisfy the constraint
x � 	 and y � �� but an instance of p� may be released by the b�transition
�which has no timing constraint��

In the above example� we have only shown that the task queue is
growing due to action transitions� Now we discuss the e�ect of delay
transitions on task queue� We shall see that the queue will be shrinking
due to delay transitions� Let p� � p� � ��� �� i�e� the computation time
of both p� and p� is � and the deadline is �� We assume that there is
a processor running the task instances according to a certain scheduling
strategy� A delay transition with t time units is to execute the tasks in
the queue with t time units� After the transition� a task will be removed
from the queue �shrinking� if its computation time becomes � and the
deadlines of all tasks in the queue will be decreased by t �since time has
progressed by t�� Now we have a precise description on the state changes
for the above transition sequence

�m� �x � �� x � ��� ���
�
�� �m� �x � �� y � ��� ���
a
�� �n� �x � �� y � ��� ���� ����
a
�� �n� �x � �� y � ��� ���� ��� ��� ����

�
�� �n� �x � �� y � ��� ���� 
���
a
�� �n� �x � �� y � ��� ���� 
�� ��� ����

�
�� �n� �x � 	� y � ��� ���� ����

b
�� �n� �x � 	� y � ��� ���� ��� ��� ����

� � �

More precisely we have the following assumptions on the underlining
execution model

�� A ready queue holding the task instances released and waiting for
execution� A task instance will be removed from the queue when
its computation time becomes ��

�� An on�line scheduler Sch sorting the queue according to a given
scheduling strategy� It will report � if the queue becomes non�
schedulable when a new task instance is added�
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�� A single processor executing the tasks according to the ordering of
the queue� It will always execute the task in the �rst position� The
tasks are executed non�preemtive�

Further we use Run�q� t� to denote the resulted task queue after t

time units of execution� The meaning of Run�q� t� should be obvious�
For example� let q � ���� ��� ��� ��� and t � � then Run�q� t� � ���� 
�� in
which the �rst task is �nished and the second has been executed for �
time unit� Now we are ready to present the transitional rules for extended
timed automata�

Denition ��� The semantics of an extended automaton is a transition
system de�ned by the following transition rules �corresponding to release
of new task and execution of existing tasks��

� �l� u� q�
a
�� �l�� u��Sch�q��� if l

g�a�r
�� l�� u � g� u� � u�r �� ��� and

q� � q  T �a�

� �l� u� q�
t
�� �l� u� t�Run�q� t��

We shall write �l� u� q� �� �l�� u�� q�� if �l� u� q�
a
�� �l�� u�� q�� for an action

a or �l� u� q�
d
�� �l�� u�� q�� for a delay d

Finally� to handle concurrency and synchronization� parallel compo�
sition of extended timed automata may be introduced in the same way
as for ordinary timed automata �e�g� see �LPY�
�� using the notion
of synchronization function �HL���� For example� consider the parallel
composition AjjB of A and B over the same set of actions Act� The set
of nodes of AjjB is simply the product of A�s and B�s nodes� the set of
clocks is the �disjoint� union of A�s and B�s clocks� the edges are based
on synchronizable A�s and B�s edges with enabling conditions conjuncted
and reset�sets unioned� Note that due to the notion of synchronization
function �HL���� the action set of the parallel composition will be Act

and thus the task assignment function for AjjB is the same as for A and
B�

��� Schedulability analysis as reachability

analysis

Traditionally� the temporal attributes for a real�time computer systems
are derived from their environment� e�g� period times� etc� These at�
tributes are used for constructing a model of the system in terms of its
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temporal behavior� Such a temporal model is often called a task model�
which is used to verify whether the system is schedulable or not� but
other properties such as functional and safety properties can not be ver�
i�ed based on such a model� In our approach� we may construct a model
for the whole system including the environment and tasks in the control
system� The parallel composition of these models give us the possibility
of not only verifying temporal constraints� but also its other aspects such
as synchronization between tasks and simple computations within tasks
etc�

Normally� a system is said to be schedulable if all tasks can always
be executed within their deadlines� i�e� no deadlines are violated� The
objective of the schedulability analysis is to verify that there are no vio�
lation of deadlines in all situations where the system may evolve to� Now
we formalize the notion of schedulability for extended timed automata�

Denition ��� An extended timed automaton A is non�schedulable if it
may reach a non�schedulable state� that is� �l�� u�� q�� ��

� �l� u��� where
�l�� u�� q�� is the initial state of A� and ��� is the transitive closure of
�� We say that A is schedulable if and only if all its reachable states
are schedulable

Thus� the schedulability of extended automata can be checked by
reachability analysis� to prove that �l� u��� is not reachable in the au�
tomaton� However� it is not obvious that the reachability problem for
extended automata is decidable� In fact� the decidability of this problem
is closely related to the preemptiveness of the tasks P �

Theorem �� The problem of checking schedulability for extended timed
automata over non�preemptive tasks P is decidable

Proof idea� It is based on the fact that the problem of schedulabil�
ity checking for extended timed automata can be transformed to the
reachability problem for standard timed automata� which is known to be
decidable �Alu���� See Section ��	�� for details on the transformation�

	���� Transformation from TAT to ordinary

timed automata

The idea is to construct a timed automaton simulating a ready queue
and a scheduler that code all possible scenarios of the system described
by a TAT� including the tasks in the queue and schedules� For example�
consider the temporal attributes of the two tasks �a and task �b� where
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�a had a worst�case�execution time �WCET�� of 	 time units �tu�� and
a deadline �d�� of � tu� The second task �b has a WCET of � tu and a
deadline of 
 tu�

Intuitively for a system to be schedulable� the ready queue can contain
only a �nite number of task instances� More precisely� there can only be
MNTi instances of task i� where MNTi is given by

MNTi �

�
di

ci

�
�����

where di denotes the deadline for task i and ci denotes the computa�
tion time�

By calculating the maximum length of the ready queue� we know
that to be schedulable� the queue in our example can only contain one
instance of �a and one instance of �b� If at any time point� there are
more than one instances of a particular task in the ready queue waiting
for execution� we know for sure that the system is non�schedulable and
the error state should be reached� This ensures a �nite number of states
in our model of the scheduler and the ready queue� Now� we use the
above example to present the algorithm for constructing the scheduler
and queue automaton� which can be generalized easily to the general
case�

�� Create three di�erent nodes� one node in which the ready queue is
empty� one for which there exists task instances in the ready queue
and� �nally an error node�

�� Create transitions from the empty node to the running node� one for
every action associated with a task� Furthermore� tasks can arrive
while in the run node� consequently we need one transition from
run back to run for every possible task instance as well� In order
to keep track of every new task instance� an unique semaphore for
every instance is introduced �denoted as taska and taskb in Figure
����� We also need an unique deadline clock for every instance
in order to know which task to execute and to detect deadline
violations�

�� According to EDF� the task having least time left until its dead�
line should be executed� For all possible task instances� create a
transition from run to run which compares its relative deadline to
all the other ready tasks� In our example �a should be executing
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if � � da � 
 � db� and �b if 
 � db � � � da where da and db are
the deadline clocks� In order to keep track of execution time of
the running task� a clock is reseted on every release of a task� In
our example� this clock is denoted as c� Furthermore� as we con�
sider the non�preemptive case� no task can start to execute while
another task already is executing� Thus we need a semaphore to
know whether the processor is idle or not �denoted r in Figure �����

	� Introduce one transition from run to run for every possible instance
which terminates the task whenever c becomes equal to its speci�ed
execution time and its deadline clock is less or equal to its spec�
i�ed deadline� Termination is modeled by resetting the instance
semaphore�


� If ready queue gets empty� i�e� no tasks instances are present in the
queue a transition to the empty node should be taken�

�� For each possible task instance we introduce a transition from run
to error if

� An action A occurs� making the number of instances of A
exceeding MNTa

� The executing task has overrun its deadline

� A task pending for execution in the ready queue has exceeded
its deadline

Figure ��� shows the result from transforming our example system
shown� This is an ordinary timed automata for which decidability has
been proven in �Alu����

For the general case� the scheduler and queue automata is illustrated
in Figure ��� where q denotes a queue� r is the executing task� c measures
how long time the executing task has been running and d�i� is a vector
keeping track of the time elapsed since the tasks entered the ready queue�
C�i� is a vector holding the worst case execution time of all tasks� Both
are vectors are �nite as been discussed above� Moreover� the function
sch�� returns the instance among all tasks residing in the queue having
least time left until its deadline� Task i is returned by sch�� if the pred�
icate

V
�m�q�m��i d�i� � d�m� � Di � Dm is true� where Di denotes the

relative deadline speci�ed for task i�
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Figure ��� A model of the ready queue and the scheduler using ordinary
timed automata

��� A case study with Uppaal

Uppaal is a model�checker for timed automata �LPY��a�� As shown in
the previous section� the scheduler and ready queue can be modeled as
an ordinary timed automaton� In this section� we present an example
showing how to use Uppaal for schedulability checking�

Our example system is an event�driven application controlling the
speed of the shaft in a turning lathe� The objectives of the formal ver�
i�cation is to verify that the system is schedulable and the safety re�
quirement that the engine is not turned on by the control task while the
emergency stop is active� An event reports the current speed of the shaft
and a control task is checking that the speed is within the speed limits
�in our example speed���� If the speed is to high �over ��� the engine
is turned o� and if the speed is to low �below ��� the engine is turned
on� There is also an emergency stop function which is implemented in
software� The setup is shown in Figure ��	�

As shown in Figure ��	� the parts belonging to the systems environ�
ment are the shaft having an optical sensor generating an event on every
complete revolution� the emergency stop button having two states up
or down and the engine� being either on or o�� Consequently� we have to
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Figure ��� A general model of the scheduler using ordinary timed au�
tomata
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Figure ��	 The setup for our example system

model all these parts as a network of TATs� Moreover� we have two soft�
ware tasks� the control task and the emergency stop handler� These parts
also have to be modeled in TATs belonging to the network constituting
the complete system�

	���� Modeling the system

We start by modeling the environment� i�e� the shaft� the emergency stop
button and the engine� This can for instance be done as shown in Figure
��
� ����

If the engine is on� the shaft makes a complete revolution in between
	�� time units� and an event is generated every time the optical sensor
detects a complete revolution�

Next to model is the emergency stop handler and the control task�
The control task has a calculated WCET of � tu and a hard deadline of
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Figure ��
 A model of the shaft in timed automata
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Figure ��� A model of the engine and the emergency stop button

� tu �Figure �����

As for the control task� a deadline and a WCET must be speci�ed
for the emergency stop handler� According to our imagined requirement
speci�cation� it must respond within � tu� i�e� it has a deadline at �
tu� The WCET estimation result in a WCET of � tu �see Figure �����
Furthermore� two subsequent activations�deactivation of the emergency
stop can not be less than 
 tu in between� This gives us a minimum
inter�arrival time for the emergency stop handler of 
 tu�

emhemhemhemhemhemhemhemhemhemhemhemhemhemhemhemhemh

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart
(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)

stopstopstopstopstopstopstopstopstopstopstopstopstopstopstopstopstop
(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)

embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?
empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1
ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0

embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?
empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0
ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0

on!on!on!on!on!on!on!on!on!on!on!on!on!on!on!on!on!
ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1
em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0

off!off!off!off!off!off!off!off!off!off!off!off!off!off!off!off!off!
ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1
em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1

Figure ��� A model of the emergency handler in timed automata
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Figure ��� A model of the control task in timed automata

The model of the scheduler is omitted� However� this process will be
generated automatically by Uppaal according to the algorithm given in
Section ��	�� and will be invisible for the designer�

	���� Verifying schedulability and safety

We use model checking and reachability analysis on our network of TAT
for this purpose� Uppaal uses a timed CTL language for specifying prop�
erties to verify� To verify that the system is schedulable� we must show
that the error state is never reachable� We will use the always predicate
in our example as always not 
 is equivalent to never� This property is
speci�ed as shown in the formula below� schedulererror means the state
error in the process named scheduler

��not scheduler�error �����

For the safety property we need to verify that the system never reach
a state where the control task is in position to turn the engine on while the
emergency stop has been activated� For our model� such an expression
looks like the formula given below

��not�control task�ton and em � �� �����

First we will verify the schedulability property� As a result Uppaal
tells us that the property is not satis�ed by giving a counter example�
Consequently� the system is not schedulable� In order to obtain a schedu�
lable system� the temporal constraints on the tasks have to be modi�ed�



��	 Chapter 	� Timed automata with tasks

The counter example given by Uppaal� shows that the emergency han�
dler task misses its deadline if this event happens just after the control
task has been invoked� By changing the deadlines for the control task
and the emergency stop handler to 	 tu� the system becomes schedula�
ble� This is veri�ed by the same property� but with an updated scheduler
model� The model of the scheduler must be updated since now there can
exist two instances of the control task and four instances of the emergency
handler simultaneously in the ready queue�

Next to verify is our safety property� i�e� the control task should
not be able to turn the engine on as long as the emergency stop is ac�
tivated� In this case Uppaal reports that the property is satis�ed and
consequently� the safety requirement is ful�lled�

It is of course possible to verify other functional properties� For in�
stance� we can verify that the shaft eventually will rotate with the set
value� In our model� the set value is the speed of �� i�e� the speed is
eventually equal to 
� The corresponding formula given in Uppaal logic
is

��speed � � ���	�

��� Comparing TAT and RTSL

The major di�erence between RTSL and our approach is the modeling
language� Instead of using process algebra� we use timed automata which
we believe is easier to use when designing complex systems�

��	 Discussion

The results presented in this chapter has been adopted in Times which is
a tool for modeling� analysis and implementation of embedded systems
�AFM�����

At a �rst glimpse� TAT seems like the perfect solution� We have a
rich modeling language that allow us to model� e�g� dependencies among
tasks� and still the analysis is mathematically precise and correct� More�
over� TAT makes it possible to analyze other properties mathematically�
e�g� safety properties� However� in the context of large� complex sys�
tems this approach does not scale very well� The scalability problem
is not related to the modeling language and the reachability analysis as



	�
 Discussion ��


such� but rather a problem of state�space explosion� i�e� representation
of state�space� and algorithms for performing automatic veri�cation� i�e�
exploring the state�space� Nevertheless� computation power is likely to
increase which is in favor for such an approach�
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Conclusions

Architectural modeling and analysis of large and complex real�time sys�
tems is necessary in order to reduce the cost for maintenance and� hence�
extending the lifetime of an implementation� Especially important is the
long lifetime in a software reuse e�ort such as a software product line�
The payo� of time and money invested in developing reusable software
and architectures are dependent on the number of instances in which
it is reused� In this thesis we present methods that aim at increasing
maintainability by providing analytical models of a system� Such models
provide the possibility of analyzing the e�ects that certain maintenance
activities may have on di�erent quality properties of the system� In this
particular case we are focusing on timing properties�

Besides providing general discussions about modeling and analysis
of software architectures and software product�lines we have presented
three di�erent speci�c methods for modeling and analysis of complex real�
time systems a component model with analytical interfaces �ReFlex�� a
probabilistic approach to modeling and analysis �ART�FW�� and a formal
approach where ordinary timed automata is extended with a notion of
real�time tasks �TAT��

The results presented in this thesis is the result of studying two di�er�
ent large and complex real�time systems a control system for construc�
tion vehicles at Volvo Conctruction Equipment �VCE�� and a control
system for industrial robots �ABB Robotics�� The construction vehicles
system and the robot system are both currently based on a product line
approach�

The purpose of studying the two product lines� i�e� the VCE and
ABB Robotics� was to investigate how to analyze the impact of alter�

���
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ing a system in the temporal domain� e�g� add new features or altering
the behavior of existing features� We refer to this as maintenance� A
necessity for being able to analyze a system is that there exist analyz�
able models of the system� i�e� analytical models� Based on the case
studies we have found two di�erent approaches to the construction and
maintenance of the analytical models� We refer the two di�erent ap�
proaches to constructing an analytical model as by�construction and by
re�engineering�

If a system is constructed and maintained on the basis of the ana�
lytical model� i�e� models are part of the implementation� we say that
the model is constructed by construction� In the constructive approach�
the model is a product of the implementation activity� On the other
hand� if the models are constructed and populated by measuring an al�
ready existing implementation� it is constructed by re�engineering� The
re�engineering approach is a continuous activity� To use this approach
successfully the analytical model must be maintained during the life cycle
of the system�

There are several possible conclusions that can be drawn from a re�
engineering initiative� i�e� identifying the existing system�s architecture
and measuring its behavior in order to introduce�re�introduce analyz�
ability� We can re�design the complete system and� for instance� use
a component model that facilitate analytical interfaces as the ReFlex
component model proposed in this thesis� Such a solution is costly and
associated with many risks� The risks are typically of economical nature�
e�g� investing man�hours in projects that do not increase the functional�
ity� Nevertheless� it can be feasible and economically justi�able to take
this approach� By re�designing the system�s architecture only we can
reduce the risk as a considerable part of the system�s implementation
already exists� Furthermore� such an approach will not introduce new
technologies which always constitutes a risk� These two approaches are
both intrusive meaning that it will change the implementation of the
system�

The modeling frameworks ART�FW and TAT o�er a non�intrusive
solution which eliminates the risks discussed above� The implementa�
tion is untouched but still we have the possibility to analyze and foresee
the impact of altering the system� However� the risk associated with a
non�intrusive approach is that the model is not kept consistent with the
implementation as the system evolves which makes the models obsolete�

Generally� we can not say that any approach� i�e� intrusive or non�
intrusive� is to prefer� It must be investigated from case to case � i�e�
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from system to system� what makes the best solution in order to handle
system complexity�

We think that the contributions presented in this thesis are relevant
and provides realistic and applicable solutions to the problem of analyz�
ing the e�ects of maintaining large and complex real�time systems� The
ability to analyze the software is provided by having relevant and cor�
rect models of the software architecture as discussed in Chapter � and
Chapter �� The contributions in this thesis focuses on modeling and anal�
ysis of systems� structure and temporal behavior� Hence� architectural
descriptions with temporal aspects has been developed�

The ReFlex component model provides the mechanisms necessary for
building and maintaining a component�based product line architecture�
No component model in the related work that we have studied o�ers the
same �exibility� Moreover� we show how to apply the concept of PECT in
order to reason about the impact of maintaining components in a product
line perspective� Moreover� ReFlex is designed with resource constrained
systems that have requirements on predictability with respect to tem�
poral behavior in mind� Consequently� large and complex component
technologies such as �NET and CORBA can not be used�

ART�FW provides a framework in which we can measure a system�
make a model of it� simulate the model� and analyze the simulation re�
sults with respect to temporal requirements� Compared to the existing
simulators we o�er the possibility of making probabilistic models that en�
ables us to construct more realistic models of complex real�time systems�
Moreover� non of the existing simulators have a requirements language
such as PPL� Compared to the existing analytical methods that facili�
tate probabilistic models we think that a simulation based approach is
more manageable in terms of computational complexity� However� a very
important area which we only touched upon in this thesis is model val�
idation� i�e� how can we be sure that a model indeed is a correct model
of the software system� We gave some suggestions on how to increase
the con�dence in a model but there are many open questions that are
subjects for future work� Moreover� we would like to have a modeling
language that can model complete product lines� i�e� all products and
their components� Such a language would enable us to analyze the e�ects
of changing one product with respect to the complete product line�
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Future work


�� ReFlex

As future work we will implement ReFlex and integrate it into a frame�
work for designing software product�line architectures� The actual syntax
has not yet been decided� However� we will investigate the possibility to
use the industrial de facto standard UML �PR���� Being a language
for speci�cation of embedded real�time systems� we must look into the
problem of specifying temporal and resource constraints� e�g� memory
consumption� CPU consumption� Preferably� we would like to assign
budgets to components that all parts of a component that is part of its
execution in a particular product instance must adhere to�

Moreover� more property theories can be de�ned� As a base for this
work we will provide a tool for specifying and analyzing systems based in
the component model� Such a tool should support the framework ideas�
Thus� it must provide means for extending the component�s analytical
model with new analytical properties and to de�ne new property theories
on assemblies�

Another application of ReFlex with its analytical models is a strat�
egy for handling dynamically con�gurable systems� Consumer�products
such as cellular phones may be con�gured�customized by the consumer
himself� e�g� by downloading a new feature to the phone� Thus� the
end�customer assembles products based on a product line architecture�
By distributing the analytical model together with the constructive soft�
ware� the system itself can predict the impact the new feature will have
on the system� Based on such an analysis the system can decide whether
to accept the new product as valid or not�

���
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�� ART�FW

Both ART�ML and PPL are still prototypes� thus many improvements
of the method� the language� and the tools are possible� Currently we
are expanding ART�ML to also support the modeling and analysis of
multi�processor systems and modeling of complete product lines�

����� ART�ML and product lines architectures

Currently the ART�ML framework can only model and analyze single
products� We would like to extend the modeling language with construc�
tions that allow us to describe complete product lines� Typically� we
would like to analyze the impact of adding new features or altering the
behavior of a component with respect to all products in a product line�

As introduced in Section ������ we divide a product model into three
di�erent levels of abstraction the feature view� the component view�
and the implementation view� Each of the di�erent abstraction levels
provides means for analyses� Analyses are performed on an intra�view
basis even though information on a higher level of abstraction may be
constructed based on information from a lower level �see Figure ����� As
the di�erent views provide information regarding the system with dif�
ferent level of abstraction� the analyses performed based on information
from the feature view are more coarse�grained than those on the com�
ponent level of abstraction� Nevertheless� analysis based on information
from the feature view is not inaccurate and can be made earlier in the
development phase�

Information �ows through the abstraction levels both from the feature
view and down� and from the implementation view and up depending on
the current phase of the development procedure� The di�erent views are
depicted in Figure ��� together with a work��ow and brief descriptions
of the activities performed in the procedure� Note that the evolution�
ary development may add new resources and new features may share
components with other already existing features�

On the feature level of abstraction the analytical model speci�es a
real�time system in terms of resource utilization� Resources are CPU ca�
pacity� communication bandwidth and memory� Initially� the utilization
is speci�ed based on estimates and constraints given as non�functional
requirements� The feature utilization may not be evident until the �rst
feedback iteration is completed� Thus� when designing a system from
scratch� the utilization part of the analytical model of the feature view
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Initial system
requirements Add feature mAdd feature nSet of features Fs

and their temporal
requirements

Set of components
Cs implementing Fs

Set of features Fs′
and their utilization
U′ of resources R′

Set of components
Cs′ implementing Fs′

Implementation of
Cs on a particular
HW

Implementation of
Cs′ -Cs on a
particular HW

Is total utilization feasible?
Identify components and
enforce temporal
requirements on them

Are the temporal
requirements fulfilled?
Implement Cs

Test and measure,
feedback result to
the component view

Calculate actual
utilization and
feedback result to
the feature view

Figure ��� The di�erent levels of abstraction in the analytical model

may not be populated until the �rst iteration through the component
view and the implementation view is completed� However� the systems
we have been studying are large and complex� they have long service
times� Consequently� the cost of the initial development may be only a
small fraction of the total cost� Maintenance is by far the major part of
the cost as we include in maintenance such activities as error corrections�
improving existing features� as well as implementing completely new fea�
tures� Thus� the model we proposed will be mostly utilized when evidence
of the models validity already exists� i�e� the models are consistent with
the implementation through feedback from testing and measuring the
system�

Our view of a system is depicted in Figure ���� Basically� we say
that a system consists of a set of interconnected nodes� Communication
busses connects the di�erent nodes� A node is described by its system ar�
chitecture� i�e� its hardware resources and the software features allocated
to the node

� cpu is the computational resource of the node�

� ms is the static non�volatile memory�

� md is the dynamic memory�

� mp is the persistent memory�
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� F is the set of features whose components C�F� are partially or
completely allocated to the node n� Moreover� feature f � F is a
function as experienced from a system users point of view and it
collects the functional�� and non�functional requirements�

� I�O is a set� possible empty� consisting of I�O�units�

Node A Node B

cpu1 cpu2

mpmp

bus

I/O I/O

md

Ms

md

Ms

F2

F1

Figure ��� Our view of a system

The component view identi�es the components in the system and
their analytical model� We assume a component to be an encapsulation
of a service implemented in software as described in Chapter 	� The
temporal attributes e�g� period times are an essential part of the an�
alytical model of a component in real�time systems� We will refer to
temporal attributes in the component view as the temporal analytical
model� This level of abstraction is suitable for analytical system analyses
and for simulations of the system� Thus� a system�s temporal require�
ments� which were initially partitioned into features� are implemented
and veri�ed in the component view� The appearance of the temporal an�
alytical model corresponds with that of the real�time operating system
�RTOS� and communication mechanisms in the system infrastructure�
As the functional requirements are implemented in the chosen program�
ming language� and non�functional requirements are implemented in the
architecture� the temporal requirements are implemented by assigning
temporal attribute in the task model provided by the RTOS� An example
of such temporal attributes is period time and priorities� Consequently�
the temporal attributes provided by the infrastructure are also part of
the implementation view� The implementation view consists of the ac�
tual implementation� Thus� it provides necessary information for testing
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the system� as well as measuring execution times and response times�

The implementation view is represented by the functional behavior
of the components as well as their temporal behavior� Temporal require�
ments are implemented through the task model provided by the RTOS�
Thus� we consider it a part of the implementation view�

When a real�time system is implemented on a particular hardware
architecture� the model becomes valid for that particular instance only�
The reason for this is that the temporal behavior of the components is
a�ected when the hardware architecture is changed� Typically� the exe�
cution times will be a�ected� This phenomenon is typical for real�time
systems and is a problem in large and complex systems with a long service
life where software usually survives several generations of the hardware
architecture� Ideally� we could treat changes in the hardware architec�
ture as a point of variation in the product line architecture� However�
changing the CPU requires a complete re�measure of the execution time
distributions for the system�

As future work we propose an extended version of ART�ML that spec�
i�es product lines in a hierarchical manner with the product line at the
top level� The hierarchy re�ects the level of abstractions discussed earlier
in this chapter� The top level de�nes all products within the scope of a
company�s product line� Products are speci�ed in terms of their hard�
ware system and features which they may share� or not� Note that the
modeling language proposed here is presented in a pseudo manner� For
instance� the memory statement is a collection of the di�erent memory
types available in a node� i�e� static non�volatile memory� dynamic mem�
ory� and persistent memory� On the system level of abstraction� memory
speci�es the memory available on a node� whereas on the feature level
and on the component level we specify the resource consumption� i�e� the
amount of memory required� Below is an example of how a product line
with two products� Product A and Product B� could be described on the
highest level of abstraction with a modeling language that have support
for product lines

ProductLine RealTimePLA

�

Product A

�

system

�

node��
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node��

bus

memory

�

feature X

feature Y

feature Z

�

Product B

�

system

�

node��

node��

bus

memory

�

feature V

feature X

feature Y

�

�

In real�time systems the same feature� supplying the same function�
ality� may exhibit di�erent temporal behavior� Variations are due to
di�erences in the hardware architecture� The allocation of a feature may
be distributed and is speci�ed in the system part of the feature as illus�
trated below

feature V

�

System

�

node��

bus

memory

�

component A

component B
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�

feature X

�

System

�

node��

node��

bus

memory

�

component A

component C

component D

�

Components constitute the entity that implements a feature� We do
not consider components that migrate at runtime� Consequently� deploy�
ment of components is statically tied to one node� However� the same
component may be deployed at several nodes� either as part of di�erent
features� or as part of a distributed feature� The variations in tempo�
ral behavior of features are due to di�erent component deployment and
the hardware on which components execute� The temporal attributes
that describe the temporal behavior of a component are speci�ed as a
task� Thus� tasks together with a component�s execution time forms the
temporal analytical model of the system� The execution time of a com�
ponent is speci�ed as a distribution that re�ects a realistic behavior� The
distribution is described as pairs of execution times and their probabil�
ity of occurrence� The most abstract speci�cation of the execution time
corresponds to worst�case execution time with the probability of ���"�
ART�ML can also specify the functional behavior� Arithmetical opera�
tors� selections� and iterations are supported in the modeling language�

In order to capture the phenomenon that components exhibit varia�
tions in their temporal behavior as well as functional behavior� depending
on the product in which they are deployed we use parameterization� The
model is parameterized using the products� i�e� the product that cur�
rently is analyzed� The variations can be due to di�erences in hardware
between products which a�ect the execution times� Furthermore� the
tasks that control the execution of components can di�er due to� e�g�
di�erences in period times as shown in Component B below
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Component A

�

System

�

node��

bus

memory

�

task T�

if �product �� ProductA�

execute�Node��� ����������������

if �product �� ProductB�

execute�ProductB� Node��� ���������������� �������

behavior

�



 Do something

�

�

Component B

�

System

�

node��

bus

memory

�

if �product �� ProductA�

task T�

if �product �� ProductB�

task T�

if �product �� ProductA�

execute�ProductA Node��� ���������

if �product �� ProductB�

execute�ProductB Node��� �������� ��������

behavior

�



 Do something

�
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�

In the domain of real�time systems product lines is the temporal be�
havior also subject for variations� That point of variation is provided
explicitly by the tasks� That is the reason way we have isolated the spec�
i�cation of a task from the component� Moreover� as the task model pro�
vided by the system�s infrastructure� i�e� the real�time operating system
�RTOS�� may vary among di�erent RTOS manufacturers� the language
could easily adopt to new infrastructures if the tasks are separated from
the components� The current implementation of ART�ML was developed
for a system built on the RTOS VxWorks which schedules tasks according
to �xed priorities� Consequently� tasks in our examples re�ect that�

task T�

�

trigger period ����

priority �

�

The analysis of a single system temporal behavior di�ers a bit com�
pared to analysis of a complete product line� Altering the behavior of
a component a�ects all products that use it� Thus the analysis must
cover the complete product line� ART�ML is developed as a modeling
language for a discrete�event simulator� From the simulators point of
view the di�erence from simulating one single system is relatively small�
Instead of simulating only one system� the simulator now have to run the
models for all systems in a model� Consequently� the impact of adding
a feature� a component� or changing the implementation with respect to
the complete product line can be analyzed�

����� Model validity

One of the most important and interesting area which is subject for fur�
ther research is model validity� We need to develop and verify methods
for ensuring model validity� Moreover� we would like to develop math�
ematical methods for verifying equivalence between simulation results
and the results measured in the system� This is important in order to
establish con�dence in the models and the simulation results�
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Appendix A

Terminology

ADL Architectural Description Language� Language for describing soft�
ware architectures

Analytical interface Provides means for reasoning about properties of
a set of assembled �composed�� components

Analytical model Provides the information necessary for analyzing a
software construction� The contents of the analytical model de�
pends on what information the analyses require

Architectural style Standard types of architectures identi�ed with
names and patterns

Architectural view Provide the architecture description with informa�
tion needed when analyzing it� The components and their inter�
connections are shown in the structural view

Architectural transformation Changing the architecture in order to
obtain required functionality and quality

Assembly A con�guration of a set of components that de�nes the com�
ponents interconnections

Availability The probability of a system functioning correctly at any
given time

Checklist based questions Domain speci�c questions used when eval�
uating a software architecture

���
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Cost The cost for performing any action such as development� evolution
and veri�cation

COTS Commercial O� The Shelf components

Design patterns Named object oriented solutions in the object ori�
ented community

Design space A N�dimensional space where every axis represents a de�
sign parameter� scaled with the di�erent design options possible for
that particular parameter

Direct scenario A scenario that is directly supported by the architec�
ture

Fault�tolerance The ability of software to detect and tolerate errors in
the design and�or from its environment

Feature A feature is the highest level of functional decomposition of a
software system� typically a function as being grasped by a user of
a system

Feature graph The set of feature in a product line and their inter�
dependencies

Feature scope The set of feature in a product line

Framework An architectural pattern for a particular domain� widely
used in the object oriented community

Functional quality property Quality properties concerned with the
run�time behavior of the software system

Impact analysis Analyzing the consequences of changing a system

Indirect scenario A scenario that requires an architectural transfor�
mation to be supported by the architecture

Maintainability The aptitude of a system to undergo repair and evo�
lution

Modiability How sensible the architecture is to changes in one or
several components

MTBF Mean�Time�Between�Failure
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MTTR Mean�Time�To�Repair

Nonfunctional quality property Quality properties concerned with
the software itself

Performance How fast or slow the system performs its functions mea�
sured in time or the systems capacity measured in event�throughput

PLA Product line architecture

Platform A subsystem that is used in several products in a product
line which does not necessarily provide a particular architecture as
a product line architecture does

Portability How easy it is to move the software system to a di�erent
hardware� and�or software platform

Product scope The set of products in a product line

Reference style Architectural styles widely used in particular applica�
tion domains� e�g� the pipe�and��lter Architecture used in compil�
ers

Reliability The probability of a system functioning correctly over a
given period of time

Reusability The extent to which the architecture can be reused

Safety The property of the system that it will not endanger human life
or the environment

Scenario based questions Application speci�c questions used when
evaluating a software architecture

Scenario execution Method for analyzing an architecture by asking
�what if� questions

Security The ability of a software system to resist malicious intended
actions

Temporal attributes Temporal attributes implement the temporal be�
havior� e�g� frequencies� priorities

Temporal requirements Requirements such as deadlines� jitter� re�
sponse time� worst case execution times �WCET�� etc
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Temporal correct A system is temporally correct if it complies with
all its temporal requirements

Testability How easy it is to prove correctness of the system by testing

Tradeo� A relation between two or more quality attributes where an
increased level of on property results in a decrease of another prop�
erty

Variability The ability to vary the behavior of a software construction

Variation points Describes the way in which a software construction
can be varied

Questionnaire based evaluation Questions used when evaluating
project logistic properties of software architectures
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The grammar of ART�ML

in BNF

�system� 		� SYSTEM �header� �processor� �processorlist� ENDSYS

�processor� 		� PROCESSOR ID �header� �task� �tasklist� ENDPROC

�processorlist� 		�

� �processor� �processorlist�

�header� 		�

� VARIABLE ID � �header�

� MAILBOX ID NUM � �header�

� SEMAPHORE ID NUM � �header�

� CONST ID NUM � �header�

�tasklist� 		�

� �task� �tasklist�

�task� 		� TASK ID �taskheader� BEHAVIOUR ��header� �stmntlist��

�taskheader� 		� �trigger� �prio� �dl� �mem�

�prio� 		� PRIORITY NUM

�dl�	

� DEADLINE NUM

��
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�mem� 		�

� MEMORY NUM

�trigger� 		� TRIGGER �whattrigger�

�whattrigger� 		� STARTUP

� MAILBOX ID

� PROBABILITY NUM

� PERIOD NUM

�stmntlist� 		�

� �stmnt� �stmntlist�

�stmnt� 		� �bool�expr� �

� �send� �

� �recv� �

� �semtake� �

� �semgive� �

� �sleep� �

� �consume� �

� �assignment� �

� �block�

� �for�

� �ifelse�

� �while�

� �chance�

�semtake� 		� SEMTAKE � ID � �semtake�timeout�

�semtake�timeout� 		�

� TIMEOUT NUM

�semgive� 		� SEMGIVE � ID �

�sleep� 		� SLEEP � �bool�expr� �

�ifelse� 		� IF � �bool�expr� � �stmnt� �ifelse��

�ifelse�� 		�



���

� ELSE �stmnt�

�for� 		� FOR � ID � �bool�expr� � �bool�expr� � �stmnt�

�while� 		� WHILE � �bool�expr� � �stmnt�

�assignment� 		� ID � �bool�expr�

�block� 		� � �stmntlist� �

�chance� 		� CHANCE � �bool�expr� � �stmnt� �chance��

�chance�� 		�

� ELSE �stmnt�

�consume� 		� CONSUME � �exec�pair� �exec�list� �

�exec�list� 		�

� � �exec�pair� �exec�list�

�exec�pair� 		� � NUM � NUM �

�send� 		� SEND � ID � �bool�expr� � �send�timeout�

�recv� 		� RECV � ID � ID � �recv�timeout�

�send�timeout� 		�

� TIMEOUT NUM

�recv�timeout� 		�

� TIMEOUT NUM

�bool�expr� 		� �rel�expr�

� �bool�expr� AND �bool�expr�

� �bool�expr� OR �bool�expr�

�rel�expr� 		� �neg�expr�

� �rel�expr� � �rel�expr�

� �rel�expr� � �rel�expr�

� �rel�expr� GTEQ �rel�expr�
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� �rel�expr� LTEQ �rel�expr�

� �rel�expr� EQ �rel�expr�

� �rel�expr� NEQ �rel�expr�

�neg�expr� 		� �ari�expr�

� � �bool�expr�

�ari�expr� 		� �term�

� �term� � �ari�expr�

� �term� � �ari�expr�

�term� 		� �factor�

� �factor� � �term�

� �factor� 
 �term�

� � �term�

�factor� 		� �atom�

� � �bool�expr� �

�atom� 		� NUM

� ID



Appendix C

The grammar of PPL in

BNF

�property� 		� ��P�� ����� �expr� ����� �relop� �probability�

�expr� 		� �exp� �logop� �expr� � �exp�

�exp� 		� �taskExpr� �relop� id �

�taskExpr� �relop� �taskExpr� �

�taskExpr� �relop� NAT �

�taskExpr� �relop� REAL �

�queue� �relop� NAT

�taskExpr� 		� �task� �

�task� �aritop� �task� �

�task� �aritop� NAT

�task� 		� id������instance������ ���� start �

id������instance������ ���� end �

id������instance������ ���� response

�queue� 		� id����size

�instance� 		� id � id �aritop� NAT

�aritop� 		� � � �

�logop� 		� and � or

�relop� 		� � � �� � � � �� � �

�probability� 		� id � REAL

���
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Appendix D

The robot model

system

processor MC

variable sys�online�

const ref�request ���

mailbox QUEUE� ����

mailbox QUEUE� ��

mailbox QUEUE� ��

mailbox DUMMY�MAILBOX ��

task AXISCOMPUTER�DUMMY

trigger period ����

priority �

deadline ����

behaviour�

variable incoming�

if �sys�online �� ���

send�C�MBOX� ref�request��

execute�����������

recv�incoming�QUEUE���

�

�

task C

trigger mailbox C�MBOX

priority �

���
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behaviour�

variable incoming�

incoming � ��

recv�incoming� C�MBOX� timeout ����

if � incoming �� ref�request��

recv�incoming� QUEUE�� timeout ������

execute �����������������������������

send�QUEUE�����

�else�

execute ��������������������������

�

�

task B

trigger startup

priority �

behaviour�

variable x�z�

const y ����

variable i�

const x�init�value ����

while �� sys�online ��

sleep������

�

while� sys�online ��

y � ����

x � x�init�value�

i � QUEUE�size�

while�i����

recv�z� QUEUE�� timeout ��

i � i � ��

�

recv�i�DUMMY�MAILBOX� timeout ��

if � x �� x�init�value ��

�

for �i������

send�QUEUE��y��

execute ����������������������������������

�



���

chance�����

execute ��������������������������������������

�else�

execute �����������������������������������������

�

�

�

task A

trigger probability �

priority ��

memory ������

behaviour�

chance�����

execute ��������������������������������������

send�QUEUE�����

send�QUEUE�����

�else�

execute ��������������������������������

chance�����

send�QUEUE�����

send�QUEUE�����

�else�

send�QUEUE�����

send�QUEUE�����

send�QUEUE�����

send�QUEUE�����

�

�

�

task others�high

trigger period ���

priority ��

behaviour�

if �sys�online �� ���

send�QUEUE�����

sys�online � ��

�

chance�����

execute����������������������������������
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�else�

chance�����

execute��������������������������������������

�else�

execute��������������������

�

�

execute������������������������������

�

task others�low

trigger period �����

priority ���

behaviour�

execute�����������������������������������

�

task IDLE

trigger startup

priority ���

behaviour�

while����

execute���������������

�

�

endproc

endsys



Appendix E

The validation results

In the graphs presented in Section E�� trough Section E�	 et denotes
execution time and rt denotes response time�

E�� Case �

In �gures E�� through E�� we report the result from measuring and sim�
ulating the system without any changes�

E�� Case �

In �gures E�� through E��	 we report the result from measuring and
simulating the system with the dummy task having a short oscillating
execution time and low priority�

E�� Case �

In �gures E��
 through E��� we report the result from measuring and
simulating the system with the dummy task having a short oscillating
execution time and high priority�

E�� Case �

In �gures E��� through E��� we report the result from smeasuring and
simulating the system with the dummy task having longer oscillating
execution time and low priority and a longer period time�

��
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