
A Safety-Centric Change Management Framework by Tailoring Agile

and V-Model Processes

Omar T. Jaradat, Ph.D. Candidate; Mälardalen University; Västerås, Sweden

Abdallah M. Salameh, Ph.D. Candidate; University of Salford, Manchester, UK

Keywords: safety case, contracts, impact analysis, change management, agile

software development, agile tailoring, V-model, XP, Kanban

Abstract

Safety critical systems are evolutionary and subject to preventive, perfective, corrective or

adaptive changes during their lifecycle. Changes to any part of those systems can undermine the

confidence in safety since changes can refute articulated claims about safety or challenge the

supporting evidence on which this confidence relies. Changes to the software components are

no exception. In order to maintain the confidence in the safety performance, developers must

update their system and its safety case. Agile methodologies are known to embrace changes to

software where agilists strive to manage changes, not to prevent them. In this paper, we

introduce a novel framework in which we tailor a hybrid process of agile software development

and the traditional V-model. The tailored process aims to facilitate the accommodation of non-

structural changes to the software parts of safety critical systems. We illustrate our framework

in the context of ISO 26262 safety standard.

Introduction

Many safety critical systems are subject to compulsory or advisory certification process which

often necessitates building the systems in compliance with domain-specific safety standards

(Jaradat & Bate, 2017). Safety standards are becoming the main guide of the development and

maintenance of hardware and software parts of safety critical systems. Safety standards, also,

form the basis for the approval and certification of those systems (Denney et al., 2015). Software

systems, in general, are subject to different types of changes (e.g., preventive, perfective,

corrective or adaptive) during the different stages in their life-cycle. In order to maintain the

confidence in safety after accommodating a change, developers are required to update the safety

case, which in turn requires identifying, re-analysing, and re-checking the impacted parts of the

system and generate a new valid set of evidence (Jaradat & Bate, 2017). Despite the obvious

recommendations to adequately maintain and review the systems and their safety cases by

different safety standards, the latter offer little or no advice on how such operations can be

carried out (T. Kelly & J. McDermid, 1999). There is an increasing need for globally-accepted

methods and techniques to enable easier change accommodation in safety critical systems

without incurring disproportionate cost compared to the size of the change. However, since

broader re-verification and re-validation require more effort and time, it is important for any

proposal aims to facilitate system changes to delimit the impact of changes.

Safety standards in many safety critical system domains adopt the traditional V-model as a

development process for building the systems. Despite the effectiveness of validation and

verification that the V-model provides, in addition to other advantages (e.g., easy to estimate

costs, create timeliness, and stick to deadlines), the model has a well-known drawback when it

comes to handling system changes. This is particularly true when it comes to changes to software

systems and their requirements. Following the V-model implies that changes to software

components requires re-visiting the system requirements and all later stages to perform a broad

and costly impact analysis process. Hence, accepting software changes while using a V-model

based process is not a trivial task.

Unlike the series of isolated phases in the V-model, agile methods depend on iterative and

incremental development of software to enable reduction in cost, acceleration of time to market

in addition to the focus of providing more maintainable code (Salameh, 2011; Tarwani & Chug,

2016). Software developers who follow agile methods breakdown their project into manageable

fragments which enables a rapid responsive way to handle software changes. The Agile way of

working minimises the shortcomings of traditional sequential methods and improves the

software development process in a more cost-efficient way (Tarwani & Chug, 2016). The

alignment of the development process with a dynamic environment is a critical motivation for

adopting Agile Software Development (ASD) (Cao et al., 2010). Test Driven Development

(TDD) is an important agile process that brings many benefits such as reducing the potential

consequences of software defects. TDD protects the system from future failures proactively,

which leads to an acceleration of the maintenance process (Knippers, 2011).

The work in this paper does not seek to conduct a comparative study between agile methods and

the V-model. The main contribution of this paper, however, is to propose XP-Kan-Safe as a

novel maintenance framework to facilitate the accommodation process of software non-

structural changes in safety critical systems by utilising the strengths of agile methods and the

V-model. More clearly, we reconcile the known effective validation & verification process of

the V-model to the known effective practices and the TDD process of agile methods. We exploit

the usage of safety contracts (Bate et al., 2003) as: 1) stitches that connect the V-model, Extreme

Programming (XP) and Kanban into our tailored process, and 2) means to enable a tri-directional

impact analysis process. The hypothesis we make is that ASD can resolve some observed

maintenance challenges in the V-model while maintaining software parts of systems.

Background and Motivation

Safety Cases and Safety Arguments

A safety case (also known as assurance or safety assurance case) is: “A structured argument,

supported by a body of evidence that provides a compelling, comprehensible and valid case that

a system is safe for a given application in a given operating environment" (00-56 Standard, 2015).

A safety case shall comprise both safety evidence (e.g., safety analyses, software inspections,

or functional tests) and a safety argument explaining that evidence (Jaradat et al., 2014). Safety

cases might contain an implicit safety argument, but some safety standards require an explicit

argument that is usually expressed in terms of a defined hierarchy of safety claims and sub-

claims that are supported by a body of evidence (00-56 Standard, 2015). There are several ways

to represent safety arguments (e.g., textual, tabular, graphical, etc.). In this paper, we use the

Goal Structuring Notation (GSN) (GSN Standard, 2011), which provides a graphical means of

communicating (1) safety argument elements, claims (goals), argument logic (strategies),

assumptions, context, evidence (solutions), and (2) the relationships between these elements

(Jaradat et al., 2015a). Figure 1 shows the main notations of the GSN.

Figure 1— Notation Keys of the GSN

Maintenance of Safety Critical Systems and Their Safety Cases

Change requests should be assessed before decision makers decide whether or not to accept

them. The assessment should reveal if the change can cause unreasonable risks, and the required

cost to implement the change. Hence, system developers should understand the change and the

potential risks that it might carry before they identify the impacted parts. Misunderstanding the

change might lead to skip those parts of the system which are dependent on that assumptions.

Also, the developers need to understand the dependencies between the system parts to identify

the affected parts correctly. For example, the effect of a change can propagate to other parts of

the system — creating a ripple effect — and cause unforeseen violations of the acceptable safety

limits. If the impact of change is not clear, developers might be conservative and do wider

analyses and verification (i.e., check more elements than strictly necessary), and this will

exacerbate the cost problem of safety cases. It is also necessary for the developers to describe

how the change affects the system parts in order to correctly estimate the cost of the response to

that change. Otherwise, the response to a change might generate unplanned further changes to

which the system must again respond, and this requires more cost than originally estimated.

ISO 26262 Safety Standard

ISO 26262 (ISO 26262:2011, 2011) regulates the automotive domain and it is intended to be

applied to safety-related systems that include one or more electrical and/or electronic systems.

The following parts are summarised descriptions of the safety requirements decomposition

directly from ISO 26262 guidelines:

1. After identifying hazards, the standard recommends formulating Safety Goals (SGs) to

eliminate or mitigate hazards. The standard defines a safety goal as a top-level safety

requirement resultant of the hazard analysis and risk assessment. Safety goals are not

expressed in terms of technological solutions, but in terms of functional objectives.

2. Identification of SGs leads to the functional safety concept. The objective of the functional

safety concept is to derive the Functional Safety Requirements (FSRs) from the SGs, and to

allocate them to the preliminary architectural elements. At least one FSR shall be specified

for each SG. Derivation of FSRs can be supported by safety analyses (e.g., Failure modes

Requires further

development

Goal
InContextOf

SolvedBy

Away Goal

 <Module Name>

SolutionModule Reference

Assumption

A

Strategy Justification

J

Context

and effects analysis (FMEA), Fault Tree Analysis, Hazard and Operability Study (HAZOP))

in order to develop a complete set of effective functional safety requirements.

3. The functional concept leads to the technical safety concept. The first objective of the latter

is to specify the Technical Safety Requirements (TSRs) and their allocation to system

elements. The second objective is to verify that the TSRs comply with the functional safety

requirements. TSRs are used to derive Software Safety Requirements (SSRs).

Safety Contracts

Contract-based design (Benvenuti et al., 2008) is defined as an approach in which the design

process is seen as a successive assembly of components where a component behaviour is

represented in terms of assumptions about its environment and guarantees about its behaviour.

Hence, contracts are intended to describe functional and behavioural properties for each design

component in form of assumptions and guarantees. A contract is said to be a safety contract if

it guarantees a property that is traceable to a hazard. Using contracts in development of safety

critical systems is not a novel idea since there are many works utilise contracts for building,

reusing or maintaining safety critical systems (e.g., (Bate et al., 2003; Jaradat et al., 2015a;

Jaradat et al., 2015b)). The cost of maintaining, reusing and changing software components is

lessened while using contracts as developers may rework software components with knowledge

of the constraints placed upon them (Bates et al., 2003). In this paper, we use contracts to support

the maintainability of safety critical systems. We also suggest to include additional information

into safety contracts in order to enable effective traceability.

Agile Software Development (ASD)

Compared to traditional software engineering approaches, ASD targets complex systems and

product development with dynamic, non-deterministic and non-linear characteristics. ASD

methods (e.g., XP, Kanban, Scrum) evolve through collaboration between self-organising and

cross-functional teams by sharing the same philosophy and utilising the appropriate practices

for their contexts.

Each agile method has its own set of features (e.g., practices, terminologies, and tactics) and

those features should reflect ASD values and principles. However, agile methods vary when it

comes to the strategies they adopt to reflect those values and principles. For example, Kanban

is known to have a rapid response to software requirement changes since it allows the team to

instantly postpone some change requests to start with other emergent requests. Scrum might do

the same but not after the completion of a sprint planning meeting and team commitment. XP

teams are amenable to change within their iterations as long as a team has not started work on a

particular feature that needs to be exchanged with the new feature. There is no standard

recommendation as to how an agile method should implement its features (Campanelli &

Parreiras, 2015).

Organisations, typically, adapt software development methodologies to be in line with their

needs and contexts, which covering the full spectrum of the software development life-cycle

(Heeager & Rose, 2015; Salameh, 2011). In fact, there is no single agile method that can be

adopted for any arbitrary context or to efficiently cover all phases in the development life-cycle.

Hence, organisations might not adopt an entire agile method, but rather they combine different

processes from different agile methods based on their needs and contexts.

Agile Tailoring

The process in which an agile method is adapted for a specific project situation in a responsive

way to accommodate the encountered challenges and to cover the indented interplay between

contexts in a dynamic way, is called Agile Tailoring. There are two main approaches to tailor

agile methods: the contingency factors and the method engineering theory (Campanelli &

Parreiras, 2015). The first approach handles the tailoring by choosing multiple methods to be on

standby in an organisation (i.e., Crystal family (Abrahamsson et al., 2003)). The selection of

any standby method is based on project size and criticality, as well as the development context,

such as uncertainty level, impact and structure. The second approach is based on meta-method

processes and proposes the creation of a new method to be applied on specific contexts based

on existing method fragments (a fragment represents a set of practices) (Campanelli & Parreiras,

2015). Despite the flexibility of this approach, it introduces challenges such as how to control

the fragments or how to assemble the method for a context specific situation by bringing the

appropriate fragments and integrating them into one framework (Campanelli & Parreiras, 2015).

In this paper, we tailor our framework using the method engineering approach.

The Kanban Method

Kanban is based on lean principles: it tries to remove the waste of the production process by

embracing rules to limit Work In Progress (WIP) and measures the time to finish the tasks

(Campanelli & Parreiras, 2015). Kanban does not prescribe a specific set of roles or process

steps, but rather it encourages its users to start from the existing context by understanding and

emphasising the customers’ needs (Ahmad et al., 2013). Kanban is deemed as an approach to

process change for organisations by providing sufficient visibility and understanding of the

workflow and its progress. Kanban is all about visual signs (aka Kanban Cards) which represent

individual work items accompanied with their critical information. Those cards move across a

board (aka Kanban board). The latter is partitioned by vertical lanes which are titled, typically,

according to the names of the development life-cycle phases (e.g., Analysis, Development,

testing). These lanes can be partitioned further to specify the current state of each phase (To Do,

Doing and Done). The location of a card on the board indicates the progress of the work and its

current state. Kanban shows the assigned work for each team member, communicates priorities

and highlights bottlenecks via cycle or lead time and the cumulative flow diagram (Ahmad et

al., 2013; Campanelli & Parreiras, 2015).

The XP Method

The XP method intends to improve software quality and responsiveness to the changing

customer requirements. XP is considered a lightweight agile method that focuses on cost

savings, unit tests before and along code activities, frequent full system integration and frequent

releases (Campanelli & Parreiras, 2015). XP comprises five phases: exploration, planning,

iterations to release, productionising, maintenance and death (Salameh, 2011). The exploration,

planning and iterations to release are the only phases involved in our tailored framework.

During the exploration phase, the customers describe the features they wish to have in the first

release of their system by writing each of them into a story card (Abrahamsson et al., 2017).

Our tailored framework is designed to deal with changes to a system that has been already built

by the V-model. Hence, the features are considered as changes to the software system in our

case. More clearly, safety engineers (who represent the customers) write change requests into

story cards and discuss them with the team manager. During the planning phase, the story cards

should be prioritised, an agreement on the first small release should be made and the time span

required to implement the story cards should be estimated (Abrahamsson et al., 2017). In the

iteration and release planning phase, each release should be incremented by exactly one

iteration. The development team should break down requested features (i.e., requested changes

in our case) into several small releases. The customer selects the stories that should be

implemented in a specific iteration. XP Planning Game is a close interaction between the

customer and the development team. The latter should estimate the effort needed to implement

the stories.

A Maintenance Framework to Facilitate Change Management

In this section, we build upon the background section to propose a new framework which aims

to streamline the change management process of non-structural software changes in safety

critical systems. The framework is referred to as XP-Kan-Safe and it comprises two main

processes: The Preliminary Process and the Change Management Process. Figure 2 provides a

conceptual model of the framework. The conceptual model encompasses three phases: 1)

Analysis phase to cover the derivation of safety contracts, 2) Planning phase to cover the game

planning, and 3) Implementation phase to cover the TDD and other XP practices. The grey

background of the model represents the Kanban board.

The Preliminary Process

This process is preparatory and should be performed before handling changes. The main

objective of this process is to derive safety contracts and enrich them with additional information

to increase the traceability between the requirements (i.e., guarantees) and different related

artefacts. The activity of deriving safety contracts should start from the safety analysis phase.

Safety analysis, however, is typically performed on different levels such as system, subsystems

and components levels. The preliminary process enables system developers to derive contracts

from safety analyses on the highest level down to lower levels. The preliminary process is

applicable to any approach aims to decompose and specify safety requirements. The work in

this paper, however, is designed to comply with ISO 26262 thus the derivation of safety

contracts starts from the safety analysis through which SGs are derived.

After completing the safety analysis on the system level, safety contracts should be derived to

guarantee the resultant SGs. A safety contract that guarantees a SG is referred to as “SG

contract". The assumptions of a SG contract should capture the FSRs that fulfil the guaranteed

SG. Furthermore, a contract should be derived to guarantee every assumed FSR in SG contracts

after completing the safety analysis on the safety function level. A safety contract that

guarantees a FSR is referred to as “FSR contract". The assumptions of a FSR contract should

capture the TSRs that implement the guaranteed FSR. Finally, a contract should be derived to

guarantee every assumed TSR in FSR contracts; such contracts are referred to as “TSR

contracts". The assumptions of a TSR contract should capture the SSRs that implement the

guaranteed TSR after completing the safety analysis on the software components level.

Figure 2— A conceptual model of XP-Kan-Safe framework

Failure modes and effects analysis (FMEA) is recommended by many safety standards (including

ISO 26262) as a safety analysis tool to identify potential failures modes. We enable the derivation

of safety contracts from FMEAs by adding an extra column to the FMEA table so that safety

analysts, together with requirement engineers, should cite their derived contracts in it. FMEA

might have a deficiency when it comes to multiple failures investigation. Hence, safety analysts

might use different tools, such as Fault Tree Analysis (FTA) to search for the effects of multiple

failures. Our preliminary process takes this into account and manages the derivation of safety

contracts from FMEAs and FTAs. Figure 3 shows the connection between FTA and FMEA in

addition to an example of a derived safety contract.

A guarantee in a contract and its related assumptions are the main elements of the contracts and

they help to understand the relationships and the dependencies among the safety requirements.

However, they might not be enough for analysts to identify the impacted artefacts and the

elements in the GSN safety argument due to changes because they do not provide information

as how the different parts are related to each other. For instance, identifying an impacted TSR

will not directly lead to the impacted test cases and the items of evidence which need to be

replaced. In order to enhance the traceability between the requirements (i.e., guarantees) and

other related artefacts as well as GSN elements, safety contracts should be enriched with

additional information. To this end, system developers should include additional information

into the derived contracts as follows:

1. Elements in the system architecture: all derived safety requirements should be allocated to

elements of the system architecture. However, since the changes we are after in this work

System Test

SW

Components

Integration Test

Unit Test

Implement (TDD)

Technical Safety

Requirements

Contracts

Functional

Safety

Contracts

 Technical

Safety

Requirements

Functional

Safety

Requirements

Function

Safety

Analysis

Safety Goals

referenced in

specified for

support
verified by

integrated to

ensures

referenced in

refined by

realised by

derive

analysed by

realised by

System

derive

verify

SW

Change

Request

a
llo

c
a
te

d
 to

allocated to

verified by

Technical SW

Safety

Requirements

SW

Components

Software

Architectural

Design

Software

Architectural

Design

System Design

Architecture

HW

Components

Technical

 HW Safety

Requirements

requires

realised by

realised by

Safety Goals

Contracts

analysed by

Development

Team

New user story (if any) / confident estimation

Uncertain estimation

Game Planning (Release and Iteration)

implement user stories

 next iteration

Customer

Approval

small releases

failed contracts (bugs)

Analysis

Doing Done

Backlog

Queue/Ready

Development

Doing Done

Test

Doing To Deploy
DEPLOYED

support

support

Safety Case

Analysis

Planning

Implementaion

are non-structural, we assume that the changes have no effect on the system architecture.

Figure 3— An illustration of a contract derivation by the Preliminary Process

2. Test cases: potential failure modes for which a safety requirement is derived should be

considered as testing criteria during the verification phase to ensure the prevention of those

failures. Including a reference to test cases in safety contracts enables direct traceability

between safety analyses (i.e., FMEA and FTA), safety requirements (i.e., guarantees) and

test cases. This traceability enables a top-down change impact analysis from the safety

analysis down to the test cases. This top-down analysis represents the first direction of the

tri-directional impact analysis process in our maintenance framework. While documenting

the safety contracts, the reference of test cases might not be available as the test cases

themselves might not be built yet. System developers are required to revisit each contract

and add the corresponding test case references whenever they are made available.

Furthermore, given that the test cases are available and complete, system developers can

annotate them with the contracts’ references. The annotations in the source code of the test

cases are important to establish a traceability that enables a bottom-up impact analysis from

the test cases up to the safety analysis. This bottom-up analysis represents the second

direction of the tri-directional impact analysis process in our maintenance framework.

3. Elements of safety arguments: each safety contract should contain a reference to the related

goals, contexts or items of evidence from safety arguments. Whenever GSN references are

made available, system developers are required to revisit each contract and add the

corresponding GSN reference to it. Including a reference to GSN elements in safety

contracts enables direct traceability between a system and its safety case. This traceability

enables a bi-directional impact analysis from the system to its safety case and vice versa.

More clearly, an affected guarantee can lead to an affected GSN element. Since the safety

case presents the logic of how different artefacts are related, impact analysts might use it to

highlight the change impact in the related system. The bi-directional change impact analysis

represents the third direction of the tri-directional impact analysis process in our framework.

Figure 3 highlights the suggested traceability information and connects them to specimen

artefacts and a GSN element.

The Change Management Process

In this section, we describe the second process of XP-Kan-Safe. This process and its activities

represent the result of tailoring ASD and the V-model. The main objective of this tailored

process is to guide whoever involved in the change management activities from the arrival of a

change until the generation of a new test results report. Figure 4 presents the flow of these

activities. The Change Management Process activities are described as follows:

 Activity 1: Understand the change and its impact in the system and its safety case.

Once a change request is placed, Activity 1 should be followed in which the safety engineers

should understand the nature of the change and determine its potential effects in the system and

its safety case. In order to initiate the Kanban management process, safety engineers should

create a card that describes the change request in more technical specifications and visualise it

as a WIP in the analysis phase. The outcome of this activity should provide plausible data about

the impacted parts of the system and its safety case.

Figure 4— The change management process of XP-Kan-Safe framework

Activity 2: Identify the impacted contracts. In this activity, all related safety contracts

to the change should be identified. The benefit of applying the first process of XP-Kan-Safe

(i.e., preliminary) will be more realised in this activity since using safety contracts should help

to provide a systematic impact analysis through the utilisation of the tri-directional impact

analysis. The identified contracts should be listed in the Kanban card.

 Activity 3: Terminate: Forward the change request to the related team. If there is

no safety contract identified as suspect in Activity 2, this implies that the change request has

nothing to do with the functional safety in the system (no safety requirements are affected). In

this specific case, the change request should be forwarded to the relevant team and no further

continuation of the change management process is needed.

 Activity 4: Investigate the impacted contracts to estimate the required size of work.

There is no perfect impact analysis that can determine the effects of a change in the system and

its artefacts at the first glance. That is, it is unlikely that the team will find out what might,

precisely, get impacted merely by looking at the documented requirement and without iterating

the impact analysis process. Hence, further investigation should be conducted to gain sufficient

confidence in the perceived impact of a change. To this end, this activity should be followed to

make further investigation of the impacted contracts. During this activity, a preliminary

meeting should be carried out in which safety engineers, who represent the on-site customer

with respect to XP, together with the development team, should determine the possibility of

identifying more impacted contracts. Any additional identification of safety contracts should

be added to the Kanban card. Safety contracts should support the collaboration between safety

engineers and the development team to delimit the impacted parts of a system through the tri-

directional impact analysis process. It is worth mentioning that any need to modify an existing

contract or derive a new one will necessitate the application of this activity.

 Activity 5: Derive new contracts or modify existing contracts. Since changes might

introduce other changes, this might lead to modifying or deriving other contracts (i.e.,

requirements) that were not thought of earlier in Activity 2. In this activity, safety engineers and

system developers derive new contracts or modify the existing ones to capture the newly

introduced requirements or to update the already captured requirements, respectively. An initial

cost of the change accommodation and its timeframe are two among several other factors upon

which the approval decision is made. The involvement of the development team in the

Activities 4 and 5 should cover the estimation of the initial amount of work and the time needed

to complete it. Safety engineers and system developers should agree on: 1) what should be

changed or added (i.e., size of the work) and 2) the acceptance of the accompanied potential

risk on safety functions. Subsequently, they should submit their agreement to the management

where the latter can either decline or accept the change request. Submission of the agreement

concludes the Analysis Phase, and this means that the Kanban card should move on the board

from (Analysis → Doing) to (Analysis → Done).

 Activity 6: Document the change and its rejection. If the change request receives a

rejection by the management, the change request, the performed investigation and the

management decision should be documented (ISO 26262:2011, 2011). The rejection implies that

the Kanban card should be closed.

 Activity 7: Plan the implementation of change. If the change request receives an

approval by the management, the Kanban card should be available for development. The

adopted planning method, in our change management process, complies with XP. This implies

that the implementation of the change request is initiated by the planning game. The input of

the planning game is the estimated work and the impacted safety contracts. The output are more

fine-grained estimated tasks than the earlier estimated tasks in Activity 4.

 Activity 8: Implementation by TDD. In this activity, the implementation of the change

is carried out using TDD. For those contracts that are subject to modification, system developers

should find the related test cases (using the parameters that refer to them in the contracts) and

modify them accordingly. Since modifying a contract might require creating new test cases,

system developers should cite the newly added test cases in the corresponding contracts and

vice versa. This is particularly important to support bi-directional traceability between the test

cases and the contracts while is deemed as a preparation for future changes. Citing the newly

added test cases in the contracts applies to the derived contracts during the impact analysis

process — after the preliminary process — as well Activity 5. Moreover, after implementing

required production code to satisfy the derived test cases, other already existing test cases might

get impacted by newly added code. If the solution is to modify or add new requirements, system

developers should inform the safety engineers about the suggested changes to the requirements.

In this case, the suggested changes by system developers should be declared as unexpected

changes. Afterwards, safety engineers and system developers should arrange an on-the-fly

meeting to investigate the discovered unexpected changes Activity 4. The meeting should reveal

1) whether or not the suggested changes might introduce unreasonable risks (i.e., criticality

level) and 2) the size of work required to cope with the suggested changes. The size of work is

defined, in this context, based on its influence on the earlier gaming plan Activity 7 so that big

work means a modification of the release planning is required. If the suggested changes are

non-critical, system developers should implement them or forward them to the relevant team.

If the suggested changes are critical, one of two possible actions should be performed:

1. If the size of work is small, developers should do the fixes on-the-fly and cite the related

test cases in the contracts and vice versa.

2. If the size of work is big and critical, developers should either follow the exchange strategy

by XP to re-prioritise the tasks within the current iteration of the planned release or plan

the tasks for the next release.

 Activity 9: Run all related tests. In this activity, system developers should utilise the

continuous integration as a first step, according to XP, to avoid delays caused by integration

problems. Subsequently, a continuous testing process should be initiated to obtain immediate

feedback on the possibility of violating safety countermeasures to prevent unreasonable risks

associated with a software release. The scope of testing should be extended from a bottom-up

assessment (from test cases to safety requirements) to validate safety goals. In case of any

violation of safety requirements after running the continuous testing, system developers should

follow Activity 8.

 Activity 10: Generate new versions for the modified test reports. This activity should

be followed once the continuous testing is completed successfully. New reports of the test

results should be generated to replace the out-of-date reports in the safety case. It is significant

to update the references of these reports in the safety contracts of the system and its safety case.

Discussion and Conclusion

Maintaining safety critical systems due to changes is a challenging process because of: 1) the

lack of awareness of the change’s effects and the ripple of these effects on the system, 2) the

lack of documentation of dependencies among the generated artefacts during the development

process, and 3) the lack of traceability between a system and its safety case. Following the V-

model to accommodate system changes might be very strict, which might be justifiable for

structural system changes since many parts get impacted and there is no precise clue about the

size of work needed to maintain the system. For software non-structural changes, this might not

be justifiable. ASD can provide promising methods to maintain software changes. For example,

XP puts great emphasis on the technical aspects (e.g., TDD, continuous integration and code

refactoring). Also, Kanban brings the visibility of the workflow and improves the

communication and collaboration among the stakeholders. Using ASD for maintaining safety

critical systems can be promising but it still needs to comply with the current safety standards.

In this paper, we introduced XP-Kan-Safe as a novel framework in which we tailor a hybrid

process of ASD and the traditional V-model. The tailored process exploits safety contracts to

connect ASD and the V-model, and enable a tri-directional impact analysis process. Future work

will focus on creating a more in-depth case study to validate both the feasibility and efficacy of

the process as well as to fully automate its application.

Acknowledgment

This work has been partially supported by the Swedish Foundation for Strategic Research (SSF)

(through SYNOPSIS and FiC Projects) and the EU-ECSEL (through SafeCOP project). Both

authors contributed equally to the paper and their names are listed in alphabetical order.

References

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2017). Agile software development methods:

Review and analysis. CoRR, abs/1709.08439.

Abrahamsson, P., Warsta, J., Siponen, M. T., & Ronkainen, J. (2003). New directions on agile methods:

A comparative analysis. In Proceedings of the 25th International Conference on Software

Engineering (ICSE). Washington, DC, USA.

Ahmad, M., Markkula, J., & Oivo, M. (2013). Kanban in software development: A systematic literature

review. In Proceedings of the 39th EUROMICRO Conference on Software Engineering and

Advanced Applications (SEAA).

Bate, I., Hawkins, R., & McDermid, J. (2003). A contract-based approach to designing safe systems. In

Proceedings of the 8th Australian workshop on safety critical systems and software - volume 33

(pp. 25–36). Darlinghurst, Australia. Australian Computer Society, Inc.

Benvenuti, L., Ferrari, A., Mazzi, E., & Vincentelli, A. L. (2008). Contract-based design for computation

and verification of a closed-loop hybrid system. In Proceedings of the 11th international

workshop on hybrid systems: Computation and control (pp. 58–71). Berlin, Heidelberg: Springer-

Verlag.

Campanelli, A. S., & Parreiras, F. S. (2015). Agile methods tailoring – a systematic literature review. The

Journal of Systems & Software, 110, 85–100.

Cao, L., Ramesh, B., & Abdel-Hamid, T. (2010). Modeling dynamics in agile software development.

ACM Trans. Manage. Inf. Syst., 1 (1), 5:1–5:26.

Denney, E., Pai, G., & Habli, I. (2015). Dynamic safety cases for through-life safety assurance. In

Proceedings of the 37th IEEE international conference on software engineering (ICSE).

GSN Standard (2011). Goal Structuring Notation working group.

Heeager, L., & Rose, J. (2015, December). Optimising agile development practices for the maintenance

operation: nine heuristics. Empirical Software Engineering, 20(6), 1762–1784.

ISO 26262:2011 (2011). Road Vehicles — Functional Safety, Part 1-9. International Organization for

Standardization.

Knippers, D. (2011). Agile software development and maintainability. In Proceedings of the 15th Twente

Student conference.

Jaradat, O., Bate, I. (2017). Using safety contracts to guide the maintenance of systems and safety cases.

In Proceedings of the 13rd European Dependable Computing Conference (EDCC).

Jaradat, O., Bate, I. & Punnekkat, S. (2015a). Facilitating the maintenance of safety cases. In Proceedings

of the 3rd International Conference On Reliability, Safety and Hazard - Advances In Reliability,

Maintenance and Safety (ICRESH-ARMS). Luleå, Sweden.

Jaradat, O., Bate, I. & Punnekkat, S. (2015b). Using sensitivity analysis to facilitate the maintenance of

safety cases. In Proceedings of the 20th International Conference on Reliable Software

Technologies (Ada-Europe).

Jaradat, O., Graydon, P. & Bate, I. (2014). An approach to maintaining safety case evidence after a

system change. In Proceedings of the 10th European Dependable Computing Conference

(EDCC). Newcastle, UK.

Bates, S., Bate, I., Hawkins, R., Kelly, T., McDermid, J., & Fletcher, R. (2003). Safety case architectures

to complement a contract-based approach to designing safe systems. In Proceedings of the 21st

International System Safety Conference (ISSC).

Salameh, A. (2011). On Process Tailoring - An Agile Example. Master Thesis. Chalmers University.

Kelly, T., & McDermid, J. (1999). A systematic approach to safety case maintenance. In Proceedings of

the Computer Safety, Reliability and Security (SAFECOMP) (Vol. 1698, p. 13-26). Springer

Berlin Heidelberg.

Tarwani, S., & Chug, A. (2016). Agile Methodologies in Software Maintenance: A Systematic

Review. Informatica, 40(4), 415.

00-56 Standard (2015). Defence Standard — Issue 6. Safety Management Requirements for Defence

Systems — Part 1: Requirements and Guidance. U.K. Ministry of Defence.

Biographies

Omar T. Jaradat, Ph.D. candiate, School of Innovation, Design and Engineering, Mälardalen

University, Högskoleplan 1, SE-72123, Västerås, Sweden, Tel: +46 21101369, Fax: +46

21101460 e-mail – omar.jaradat@mdh.se.

Omar Jaradat is a Ph.D. candidate in the Innovation, Design and Engineering department at

Mälardalen University. His research interests include safety argumentation for safety critical

systems, where the main focus is on maintenance of safety-critical systems and safety cases.

Abdallah M. Salameh, Ph.D. candidate, School of Computing, Science & Engineering,

University of Salford, Manchester, UK, Tel: +46 721844015, e-mail –

a.salameh@edu.salford.ac.uk.

Abdallah Salameh is a senior developer at Bambora Group AB - Sweden and a Ph.D. candidate

in the School of Computing, Science and Engineering at the University of Salford, U.K. His

research interests include agile software development, where the main focus is on tailoring the

processes in large-scale software intensive organisations.

