
Static Flow Analysis of the Action Language for
Foundational UML

Jean Malm, Federico Ciccozzi, Jan Gustafsson, Björn Lisper, Jonas Skoog*
School of Innovation, Design and Engineering – Mälardalen University

Västerås, Sweden
[name.surname]@mdh.se, *jonas.skoog.1992@gmail.com

Abstract—One of the major advantages of Model-Driven Engi-
neering is the possibility to early assess crucial system properties,
in order to identify issues that are easier and cheaper to solve at
design level than at code level. An example of such a property is
the timing behaviour of a real-time application, where an early
indication that the timing constraints might not be met can help
avoiding costly re-designs late in the development process.

In this paper we provide a model-driven round-trip transfor-
mation chain for (i) applying a flow analysis to executable models
described in terms of the Action Language for Foundational UML
(Alf), and (ii) back-propagating analysis results to Alf models
for further investigation. Alf models are transformed into the
input format for an analysis tool that identifies flow facts, i.e.,
information about loop bounds and infeasible paths in the model.
Flow facts can be used, for instance, when estimating the worst-
case execution time for the analysed model. We evaluated the
approach through a set of benchmark models of various size
and complexity.

Index Terms—UML, Alf, model-based analysis, timing analysis,
flow facts, SWEET, model transformation, back-propagation

I. INTRODUCTION

Modelling languages are often used to describe the design
of a software system under development. Besides showing
the system at different levels of abstraction and through
different viewpoints, models can also be analysed, to ensure
that the resulting system will perform as expected [33], and
used for automating the generation of code. In Model-Driven
Engineering (MDE), models are the core engineering actors,
which are used for multiple goals. If a modelling language is
provided with a well-defined execution semantics, it is possible
to achieve fully executable models, which can be simulated,
analysed, executed, and from which even complete implemen-
tations can be automatically derived. To graphically design a
detailed executable model can be cumbersome, therefore it
is not uncommon for executable modelling languages to be
supported by a so called action language, which is a textual
notation to describe behaviours according to the language’s
execution semantics.

This is the case of the Action Language for Foundational
UML1 (Alf) defined by the Object Management Group to act
as the surface notation for specifying executable behaviours
within a wider model that is primarily represented using the
graphical notations of the Unified Modeling Language (UML).
Alf naturally leverages the UML metamodelling concepts and
thereby can boost consistency-by-construction and ease model-
based activities (e.g., analysis [11], simulation [9]). Indeed,
one of the main benefits of executable models is that they
disclose the opportunity of performing early, yet precise,
analysis and verification of the modelled system. Late (i.e.,

1http://www.omg.org/spec/ALF/

code level) discovery of issues concerning system properties
can lead to modifications that can cost 40 times more than if
done at design phase [14]. Software developers spend around
50% of their development time on verifying program code,
to an estimated total annual cost of $300 billion globally [5].
Early analysis and verification are therefore essential to cope
with the exponential growth of modern software complexity
and its effective development.

In this paper we focus on early analysis, more specifically
static flow analysis of executable software models defined
with UML and its action language Alf. A flow analysis
identifies flow facts, i.e., constraints on the control flow of
the system such as bounds for the number of loop iterations,
or infeasible paths. These flow facts can then be used when
estimating the Worst-Case Execution Time (WCET) [13], and
to detect possible performance bottlenecks in the system (e.g.,
loops with a high number of possible iterations). Flow and
WCET analyses are especially valuable for real-time and
safety-critical systems, where correct timing is key. Static
flow and WCET analyses offer the possibility to obtain early,
approximate timing estimates on model level, before there
is any code that can be run. This can help detecting timing
problems early, thus avoiding late and costly system redesigns.

Besides WCET analysis, the results of a flow analysis can
be used to enhance the designer’s understanding of the model
and its properties. For instance, flow analysis can discover
dead code (or, better, behavioural paths) and possibly non-
terminating loops.

In this paper, we present a round-trip model-based approach
for static flow analysis of Alf executable models2. We provide
an approach able to:

• Transform an Alf model to a format suitable for flow
analysis.

• Perform the flow analysis using the SWEdish Execution
Time tool3 (SWEET), which can compute a wide variety
of potentially very precise flow facts.

• Round-trip in terms of mapping the analysis results back
to the Alf model for further investigation.

The remainder of the paper is organised as follows. Section II
introduces executable models and static flow analysis. Sec-
tion III reviews the literature related to our contribution, which
in turn is described in Section IV. The paper is concluded by
an evaluation in Section V and a summary of the presented
contribution and future work in Section VI.

2Note that this paper is an extended version of the master’s thesis of two
of the paper’s co-authors; see [26].

3http://www.mrtc.mdh.se/projects/wcet/sweet/

II. BACKGROUND

In this section we provide a brief introduction of the main
concepts related to our contribution: executable models and
static program flow analysis.

A. Executable UML models and Alf
UML is the de-facto standard in industrial model-based

development of software systems [22], and, more generally,
empirically shown to be the most widely used architectural
description language [25]. The standardisation of (i) the
Foundational Subset For Executable UML Models (fUML),
which gives a precise execution semantics to a subset of
UML limited to composite structures, classes and activities
(application models designed with fUML are executable by
definition) [34], and (ii) a textual action language, Alf, to
express complex execution behaviours, has made UML a full-
fledged implementation quality language [32].

Alf is a textual surface representation for UML modelling
elements, whose execution semantics is given by mapping
Alf’s concrete syntax to the abstract syntax of fUML. The
primary goal of Alf is to act as the surface notation for
specifying executable behaviours within a model represented
using the usual graphical notations of UML. Alf comes with an
extended notation to represent structural modelling elements
too. That is to say, it is possible to describe a UML model
entirely using Alf. According to its specification, Alf has the
following three levels of syntactic conformance:

• Minimum conformance: includes a subset of Alf for
writing textual action language snippets in a graphical
UML model, with the capabilities available in a tradi-
tional, procedural programming language;

• Full conformance: provides a complete action language
for representing both behaviour and (partially) structure;

• Extended conformance: covers all Alf syntax.
In this work we focus on the following subset of the full con-
formance, which allows to describe a full-fledged functional
model both structurally and behaviourally with Alf4:

• Active Classes. One active class that defines classes and
functions in its body and using the do-block to represent
the program entry-point;

• Classes. Classes support member variables, functions,
and instantiations;

• Basic Data Types. The allowed basic data types are:
Integer, Natural, Boolean, and Sequence;

• Methods. Supports all allowed data types as parameters
as well as return value;

• Arithmetic Expressions. Standard arithmetic expressions
with operands: addition, subtraction, multiplication, divi-
sion, and modulus;

• Boolean Expressions. Boolean expressions with
operands. Included operators are: AND, OR, NOT;

• Relational Expressions. Relational expressions on Inte-
gers and Naturals. Included operators are: LT, LEQ, GT,
GEQ, EQ, NEQ;

• Assignment Expressions. Standard assignment of vari-
ables. Allowed assignments are: ’=’, ’++’, and ’−−’;

• Sequences. Creation of sequences and access to elements
in sequences;

4Note that structural concepts, such as classes and methods, can be
described in terms of UML graphical diagrams, but for simplicity we use
Alf only.

• Branching Statements. if-else, while, and for
statements.

This subset has been identified by investigating the needs
of existing industrial applications, in two different domains
(telecom and factory automation), that we previously reverse-
engineered and modelled with (f)UML and Alf: the AAL2
protocol in telecom and the self-orienting carrier robot in
factory automation [6], [12].

In Listing 1 we can see an example of an Alf textual model
including both structure and behaviour.

1 active class Controller{
2 protected op(in b : Integer) {
3 if (Robot.right.X == 0)
4 Robot.left.vecRotateLeft(b);
5 }
6 }

Listing 1: Example of ALF syntax

Alf has three prescribed ways to achieve semantic con-
formance, meaning how execution semantics is implemented,
summarised as follows:

• Interpretive execution: Alf is directly interpreted and
executed;

• Compilative execution: Alf is translated into a UML
model conforming to the fUML subset and executed
on the actual target platform according to the semantics
specified in the fUML specification;

• Translational execution: Alf, as well as any surrounding
UML concept in the model, is translated into an exe-
cutable for a non-UML target platform and executed.

In this work we target translational execution towards an
analysis tool, SWEET.

B. Static Program Flow Analysis and SWEET
Static program analysis means to analyse code for some

interesting property, given a formal semantics for the code,
rather than running it. The code can for instance define a
model: static analysis can thus be applied already at model
level to pinpoint possible problems.

In this work we focus on static flow analysis, applied
to executable models. Such an analysis finds constraints on
the execution flow, so-called flow facts. Examples include
loop iteration bounds, and infeasible path constraints. Existing
methods for program flow analysis work on quite a low
level, and they target C or even machine code. They work
best for code found in safety-critical applications with static
memory allocation, without recursion, where the program flow
is decided by arithmetic conditions.

Flow facts are usually expressed in a control-flow graph
representation of the code, where the graph nodes are basic
blocks. Each basic block B can be assigned a virtual counter
variable #B that counts the number of executions of B. Flow
facts can now be expressed as arithmetic constraints on the
final values of these variables. For instance, if H is the header
node for a loop, then the constraint #H ≤ 100 constrains
the number of loop iterations to at most 100. Similarly the
constraint #A + #B ≤ 100 expresses that the basic blocks
A and B can be executed together at most 100 times, which is
a kind of infeasible path constraint.

Flow facts are primarily used in WCET analysis [13], as part
of the timing analysis typically performed for safety-critical
real-time systems. The WCET of a program is defined as its

longest possible execution time when running uninterrupted
on some given hardware. Given strong enough flow facts, and
a timing model for the underlying hardware, WCET estimates
can be computed. In the so-called IPET model [23], the WCET
estimation is cast as an integer linear programming problem
where a linear cost function, formed from the local execution
time bounds for the basic blocks, is maximized subject to the
linear constraints given by the flow facts. The IPET model
prevails today due to its generality and flexibility.

A potential use of model-level flow facts is to compute
approximate WCET estimates on the model level, using coarse
estimates for the basic block execution times, in order to
pinpoint possible timing problems early. This is an interesting
topic for further research. Flow facts can also be used to
identify dead code and infeasible paths. This information is
interesting for instance when calculating coverage metrics. In
addition, flow facts can help the developer understand the code
and its properties better: for instance, unexpected flow facts
may be due to some bug in the code.

We have used the SWEET flow analysis tool [24] to perform
static flow analysis on executable models. SWEET is arguably
one of the most precise flow analysis tools around [36], and
it can compute a wide variety of flow facts from simple loop
iteration bounds to more complex infeasible path constraints.
It uses a variant of abstract interpretation called abstract
execution, where the program is executed with abstract states.
In these states numeric variables hold intervals rather than
single numbers: thus, executing a statement with an abstract
state represents several concrete executions, and the paths of
abstract executions will always cover all concrete execution
paths. Abstract execution is reminiscent of symbolic execution,
but offers the option to merge different paths in order to avoid
a path explosion [18]. This feature is important to obtain
scalability of the analysis, at the cost of some loss of precision.
SWEET can also compute approximate WCET estimates using
simple timing models. In addition SWEET can perform some
other analyses, including static backwards program slicing,
and a value analysis to find bounds for the possible values
of variables at different program points.

SWEET analyses a format that is also called ALF
(ARTIST2 Language for Flow Analysis); to avoid confusion
with UML’s Alf, we will refer to it as the SWEET language.
Other formats can be analysed by translation into this lan-
guage: currently, translators from C as well as some binary
formats exist. The SWEET language is similar to a compiler
intermediate format, and is designed to be able to represent
both source code (C level) and binary code faithfully. It has
procedures, a store statement for assignments, a load
instruction to read from memory, a rich set of arithmetic-
logical operators, and a switch statement to model different
kinds of control statements, like if-then-else and conditional
jumps. Data can be of different kinds, such as numerical, or
addresses to data or code.

The SWEET language has labels that mark positions in the
code. Code addresses are simply labels. The data memory
model is based on frames, which represent non-overlapping
memory areas. Each data address consists of a symbolic base
pointer to a frame, and a numerical offset within the frame.
Frames can represent, e,g., single variables, structs, arrays,
objects, address tables, or low-level memory areas. Frames
can be statically allocated, corresponding to global data. They

can also be allocated within a so-called “scope” construct,
corresponding to local, stack-allocated data. Finally frames
can be allocated dynamically, corresponding to heap-allocated
data, although the current version of SWEET does not handle
this construct. See [16], [17] for details.

III. RELATED WORK

Model-based analysis has been applied to UML before. The
general approach is to either combine and analyse information
from different model diagrams directly [37], or to transform
them and take advantage of existing tools [27], [4].

In [20], the authors provide an approach for statically
analysing UML use cases for assessing requirements engi-
neering outcomes. Dynamic analysis through simulation or
other execution means has been applied to UML too. For
instance, in [3], the authors reverse engineer Java to fUML
for performing different kinds of dynamic analysis on existing
(Java) software.

Related to flow and timing analysis, in [29], the authors
present a technique and a tool for model-checking operational
(design level) UML models based on a mapping to a model
of communicating extended timed automata. They consider
structural and behavioural UML, but could not take fUML or
Alf into account, since they had not been introduced yet. The
lack of analysis techniques for action semantics of UML was
partly addressed in [30], where the authors present a technique
based on the static analysis of the dependencies between the
different UML actions included in the behavioural schema.
Nevertheless, the focus of that work was on consistency of
action semantics specification; moreover, fUML and Alf were
not introduced yet.

In [38], the authors describe another static analysis approach
transforming a UML class model into a static model of
behaviour, called a Snapshot Model, whose constraints can
be verified using tools such as USE and OCLE. Planas et
al. [31] present a lightweight and static verification technique
to assess the executability (strong, weak, non-executable) of
operations in executable UML models. The goal is to check
the executability of operations without breaking the integrity
of the structural model.

Baldovin et al. [2] transform a UML-MARTE model into
to a specific textual format in order to be fed to a tool for
WCET analysis. fUML and Alf are not considered. Another
interesting work on WCET analysis on UML-MARTE is de-
scribed in [15] and uses the Time Transition System (TTS) as
verification language on models described with UML activities
and composite structures and MARTE. The approach does not
entail fUML nor Alf. In [28], the authors provide a translation
from Alf to UPPAAL for model checking rather than static
flow analysis. There is a prototype implementation of WCET
analysis for specifically annotated UPPAAL models [19].
Nevertheless, this prototype does not scale and can only be
used for small test examples. Ciccozzi et al. [8] perform
timing analysis on C++ code automatically generated from Alf
models. However, the timing analysis is done at code level,
while in this work we focus on early analysis at model level
(hardware-agnostic).

To the best of our knowledge, there is no approach dealing
with static flow analysis of Alf (thereby according to the
standard execution semantics of UML defined by fUML). This
is supported by the results of a systematic review on execution
of UML models that we have performed [10].

Fig. 1: Solution’s architecture and workflow

IV. FLOW ANALYSIS OF ALF

We provide an automated solution for analysing Alf models
in terms of their execution (data- and control-) flow. Fig. 1
depicts the architecture and workflow of the solution, which
has been implemented as a set of Eclipse plugins.

Starting from an Alf model conforming to the Alf meta-
model implementation provided in Eclipse Papyrus5, an exoge-
nous model-to-text transformation defined in Xtend6 translates
the Alf model into the SWEET’s input format, i.e. a program
conforming to the SWEET language’s EBNF grammar.

Once the analysis terminates, the approach propagates anal-
ysis results back to the Alf model. To correctly map analysis
results back to the specific model elements in the Alf model,
we need to provide explicit trace links between Alf elements
and corresponding generated SWEET code elements. For this
purpose we specifically designed a traceability metamodel in
EMF/Ecore7, similarly to what we did in previous efforts [8].
A dedicated set of Xtend exogenous model-to-model transfor-
mation rules generate an instance of this metamodel – i.e. a
traceability model – when generating SWEET code.

SWEET code can then be analysed through the SWEET
tool, which generates a results log. At this point, in order for
the modeller to be able to grasp at a glance the results of
the analysis, they are back-propagated to the Alf model as
structured lexical comments (using the LexicalComment
concept provided by Alf). The back-propagation is carried out
by an exogenous in-place text-to-model transformation defined
in Java, which takes as input the analysis results and the
traceability model previously generated, similarly to [8].

In the remainder of this section we describe in detail each
step providing explanatory examples too.

A. Modelling with Alf and transformation to SWEET language
We target executable models defined in UML and Alf, and

thereby adhere to the execution semantics brought by fUML.
As aforementioned we exploit structural and behavioural mod-
elling capabilities offered by Alf. In Listing 2 we introduce a
compact version of one of the applications used for validation,
as a running example. The Alf model represents CollisionTest,
a software application that tests overlap between boxes in
a 2D-space. A box is represented using its location, width
and height. The application creates a sequence of boxes, and
then tests all possible box pairs for overlaps by varying the
value of the boxes’ width. At the end of the execution, the

5https://www.eclipse.org/papyrus/
6https://www.eclipse.org/xtend/
7https://www.eclipse.org/modeling/emf/

collisions variable should hold the number of identified
potential collisions.

1 active class CollisionTest {
2 class HitBox {
3 /* X, Y, height and width, all Integers */
4 public Colliding(in o : HitBox) : Boolean {
5 return ((this.X < o.X + o.w) && (this.X +

this.w > o.X) && (this.Y < o.Y + o.h)
&& (this.Y + this.h > o.Y));}

6 }
7 }
8 do {
9 /* Init code for b1-b4 omitted */

10 let boxes : HitBox[] = HitBox[]{b1, b2, b3, b4};
11 let i : Integer = 1; let j : Integer = 1;
12 let collisions : Integer = 0;
13 while(i < numOfBoxes) {
14 j = i + 1;
15 while(j <= numOfBoxes) {
16 if(boxes[i].Colliding(boxes[j]))
17 collisions++;
18 j++;
19 }
20 i++;
21 }
22 }

Listing 2: Running example in Alf

We currently support the Alf syntactical concepts listed in
Section II-A.

Given an Alf model defined using a combination of those
concepts, an Xtend model-to-text transformation automatically
translates it into SWEET code. In the following subsections,
we describe how the entailed Alf syntactical concepts are
transformed to the SWEET language, referring to the running
example. Alf and the SWEET language are placed at different
abstraction levels. Being a high-level language, Alf abstracts
away many details that are needed when performing our
analyses; examples are the separation between big and little
endian, or the specification of a fixed size for basic data types.
These details are inferred by the model transformations when
translating Alf to SWEET. As the SWEET language is quite
verbose, we use some "macro instructions" in the following
SWEET language snippets. These are specifically defined for
this paper8, and described in Table I. Let us see how the
various Alf concepts are translated to the SWEET language.

a) Active Classes: We chose to support active classes
as the topmost node element in the Alf model. This is in
order to be able to execute Alf code in isolation using tools9

implementing the Alf specification, and at the same time
modelling a fully executable program, which is required by the
analysis tool. Active classes consist of a declaration block and
a behavioural block. The declaration block holds definitions
of fields and additional classes, whereas the behavioural block
contains functional code, which in this work is considered the
entry point for the application.

An active class is transformed by going through declaration
and behavioural blocks and translating them to SWEET (see
Table II). Regarding declarations, classes are translated as
described in the next section. Fields are transformed into
SWEET global variables. As the SWEET input language
separates the declaration of functions from their definitions,

8For the interested reader, more info of SWEET language macros can be
found in http://www.mrtc.mdh.se/Alf2SWEET.

9We used the implementation provided at: https://github.com/ModelDriven/
Alf-Reference-Implementation.

TABLE I: SWEET code macros used in the description of the
mappings

Macro Explanation
label_def
<lblName>

Defines an address label in the code, which
can be used as a target for jump-type instruc-
tions.

alloc_v <size>
<name>

Wrapper for function variable definition.

load_inst <size>
<fName> <offset>

Loads amount of memory given by <size>
from the memory address given by frame
<fName> and <offset>.

add_inst <size>
<op1> <op2>

Wrapper for addition instruction op1 + op2
of size <size>.

addr_inst <fName>
<offset>

Evaluates to the address given by the frame
<fName> and <offset>. Normally used in
combination with storing and loading data.

target_label
<lName>

Evaluates to the address of the label given
by <lName>. Needed for jumps and function
calls.

TABLE II: Translation of the Active Class and Class concepts

Alf SWEET language
active class Col-
lisionTest{

{ alf ...

... /* method declaration */
class HitBox { { exports ...

/* fields */ { lrefs ...
Colliding(other : Hit-

Box)
{ lref 64 "HitBox.%baseConstructor" }

{<code>} { lref 64 "HitBox.Colliding" }
} }

}
...
{ funcs
{ func { label_def "HitBox.Colliding"

}
{ arg_decls { alloc_v "%this" 64 }

{ alloc_v "other" 64 } }
...
{ stmts <code here> }

} /* end func */
} /* end funcs */

} /* end program */

they are transformed separately. The behavioural block, once
all statements and expressions are translated to SWEET (as
shown later in the section), becomes the entry function of the
analysis, and is therefore transformed into a SWEET function
named "main".

b) Classes: An Alf class (or better, class instances) is
translated in SWEET as a single memory frame, with a base
address and the offset of each field stored in a lookup table10.
Instantiation is done by calling a default function, which sets
all fields to default values. Methods of the Alf class are
transformed into SWEET functions, which take a pointer to
the calling object as an extra argument.

In Table II we can see (an extract of) the transforma-
tion result from the Alf class CollisionTest::HitBox
to SWEET. Function labels are defined for both a de-
fault constructor (“Hitbox.%baseConstructor” in SWEET),
which is called when HitBox objects are created, and
the Colliding member method (“Hitbox.Colliding” in
SWEET). We can also see the translation of the definition
of Colliding and its arguments.

10It is worth noting that fields representing class objects are stored using
composition, i.e. the entire object is stored inside the allocated memory, not
only its reference.

TABLE III: Translation of expressions

Alf SWEET language
/*this is left of o*/ { and /*&&*/
(this.X < o.X +
o.width)

{ s_lt /* < */

&& <operand2> { load_inst <size> "this" <offset for
X> } /* this.X */

{ add_inst <size>
{ load_inst <size> "o" <offset for X>

}
{ load_inst <size> "o" <offset for

width> }
} /* end add_inst */

} /* end s_lt */
{ <transformed operand2>}

} /* end and */

TABLE IV: Translation of assignments

Alf SWEET language
j = i + 1 { store

{ <address of j> }
with
{ <translation of i + 1> }

}

c) Basic Data Types: The SWEET language has numeric
types that differ between signed/unsigned and in size. Alf’s
Boolean is transformed into an unsigned 1-bit value (e.g.
true becomes { dec_unsigned 1 1 }). Natural becomes
an unsigned type, while Integer a signed, and their size (the
number after the sign) can be any positive number in bits.

d) Expressions: Alf expressions can be formed using
constants or qualified names, representing for instances vari-
ables, in combination with unary or binary operators. In this
category we address Alf arithmetic, boolean and relational ex-
pressions. The translation of a compound expression from the
Colliding method is shown in Table III. Alf and SWEET
natively support the same operators, so their translation is
rather straightforward. Nevertheless, in SWEET we need to
compute additional information, as for instance a variable’s
location in memory (e.g. load_inst <size> "this" <offset
for X> in SWEET, representing this.X in Alf), as well as
store and load of variable values. For compound expressions,
we transform first the operands (possibly sub-expressions) and
then apply the matching operator, as shown in the table.

e) Assignment Expressions: Assigning to a variable re-
quires the target location address to be computed, transforming
the expression computing the value to be stored and then
storing it in the memory location. Table IV shows an example
of assignment from the running example.

f) Methods: The translation of definition and call to an
Alf function into SWEET is shown in Table V.

The definition of an Alf method is translated as follows.
Each function gets a unique name label. The input param-
eters, as well as the calling object, are stored as a list of
(name, type) values. This list is transformed and inserted into
the function header, which specifies name and size of all ar-
guments and local variables (e.g. { arg_decls { alloc_v
"%this" <refSize> } ...). The method body is then transformed
and inserted in the statement part of the function in SWEET.
SWEET functions must have explicit return statements, so, if
not provided, the transformation generates one.

A call to an Alf function is translated as follows. Arguments
are transformed and provided as arguments to the SWEET

TABLE V: Translation of methods

Alf SWEET language
Colliding(in o: Hitbox) { func { label_def "HitBox.Colliding"

}
{ { arg_decls { alloc_v "%this" <ref-

Size> } { alloc_v "o" <refSize>} }
/* code here */ /* reserve memory space for local variables

*/
} { stmts <code here> }

} /* end func */
res = b1.Colliding(b2) { call { target_lbl "Hit-

Box.Colliding" }
{ addr_inst "b1" } { addr_inst "b2"

} /* args list */
result { addr_inst "res" } /* return

value address */
} /* end call */

TABLE VI: Translation of sequences. Note that the first
store instruction is used to store the size of the sequence in
the first element index.

Alf SWEET language
/* in CollisionTest do-
block */

/* in "main" func header */

/* b1-b4 are HitBox ob-
jects */

{ decls

{ alloc_v "b1" <HitBox size> }

let boxes : HitBox[] =
...

HitBox[]{b1, b2, b3,
b4}

{ alloc_v "boxes" <(count + 1) * address
size> }
} /* End decls */
{ stmts /* In function body */
{ store { addr_inst "boxes" 0 }
with { dec_unsigned <size> 4 }
} /* boxes[0] ← 4 */
{ store {addr_inst "boxes" <index 1

offset> }
with { addr_inst "b1" 0 }
} /* boxes[1] ← address to b1 */
...
{ store { addr_inst "boxes" <index 4

offset> }
with { addr_inst "b4" 0 }
} /* boxes[4] ← address to b4 */

} /* end of stmts */

call instruction. SWEET uses call-by-value, so when argu-
ments represent either class objects or sequences, their location
address in memory (e.g., addr_inst “b2”) is passed instead
of the actual object (e.g., “b2”). The location to store the result
is also explicitly stated (e.g. result { addr_inst "res" }).

g) Sequences: Sequences are collection types, represent-
ing an ordered list of elements. In Alf, sequences are created
in two ways: with a concrete list of elements (as in the running
example) or with an inclusive range between two integer
values (e.g. Integer[]{1..5}). The total size of a variable
needs to be defined in the function’s header, so the range needs
to be statically computable at transformation time. Much like
class instances, the sequence is represented as a memory frame
large enough to hold all elements as well as the sequence
length, stored at the beginning of the frame.

Unlike local function sequences, sequence class fields are
stored as references, so, when indexing sequences through a
class object, extra dereferencing needs to be done in SWEET.
Class objects in sequences are also stored as references.

In Table VI, we can see the translation of the initialization
of a sequence in the main function of the running example.

TABLE VII: Translation of conditional branches

Alf SWEET language
while(i<numOfBoxes){ { label_def "main.WhileStmt_0" }
/* Loop body */ { switch

} { s_lt <operands size>
{ load_inst "main.i" }
{ load_inst "main.numOfBoxes" }

}
{ target
{ dec_signed 1 { minus 1 } }
{ target_lbl "main.WhileStmt_0_start"

}
}
{ default
{ target_lbl "main.WhileStmt_0_end"

}
}

}
{ label_def "main.WhileStmt_0_start" }
/* loop body code here */
{ jump_inst { target_lbl
"main.WhileStmt_0" } }
{ label_def "main.WhileStmt_0_end" }

h) Branching statements: Alf statements for branching,
such as for-, while- and if-statements, are translated by com-
bining SWEET’s conditional and unconditional jump instruc-
tions. Table VII shows the outer while-statement in the running
example’s active class behaviour and its translation to SWEET.

They are translated into a switch statement, where a
conditional expression is evaluated and based on the result the
execution jumps to another memory location. Jumping requires
a target label, so these are generated (e.g., { label_def
"main.WhileStmt_0" }). If the expression is evaluated to
true, execution should move to the conditional block (e.g.,
{ target ... { target_lbl "main.WhileStmt_0_start" }
}). If it is false, it should skip the block (e.g., { default {
target_lbl "main.WhileStmt_0_end" } }).

Loops require an additional label before the evaluation
of the condition, as it should jump back to evaluate the
condition again once the conditional block is executed (e.g.,
jump_inst { target_lbl "main.WhileStmt_0" }).

B. Analysis with SWEET and back-propagation to Alf model

Once the Alf code has been translated, it can be analysed
using the SWEET tool. We focused on flow analysis where
the generated flow facts provide lower and upper bounds on
the number of executions at specific program points. Once the
system has been analysed, the results are mapped back to the
source model in a format understandable by the modeller.

Each relevant program point and variable in the resulting
code is given a unique ID label, based on its type and location
in the code. SWEET uses these labels when presenting the
resulting flow facts. After the analysis, the results are parsed
and back-propagated to the Alf model through an in-place
text-to-model transformation. More specifically, ID labels for
interesting program points are recomputed and used to look up
the results, which are then properly injected into the model,
according to the trace links in the traceability model, as
structured lexical comments.

The final presentation format can be seen in Listing 3.
The number of executions of the while loops is completely
dependent on the constant number of boxes, and therefore
deterministic. To avoid just having a static configuration of
boxes, the width of box B1 has been manually overriden and

Fig. 2: Placement of boxes in the example

set to unknown in the analysis. This causes it to test all non-
negative widths at the same time. In Fig. 2, we can see that, by
changing its width only, B1 would overlap with a maximum
of two boxes. This fact is reflected in line 21 of Listing 3.
The final step of the tool has inserted some lexical comments
stating the number of times that the execution reached the
program point. For the running example, we can use this
information to verify that the code does what is expected in
terms of loop execution, while also verifying the functionality
of the Colliding function. The analysis found an execution
path that never entered the if-statement, as well as one that
entered it up to twice, which is what we would expect given
the properties of the boxes used.

The benefit of presenting the analysis results as decoration
of the Alf model rather than as a separate log file is that the
relation between the result and the source is directly visible.
When dealing with complex software systems, the possibility
to investigate analysis results at model level can be crucial for
the engineer to identify and correct possible anomalies in the
design that would lead to functional errors or extra-functional
issues at code level.

1 let collisions : Integer = 0;
2 let i : Integer = 1;
3 let j : Integer = 1;
4 let index : Integer = 1;
5 index = 1;
6 /* Note that the value of widths[1] has been

overriden in the analysis, in order to test
all possible values of it. */

7 for(HitBox b : boxes)
8 {
9 /* Flowfacts: Program point passed: 4 times */

10 b.Set(Xs[index], Ys[index], widths[index],
heights[index]);

11 index++;
12 }
13 j = 1;
14 i = 1;
15 while(i < numOfBoxes /* numOfBoxes = 4 */) {
16 /* Flowfacts: Program point passed: 3 times */
17 j = i + 1;
18 while(j <= numOfBoxes) {
19 /* Flowfacts: Program point passed: 6 times

*/
20 if(boxes[i].Colliding(boxes[j])) {
21 /* Flowfacts: Program point passed: 0-2

times */
22 collisions++;
23 }
24 j++;
25 }
26 i++;
27 }

Listing 3: Back-propagated analysis results

V. EVALUATION

The transformation between Alf and SWEET has been val-
idated through transformation unit testing [35], where actual
(generated SWEET code) and expected results were compared.
The test programs were designed already from the beginning
as a test suite to be used for regression testing, whenever
new features (in terms of Alf concepts) were added. The test
suite was run on multiple examples of the specific modelled
constructs under test.

The approach has been validated by processing a set of Alf
models of varying size and complexity11.

We tested the performance (i.e. in terms of execution time)
of the two most demanding operations, that is to say (i)
translation of Alf to SWEET and (ii) flow analysis, on the
CollisionTest application. To test the scalability of the two
operations, we considered three versions of the application,
composed of 72, 1000 and 10231 LoC respectively. The
resulting execution times are shown in Table VIII12.

The end-to-end execution times (in ms) were recorded using
Java’s System.NanoTime API for the translation from Alf
to SWEET, and the built-in time command in the Ubuntu
subsystem for Windows 10 (Ubuntu 14.04.5 LTS) for the
SWEET analysis, averaged over 20 runs each. This was run
on a Intel Core i7.7820HQ CPU @ 2.90 GHz processor.

TABLE VIII: Performance of the prototype implementation

Alf LoC SWEET LoC Alf → SWEET ET SWEET ET
72 726 6.43 101.29
1000 13310 67.25 2029.76
10231 138891 610.14 68644.62

The current major limitation of the proposed approach is the
limited coverage of modelling concepts translated to SWEET.
Among them, two relate to most high-level languages and are
recursion13 and dynamic memory allocation. Concerning re-
cursion, since SWEET does not provide support for analysing
it, recursive behaviours would need to be rewritten into itera-
tive ones. This is a well-known activity, which entails studying
the behaviour, convert recursive calls into tail calls, add a one-
shot loop around the entire behaviour’s body, and eventually
convert tail calls into continue statements. Such an activity
could be partially automated too. When it comes to dynamic
memory allocation, SWEET does not currently provide out-
of-the-box support for it. To entail it without disrupting the
analysis itself, a possibility could be to “mimic” dynamic
allocation using structures currently available in SWEET, such
as allocating a shared memory frame for dynamic data and fill
it in during the analysis run.

Additionally, in order for the analysis to produce a result,
it needs to terminate so it is not suitable for analysing non-
terminating problems.

As hinted by “The Power of Ten – Rules for Developing
Safety Critical Code” by NASA [21], recursion, dynamic
memory allocation, and non-termination should be avoided

11For the interested reader, distributable Alf models, related generated
SWEET code, and annotated analysis results are available at http://www.mrtc.
mdh.se/Alf2SWEET.

12Due to memory optimisations performed by the Eclipse IDE, the first
translation performed in a given ’instance’ takes between 1200 and 1600 ms
longer. As this is a known phenomenon, we excluded it from the sampling.

13Although not explicitly covered by either the fUML or the Alf specifica-
tions, there are ways to express recursion in UML.

a-priori in real-time safety-critical systems, which represent
those benefiting the most from the kinds of analysis targeted by
our approach. Additionally, the subset of Alf syntax covered
by our transformation chain is expressive enough to model
full-fledged industrial applications both in telecom and factory
automation domains, as shown in [6], [12].

VI. CONCLUSION

In this paper we presented a round-trip model-based ap-
proach for static flow analysis of Alf executable models.

With our solution we showed that it is feasible to perform
static flow analysis on executable Alf models using a transla-
tional approach. Moreover, the analysis makes it possible to
identify possible anomalies early in the development process,
rather than at implementation phase.

As future enhancement, we plan to investigate the possibil-
ities to, on the short term, extend the coverage of entailed Alf
concepts, and, on the long term, adapt the SWEET analysis to
run on Alf models, properly described, directly. We plan also
to enclose the analysable subset of Alf into a specific profile
(or similar) for static flow analysis. Regarding the analysis
itself, our next step will be to infer timing information in
the Alf model in order to be able to use flow facts to derive
WCET estimations and identify performance bottlenecks in
the modelled system. An interesting option is to attempt the
methodology for identifying timing models in [1] for this
purpose. Moreover, we plan to investigate how to provide
analysis results in Alf models as proper lexical tokens, rather
than with lexical comments. A possibility would be to provide
something similar to the Alf statement annotation mechanism.
Additionally, we are already investigating the possibility to
directly compile Alf models to more expressive languages,
such as the LLVM intermediate representation, to enable
other types of analysis, such as memory access and memory
allocation analysis, provided by LLVM and related tools [7].

ACKNOWLEDGEMENTS

This work is supported by the KK-foundation through
the MOMENTUM project14, and the ITEA3 TESTOMAT15

project through Vinnova – Sweden’s innovation agency.
REFERENCES

[1] P. Altenbernd, J. Gustafsson, B. Lisper, and F. Stappert. Early execution
time-estimation through automatically generated timing models. Real-
Time Systems, 52(6):731–760, Nov. 2016.

[2] A. Baldovin, A. Zovi, G. Nelissen, and S. Puri. The concerto methodol-
ogy for model-based development of avionics software. Lecture Notes
in Computer Science, pages 131–145, 2015.

[3] A. Bergmayr, H. Bruneliere, J. Cabot, J. Garcia, T. Mayerhofer, and
M. Wimmer. fREX: fUML-based Reverse Engineering of Executable
Behavior for Software Dynamic Analysis. In Procs of MiSE, 2016.

[4] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gau-
fillet, F. Lang, and F. Vernadat. Fiacre: an Intermediate Language
for Model Verification in the Topcased Environment. In ERTS 2008,
Toulouse, France, Jan. 2008.

[5] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen.
Reversible debugging software. Univ. Cambridge, Tech. Rep, 2013.

[6] F. Ciccozzi. On the automated translational execution of the action
language for foundational UML. Software & Systems Modeling, pages
1–27, 2016.

[7] F. Ciccozzi. UniComp: a semantics-aware model compiler for optimised
predictable software. In Procs of ICSE-NIER, 2018.

[8] F. Ciccozzi, A. Cicchetti, and M. Sjödin. Round-trip Support for
Extra-functional Property Management in Model-driven Engineering of
Embedded Systems. Inf. Softw. Technol., 55(6):1085–1100, 2013.

14http://www.es.mdh.se/projects/458-MOMENTUM
15http://testomatproject.eu/

[9] F. Ciccozzi, J. Feljan, J. Carlson, and I. Crnković. Architecture
optimization: speed or accuracy? Both! Software Quality Journal, pages
1–24, 2016.

[10] F. Ciccozzi, I. Malavolta, and B. Selic. Execution of UML models:
a systematic review of research and practice. Software & Systems
Modeling, pages 1–48, 2018.

[11] F. Ciccozzi, M. Saadatmand, A. Cicchetti, and M. Sjödin. An Automated
Round-trip Support Towards Deployment Assessment in Component-
based Embedded Systems. In Procs of CBSE, 2013.

[12] F. Ciccozzi, T. Seceleanu, D. Corcoran, and D. Scholle. UML-based
development of embedded real-time software on multi-core in practice:
lessons learned and future perspectives. IEEE Access, 4:6528–6540,
2016.

[13] R. W. et al. The Worst-Case Execution Time Problem — Overview
of Methods and Survey of Tools. ACM Transactions on Embedded
Computing Systems (TECS), 7(3):1–53, 2008.

[14] D. Galin. Software quality assurance: from theory to implementation.
Pearson Education India, 2004.

[15] N. Ge, M. Pantel, and B. Berthomieu. A Flexible WCET Analysis
Method for Safety-Critical Real-Time System using UML-MARTE
Model Checker. 2016.

[16] J. Gustafsson, A. Ermedahl, and B. Lisper. ALF (ARTIST2 Language for
Flow Analysis) specification. Technical report, Mälardalen University,
Västerås, Sweden, Jan. 2011.

[17] J. Gustafsson, A. Ermedahl, B. Lisper, C. Sandberg, and L. Källberg.
Alf – a language for wcet flow analysis. In N. Holsti, editor, Procs of
WCET. OCG, June 2009.

[18] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. Automatic
derivation of loop bounds and infeasible paths for WCET analysis using
abstract execution. In Procs of RTSS, 2006.

[19] A. Gustavsson, A. Ermedahl, B. Lisper, and P. Pettersson. Towards
WCET Analysis of Multicore Architectures using UPPAAL. In Procs
of WCET. OGS, 2010.

[20] J. H. Hausmann, R. Heckel, and G. Taentzer. Detection of Conflicting
Functional Requirements in a Use Case-driven Approach: A Static
Analysis Technique Based on Graph Transformation. In Procs of ICSE,
2002.

[21] G. J. Holzmann. The power of 10: rules for developing safety-critical
code. Computer, 39(6):95–99, 2006.

[22] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Empir-
ical Assessment of MDE in Industry. In Procs of ICSE. ACM, 2011.

[23] Y.-T. S. Li and S. Malik. Performance analysis of embedded software
using implicit path enumeration. IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, 16(12):1477–1487, Dec. 1997.

[24] B. Lisper. SWEET – a tool for WCET flow analysis (extended abstract).
In Procs of ISOLA. Springer-Verlag, 2014.

[25] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang. What
Industry Needs from Architectural Languages: A Survey. IEEE Trans.
Software Eng., 39(6):869–891, 2013.

[26] J. Malm and J. Skoog. Towards automated analysis of executable
models. Master’s thesis, Mälardalen University, School of Innovation,
Design and Engineering, 2017.

[27] P. C. Mehlitz. Trust your model - verifying aerospace system models
with java pathfinder. 2008 IEEE Aerospace Conference, 2008.

[28] Z. Micskei, R.-A. Konnerth, B. Horváth, O. Semeráth, A. Vörös, and
D. Varró. On Open Source Tools for Behavioral Modeling and Analysis
with fUML and Alf. In Procs of OSS4MDE, 2014.

[29] I. Ober, S. Graf, and I. Ober. Validating timed uml models by simulation
and verification. International Journal on Software Tools for Technology
Transfer, 8(2):128–145, Apr 2006.

[30] E. Planas, J. Cabot, and C. Gómez. Verifying Action Semantics
Specifications in UML Behavioral Models. In Procs of CAiSE, 2009.

[31] E. Planas, J. Cabot, and C. Gomez. Lightweight and static verification of
UML executable models. Computer Languages, Systems & Structures,
46:66 – 90, 2016.

[32] B. Selic. The Less Well Known UML. Formal Methods for Model-
Driven Engineering, 7320:1–20, 2012.

[33] I. Sommerville. Software engineering. Addison-Wesley, 8 edition, 2006.
[34] J. Tatibouët, A. Cuccuru, S. Gérard, and F. Terrier. Formalizing

Execution Semantics of UML Profiles with fUML. In Procs of MoDELS.
2014.

[35] A. Tiso, G. Reggio, and M. Leotta. Unit Testing of Model to Text
Transformations. In Procs of AMT, page 14, 2014.

[36] R. von Hanxleden et al. WCET tool challenge 2011: Report. In Procs
of WCET, 2011.

[37] R. Wille, M. Gogolla, M. Soeken, M. Kuhlmann, and R. Drechsler.
Towards a Generic Verification Methodology for System Models. Procs
of DATE, 2013.

[38] L. Yu, R. B. France, and I. Ray. Scenario-Based Static Analysis of
UML Class Models. In K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and
M. Völter, editors, Procs of MODELS, 2008.

