
Designing Compact Convolutional Neural Network
for Embedded Stereo Vision Systems

Mohammad Loni∗, Amin Majd†, Abdolah Loni‡, Masoud Daneshtalab∗, Mikael Sjödin∗ and Elena Troubitsyna∓
∗School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden
†Department of Information Technology, Åbo Akademi University, Turku, Finland

‡Computer Science and Mathematics Department, Allameh Tabatabai University, Tehran, Iran
∓Theoretical Computer Science Department, KTH Royal Institute of Technology, Stockholm, Sweden

Email: ∗{mohammad.loni, masoud.daneshtalab, mikael.sjodin}@mdh.se, †{amin.majd, Elena.troubitsyna}@abo.fi

Abstract—Autonomous systems are used in a wide range of
domains from indoor utensils to autonomous robot surgeries and
self-driving cars. Stereo vision cameras probably are the most
flexible sensing way in these systems since they can extract depth,
luminance, color, and shape information. However, stereo vision
based applications suffer from huge image sizes and computa-
tional complexity leading system to higher power consumption.
To tackle these challenges, in the first step, GIMME2 stereo
vision system [1] is employed. GIMME2 is a high-throughput
and cost efficient FPGA-based stereo vision embedded system.
In the next step, we present a framework for designing an
optimized Deep Convolutional Neural Network (DCNN) for time
constraint applications and/or limited resource budget platforms.
Our framework tries to automatically generate a highly robust
DCNN architecture for image data receiving from stereo vision
cameras. Our proposed framework takes advantage of a multi-
objective evolutionary optimization approach to design a near-
optimal network architecture for both the accuracy and network
size objectives. Unlike recent works aiming to generate a highly
accurate network, we also considered the network size param-
eters to build a highly compact architecture. After designing
a robust network, our proposed framework maps generated
network on a multi/many core heterogeneous System-on-Chip
(SoC). In addition, we have integrated our framework to the
GIMME2 processing pipeline such that it can also estimate
the distance of detected objects. The generated network by our
framework offers up to 24x compression rate while losing only
5% accuracy compare to the best result on the CIFAR-10 dataset.

Index Terms—Neural Network Architecture Search, Deep Con-
volutional Neural Network, Neural Processing Unit, Stereo Vision
Systems

I. INTRODUCTION

Stereo vision systems are multi-modal sensing way allowing
for extracting three-dimensional (3-D) information, luminance,
color, distance, and shape. Compare to different sensing ways
such as LIDAR, RADAR, and cameras, stereo vision cameras
are more attractive due to providing heterogeneous information
simultaneously that are beneficial for many applications to
have comprehensive information to explore unknown sur-
rounding environment and dynamic navigation. For example
autonomous vehicles can benefit from stereo vision systems
to move on the right path, detect dynamic objects such as
pedestrians and other vehicles, and estimating the distance
between the vehicle and recognized objects.

Today, Deep Convolutional Neural Networks (DCNNs) con-
struct the skeleton of visual recognition, decision making and

prediction algorithms because of providing higher accuracy
and more flexibility compared to old-fashioned solutions.
However, DCNNs are complex and ever-evolving processing
models containing up to millions operations for the entire
model making their implementation unexciting. In addition,
current stereo cameras produce high-resolution images requir-
ing huge computational throughput and considerable energy
consumption which are main obstacles for embedded system
implementation.

To overcome these challenges, GIMME2 embedded system
[1] has been utilized and adapted in the first step. GIMME2
is a power efficient FPGA-based stereo vision system. There
exist generally two strategies approaching to overcome DCNN
implementation barriers: 1© employing customized hardware
accelerators [7], [9], [30]. 2© decreasing the network compu-
tation by using network pruning techniques in training step
[5]. However, optimizing the network architecture should be
also taken into account as the third solution because the
choice of the architecture strongly effects on the inference
time, memory usage, hardware footprint, the accuracy level,
and the prediction quality of DCNNs. For this, we introduce
an evolutionary-based accelerator which is also compatible
with GIMME2. Our proposed solution tries to design a near-
optimal DCNN for image classification algorithms in term of
network size while guaranteeing acceptable level of accuracy
by employing Cartesian Genetic Programming (CGP) based
method. Our framework then maps the generated network to
a multi/many core SoC.

There are other neural approximation accelerators [27]–
[30]. However, they fail to generate an efficient DCNN archi-
tecture. Previous works mainly employed a simple restricted
design space exploration methodology to diminish the time of
generating accelerator. Plus, they just generate a deep multi-
layer networks which is relatively obsolete and do not offer
acceptable accurate results for many modern applications.
Unlike prior works, network size also is considered as the
second objective to design a compact neural network since
network size is important for embedded platforms. Toward this
purpose, our framework uses a multi-objective optimization
method to solve neural architecture search problem. The output
of multi-objective algorithm will be a set of Pareto-optimal
curves while each curve comprises n different architectures

Fig. 1. The overview of the proposed framework.

with various accuracies and network sizes.
The overview of the proposed framework is depicted in

Fig. 1. The configuration file contains predefined values for
DCNN training, e.g. number of epoch, learning rate, total
number of generation and the number of offspring. The input
of the proposed framework is an image stream receiving from
stereo vision camera. In nutshell, our main contributions in
this paper are twofold:
• Developing a multi-objective neuro-evolutionary opti-

mization approach to search design space of DCNN
architectures by considering the accuracy and the network
size as the key objectives.

• Finally, the designed DCNN is embed into GIMME2
processing system such that it can estimate the distance
of detected objects.

We make the structure of the rest of the paper as follows.
Section 2 gives background information on multi-objective
algorithm, DCNN, and GIMME2 embedded device. Section
3 reviews related work in this scope. Section 4 describes CGP
approach to design a DCNN. Section 5 presents and analyzes
the experimental results. Finally, section 6 summarizes con-
clusion and future work.

II. BACKGROUND

A. DCNN

DCNN is one of the most popular supervised deep learn-
ing models which are mainly used for object classifica-
tion/recognition. Multiple back-to-back hidden layers compose
the DCNN architecture, where input image is fed to the first
layer. Each layer is responsible for receiving feature maps
information from previous layer, and after applying special
operations on the data, e.g. filtration, resizing, and etc., then
deliver them to the next layer in the chain. The fully connected
layers are responsible for classification, while the convolution,
pooling, normalization, and activation layers are used for
feature extraction and feature map resizing. The ability to
classify data that has never seen before, inference time, and
learning rate of a DCNN are all depend on the network
architecture, therefore, optimizing the network architecture

potentially provides considerable performance. To find com-
putational bottlenecks of DCNNs, we have analyzed a well-
known DCNN, VGG-16 [26]. As the first conclusion, Fully-
Connected Layers (FCLs) are memory-intensive containing
more than 80% of memory accesses, however, convolutional
layers (Conv.) are strongly computational intensive which uti-
lize 99.3% of total computation. This is illustrated in Fig. 2, the
comparison between computational volume, memory accesses,
and pure software execution time for the VGG-16 architecture.

Fig. 2. The percentage of memory usage, computational volume, and software
execution time of VGG-16.

B. Multi-Objective Cartesian Genetic Programming

We need an optimized approach to make the best balance
between network size and the accuracy. Computability is a
significant challenge especially in complex problems; there
are no guarantees that such problems can be solved in a
satisfactory manner in a limited time. Several techniques have
been proposed to improve solving of NP-hard complex prob-
lems. Among them, evolutionary computing (EC) methods
are more prominent [19], [21]. There are population-based
search methods that mimic the process of natural selection
and evolution, as some characteristics of this process can
be utilized in optimization problems. There exists different
type of evolutionary algorithms like Genetic algorithm (GA),

imperialist competitive algorithm [34], memetic algorithm and
etc. ECs are divided based on application and type of prob-
lems, for example discrete problems and continues problems.
Genetic algorithm and Cuckoo are used on discrete problems
and PSO and ICA are used for contentious problems. Finding
the efficient network is a discrete problem therefore we select
a superb combination of GA and Cuckoo. In other words,
we select the simple and fast operation of GA (mutation) to
explore the search space more accurate than other exploration
methods with greedy search of Cuckoo together. Coding and
encoding are the key parameters to achieve the best results.
With a suitable coding, algorithm can be simulated from
phenotype to genotype and can make the phenotype from
genotype by decoding. Binary coding, tree coding, real coding
are more popular type of coding models but they cannot
become fix on our problem. Our problem needs a variable
length coding method with different type of elements that
generate different network architectures with various sizes and
parameters. The more suitable coding method for optimizing
the network is Cartesian coding. Based on the Cartesian coding
[32], the algorithm can have perfect chromosomes that build
different possible network architectures with various sizes and
parameters.

Fig. 3. The overview of GIMME2 Architecture.

C. GIMME2 Architecture

GIMME2 is an embedded power efficient stereo vision
system based on the Xilinx Zynq System-on-Chip (SoC)
FPGA that provides megapixel pictures and supports a high
speed image processing pipeline. Fig. 3 illustrates the overview
of GIMME2 architecture. Providing high resolution images,
low power consumption, and standardized interface are the
main properties of GIMME2, allowing vision-based sensing
feasible. GIMME2 is equipped with two Aptina MT9J003
image sensors which are CMOS sensors with 15fps@10MP
(3856 x 2764 bayer pattern array) or 60fps@1080p, with 12-bit
color resolution. Each sensor produce 2.8 Gb/s data over four
240 MHz LVDS-lanes. A simple Zero-mean Sum of Absolute
Differences (ZSAD) stereo-matching is utilized for full HD
real-time depth estimation [4]. Table I describes GIMME2 key
features. Frame rate could be varied for different applications,
e.g. it can provide up to 240 frame/second for images with

640x400 pixels. We cannot use the FPGA of GIMME2 since
it is filled by preprocessing logics. Thus we aim to design a
compact network to be processed on the ARM processor in
the reasonable time.

TABLE I
THE SPECIFICATION OF GIMME2.

Frame rate 15fps@10MP, 60fps@1080p
Processing Unit Xilinx Zynq 7020

Programmable Logic Artix-7 85K Logic Cells
Processing System Dual ARM Cortex-A9 (766MHz)

Memory 4Gb DDR3, 2Gb DDR3, QSPI, SD-card
Communication 2xGBE, 1xFE, 3xUSB 2.0 (one host)

Power consumption 18W@24V
Physical dimensions 130x82mm

III. RELATED WORK

A. Automatic Designing Deep Neural Network

In this section, we address state-of-the-art approaches point-
ing to automatically design the architecture of DNNs. These
approaches could be categorized into the hyper-parameter opti-
mization, reinforcement learning and evolutionary approaches.

a) Hyperparameter Optimization: DNN architecture de-
signing problem can be modeled as the hyperparameter opti-
mization. There are some solutions for hyperparameter tuning
problems, like gradient search [12], Grid Search (GS) [11],
Random Search (RS) [13], and Bayesian optimization-based
method [14]. GS is relatively slow, Bayesian-based methods
suffer from massive computational cost, and using RS is
difficult because of extremely random sampling in the search
space. In addition, these methods are suitable only for search
models with a fixed-length space and hard to design more
flexible DCNN architectures from scratch [15].

b) Reinforcement Learning: Recently there have been
many works at the intersection of reinforcement learning and
designing DCNN providing better results for image classifica-
tion in comparison with the best hand-craft DCNN results. In
[17], a recurrent neural network (RNN) was used to generate
neural network architectures, and the RNN was trained with
reinforcement learning to maximize the expected accuracy on
a learning task. This method uses distributed training and asyn-
chronous parameter updates with 800 graphic processing units
(GPUs) to accelerate the reinforcement learning process. Baker
et al. [16] have proposed a meta-modeling approach based
on reinforcement learning to produce DCNN architectures. In
this paper a Q-learning agent explores and exploits a space of
model architectures with greedy strategy and experience re-
play. In [18], a block-wise network generation pipeline called
BlockQNN has been provided to automatically build high-
performance networks using the Q-Learning paradigm with
epsilon-greedy exploration strategy. However, these models
are considerably too slow and require huge computational
resources in both training and prediction steps, e.g. MetaQNN
[16] contains 11.18 M trainable parameters and used 10 GPUs
for up to 10 days to train a CIFAR-10 dataset.

c) Evolutionary-based approaches: Sun et al. [15] pro-
posed a new method using genetic algorithms for evolving
the architectures and weight connections of a DCNN. In their
proposed algorithm, an efficient variable-length gene encoding
strategy is designed to represent the different building blocks
and the unpredictable optimal depth. Suganuma et al. [19]
attempted to automatically build a DCNN architectures for
an image classification task based on Cartesian genetic pro-
gramming (CGP). The DCNN architecture and connectivity
represented by the CGP encoding method are optimized to
maximize the validation accuracy. Real et al [21] proposed
a simple evolutionary techniques for discovering models on
the CIFAR-10 and CIFAR-100 datasets. They used novel and
intuitive mutation operators which navigate vast search spaces.
Finally, in a forthcoming accepted publication [20], we will
show how we can use ordinary GP for designing a optimized
DNN for embedded systems.

IV. DESIGNING DCNN USING MULTI-OBJECTIVE CGP

In this paper, we tried to present the multi-objective version
of a CGP approach to design a near-optimal DCNN based on
the work of Suganuma et al. [19]. The DCNN architecture
is represented by direct encoding, where CGP is used to
search the architecture space by employing one point mutation
operator to modify genome parameters. We briefly describe the
structure of multi-objective CGP and our modifications which
enhance the DCNN performance and memory footprint.

As mentioned in section II.B, the CGP structure is used
for encoding the genome type by representing a network in
directed graph that is mapped in two-dimensional matrix. The
fixed length genome type is pictured in Fig. 4.(a) with three
columns and two rows, where the number of processing nodes
could be different from genome length. In this representation,
we have two different nodes, active and inactive, where active
node should be in the chain, from input to the output. The
functionality of each node block can be composed of max-
pooling, average pooling, concatenation, activation, summa-
tion, ConvBlock, and ResBlock. The convBlock is composed
of an ordinary convolution layer, batch normalization and
activation, respectively. Moreover, ResBlock is a bit more
complex where it consists of ConvBlock, convolution layer,
batch normalization, and summation to perform element-wise
addition on ConvBlock input and the normalization output.
Fig. 4.(b) displays the architecture of ConvBlock and Res-
Block. Finally, the output node is always a fully connected
layer with the softmax activation function. The valid range
of node blocks and network training parameters is shown in
Table II. Adding convolution layer with different settings to
the node block list based on our prior knowledge is a minor
contribution to increase the efficiency of final results.

In the evolution procedure, we first randomly generate a
network architecture as a single parent. Then in each iteration,
the parent will be mutated by randomly changing connections
and node blocks to generate n offsprings. Then, the parent will
be replaced with the most privileged child. This process will be
continued until satisfying user criteria, e.g. we have to classify

at least 10 frames/second and thus our framework should
generate a compact network with an acceptable accuracy
level and 600 millisecond inference time. Unlike the ordinary
mutation operator of CGP that has the possibility to only
modify inactive nodes, a forced mutation operator has been
defined to change at least one active node. The fitness function
inspired by meta-heuristic Cuckoo idea is described in (1), and
(2) as follows;

net param =

(
max param− net param

max param

)
(1)

Score = α× (net param) + β × (val acc) (2)

net param is the optimization metric for the network size,
where smaller network sizes can be inferred from higher
values. max param is the maximum number of trainable
parameters for the biggest generated network in the worse
case and it depends on the size of CGP representation matrix.
In addition, The Score factor is CGP fitness function for
selection process which has been designed to be in the range
of 0 to 1. In the second equations, the a and b parameters are
practical coefficients which should be tuned for each dataset.
In this paper, we have done a simple exploration to adjust
the a and b values. Fig. 5 plots the validation accuracy and
the total number of network parameters after 512 iterations for
each setting. The a coefficient should be more than the b if we
aim to generate a highly dense network, while more accurate
networks will be designed by increasing b value. Fig. 5 clearly
reflects that more accurate networks are more complex. In
this paper, we have picked up two distinct settings to evaluate
the effectiveness of our framework after implementation, with
a=0.1; b=0.9 and a=0.9; b=0.1. To increase the speed of the
procedure of designing networks, we made search decisions
based on a limited number of training epochs which was set
to 30, and the full training step with 250 epochs will be done
after finding a satisfactory architecture.

V. EXPERIMENTAL RESULTS

We have verified the real impact of the proposed framework
by using a well-known dataset, CIFAR-10 [10], then we
have compared the results with cutting-edge architectures.
In the next, CIFAR-10 training dataset is introduced, then
the classification and implementation results are presented.
Our framework utilizes the Keras Library [8] for training the
networks.

a) CIFAR-10: This is a complex colorful images dataset
utilized as visual recognition with 32x32 pixel sizes. This
benchmark contains ten output classes labeled as airplane,
automobile, bird, cat, deer, dog, frog, ship, truck, and horse
categories. CIFAR-10 is divided to testing and training datasets
with 1000 and 50000 images, respectively. CIFAR-10 has
been selected because of providing natural images of different
prevalent categories.

Fig. 4. (a) The genome type example representing network architecture. (b) The architecture of ResBlock and ConvBlock.

Algorithm 1: Pseudo Code of Multi Objective CGP

Input: G: Max. Number of Iterations, H: Possible
Genome parameters

Output: An Optimal Network Architectures
Function Seach(G, H):

P0= Random Parent (H); //Creating initial
random parent
t=1;
while (t < G) or (achieved near-optimal net.) do

Fitness Function (P0); //Calculating the
fitness function of parent
U0= Force Mutation (P0);
//Generating the offspring population by doing
force mutation operation
Fitness Function (U0);
U1= Force Mutation (P0);
Fitness Function (U1);
P0= Max (U0, U1, P0); //Replacing the best
offspring with the parent

return P0;

A. Classification Results

Fig. 6 and Fig. 7 illustrate the continuous proceeding
improvement of our results. Fig. 6 is the convergence diagram
demonstrating the score/fitness function is approaching toward
near-optimal points. Not only the fitness function, but also the
accuracy and loss metrics show promising improvement by
increasing the number of iterations (Fig. 7). Although we have
some stops or failures in gaining better result in each iteration,
the general progression of multi objective CGP always moves
toward better outcomes. The near-optimal Pareto frontiers
are illustrated in Fig. 8 on CIFAR-10 dataset after just five
iterations. We achieved these results with the configuration of
Table II, where the random initial offsprings size is equal to
50 in this test. Clearly, Pareto-optimal curves shifted toward
left meaning our results have got an improved set of network
architecture candidates with less error rate.

Fig. 5. Design space exploration for addressing the impact of a and b on
accuracy and network parameters.

Fig. 6. Improvement proceeding of convergence metric (score) and network
floating point operation for the best child in each iteration

TABLE II
THE PARAMETER RANGE FOR NODE BLOCKS AND CGP.

Epoch 30
Training Parameters Learning Rate 0.0005

Batch Size 256
Columns 30

CGP Parameters # offsprings 2
Rows 10

ConvBlock (a,b) a ∈ 32,64,128
b ∈ 3x3,5x5

ResBlock (a,b) a ∈ 32,64,128
Network b ∈ 3x3,5x5

Node Blocks Activation relu [31]
Convolution 3x3 (a,s) a ∈ 32,64

s ∈ 1,2,3
Pooling (Max, Average) 2x2, 3x3

a: # Output Channels; b: Kernel Size; s: Stride

Fig. 7. Improvement proceeding of accuracy and loss for the best child in
each iteration.

Fig. 8. Pareto frontier plots for DCNN architecture with 50 offsprings.

To evaluate the effectiveness of proposed the framework,
we compared the error rate, network floating-point operations
and the total number of trainable parameters of the designed
networks with the other cutting-edge approaches shown in
Table III. we consider the latest accurate networks as the
comparison baselines listed in Table III. DCNN-Arch.1, and
DCNN-Arch.2 are two architectures generated by different
fitness function policies. DCNN-Arch.2 is a highly compact
network, while DCNN-Arch.1 is the most accurate network
generated by our framework. The main intention of this paper
is not to achieve cutting-edge accuracies, but to generate
a dense network with delivering competitable accuracy by
profiting from imprecision tolerance nature of image pro-
cessing algorithms. Our framework has a wide authority to
select the most appropriate architecture based on the execution
time constraints of the target hardware platform. DCNN-
Arch.1 loses '5% accuracy compared to the most accurate
networks [22], while has 24x less parameters. Compare to
the reinforcement learning based solutions, MetaQNN, we
got better results in terms of accuracy and network size. In
nutshell, our proposed framework aims to better strike the
balance between network size and accuracy in comparison
with the evolutionary-based solutions, hand-craft designs, and
reinforcement learning-based methods. Due to requiring a
huge time for running search algorithm, we limited the number
of days for searching the best architecture. However, the
ascending progression of improvements give auspicious news
that by running the search algorithm for more days, we can
get better results.

TABLE III
COMPARISON RESULTS OF ERROR RATE ON CIFAR-10 DATASET.

Dataset Method #Params (x106) Error (%)
NAS-v1/v3 [17] 4.2/37.4 5.50/3.65
SimpleNet [25] 5.48 4.68

DenseNet (k=24)-100 [6] 27.2 5.83
EDEN [24] 0.17 25.6

ResNet-20 [23] 0.27 8.75
CIFAR-10 ResNet-110 [23] 1.7 6.43

Masanori et al. [19] 1.68 5.98
Block-QNN-22L [18] 39.8 3.54

MetaQNN [16] 6.92 11.18
Real et al. [21] 5.4 5.4

Gastaldi et al. [22] 26.4 2.86
Our DCNN-Arch.1 (a=0.1; b=0.9) 1.1 8.1
Our DCNN-Arch.2 (a=0.9; b=0.1) 0.56 13.8

B. Implementation Results

Three popular many/multi core platforms are used to eval-
uate the implementation results, NVIDIA Tesla M60 GPU,
Intel Core i7-7820, and ARM Cortex-A15. Table IV summa-
rizes the hardware specification of each one. Three different
congruent networks that offer better accuracy per parameters
including ResNet-20, ResNet-110, and DenseNet (k=24)-100
are chosen to compare with the DCNN-Arch.1. We also did
not use any network compression technique to only assess
the influence of network architecture on inference time. Keras
framework automatically uses cuDNN to compile a neural
network for GPUs. We only present the implementation result
of DCNN-Arch.1 for the sake of brevity. Pure kernel time

usually is leveraged to report runtime results, but considering
the overhead of communication time is vital for embedded
implementations, especially for mission critical applications
since these applications are mainly latency-oriented.

TABLE IV
HARDWARE PLATFORM DETAILS.

Platform CPU GPU ARM
Frequency (GHz) 2.9 1.178 1.9
Technology (nm) 14 28 28

TDP (W) 45 300 5
Cores/Total Thread 4/8 4096 8/8

CUDA Cores
Memory 8MB Cache 16GB GDDR5 2.5MB Cache

Approx. Price (USD) 378$ 7,532$ 60$/board

Fig. 9. Speedup of DCNN-Arch.1 in comparison to network size and accuracy
on ARM platforms.

Fig. 10. Speedup of DCNN-Arch.1 in comparison to network size and
accuracy on CPU platforms.

Therefore, the total execution time has been taken into ac-
count as the runtime metric. The average time is used in order
to report the results and for increasing results precision, we
achieved them for 10000 times. Fig. 9 to Fig. 11 plot execution
time, and the logarithmic scale (to improve visual comprehen-
sion) of the number of parameters. Unlike the accuracy and
the network size which are highly depend on the software
stack, compiler optimizations, and hardware implementation,
inference time is a platform aware factor. Thus, there is
no exact similarity among different hardware platforms. The

Fig. 11. Speedup of DCNN-Arch.1 in comparison to network size and
accuracy GPU platforms.

results demonstrate there is a firm relation among network
parameters, and inference time for each hardware platform. In
nutshell, we can conclude the networks with the more number
of parameters have higher inference time. In addition, our
framework can adaptively find a suitable architecture regarding
the timing constraints for some applications, e.g. real-time
systems, by loosing negligible amount of accuracy.

C. Stereo Vision Application

A snapshot of the left camera of GIMME2 is illustrated in
the Fig. 12.(a). In this configuration, we designed a DCNN for
face detection. Fig. 12.(b) plots the disparity map containing
distance information. Red pixels represent close distances,
while blue pixels display far points. We designed a DCNN
for face/gender detection by our framework implemented on
the ARM processor of the Xilinx Zynq SoC. After extracting
the head position in the image and matching with disparity
map image, we can easily measure the distance by averaging
the the distance to each pixel in the detected area. In this
configuration, we set the image size receiving from camera
640x400 pixels, and 14 frame per second.

Fig. 12. (a) GIMME2 left camera snapshot. (b) Disparity map.

VI. CONCLUSION

Deep convolutional neural networks are complex processing
models which their implementation is challenging especially

on embedded devices. Plus, executing these models on multi-
core platforms is extincted due to not providing enough com-
putational throughput. The importance of the problem will be
more highlighted when we have to deal with big data problem
[33]. Stereo vision applications are one domain which suffer
from the implementation barriers. To tackle these challenges,
we proposed a multi objective CGP approach which automat-
ically generates a highly optimized DCNN for commercial
of-the-shelf multi/many core SoCs. Our framework aims to
search the vast design space of DCNN architectures to find a
network fitting with timing constraints and/or limited resource
budget of embedded fabrics. We considered the total number
of trainable parameters of the network as the second objective
of search algorithm in order to find a highly optimized DCNN.
The evaluation results demonstrate the effectiveness of the
multi-objective CGP which continuously improves the network
architecture in each iteration.

REFERENCES

[1] C. Ahlberg, F. Ekstrand, M. Ekstrom, G. Spampinato, and L. Asplund,
GIMME2 - An embedded system for stereo vision and processing
of megapixel images with FPGA-acceleration, in 2015 International
Conference on ReConFigurable Computing and FPGAs, ReConFig
2015, 2016.

[2] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze,
and M. Oskin, SNNAP: Approximate computing on programmable SoCs
via neural acceleration, in 2015 IEEE 21st International Symposium
on High Performance Computer Architecture, HPCA 2015, 2015, pp.
603614.

[3] A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and H. Es-
maeilzadeh, Neural acceleration for GPU throughput processors, in
Proceedings of the 48th International Symposium on Microarchitecture
- MICRO-48, 2015, pp. 482493.

[4] P. Greisen, S. Heinzle, M. Gross, and A. Burg, An FPGA-based
processing pipeline for high-definition stereo video, EURASIP Journal
on Image and Video Processing, vol. 2011, no. 1, 2011. [Online].
Available: http://dx.doi.org/10.1186/1687-5281-2011-18

[5] J. T. and W. D. Song Han, Jeff Pool, Learning both Weights and
Connections for Efficient Neural Networks, in Advances in Neural
Information Processing Systems, 2015, vol. 50, no. 2, pp. 1135–1143.

[6] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, Densely
connected convolutional networks, In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, vol. 1, no. 2, p. 3.
2017.

[7] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, Caffeine:Towards
Uniformed Representation and Acceleration for Deep Convolutional
Neural Networks, Proc. 35th Int. Conf. Comput. Des. - ICCAD 16,
no. August, pp. 18, 2016.

[8] F. Chollet, Keras, GitHub, 2015. [Online]. Available:
https://github.com/fchollet/keras.

[9] H. Sharma Jongse Park Emmanuel Amaro Bradley Thwaites Praneetha
Kotha Anmol Gupta Joon Kyung Kim Asit Mishra Hadi Esmaeilzadeh,
DNNWEAVER: From High-Level Deep Network Models to FPGA
Acceleration, IEEE Int. Conf. Mechatronics, Electron. Automot. Eng.,
no. 2, pp. 7680, 2015.

[10] A. Krizhevsky and G. Hinton. Cifar-10 dataset.
https://www.cs.toronto.edu/ kriz/cifar.html.

[11] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kgl, Algorithms for Hyper-
Parameter Optimization, in Advances in Neural Information Processing
Systems (NIPS), 2011, pp. 25462554.

[12] Y. Bengio, Gradient-based optimization of hyperparameters, in Neural
computation, no. 8, pp. 1889-1900, 2000.

[13] J. Bergstra JAMESBERGSTRA and U. Yoshua Bengio YOSHUABEN-
GIO, Random Search for Hyper-Parameter Optimization, J. Mach.
Learn. Res., vol. 13, pp. 281305, 2012.

[14] J. Snoek, H. Larochelle, and R. P. Adams, Practical Bayesian Optimiza-
tion of Machine Learning Algorithms, Adv. Neural Inf. Process. Syst.,
vol. 25, pp. 29602968, 2012.

[15] Y. Sun, B. Xue, and M. Zhang, Evolving Deep Convolutional Neural
Networks for Image Classification, arXiv prepr. arXiv:1710.10741, 2017.

[16] B. Baker, O. Gupta, N. Naik, and R. Raskar, Designing Neural Network
Architectures using Reinforcement Learning, arXiv Prepr., pp. 116,
2016.

[17] B. Zoph, and Q.V. Le, Neural architecture search with reinforcement
learning, arXiv prepr. arXiv:1611.01578, 2016.

[18] Z. Zhong, J. Yan, and C.L. Liu, Practical Network Blocks Design with
Q-Learning, arXiv prepr. arXiv:1708.05552, 2017.

[19] M. Suganuma, S. Shirakawa, and T. Nagao, A genetic programming ap-
proach to designing convolutional neural network architectures, GECCO
2017 - Proc. 2017 Genet. Evol. Comput. Conf., pp. 497504, 2017.

[20] M. Loni, M. Daneshtalab, and M. Sjödin, ADONN: Adaptive Design of
Optimized Deep Neural Networks for Embedded Systems, Euromicro
Conference on Digital System Design (DSD), Prague, Czech, 2018.

[21] E. Real, S. Moore, A. Selle, S. Saxena, Y.L. Suematsu, Q. Le, and
A. Kurakin, Large-scale evolution of image classifiers, arXiv prepr.
arXiv:1703.01041, 2017.

[22] X. Gastaldi, Shake-shake regularization, arXiv prepr. arXiv:1705.07485,
2017.

[23] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image
Recognition, in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770778.

[24] E. Dufourq, and B.A. Bassett, EDEN: Evolutionary Deep Networks for
Efficient Machine Learning, arXiv prepr. arXiv:1709.09161, 2017.

[25] S.H. Hasanpour, M. Rouhani, M. Fayyaz, and M. Sabokrou, Lets keep
it simple, Using simple architectures to outperform deeper and more
complex architectures, arXiv prepr. arXiv:1608.06037, 2016.

[26] K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for
Large-Scale Image Recognition, Int. Conf. Learn. Represent., pp. 114,
2015.

[27] B. Grigorian and G. Reinman, Accelerating divergent applications on
SIMD architectures using neural networks, in 2014 32nd IEEE Interna-
tional Conference on Computer Design, ICCD 2014, 2014, pp. 317323.

[28] Z. Du, A. Lingamneni, Y. Chen, K. V. Palem, O. Temam, and C.
Wu, Leveraging the Error Resilience of Neural Networks for Designing
Highly Energy Efficient Accelerators, IEEE Trans. Comput. Des. Integr.
Circuits Syst., vol. 34, no. 8, pp. 12231235, 2015.

[29] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze,
and M. Oskin, SNNAP: Approximate computing on programmable SoCs
via neural acceleration, in 2015 IEEE 21st International Symposium
on High Performance Computer Architecture, HPCA 2015, 2015, pp.
603614.

[30] A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and H. Es-
maeilzadeh, Neural acceleration for GPU throughput processors, in
Proceedings of the 48th International Symposium on Microarchitecture
- MICRO-48, 2015, pp. 482493.

[31] P. Ramachandran, B. Zoph, and Q. V. Le, Searching for Activation
Functions, arXiv prepr. arXiv:1710.05941, 2017.

[32] J. F. Miller, Cartesian Genetic Programming, in Cartesian Genetic
Programming, 2011, pp. 1734.

[33] D. Reinsel, J. Gantz, and J. Rydning, Data Age 2025 - The Evolution
of Data to Life-Critical: Don not Focus on Big Data; Focus on the Data
That is Big, IDC White Pap., no. April, pp. 125, 2017.

[34] A. Majd, G. Sahebi, M. Daneshtalab, J. Plosila, S. Lotfi, and H.
Tenhunen, Parallel imperialist competitive algorithms, in Concurrency
Computation, 2018, vol. 30, no. 7.

