
Towards Security Case Run-time Adaptation by
System Decomposition into Services

Elena Lisova and Aida Čaušević
Mälardalen Real-Time Research Centre, Mälardalen University,

Västerås, Sweden
{elena.lisova, aida.causevic}@mdh.se

Abstract—For interconnected and complex systems, security
is paramount for establishing trust in their correctness and
design adequacy. Thus, security needs to be assured and a
corresponding security assurance case needs to be presented to
system stakeholders, security assessors, as well as to system users.
However, security is dynamic by its nature and to maintain its
acceptable security level, frequent updates might be required.
Traditionally, a security assurance case is built from scratch
whenever a change occurs, however given the cost of resources
needed for such a task, a more effective and less time consuming
way of handling updates is needed. Hence, the challenge of
security case run-time adaptation is considered in this work. We
survey the state of the art in security assurance and security
case development to refine the challenge and identify system
decomposition as one the enablers for security case run-time
adaptation. We propose to apply system decomposition in terms
of services and use service choreographies to facilitate security
case run-time adaptation. The proposed approach is illustrated
on an E-gas example.

I. INTRODUCTION

For today’s system with increasing complexity and a large
number of interconnections with other systems, security be-
comes a necessary property that needs to be not only provided
but also structured and argued in a clear way. It is especially
the case when humans are involved in the loop and there are
direct physical interactions between humans and systems, as
such a setting makes the system safety-critical. For instance,
an autonomous vehicle, working in cooperation with humans
or just near-by humans, needs to be acceptably secure, i.e.,
there should be enough confidence that its security level is
adequate and in line with the current state of the art in terms
of threats, attacks and system vulnerabilities.

A systematic way to build an acceptable level of confidence
in system security is to collect evidences and arguments over
security measures adequacy in a security case [1]. Providing
a security case is a demanding task, it requires a significant
amount of resources in terms of time, cost, and a human effort.
An analogy can be made with a safety case [2], which is
required to be built for certification purposes. The cost of
certification for a safety-critical system is estimated up to
75 % of its development costs [3]. However, security solutions
are much more dynamic compared to the safety ones with
respect to continuous updates and further refinements. More
importantly, a system cannot be stamped as being “secure”
once and forever. Security as a system property can be pro-
vided and guaranteed to a specified extent only for a current
state of the art, as new system vulnerabilities are constantly
exposed and new attack techniques are continuously being

developed [4]. Given security being dynamic by its nature it
requires run-time updates and refinements. Since developing a
security case from scratch whenever an update occurs, is not
feasible, the challenge of handling updates within a security
case needs to be addressed. The notion of a dynamic assurance
case has already been proposed in the safety domain [5],
e.g., the introduction of a set of rules for updates and a
set of monitors for establishing a link between the system
and a confidence structure within the safety case. We believe
that such techniques can be adopted, further developed and
complemented with relevant solutions to handle a dynamic
security assurance case.

Enabling security case run-time adaptation facilitates trust
assurance, addresses a challenge of run-time certification [6]
and assurance of adaptive systems [7]. Developing a dynamic
security case will allow adaptation of the case at run-time to
cater for emerging threats and vulnerabilities, as well data from
monitoring of the executing system. Given this, it is possible to
understand ways to identify parts of the case that are affected
by a particular change and re-examine them. This enables a
security case adaptable at run-time and possibly applicable also
in security-aware safety cases (i.e., safety cases where safety
relevant security aspects are considered).

In order to facilitate security case run-time adaptation
one has to find a way to decompose a system and develop
an approach to trace dependencies between an introduced
change in a security solution and arguments presented in the
corresponding security case. We have identified a paradigm
of services, i.e., autonomous, platform-independent entities
that can be described, published, discovered, and loosely
coupled [8], as a solution to enable such a decomposition.
Service interfaces carry information regarding the basic service
functionality (i.e., pre-, and postcondition for a service to be
executed), publishing, finding, and binding of services (i.e.,
a service level agreement (SLA)). Furthermore, we see the
benefit of using the notion of service choreographies (i.e., a
distributed form of service composition where services follow
a set of rules, and follow their expected roles, according to the
behavior of the other participating services) in order to enable
security case run-time adaptation.

The main contribution of this paper is the introduction
of initial constructs for the security case run-time adaptation.
Such an approach is complex by its nature, therefore we
describe its further refinement into sub-challenges based on the
current state of the art for security assurance and security case
development. Further, the identified sub-challenge of system
decomposition is addressed by proposing to trace dependen-

cies between an introduced system update and corresponding
security case arguments and evidences that need to be revised
based on system decomposition into services. We illustrate our
idea using an E-gas example.

The reminder of the paper is structured as follows: Sec-
tion II presents necessary background related to the assurance
case and service paradigm. Next, the state of the art in security
assurance and case is investigated in Section III. In Section IV
we present the approach for mapping an update with relevant
security case parts based on service choreographies. The
example of E-gas, used to illustrate our approach, is introduced
in Section V. Finally, conclusions with future work directions
are presented in Sections VI.

II. BACKGROUND

In this section we present necessary background related to
the assurance case and the service paradigm.

A. Assurance Case

An assurance case can be defined as “an enabling mech-
anism to show that the system meets its prioritized require-
ments” [9], with the aim to reason about system trustworthi-
ness. It can be built for a system property such as safety, secu-
rity or ethics and thus become safety [10], security [1] or ethics
assurance case [11]. The rationale behind a case is to identify
a high level claim related to a chosen system property, collect
and present arguments supporting the claim, and associate it
with corresponding evidences. It can support both quantitative
and qualitative forms of analysis as an evaluation criteria [12].
It can be described using formal methods or semi-formal
methods. Claims are assigned with an assurance level which
can be associated to a probability or a risk level. There are
two main approaches to represent arguments: Goal Structuring
Notation (GSN) [13] and Claims, Arguments and Evidence
(CAE) [14]. GSN provides arguments by showing how goals,
i.e., claims, can be decomposed into subgoals and supported
by solutions, i.e., evidences. In GSN, goals are related to
a specific context in which they are valid and connection
between goals and solutions are presented via arguments. The
CAE approach has a very similar structure without implicitly
separating context of claims.

B. Common Criteria

The Common Criteria for Information Technology Security
Evaluation (CC) [15] is an international standard developed
by ISO/IEC 15408 for computer security evaluation. The CC
process starts with protection profile (PP) evaluation, in which
PP describes a type of target of evaluation (TOE) by a set
of relevant requirements. The next step is security target
(ST) evaluation, where ST describes a specific TOE including
implementation specifics. The last part is TOE evaluation. CC
distinguishes seven evaluation levels (EALs), where each level
has a set of techniques for evaluation and the higher EAL is,
the more formal techniques are. In practice, achieving EAL
above EAL4 is hardly feasible for complex systems.

C. Services and Service Compositions

A software service is a set of functions provided by a
server software or a system to a client software or a sys-
tem, usually accessible through an application programming

interface [16]. Services can be created, invoked, composed
and destroyed on demand. They are assumed to be platform
independent and applicable to heterogeneous applications. A
service composition allows development of composite services
with the main goal of a reusable functionality being provided
by existing services in a low cost and rapid development
process on demand. One of the fundamental characteristics of
services is separation of interfaces from the service behavioral
description. A publicly available service interface information
specifies service properties such as a service type, capacity,
time-to-serve, etc. It is visible to service users and used to
find and invoke services most suitable for their needs. On
the other hand, internal behavior-related information such as
functionality representation is hidden from the service user
and available only to service developers. The paradigm of
developing a system as a set of services may be seen as a cost-
efficient development by reusing functionalities from available
services. Also, a service becomes a single point of maintenance
for a common functionality.

One of the main principles related to services is the idea
of composing services by discovering and invoking them
on demand, rather than building the whole application from
scratch, at design time. A service composition can be achieved
either through orchestration or choreography. The former
assumes the existence of a central controller responsible for
scheduling service execution according to the user demands,
while the latter assumes a mechanism of message exchange
between participants in the composition, without requiring a
central coordinator. Choreographies rely on the service-to-
service communication style, meaning that each service in
choreography/composition has knowledge when to execute its
operations and with whom to interact. Communication between
services is established by defining a multi-party protocol, that
enables accomplishment of the overall choreography objectives
in a fully distributed way.

For a service to be formally deployed and executed a
service specification that involves defining contractual agree-
ments, i.e., SLAs, between the service provider and its user,
has to exist. Given SLAs, service users are able to establish
trust in that the service outcome is what they have demanded
during the service negotiation process.

III. THE STATE OF THE ART

The current state of the art in terms of security assurance
and particularly security case development is investigated in
this section.

A. Security Assurance

Security is a system property that needs to be assured
and clearly communicated to both system stakeholders and
its users. Kizza defines security assurance as “a continuous
security state of the security process” [17] and specifies the fol-
lowing steps of the security process: a system security policy,
a security requirements specification, a threat identification, a
threat analysis, a vulnerability identification and assessment, a
security certification, a security monitoring and auditing.

Considering assurance as a process aligned with the se-
curity process, Agudo et al. [18] argue that security assurance
needs to be considered during the system development process

as different phases of development may require different levels
of assurance. In this way an assurance case as an outcome of
a security assurance is created during the system development
process. Chen et al. [7] also point out continuous assurance
through the entire lifecycle as a way of enabling run-time
assurance of self-adaptive systems. They also present a set
of assurance techniques and their classification.

A security assurance during the system lifecycle can be
composed from techniques applied at different phases. For
example requirements elicitation, a step during concept phase
of system development, has been addressed by Nam et al. [19]
presenting a modeling framework to elicit and validate require-
ments to support security assurance. They propose a work-flow
for incremental security assurance and provide a tool design
with two domain specific languages, namely Alisa and Assure.

As described in Section II, CC is a broadly used standard
for security evaluation. Thus, there are many works targeting
to align security process with CC especially for requirements
elicitation [20], [21]. CC is one of the most commonly used
standards, however it evaluates design methods, not security
functionality and it does not support adaptation. CC can be
used as a part of argumentation over adequacy of system
security solutions design. For example, Akram et al. [22]
present a framework for security assurance based on CC,
where they propose a mechanism that on demand can provide
assurance and validation of an implemented security solution.

There are several publications that introduce security assur-
ance evaluation used to argue over a certain system security
level. Hecker and Riguidel [23] argue over necessity to assure
that networked IT systems have certain security properties
and to which degree those properties are guaranteed. They
propose two approaches for security assurance evaluation,
namely a spec-based and a direct system security assurance
evaluation. The first implies creating a security specification
and assigning an assurance level similarly to how it is done
in CC. Levels are hierarchical and the authors specify how to
evaluate assurance. The second approach includes a manager
that judges the current situation of security assurance. Direct
evaluation produces results for a particular environment and
evaluation results for the same system can vary in different
environments. That can be considered as a disadvantage or as
a sign that security assurance should be context dependent.

An approach for security assurance evaluation performed
after risk assessment and countermeasures deployment is
proposed by Ouedrago at el. [24]. The authors connect an
assurance level of the system with its criticality, i.e., evaluation
of confidence in security measures adequacy depends on a
system criticality level. The evaluation methodology is a multi-
step process that depends to some extent on CC criteria when
choosing a suitable metrics to evaluate system components,
and addresses the challenge of security decomposition by
defining an aggregation function. The function produces a
security measure assurance level and takes as input availability,
conformity and context security criticality. The evaluation
methodology consists of the following steps: (i) modeling
of system components relevant for assurance; (ii) identifying
metrics for checking all relevant components; (iii) components
evaluation based on the identified metrics; (iv) an assurance
level aggregation. The metrics from the second step vary
depending on component criticality and can be characterized

based on coverage, depth and rigorousness [25], inspired by
CC criteria. The last presented step enables security decompo-
sition. For doing so, authors define an aggregation function that
produces a security measure assurance level and takes as input
availability, conformity and context security criticality. The
challenge is to aggregate security measure assurance levels and
provide a system security level. Authors also stress importance
of the context and relating system criticality level with a
particular context.

One of the challenges in security assurance is claiming
a system security level based on evaluation of separate se-
curity mechanisms, i.e., the challenge of security not being
decomposable. To this end, security is similar to safety, which
is not decomposable, meaning that a sufficiently safe system
component does not imply anything in regards to system safety,
or that two proved to be sufficiently safe components do not
imply that their combination is also sufficiently safe. The
same applies to security, e.g., if data is protected within a
system component and two of such components are composed
to work together, communication between components needs
to be investigated as well for its vulnerabilities. Pierce and
Rapids [26] discuss challenges of system level security and
vulnerability analysis decomposition at the example of inte-
grated modular avionics architectures. Formoso and Felici [27]
present an evidence-based approach for security and privacy
assurance based on a control-evidence model. Similarly, given
that a system of systems is defined in terms of services, it can
be analyzed through established SLAs between its constituent
systems. Rak [28] presents security assurance of a cloud
application via SLA decomposition. A system representation
via services allows derivation of connections between services
through their composition, i.e., when there is a change related
to a particular service all other services potentially affected by
it can be defined as ones belonging to a branch of services
with this service as a root. Thus, it can enable mapping of an
update to a system composition.

In order to facilitate an assurance run-time adaptation,
a system component assurance and its relation to system
assurance needs to be investigated. Rauf and Troubitsyna [29]
present a model-driven framework for open source software
component assurance aiming to automate the process of secu-
rity assurance in presence of frequent updates. The framework
is based on a “design by contract” approach [30]. The approach
implies derivation of contracts based on the system design
and its follow-up verification by checking those contracts.
A wrapper provided with contracts and requirements is used
on top of open source software for its assurance. A way to
decompose system at a logical level is identifying services
it is composed of. Montenegro et al. [31] discuss service
security assurance and propose a concept of a certificate profile
that captures means of evaluation, a certification domain, and
vocabulary to express security aspects.

Security assurance is the main driver for our work, and
given that a system decomposition into services seems as
a possible approach for enabling assurance at run-time, we
decide to look into service-based safety assurance proposed by
Harris et al. [32] to investigate whether it is applicable to the
security domain. The authors argue applicability of a service
based approach for safety assurance, as it reflects system
cooperation within a larger system of systems. The authors

also introduce a wrapper as a technique supporting services
assurance and introduce a term “safety service wrapper”. To
address handling of a change, a change level is introduced to
determine what is acceptable for a service as a change. They
use modular assurance techniques with assurance contracts as
a solution for service based assurance. The authors also claim a
need for security informed safety services, thus services seem
to be a possible ground to synchronize safety and security cases
development. However, to build an assurance case for a system
decomposed into services, service assurance arguments need
to be established and adjusted for the property that is targeted
by assurance. A promising idea is to investigate applicability
of the “wrapper” concept for security and to which degree
safety and security are overlapped on the service level.

B. Security Case

A security case is a way of presenting security assurance
as a collection of security claims, arguments, and evidences.
Netkachova et al. [33] present a structured security informed
reliability assurance case based on CAE. The authors use a
preliminary interdependency analysis to model and evaluate
system properties. Such an analysis can help to map an update
with its affected area in the system. Bloomfield et al. [34]
present one more work based on CAE investigating how a CAE
based assurance framework can be used to generate security
policies. This work has been performed together with a safety
regulator, and based on regulator’s vision of service security
and safety the authors have decomposed the policies further
using CAE to a set of cyber-security related objectives. To
address dynamic nature of security, the authors decompose
objectives based on time and propose claims about present
and future. Considering GSN, Saruwatari and Yamamoto [35]
propose an extension of GSN for security assurance by in-
troducing a concept of an actor. Such concept facilitates
consideration of “intent”, i.e., turning safety argumentation
towards including security considerations.

Within a security case, arguments connect evidences with
claims. Rodes et al. [36] investigate security arguments by
facilitating security metrics that need to be complete and valid,
and propose a framework for argument assessment that gener-
ates and interprets security metrics on the example of software
systems. Security is quantified within the framework in terms
of a level of beliefs, i.e., a confidence level of arguments.
The framework is developed within a Metric Based Security
Argument approach. The approach rationale consists of stating
the claim, developing arguments supporting it and identifying
metrics that assess argument confidence. The concept of con-
fidence in argument assessment is similar to the concept of
Assurance Claim Points introduced by Graydon [37]. Rodes
et al. provide a definition of the term confidence that includes
appropriateness, sufficiency, and trustworthiness. Run-time as-
sessment of confidence in arguments can facilitate run-time
adaptation of a security case, however, within the proposed
framework the assessment is done off-line by experts.

Rodes et al. [38] conduct a case study demonstrating secu-
rity case development on an example of the S3 approach. S3

is a security technique counteracting injection commands [39].
A particular security technique has been in the focus of this
work, however the idea is to apply the method of security case
development to the whole IT system. Within case development,

the authors consider factors that this technique can influence
including new vulnerabilities, which implies an impact analysis
from a security point of view. The authors propose a four
levels structure of the security argument: the first level where
system assets and security requirements are organized; the
second level includes arguments over vulnerabilities related to
each requirement and grouping these vulnerabilities into attack
classes; the next level is responsible for further decomposition
of attacks classes; finally the fourth level presents arguments
over mitigation techniques for each vulnerability. The idea is
that arguments for security case differ compared to the ones
used in safety cases due to security specifics and thus an
arguments patterns extension is needed.

IV. MAPPING AN UPDATE TO A SECURITY CASE

Given the findings presented in Section III, we can con-
clude that there is a need to introduce a structured way in
providing and maintaining a security case. Further we discuss
the challenge of run-time adaptation and propose an approach
for mapping a security update with corresponding parts of the
system security assurance case that needs to be re-examined.

A. The Challenge of Security Case Run-time Adaptation

As the main reason for security assurance cases not being
a widely accepted concept in practice we recognize the fact
that its static structure requires (re-)building the case from
scratch given any update at run-time. Enabling security run-
time adaptation is the main challenge for assuring system se-
curity, especially in cases of systems built from other systems.
Run-time adaptation would allow handling updates in a cost-
efficient and effective way as well as facilitate continuous
security assurance of systems that adapt at run-time. Based
on the state of the art in security assurance and security cases
presented in Section III we divide the formulated challenge in
the following sub-challenges: i) system decomposition with
the purpose of enabling identification of systems parts affected
by a the given update; ii) a security case structure, including
argument patterns and respective evidence handling, reflecting
applied system decomposition; iii) run-time assessment of
confidence in arguments, i.e., given a change in the system
an impact analysis would be required to evaluate how the im-
plemented update has affected existing arguments. We decide
to go one step further and describe an approach in which we
decompose system in terms of services, and propose a service
choreography paradigm as a way to enable security case run-
time adaptation.

B. Security Process

A security case needs to be developed starting from the
design phase and therefore we align our mapping approach
with the security process. The process presented in Fig. 1 is
based on the process introduced by Kizza [17] and adapted to
accommodate system decomposition into services. Note, the
process is applied at the system level and not at the service
level. Even though we aim to enable run-time adaptation, Fig. 1
presents mostly the design phase of the security process, when
argumentation is developed. We illustrate our approach on a
rather small example leaving further details for the future work.

FSR elicitationSystem security
policy elicitation Threats analysis

Vunlerabilities
analysis TSR elicitation

System

 Service 1

precondS1
postcondS1

 Service 2

precondS2
postcondS2

U
PD

AT
E

 Service N

precondSN
postcondSN

SLAs

.....

Security Case

asset 1
asset 2

...
asset Nasset FSR 1

FSR 2
...

FSR NFSR

threat 1
threat 2

...
threat Nthreat

vulnerability 1
vulnerability 2

...
vulnerability Nvul

SLAS1
SLAS2

...
SLASN TSR 1

TSR 2
...

TSR NTSR

Relation Matrix

new threat

Claims

Arguments

Evidences

threat analysis
vulnerability analysis

.....

.....

.....

.....

Security process
1 2 3 4 5 6

Artifacts

Cs1

Cs2

CsN

Fig. 1: An example of tracing an update to a security case

The security process consists of consequent steps that may
not be strictly continuous, as it allows coming back to previous
steps and an additional iterations may be required. In this
work we consider security process at run-time as a service
choreography. The outcomes of such a security process are
called for artifacts. To enable the security process at run-time,
beside identified artifacts we need the corresponding security
case as well.

Fig. 1 depicts the system decomposed into a set of services.
The set is used to map requirements elicited during security
process with corresponding services. The security process
consists of the following steps: 1) a system security policy
elicitation, where a security policy is a document incorporating
different aspects of system operation, e.g., resources to be
protected, rights to access them, actions in case of violations,
etc. Along with the process of security policies elicitation,
system assets from a security point of view are identified;
2) elicitation of Functional Security Requirements (FSRs) to
reflex previously formulated policies. For the E-gas system the
source of any change in its setting shall be trustworthy, thus
a possible requirement can be formulated as following, FSR1:
the system shall not provide access to unauthorized users; 3) a
threat analysis - a system is analyzed for possible threats and
the analysis can be built upon system assets and an adversary
model that needs to be formulated to reason about possible
risks, resulting in a set of possible threats; 4) a vulnerability
analysis of the system, that also includes vulnerabilities as-
sessment, i.e., risk estimation of vulnerabilities exposure needs
to be performed and a set of system vulnerabilities derived;
5) Technical Security Requirements (TSRs) elicitation needs
to be performed based on the previously conducted analyses,
resulting in a set of TSRs mapped with corresponding FSRs.
For example, FSR1 can be further refined into TSR1: any
change in the E-gas configuration shall be logged; to be able
to trace back changes and TSR2: user credentials needs to
be verified to allow the access to configuration settings; to
limit a number of users allowed to change any setting in
the vehicle operation; 6) capturing of requirements in corre-

sponding SLAs. We assume that every system that is a service
composition in our case, has established an SLA regarding
quality, availability, responsibilities, and security requirements
that involves all services in such a system. Each SLA includes
a security agreement related to a pre-, and postcondition of the
corresponding service.

C. Mapping

Outcomes of different steps of the security process we call
artifacts. Possible connections between artifacts itself, as well
as between services and artifacts are captured in the relation
matrix, that is a set of tables carrying this information about all
possible connections between artifacts and between services
and artifacts. In case an update is introduced to the system
that is described in terms of system composition, we need to
determine which services are affected in order to be able to
do the proper mapping between the update and required re-
examinations. Except a service directly affected, all services
belonging to a branch with the affected service as a root are
marked as affected. The service connections can be traced
through SLAs that enable establishing service compositions
via service choreographies. In this case we have to consider
also type of the connections between service. In case of the
serial composition all services that come after the affected
service are marked as affected services as well, which might
provide disruptions in system operation. Parallel connection
increases the redundancy, and enables system to run using
non-affected services in case an affected service is identified
in the composition. Next, all affected services are used as an
input to the relation matrix that carries information regarding
assets, requirements, threats and vulnerabilities associated with
the affected services. Information regarding these artifacts is
acquired throughout the security process from the beginning.
Note, that once an artifact is marked as associated with an
affected service, this is propagated to all other artifacts it is
connected to. In Fig. 1, the artifacts associated with the service
Service 2 affected by an update, are marked with the red color.

The artifacts derived during the security process are linked

to security case parts, e.g., goals can be connected with systems
assets, arguments and evidences to the conducted analyses
and thus to sets of threats and vulnerabilities. Once artifacts
affected by the update are identified they are traced to the
security case, identifying affected parts that need to be re-
examined. As we only sketch the approach we do not go into
details of a re-examination. However, it is worth of saying that
a re-examination of a part of the security case may require
redoing a whole step in the security process in which this
artifact has been derived, or even consequent steps. In Fig. 1,
it is the threat analysis that needs to be revised. As an outcome,
a new set of threats is derived, which requires a relation matrix
extension and, thus a new iteration of the analysis to consider
connections between the identified threat and other artifacts
and services.

Actual implementation of mapping is a challenging task as
we foresee challenges of dependences tracing due to systems
complexity. Thus, proper structure and use of the relation ma-
trix is crucial. Derivation of the relation matrix is a meticulous
task and has to be supported by a rigorous process. Hence, to
enable this process, security process should be in place and
aligned with the system development process and its lifecycle.

V. AN EXAMPLE — E-GAS

In this section we introduce an example of an E-gas sys-
tem [40] that stands for Electronic Glow Adjustable Switch. E-
gas is replacing a mechanical accelerator cable used to connect
the accelerator pedal and the throttle in a vehicle. Based on the
accelerator pedal, E-gas detects a drivers intention and informs
engine control unit that adjusts the opening and closing of
throttle.

We decompose an E-gas system into three services cor-
responding to inputService (iS) that is an accelerator pedal,
logicService (lS) implemented through the engine control
unit, and outputService (oS) in the form of an e-throttle,
as depicted in Fig. 2. Each of these services has a well
defined service interface that contains information regarding
service functionality and extra-functional properties exposed
via a service precondition that constrains the service execution
(e.g., to calculate the vehicle target acceleration, the power
train transmission ratio and vehicle parameters such as vehicle
reference mass, reference air drag coefficient, etc. shall be
known), and a service postcondition that is an output guarantee
and has to hold after the execution of a service (e.g., the
vehicle acceleration is below the setpoint vehicle acceleration).
For the correct functioning of a composed service depicted in
Fig. 2, postcondition of inputService (iS) should imply the
precondition of logicService (lS) and so on, for the whole
composition. Note, that different types of compositions (i.e.,
parallel composition) have different implication rules, when it
comes to handling pre-, and postcondition information. Given
that a change in the system occurs (i.e., a security patch or
an update installed), and that we are able to identify where
the change has occurred (i.e., which services are affected),
we should be able to reason about whether such change is
strengthening or weakening an already existing assurance case,
as well as what is the impact of such change to other services
in the systems (i.e., whether the system functions as expected).

inputService (iS)
precond_iS

logicService (lS) outputService (oS)
postcond_iS

precond_lS
postcond_lS

precond_oS

postcond_oS

E-gas

Fig. 2: E-gas system service decomposition

Given that for the maintenance purposes E-gas might be
connected to the Internet, an opportunity for a malicious ad-
versary to tamper security in the system exists, i.e., malicious
vehicle acceleration or loss of braking control due to adversary
activities. In case this would happen at run-time, logicService
would be affected. To avoid this, we need to trace how an
update that prevents such an activity, is related to services,
to which artifacts and, consequently, to which parts of the
security case those services are connected to and thus, whether
the security process described in IV-B needs to be re-examined
and to which extent.

The main goal of this process would be to protect control
parameters from being changed to unexpected values, and
therefore we could define the following FSR: unauthorized
users should not have granted access to logicService. At the
same time we could engage threat and vulnerability analyses
to investigate what are the other services in the system that
might be affected by unauthorized access, assuming that the
system enters the vulnerable state. Based on the findings in
the analysis and already established FSR, we can elicit the
following TSR1: only user with credentials belonging to a spe-
cific security level can access and change the configuration of
logicService for maintenance purposes, and TSR2: all changes
in the configuration of logicService have to be recorded into a
file, to enable future change backtracking. Both functional and
technical requirements have to be reflected in the SLA that is
connected to logicService such that the initial guarantees on
the service qualities are checked and preserved.

In case an adversary would compromise logicService by
affecting the vehicle acceleration or setpoint vehicle acceler-
ation, we would need to trace effects of such an impact in
the whole system using the process described in Fig. 1. In the
example provided in Fig. 2, one can notice that outputService
is directly compromised by such a change and therefore all
artifacts connected to this services, as well as the security case,
will need a re-examination. Based on this, we can notice that
in the case of logicService being compromised by a new threat,
the threat analysis has to be revised, providing us with a new
threat to be added to the list, as well as the relation matrix
being extended. In this way, the newly discovered threat will
be considered with respect to other artifacts and services in
the system.

Assuming that the whole system is decomposed in a similar
manner as described for E-gas, and provided that for each
service, service interfaces are well defined, carrying correct
and accurate information regarding assumptions and output
guarantees, one can notice the benefits such an approach
brings. We would be not only able to decompose the system
in order to identify system parts affected by the change, but
also in position to provide run-time assessment of confidence
in newly discovered finding in the system with respect to the
security.

VI. CONCLUSIONS

An acceptable level of system security needs to be guaran-
teed for safety-critical systems. To argue over system security,
a security case can be developed as a collection of arguments
supporting system high-level security goals. However, frequent
updates, e.g. required due to a newly discovered vulnerability
or attack, indicate a need for security case run-time adaptation.
As it can be concluded based on the current state of the art
in security assurance, the first step towards enabling such an
adaptation is the development of an approach for mapping an
update to affected service by identifying affected parts of the
security case. This paper proposes to facilitate this mapping by
system decomposition into services. Building upon a system
representation via a choreography of services we can trace an
update through artifacts derived from the security process to
the security case and identify parts that need to be re-examined.

Further, we plan to detail the proposed approach of map-
ping an update to a security case through services compositions
and artifacts by developing an argument pattern that takes into
account services decomposition. Thus, the second identified
sub-challenge related to security case structure needs to be
addressed as the next step. We have also noticed that in order to
enable security assurance and building assurance case in such
a way, we need to extend the re-examine the current service
interface and enable the notion of security relevant attributes.

ACKNOWLEDGEMENTS

This work is supported by the SeCRA project funded by
Vinnova, the SAFSEC-CPS project funded by KKS and the
Serendipity project funded by SSF.

REFERENCES

[1] C. B. Weinstock, H. F. Lipson, and J. Goodenough, “Arguing security
creating security assurance cases,” 2014.

[2] T. P. Kelly, “Arguing safety – a systematic approach to managing safety
cases,” 1998.

[3] N. R. Storey, Safety Critical Computer Systems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1996.

[4] P. Johnson, D. Gorton, R. Lagerström, and M. Ekstedt, “Time between
vulnerability disclosures: A measure of software product vulnerability,”
Computers & Security, 2016.

[5] E. Denney, G. Pai, and I. Habli, “Dynamic safety cases for through-life
safety assurance,” in 37th IEEE International Conference on Software
Engineering, 2015.

[6] D. Schneider, E. Armengaud, and E. Schoitsch, “Towards trust assur-
ance and certification in cyber-physical systems,” in Computer Safety,
Reliability, and Security, 2014.

[7] B. H. C. Cheng, K. I. Eder, M. Gogolla, L. Grunske, M. Litoiu,
H. A. Müller, P. Pelliccione, A. Perini, N. A. Qureshi, B. Rumpe,
D. Schneider, F. Trollmann, and N. M. Villegas, Using Models at
Runtime to Address Assurance for Self-Adaptive Systems. Springer
International Publishing, 2014.

[8] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
oriented computing: State of the art and research challenges,” Computer,
2007.

[9] North Atlantic Treaty Organization, “Engineering for system assurance
nato in programmes,” 2010.

[10] R. Weaver, J. Fenn, and T. Kelly, “A pragmatic approach to reasoning
about the assurance of safety arguments,” in 8th Australian Workshop
on Safety Critical Systems and Software, 2003.

[11] I. Šljivo, E. Lisova, and S. Afshar, “Agent-centred approach for assuring
ethics in dependable service systems,” in 13th IEEE World Congress
on Services, Jun. 2017.

[12] R. Gallo and R. Dahab, “Assurance cases as a didactic tool forinforma-
tion security,” in Information Security Education Across the Curriculum,
2015.

[13] T. Kelly and R. Weaver, “The goal structuring notation–a safety
argument notation,” in Dependable Systems and Networks, 2004.

[14] Adelard, “ ASCAD: The Adelard Safety Case Development Manual,”
1998.

[15] ISO/IEC JTC1/SC27, “Common Criteria for Information Technology
Security Evaluation, ISO/IEC 15408,” 2005.

[16] M. Broy, I. H. Krüger, and M. Meisinger, “A formal model of services,”
ACM Trans. Softw. Eng. Methodol., Feb. 2007.

[17] J. M. Kizza, Security Assessment, Analysis, and Assurance. Springer,
2017.

[18] I. Agudo, J. L. Vivas, and J. López, “Security assurance during the
software development cycle,” in Proc. International Conference on
Computer Systems and Technologies, 2009.

[19] M.-Y. Nam, J. Delange, and P. Feiler, “Integrated modeling workflow
for security assurance,” in Leveraging Applications of Formal Methods,
Verification and Validation: Foundational Techniques, Springer, 2016.

[20] K. Taguchi, N. Yoshioka, T. Tobita, and H. Kaneko, “Aligning security
requirements and security assurance using the common criteria,” in 4th
International Conference on Secure Software Integration and Reliability
Improvement, 2010.

[21] H. Li, X. Li, J. Hao, G. Xu, Z. Feng, and X. Xie, “Fesr: A framework
for eliciting security requirements based on integration of common
criteria and weakness detection formal model,” in IEEE International
Conference on Software Quality, Reliability and Security, Jul. 2017.

[22] R. N. Akram, K. Markantonakis, and K. Mayes, “A dynamic and
ubiquitous smart card security assurance and validation mechanism,”
in 25th International Information Security Conference, 2010.

[23] A. Hecker and M. Riguidel, “On the operational security assurance
evaluation of networked it systems,” in 9th International Conference
and Second Conference on Smart Spaces, 2009.

[24] M. Ouedraogo, H. Mouratidis, E. Dubois, and D. Khadraoui, “Informa-
tion systems security criticality and assurance evaluation,” in Advances
in Computer Science and Information Technology, 2010.

[25] M. Ouedraogo, R. M. Savola, H. Mouratidis, D. Preston, D. Khadraoui,
and E. Dubois, “Taxonomy of quality metrics for assessing assurance
of security correctness,” Software Quality Journal, Mar. 2013.

[26] D. Pierce and J. Littlefield-Lawwill, “Composition of information
assurance properties in integrated modular avionics systems,” in 27th
IEEE/AIAA Digital Avionics Systems Conference, Oct. 2008.

[27] S. Formoso and M. Felici, Evidence-Based Security and Privacy As-
surance in Cloud Ecosystems. 2016.

[28] M. Rak, “Security assurance of (multi-)cloud application with security
sla composition,” in Green, Pervasive, and Cloud Computing, 2017.

[29] I. Rauf and E. Troubitsyna, “Towards a model-driven security assurance
of open source components,” in Software Engineering for Resilient
Systems, 2017.

[30] B. Meyer, “Applying ’design by contract’,” Computer, Oct 1992.
[31] M. Montenegro, A. Maña, and H. Koshutanski, “Improving security

assurance of services through certificate profiles,” in Advances in
Service-Oriented and Cloud Computing, 2013.

[32] C. Harris, M. Parsons, and A. Simpson, “Service-based safety assur-
ance,” in Safety-Critical Systems Club, 2018.

[33] K. Netkachova, R. Bloomfield, P. Popov, and O. Netkachov, “Using
structured assurance case approach to analyse security and reliability
of critical infrastructures,” in Computer Safety, Reliability, and Security,
2015.

[34] R. Bloomfield, P. Bishop, E. Butler, and K. Netkachova, “Using an
assurance case framework to develop security strategy and policies,” in
Computer Safety, Reliability, and Security, 2017.

[35] T. Saruwatari and S. Yamamoto, “Creation of assurance case using
collaboration diagram,” in Information and Communication Technology,
2014.

[36] B. D. Rodes, J. C. Knight, and K. S. Wasson, “A security metric based
on security arguments,” in 5th International Workshop on Emerging
Trends in Software Metrics, 2014.

[37] P. J. Graydon, “Towards a clearer understanding of context and its role
in assurance argument confidence,” in 33rd International Conference
on Computer Safety, Reliability, and Security, 2014.

[38] B. D. Rodes, J. C. Knight, A. Nguyen, J. D. Hiser, M. Co, and J. W.
Davidson, “A case study of security case development,” in Safety-
Critical Systems Symposium, 2015.

[39] A. Nguyen-Tuong, J. D. Hiser, M. Co, N. Kennedy, D. Melski, W. Ella,
D. Hyde, J. W. Davidson, and J. C. Knight, “To b or not to b: Blessing
os commands with software dna shotgun sequencing,” in 10th European
Dependable Computing Conference, May 2014.

[40] EGAS Workgroup, “Standardized E-Gas Monitoring Concept for Gaso-
line and Diesel Engine Control Units,” 2013.

