
An Initial Analysis of Operational Emergent
Properties in a Platooning System-of-Systems

Jakob Axelsson
RISE Research Institutes of Sweden and Mälardalen University

Kista, Sweden
jakob.axelsson@ri.se

Abstract—As systems-of-systems start to be more common
in commercial applications, an analysis of emergent properties
related to utility and cost for all stakeholders becomes critical.
This paper describes an approach for this based on network
simulation and game theory, which is applied to truck highway
platooning. The emergent properties of energy efficiency and
transport efficiency are studied as a consequence of the strategies
for platoon formation, and it is shown that having information
about the route planning of other vehicles has a significant
positive effect on the properties. This indicates the need for a
mediator in the platooning system-of-systems architecture. Its
role is to communicate plans of the constituent systems.

Index Terms—System-of-systems, platooning, emergent prop-
erties, game theory, architecture.

I. INTRODUCTION

Systems-of-systems (SoS) is a term used to denote indepen-
dent systems that collaborate to achieve something they cannot
do on their own. The concept, with its origins primarily in the
defense sector, is now rapidly becoming increasingly relevant
in a large number of commercial applications as a result of
the software-driven digitalization and automation of industry
and society. Examples exist in domains such as transportation,
energy, health care, manufacturing, smart cities, etc.

The defining characteristics of an SoS were described by
Maier [1], and include operational and managerial indepen-
dence, meaning that elements can make decisions on their own,
and emergent behavior on the SoS level.

With the increasing usage of SoS in commercial appli-
cations, a cost-benefit analysis becomes critical, in which
different decision options are evaluated in relation to various
positive (i.e., benefit, utility or value) and negative (i.e. cost)
criteria. The challenges of SoS cost-benefit analysis are in
particular a consequence of the managerial independence. This
means that the owners of different constituent systems make
decisions, based on how they perceive their own utility and
costs. However, since the decisions of different stakeholders
depend on each other, this can lead to sub-optimal behavior
on the SoS level, and create a non-desired emergent behavior
when it comes to the cost-benefit balance of the SoS as
a whole. The result can be that the SoS is unattractive to
certain participants, who then choose to not participate, and
thus undermine the existence of the SoS as a whole. To cope
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with this, it is necessary to design an SoS so that it provides
sufficient value to all participants individually, as well as to
the SoS as a whole, and this design problem requires good
analysis methods.

A. Case Study

To investigate the principles of SoS cost-benefit analysis,
a case study has been used consisting of a truck highway
platooning application. The idea of platooning is that a lead
vehicle, which is driven manually, is followed closely by a
number of other vehicles using automated driving. The benefit
is that aerodynamic drag can be substantially reduced by
shortening the distance between the trucks, leading to lower
energy consumption. A key technology is the use of short-
range radio communication between the trucks to control the
speed of each truck, and thus the distance between them. In
some proposals for platooning concepts, there is also a central
mediator who coordinates formation of platoons, and can put
restrictions on when and where platooning is allowed [2].

B. Research Questions

The contribution of this paper is to investigate a suitable
approach for SoS cost-benefit analysis, and this is achieved by
studying platooning as an example. This leads to the following
more detailed research questions:

1) How is energy efficiency affected by different platooning
characteristics? This is the expected benefit.

2) How is transport efficiency affected by different platoon-
ing characteristics? This is a potential cost.

The research method applied here is a theoretical analysis,
since platooning has not yet been deployed in practice (with
a few exceptions, [2]) and hence little or no empirical data
on large scale effects is available. Therefore, we instead build
mathematical models of the system using networks and game
theory [3]. To study the effects of different factors, we apply
numerical simulations, using both randomized data and data
from real road networks and traffic scenarios. Most likely, a
similar approach is relevant in many SoS, where the effects
need to be investigated prior to actually building the system.

C. Paper Overview

In the next section, some aspects of viewing platooning
as an SoS is discussed, in particular the system hierarchy
and emergent properties. Then, in Section III, the operational



context is described, showing how road networks and traffic
are modeled. In Section IV, this context is populated with
vehicles to capture their movements over time, from which
the emergent properties can be derived. The analysis relies
on simulations, as presented in Section V. These simulations
are used in Section VI to evaluate the emergent effects of
different decision strategies on the operational level. Then it
is discussed how the findings can be generalized to other SoS
in Section VII, and how they relate to previous research in
Section VIII. Finally, Section IX summarizes the conclusions
and discusses future extensions of this research.

II. PLATOONING AS AN SOS

The cost and benefit of an SoS are emergent properties
that come as a result of a system hierarchy. In this section,
the hierarchical decision levels are described both for SoS
generically and for platooning in particular, and then the
platooning emergent properties are introduced.

A. Hierarchy and Decision Levels

When studying different SoS, a hierarchical structure forms
a suitable basis for reasoning about emergence:
• At the highest level are strategic decisions, involving

both the mechanisms of the SoS as such, and decisions
whether to prepare a certain system for being able to
become a constituent. It is thus an existential decision for
the SoS. In the platooning case, this includes the decisions
made by the vehicle manufacturer regarding whether to
develop platooning equipment for their products.

• At the level below, tactical decisions are made, and these
are typically of a managerial character, and thus involve
the organizations that own the constituent systems. The
decisions relate to whether this particular organization
should engage in the SoS. For platooning, this is the level
where the haulage company makes decisions whether to
equip their trucks for platooning or not.

• At the next level are the constituent systems, and at this
level, a number of operational decisions are made, either
automatically by a technical system or by its operators. In
the example, the constituent systems are the trucks, and
the decisions are made automatically or by the driver.

• At the bottom is the operational context of the SoS. The
elements of the context are not considered parts of the
SoS, and the stakeholders of the SoS do not have the
power to modify it, but it has to be accepted as is. In
the platooning example, this corresponds to the road and
traffic environment in which the platoon will operate.

In addition to this, more levels can be added. For instance,
there is a societal level, where authorities can make decisions
that affect the decisions at lower levels. This could concern
investments in road infrastructure to make platooning easier or
safer; legislation regarding how platooning should be carried
out, and its relation to other traffic; subsidies if there is
a desire to stimulate a quicker introduction of platooning;
and regulations to avoid lock-in effects that could make it
difficult to create platoons with trucks of different brands or

from different haulers. The reason authorities could have an
interest in these actions is that the energy saving and pollution
reductions of platooning are benefiting society as a whole.

The levels described here resemble the ones introduced in
[4], which uses a generic terminology of Greek letters (α, β,
γ, δ) to denote the levels from the bottom up.

In this paper, the focus will be on the operational decisions
and the operational context. The analysis on that level forms
input to the analysis of higher level decisions.

B. Emergent Properties Representing Cost and Benefit

As described above, energy and transport efficiency repre-
sent key emergent properties of platooning. The overall energy
efficiency, or fuel consumption for conventional vehicles, is a
direct consequence of how much time is spent in platooning
compared to solitary driving. The indicator to use is thus the
proportion of total time that vehicles drive in groups with
other vehicles, denoted by φ ∈ [0, 1]. φ = 0 means that no
platooning takes place, and φ = 1 that all vehicles always
drive in platoons.

Transport efficiency is not affected by the actual platooning,
but by the formation process, since vehicles sometimes will
choose to wait for others in order to be able to form a
platoon instead of driving alone. In practice, the cost of waiting
includes the reduced utilization rate of the vehicles, the salary
cost for having drivers wait, and the delayed delivery of the
goods. The indicator τ ∈ [0, 1] is the proportion of time that
vehicles move, where τ = 0 means that all vehicles just wait
all the time, and τ = 1 when no vehicles ever wait.
φ and τ are indicators of the efficiency of platooning. As a

reference, in the situation when no vehicles are equipped for
platooning, φ = 0 since no vehicles platoon, and τ = 1 since
vehicles never wait for each other.

It is interesting to investigate how certain factors influence
the efficiency metrics. This includes properties of the road
network and traffic intensities, since it can be assumed that pla-
tooning will require a certain traffic intensity to be meaningful
and hence will only be applicable at certain parts of the road
network. At the same time, platooning will not work well if the
traffic intensity is too high, because that will lead to congestion
where the reduced speed minimizes the fuel saving potential,
and also makes it difficult to form platoons. Conversely, there
could be other reasons, such as safety [5], that exclude a priori
certain types of roads from platooning, e.g. restricting it to
only motorways to allow other vehicles to safely pass a truck
platoon. The proportion of vehicles equipped with platooning
will be decisive for the ability to form platoons.

III. ROAD AND TRAFFIC MODELS

In order to analyze the emergent efficiency properties of
platooning, and evaluate different decision strategies at the
higher levels in the hierarchy, a model of the operational
context in the form of roads and traffic is needed. The initial
road and traffic models use a very simple graph, where the
nodes represent junction points between roads, and the edges
capture the distances and traffic flows of the roads between



the junctions. This model is easy to relate to real data about
roads and traffic, but less suitable for analysis of platooning.
Therefore, it is then transformed into an analysis model for
studying the emergent properties in the platooning SoS.

A. Road Network

It can be assumed that the road infrastructure consists of n
junction points, which are modeled as nodes in a graph. Let
R be an n× n matrix where each element Rij > 0 indicates
that there is a road of distance Rij from node i to node j, and
Rij = 0 means that there is no direct road. The network is
undirected, so Rij = Rji (the distance is the same regardless
of direction of travel) and Rii = 0 for all i, since the distance
from one place to itself is 0.

The distances are expressed as the number of time units it
takes for a vehicle to travel between the nodes, so the edges in
the graph thus represent the passage of time. This is under the
assumption that all vehicles travel at the same and constant
speed on a given road segment.

The degree of a node is the number of outgoing links,
di(R) = #{j | Rij 6= 0}. A road network can be char-
acterized by the statistical distribution of node degrees and
distances. If di(R) = 0, the node is isolated, which is an
irrelevant case in this application. di(R) = 1 means that the
destination is at the end of the road, which certainly occurs
in real road networks, although perhaps not that frequently.
di(R) = 2 is an intermediate stop on a road, which is fairly
common for a mid-size city, when taking only the highway
network into account. di(R) > 2 represents a junction, where
different possible routes can be chosen, and it can be expected
that the higher the degree, the less common it is.

B. Traffic Intensity

Traffic intensity Tij is measured as the average number of
vehicles that leave a node i towards a node j in one time step.
Obviously, the traffic intensity graph has the same structure
as the road network graph since vehicles can only travel on
roads, so Tij = 0⇔ Rij = 0 for all i, j.

The number of vehicles is assumed to be constant, so the
sum of incoming vehicles to a junction i has to equal the sum
of outgoing vehicles:

n∑
j=1

Tij =

n∑
j=1

Tji

The total number of vehicles m in the system is given by the
sum of the entry-wise product of R and T , since R indicates
how long a vehicle stays on a road segment, and T indicates
how many vehicles enter the segment at each time step:

m =

n∑
i=1

n∑
j=1

RijTij

In this model, only vehicles that actually drive are included.
In reality, there are many more vehicles, since a truck has to
stop for loading and unloading, maintenance, etc. However, a
stopped vehicle does not platoon, and it is thus irrelevant here.

The traffic intensity patterns can be characterized by the
total number of vehicles and the statistical distribution of
intensities on individual road segments.

An example of the R and T matrices, represented as graphs,
is shown in Fig. 1a. In this example, m = 34.

C. Analysis Model

The model above is easy to match to available data on real
road networks and traffic flows. However, it is not detailed
enough to allow the derivation of the metrics for platooning
efficiency. Therefore, it is transformed into a model that better
captures the detailed location of each vehicle, to determine
how many vehicles platoon at a given time step. Space does
not permit a detailed explanation of the transformation, but
only an overview is given through the example in Fig. 1.

The key idea of the transformation is that the passage of
time will now occur in the nodes, which each represent one
time step, whereas in the initial model time was associated
with edges. Each road segment in R and T becomes a
sequence of nodes in the n′ × n′ matrices R′ and T ′, where
the number of nodes corresponds to the road segment length.
Travel direction needs to be represented, since vehicles only
platoon with those going in the same direction, so each road
segment is represented as two such sets of nodes.

The transformed road network matrix R′ is binary, i.e. a 1
represents the existence of a link and a 0 the non-existence.
The transformed traffic intensity matrix T ′, shown in Fig.1b,
retain the same traffic on outgoing links from the original
nodes as in T .

In the forthcoming dynamic analysis, where vehicles move
around in the road network in such a way that they generate
traffic intensities corresponding to the values in T and T ′,
it will be useful to describe what the probabilities are of a
vehicle selecting each of the outgoing links from a node. These
probabilities will be captured in the matrix P , where Pij is the
probability that the vehicle will move to node j when in node
i. The elements of this matrix are derived by normalizing the
rows of T ′ so that each row sums to 1, which makes sense
since it is assumed that all vehicles will move in each time
step, i.e. they have to select one of the links:

Pij =
T ′ij∑n′

j′=1 T
′
ij′

The matrix P captures all the necessary information that
was originally in R and T , except the number of vehicles m.
This means that we can now forget about R, T , R′, and T ′ and
work only with P . m is of course also needed, but since it is
no longer encoded in the matrix, it can be varied to investigate
effects of different traffic intensities.

In practice, P will be large, since every road segment is
represented by many nodes. This also means that it will be
very sparse, and the average degree of a node will be just
slightly above 1, since the vast majority of nodes will be the
ones added along the road segments, and these have degree 1.

Reasonable values for the duration of a time step is given by
the fact that we will assume that the traveling distance during



(a) Original network (each edge label showing Rij , Tij).

(b) Transformed T ′ matrix, showing added nodes in grey.

(c) Transformed P matrix showing transition probabilities.

Fig. 1: Model transformation steps.

one step is so short that trucks within that distance of each
other will choose to platoon, which means that they need to
be close enough to establish short range radio communication,
and this gives a distance of at most 1 km. At the same time,
the distance should be long enough for a platoon to fit within
it, which means that it should be at least 100 m. Given a
typical truck highway speed of 90 km/h = 25 m/s, the truck
will travel 100 m in 4 s, and 1 km in 40 s, which gives an
idea about the plausible duration of a time step.

IV. DYNAMIC MODELS

Having described the analysis model for road networks,
vehicles will now be added that travel around over time. With
this, it can be investigated when platooning will actually occur
and thus calculate the efficiency metrics. At each point in time,
the system will have a certain state which captures where the
vehicles are in the road network and where they plan to go.

A. System State

In the system, there are m vehicles, and at any point in
time, each vehicle is in one of the nodes. This is represented
by a vector v, where vk is the current position of vehicle k.

In the platooning application, sometimes a vehicle may
decide to stay at a junction in order to wait for platooning
partners. The fact that a vehicle is waiting is captured by the
vector w, where wk indicates for how long vehicle k has been
waiting for partners. Note that it is only possible to wait at a
junction. The information about when vehicles choose to wait
will be necessary later when calculating transport efficiency.

In reality, trucks do not travel around randomly, but they
follow a planned itinerary, which is given by the destinations
of the goods they are carrying. The plans of each truck will
be represented explicitly, since that information can be useful
to other trucks when deciding whether to wait for platooning
partners or to continue. Assume that the plan stretches L ≥ 0
time steps into the future. Then, Π is an m×L matrix where
Πkt represents the node where vehicle k thinks that it will be in
t steps. The values of Π are node indexes, thus 1 ≤ Πkt ≤ n′.

The state of the dynamic model is represented by s =
(v(s), w(s),Π(s)), and the set of states is denoted by S.

B. State Transitions

Transitions normally take a vehicle to the first state in its
plan, and the plan is moved forward one step while adding
a new last step. To ensure that the traffic intensities in T are
reflected, the new last step will be selected randomly according
to P . The waiting value wk = 0 for that vehicle.

At junctions, we allow vehicles to make a decision, which
is captured in the decision function δ : S → {0, 1}m, where
the k:th element of the result is the decision made for vehicle
k in that state. This function is used to determine whether
to wait for platooning partners, in which case it is 1, or not
to wait in which case it is 0. If there is already a vehicle at
the node with the same initial plan, the vehicle will always
proceed as described in the previous paragraph. If there is no
such vehicle, the decision has to be made to either proceed
alone, or to wait. If the vehicle chooses to wait, its new node
will be the same as the current; the plan will be the same as
before; and the waiting value is increase by 1.

C. Calculating Emergent Properties

Based on the dynamic model, it is now possible to formally
define how to calculate the two metrics of interest, namely
energy efficiency (φ) and transport efficiency (τ ). For these
calculations, it is necessary to know the number of vehicles
that are currently traveling in each node i, which is denoted
λi(s) = #{k | 1 ≤ k ≤ m ∧ vk(s) = i ∧ wk(s) = 0} for a
given state s. Note that λi(s) ignores vehicles that are waiting.

Based on this, the proportion of all vehicles traveling in
platoons of length l > 0 in state s can be calculated as:

φl(s) =
#{k | 1 ≤ k ≤ m ∧ wk(s) = 0 ∧ λvk(s)(s) = l}

#{k | 1 ≤ k ≤ m ∧ wk(s) = 0}
Here, φ1(s) denotes the proportion of vehicles traveling

alone. Now the proportion of all vehicles that travel in platoons
in this state can be calculated:

φ(s) =

m∑
l=2

φl(s)

The upper limit of this sum is due to the fact that the longest
possible platoon involves all m vehicles. Since all vehicles are
either platooning, traveling alone, or waiting for partners, the
transport efficiency τ(s), which is the proportion of vehicles
driving, becomes:



τ(s) = φ1(s) + φ(s) =
1

m
#{k | 1 ≤ k ≤ m ∧ wk(s) = 0}

So far, the metrics have been calculated for one state. To
give their aggregated value, it is necessary to calculate them
for each visited state, and take the average. Assuming that the
visited states are s0, s1, . . ., the final metrics become:

φ = lim
t→∞

1

t

t∑
t′=0

φ(st′) τ = lim
t→∞

1

t

t∑
t′=0

τ(st′)

V. SIMULATIONS

To calculate the metrics, simulations are used. In the analy-
sis, we will to a large extent use randomly generated graphs of
the road network and traffic intensities. One could of course
argue that it is more relevant to instead use models of real
road networks. However, each road network will only give
one data point, which means that it is very hard from that
to get an understanding of the relations between different
characteristics. By instead analyzing a set of random networks,
a more solid understanding about how different factors interact
vis-à-vis the emergent properties can be achieved.

Given a random road network, traffic patterns have to be
added. Since the dynamic model only relies on P , and does not
use T and T ′ directly, we can skip generating those matrices
and go directly for P . If there is still an interest in T or T ′,
they can instead be reconstructed from the simulation data. To
obtain P , the first step is to transform R into R′ as described
in Section III. Then, for each R′ij > 0, let Pij be a random
number drawn from a given distribution. Finally, normalize P ,
by dividing each entry in P by the sum of its row.

A. Parameters for Network Generation

The network generation parameters are distributions to gen-
erate the number of nodes; number of links; distances between
the nodes; and probabilities for the traffic. In addition, the
traffic density is needed, i.e. how many trucks should be added.
To find appropriate distributions for these it is illustrative to
look at some real road networks in Sweden. The data gathered
is based on public sources on the Internet; data from different
authorities; and official statistics. It has been collected using
a high-level approximate analysis, with the purpose of getting
some feeling for the real-world situation without the need for
exact numbers.

In Sweden, there is about 2 000 km of motorways. Motor-
way exits are numbered, and as an example, the E4 highway
between the cities of Helsingborg and Gävle is about 740
km long and has about 130 exits, giving an average distance
between exits of around 6 km. Assuming the same relation
holds for the entire network, there should be around 350 nodes
in R. There is about 15 places where the motorway ends, i.e.
nodes with degree 1. The vast majority is exits to other roads
or cities, i.e. nodes with degree 2, and only around 15 nodes
have degree 3. The average node degree is thus around 2.

There are about 80 · 103 heavy trucks in the country,
that drive around 35 · 103 km per year on average. Their
average speed on motorways is 85 km/h (whereas the allowed
maximum speed for trucks is 90 km/h). The total annual
distance traveled on motorways for all categories of vehicles
is 18 · 109 km, and the total distance traveled on all kinds
of roads for all vehicles is 60 · 109 km, thus 30% of the
traffic is on motorways. Assuming the same proportion holds
also for trucks, that would mean that those trucks cover
80 · 103 · 35 · 103 · 0.3 = 840 · 106 km on motorways each
year. Dividing this by the average speed, and by the number
of hours per year, the conclusion is that about 1000 trucks are
on average driving on the motorways at any point in time, or
about 0.5 per km of road.

With the above data, the following input to the random
generation of R and P can be used:
• The size of the network does not matter so much, as

long as the vehicle density is kept. We will use a uniform
distribution with values in the range [20, 50] for n, giving
networks of about 10 % the size of the Swedish network.

• For the number of links, we will use 1.05n.
• The distances can vary quite a lot, and we will use a

Poisson distribution with mean 5, and add 1 to the gen-
erated numbers to ensure that they are positive integers.
The time step is 1 km.

• The weights used to calculate route selection probabilities
in P come from a uniform distribution in the range
[0.2, 0.8), to ensure that there is some traffic on all roads.

B. Simulation Set-up

In the simulations, the following key factors were varied:
• The road network. We used a set of 20 different networks

that were randomly generated using the algorithm and
parameters described earlier in this section.

• Number of vehicles m. As a baseline, the data from
Swedish roads of about 0.5 vehicles per km was used, and
based on this, the number of vehicles for each random
network was calculated. Then, the actual simulation was
executed once for each of the following multiplier of that
number of vehicles: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1.0, 2.0, 3.0. This is to study the effects of different
take rates of platooning equipped trucks.

• The decision function δ and its parameters. This will be
discussed further in Section VI, where different alterna-
tive decision functions and parameters are introduced.

Each combination of these factors was executed once, for
200 time steps, starting from an initial state where vehicles
were randomly assigned to nodes using a uniform distribu-
tion, and where initial plans were randomized according to
probabilities in P .

VI. OPERATIONAL DECISION STRATEGIES

The decision the driver has to make is when to join or not
join a platoon. If two or more equipped vehicles happen to
be at the same place, they have nothing to loose by joining
the platoon, so the analysis will assume that they always join



when an opportunity arises. However, if no one else is around,
the driver has the choice of waiting at the junction for others
to show up, or continue on their own to the next junction.
What decision to make depends on the likelihood of another
platooning equipped vehicle turning up within a reasonable
amount of time, which is a consequence of the platooning
take rate, and hence of the haulers’ decisions. It also depends
on the decision by other drivers, i.e. whether they choose to
wait at some earlier junction instead of continuing.

In this section, several decision strategies are studied:
1) Randomly choose in each time step whether to wait

one step longer or not, with some probability of each
decision. This is a speculative waiting strategy.

2) Use information about the plans of other vehicles to
decide how long to wait.

3) Base the decision on whether to wait on the expected
utility of doing so.

Each of these strategies will be captured through different
definitions of the δ function, and they are described in the
following subsections.

A. Stochastic Platooning
In stochastic platooning, the function δpk(s) = 1 with a

probability of p, i.e. in each time step, vehicle k if at a junction
with no platooning partners around will wait one more time
step with a probability p, and not wait with probability 1− p.
Three cases can be identified, depending on the value of p:
• For p = 0, the vehicles will never wait, and this is what

happens if platoons form spontaneously. In other words,
if two vehicles by hazard come close to each other, they
will start platooning and continue to do so as long as
their routes match, but no other measures will be taken
to increase the rate of platooning. Since no vehicles will
ever wait, τ = 0 in this case.

• In the case p = 1, a vehicle will always wait, and keep
on doing so until a platooning partner shows up.

• For 0 < p < 1, vehicles will wait for a random period of
time, and if no vehicle turns up, it will eventually continue
alone. The expected waiting time t can be derived as
follows: In the first round, δ = 0 means that the vehicle
continues, giving an expected value of 0. If δ = 1, a new
round starts, which is independent from the previous, so
in this case the expected value is t+ 1. This means that
t = (1− p) · 0 + p · (t+ 1)⇒ p = t/(t+ 1).

In the simulations, the parameter p was varied to give
different expected maximal waiting times, using the following
values: 0.0, 0.5, 0.67, 0.75, 0.8, 0.91, and 1.0 for the waiting
times 0, 1, 2, 3, 4, 10, and forever.

Fig. 2a and c show simulation data for stochastic platooning,
where each curve represents a different setting for p used in δp.
The x axis represents different numbers of vehicles m, using
the multipliers of the baseline 0.5 vehicles per km of road. As
can be expected, higher values on p yield higher values on φ
and lower on τ , and both φ and τ increase with m.

It is interesting to see that even a little bit of waiting can
have quite a large effect. Take the case where m = 0.5. If p

is increased from 0 to 0.5, i.e. a vehicle will on average wait
one time step (around 40 s) for a partner, then φ increases
from less than 0.3 to almost 0.5, at the cost of decreasing
τ from 1 to about 0.9. To obtain the same improvement of
φ by increasing the population (e.g. by increasing platooning
take-rate), more than a doubling of m is needed.

B. Planned Platooning

In stochastic platooning, no information is exchanged be-
tween the vehicles in order to facilitate the formation of
platoons. This puts severe limitations on what effects can be
achieved since there is no way for a truck to predict whether
a partner will be available or not. To remedy this, one could
let vehicles announce their current position and route plans to
each other, and let the decision function take this into account.

Note that this adds a requirement that the platooning
SoS must include an infrastructure for this communication.
Since potentially a vehicle may exchange information with
any other vehicle, the short-range radio used for vehicle-to-
vehicle communication will not suffice, and instead cellular
communication must be employed. Most likely, it will also
include a centralized mediator that dispatches the information
between vehicles, since otherwise all vehicles would need to
communicate with all other vehicles.

The information that can be communicated is essentially
what is in the state of the model, i.e. current position and
plans of the vehicles. (The information whether a vehicle is
waiting or not is less valuable in this case.) The parameter of
the decision function for planned platooning is the length L
of the plans, determining what time horizon is relevant. The
decision δLk (s) will be 1 when there is another vehicle k′ 6= k
that plans to arrive at the junction where k is now within L−1
time steps, and then continue in the same direction as k.

Fig. 2b and d show simulation data for planned platooning,
with L = 2, 3, . . . , 9. Looking at φ, it can be seen that even the
shortest range plan has a distinct positive effect on φ compared
to spontaneous platooning, and the longer range plans are
approaching similar φ’s as stochastic platooning with p = 1.
However, when looking at τ , it can be seen that the cost of
waiting is drastically reduced for smaller m, and in fact τ is
bounded by a large number which is natural since vehicles
will never wait longer than L.

From this, it can be concluded that exchanging information
about plans has a large benefit in increasing platooning rate
and bounding the cost, and the inclusion of a coordination
mechanism in the SoS is thus needed. In particular, the effects
are most significant at smaller values of m, and the coordi-
nation is therefore particularly important when platooning is
first introduced since there is then only a small number of
equipped vehicles in service.

C. Utility Based Platooning

In the previous cases, the decision strategies have tried to
increase φ while striving to keep some control of τ . However,
they have not included any analysis of the cost and benefit of
different alternative decisions for the individual vehicle. The



(a) Stochastic platooning φ. (b) Planned platooning φ. (c) Stochastic platooning τ . (d) Planned platooning τ .

Fig. 2: Energy efficiency (φ) and transport efficiency (τ ) as functions of multiples of m for different decision strategies.

planning decision functions have just looked at when another
vehicle going in the same direction will show up at the current
junction, and it does not take into account for how long they
will both be going together. This could have the effect that a
vehicle waits for another one, only to find out that they will go
different routes already at the next junction. In that situation,
it could sometimes be better to leave the junction alone even if
some other vehicle is approaching, in order to possibly catch
up with yet another vehicle at the next junction with which a
longer lasting platoon could be formed.

In the case of utility based platooning, it becomes evident
that the choice of one vehicle affects both the utility of itself,
the utility of the other vehicles with which it could potentially
platoon, and the efficiency of the whole system.

To illustrates this, consider a minimal road network with
only two nodes, and with a distance of 1 between them. This
network can be modeled by the following matrix:

R =

(
0 1
1 0

)
= R′ = P

Assume now that there are two vehicles, and that initially
one of them is in each node. If δp=0 is used, they will just go
back and forth between the nodes and never form any platoons,
so φ = 0 and τ = 1. So obviously one of them has to wait
for the other, and once that happens they will continue to
platoon forever. The cost of doing so will be that one of them
is delayed one step, and the other not. If the platooning goes
on for t time steps, the cost is ε = 1/t. In the long run, this
cost is negligible, and they will both converge so that φ→ 1
and τ → 0, but slightly quicker for the one not waiting.

The decision table for the corresponding game is as follows:

V2 Wait V2 Continue
V1 Wait φ1 = φ2 = 0 φ1 = φ2 = 1− ε

τ1 = τ2 = 0 τ1 = 1− ε, τ2 = 1
V1 Continue φ1 = φ2 = 1− ε φ1 = φ2 = 0

τ1 = 1, τ2 = 1− ε τ1 = τ2 = 1

Clearly, both would benefit if one of them chooses to wait,
but if both choose to wait this is a worse situation than if both
choose to continue.

Although the above example of a game on platooning
is extremely simple, it illustrates that some coordination of
decision making might be necessary to maximize utility of the
vehicles, and also increase efficiency of the SoS as a whole.
The example also shows that the utility might be unevenly
distributed, in that one vehicle has to wait for the other, but
once they form a platoon both benefit. There could therefore
be a need for a re-compensation mechanism to distribute the
waiting costs to both vehicles. In the same way, there might
be a need for re-compensation between vehicles depending on
in which order they drive in the platoon, since vehicles at the
end get a higher energy reduction than those at the front.

The consequences of this is that a utility based decision
function will in effect become a global optimization problem,
where there will be an element of negotiation among vehicles
as of how to distribute the waiting costs. The mechanisms for
handling this will most likely have to be implemented in the
central controller, which now becomes a platooning broker.
Also, once a common plan has been made, some kind of
contract is probably needed, to avoid situations where one
vehicle takes the cost of waiting, just to find out that the
intended platooning partner after a while decided to change
its plans.

VII. DISCUSSION

The analysis in the preceding sections have been specific
to the platooning case, but the general techniques used are
most likely applicable in other SoS settings too. As a first
step, a systems thinking based analysis structuring the problem
into multiple hierarchical levels helps identifying the kind of
decisions involved, and allows a reasoning about emergence.
It also clarifies the inter-dependencies between decisions.

In the more detailed modeling, networks were used, and this
is generally interesting for SoS since they are about relations
between entities. The constituent systems are modeled as



agents, and the independent decisions need to be made explicit
in order to apply stochastic simulations and game theoretic
analyses to see the dynamic effects of the SoS as a whole
under different decision strategies and different parameters.

When investigating different decision strategies, the kind of
information exchanged between constituents is crucial, and the
state, plans, and preferences are examples of such information
that need to be considered. The actual decision strategy can
have implications on the SoS architecture, such as the need to
introduce additional mediators or central coordinators.

The case study also indicates that a "hen and egg" problem
exists in general for collaborative SoS, in that the operational
value of the SoS to a constituent increases with the number
of participants. However, this means that the incentives for
joining the SoS from its conception are very small, and hence
there is a risk that the SoS never grows. This needs to be
dealt with in the higher levels of the decision hierarchy, to
encourage prospective participants to invest in the SoS.

VIII. RELATED WORK

Vehicle platooning is a problem that has been studied over
several decades, but the emphasis has been on longitudinal
control algorithms [6].

When it comes to the cost-benefit analysis, a few papers
have studied the reduction in aerodynamic drag [7] and in
fuel consumtion [8], with results pointing to a reduction of
about 5-10%, depending on the position of the vehicle in the
platoon. These results are valuable input to our analysis, which
is however focusing more on the platoon formation than the
actual driving.

Regarding platoon formation, one proposed solution is to
use controllers at major intersections that will give speed
advise to drivers so that they can meet up at the same time [9].
The consequence of this is that a vehicle may need to increase
its speed in order to catch up with others, and the cost of this
has also been investigated [10].

Applying a combination of game theory, network models
and simulation for SoS analysis has been suggested in a num-
ber of previous studies. This includes the study of consumer
acceptance of smart electricity grids [11]. The strategies for
joining or not joining a federative system from the point
of a potential constituent has been modeled using the Stag
hunt game, and it is suggested that the initial investment
decision can be analyzed using real options [12]. Finally, the
willingness to cooperate in an SoS has been modeled as a
function of Sympathy, Trust, Fear and Greed which also led
to the formulation of a Stag hunt game [13].

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an initial analysis of the
operational decisions in a platooning SoS. It was shown that
the choice of decision strategy by the drivers has a large
effect on the emergent properties related to energy efficiency
and transport efficiency, in particular if information about the
route planning of other vehicles can be used for deciding
when to wait for partners or not, something which requires

a mediator in the form of a central system. It was also shown
that more advanced planning easily leads into a situation where
game theory needs to be applied to understand the effects
of simultaneous decision making by the individual drivers,
where there may be a need for re-compensation mechanisms
to mitigate situations where individual selfish behavior will
lead to reduced efficiency for everyone.

We plan to extend this work in several directions. First, on
the operational level there is a need to elaborate further the
game theory aspects of more advanced planning processes.
Then, the other levels in the SoS hierarchy will be attacked,
to understand how the haulers will make their investment
decisions into platooning equipped trucks as a consequence
of the efficiency that can be obtained. This in turn leads to the
analysis of the vehicle manufacturer decisions about when to
invest in product development, and what pricing strategies to
use.
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