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Abstract—Software-to-hardware allocation plays an important
role in the development of resource-constrained automotive
embedded systems that are required to meet timing, reliability
and power requirements. This paper proposes an Integer Linear
Programming optimization approach for the allocation of fault-
tolerant embedded software applications that are developed using
the AUTOSAR standard. The allocation takes into account the
timing and reliability requirements of the multirate software
applications and the heterogeneity of their execution platforms.
The optimization objective is to minimize the total power con-
sumption of the applications that are distributed over multiple
computing units. The proposed approach is evaluated using a
range of different software applications from the automotive
domain, which are generated using the real-world automotive
benchmark. The evaluation results indicate that our proposed
allocation approach is effective while meeting the timing, reli-
ability, and power requirements of the considered automotive
software applications.

I. INTRODUCTION

The software-to-hardware allocation is a very important
step during the development of automotive embedded systems.
Basically, it allows the designer to explore system-level so-
lutions that meet functional and extra-functional software re-
quirements together with resource availability on the execution
platform. Software allocation is a well-researched area in the
domain of embedded systems, including in hardware/software
co-design [1], platform-based system design [2] and the Y-
chart design approach [3]. It is a type of bin-packing problem,
and therefore finding an optimal solution, in the general case,
is NP-hard [4]. The methods to solve such problems can be
exact [5], which means solutions are guaranteed to be optimal,
or heuristic, which deliver near-optimal solutions [6][7]. Exact
methods such as Integer Linear Programming (ILP) [8] have
been used widely in several resource optimization problems.
In contrast to heuristic methods, ILP returns optimal solu-
tions faster for relatively small problems [9]. However, many
problems in real-time systems are nonlinear by nature [10],
e.g., response time of cause-effect actions, system reliability,
etc. To benefit from linear optimization techniques, non-linear
functions are approximated using Linearization - a widely-
used technique in the optimization of non-linear problems.

In case of fault-tolerance with replication [11], the search
space to find the optimal allocation is increased due to the
replicas. The search space becomes even larger if we assume
that the real-time system executes over different sampling
rates, known as multirate [12], in which case the feasible
(timed) paths that pass through the different sampling points
(or activation patterns) increase exponentially with the number
of activation patterns increase . Furthermore, due to the

different sampling rates that result in oversampling and un-
dersampling effects, the timing analysis of signals propagation
is complex [13]. Existing methods of software allocation lack
exact results for the timing analysis of multirate systems.

In this paper, we propose an allocation scheme based
on ILP for relatively small- and medium-sized fault-tolerant
distributed applications, with the number of allocatable com-
ponents not exceeding 15, operating-system tasks less than
100, and cause-effect chains in the range of 30 to 60.
These parameters are deducted from the real-world automotive
benchmark [14], and from previous experience in developing
automotive systems and experiments. The applications are
distributed over heterogeneous computing units that share
a single network. The allocation aims for minimizing the
total power consumption of the system while meeting timing
and reliability requirements. Our proposed solution targets
the automotive domain, in particular systems that conform
to the AUTomotive Open System ARchitecture (AUTOSAR)
standard. In comparison to related work [9][15][5], we con-
sider a fault-tolerant and multirate system model. Furthermore,
we follow a highly integrated approach in the allocation
process, which includes response-time analysis (RTA), and
utilization bound checking (UB), as well as bounding the level
of fault tolerance via the imposed reliability requirement on
the application. The main contributions of our work are: i)
an ILP model for the allocation of a fault-tolerant multirate
application on heterogeneous nodes with the objective of
minimizing the total power consumption, and ii) an approach
for reducing overhead of replications and cause-effect chains
on the allocation of such applications.

Our approach is evaluated on synthetic automotive applica-
tions that are generated according to the real-world automotive
benchmark proposed by Kramer et al. [14]. In the evaluation,
we show the performance of our proposed approach in terms
of allocation time and resource efficiency with respect to the
size of applications. The tool and the synthetic applications
used in this experiment are publicly available from BitBucket
https://bitbucket.org/nasmdh/archsynapp/src/master/.

The rest of the paper is organized as follows. Section II pro-
vides a brief overview of AUTOSAR-based software develop-
ment, emphasizing the role of software allocation. Section III
describes the system model, and Section IV describes the
extra-functional models including the timing, reliability, and
power consumption models. Section V presents the proposed
allocation scheme, and in Section VI, we provide an evaluation
of the proposed approach using the automotive benchmark. In
Section VII, we compare to related work. Finally, we conclude
the paper in Section VIII, and outline the possible future work.



II. AUTOSAR

The AUTomotive Open System ARchitecture (AUTOSAR)
partnership has defined the open standard AUTOSAR for
automotive software architecture that enables manufacturers,
suppliers, and tool developers to adopt shared development
specifications, while allowing sufficient space for competi-
tiveness. The specifications state standards and development
methodologies on how to manage the growing complexity of
Electronic/Electrical (E/E) systems, which take into account
the flexibility of software development, portability of soft-
ware applications, dependability, efficiency, etc., of automotive
solutions. The conceptual separation of software applications
from their infrastructure (or execution platform) is an impor-
tant attribute of AUTOSAR and is realized through different
functional abstractions [16].

A. Software Application

According to AUTOSAR, software applications are realized
on different functional abstractions. The top-most functional
abstraction, that is the Virtual Function Bus (VFB), defines a
software application over a virtual communication bus using
software components that communicate with each other via
standard interfaces of various communication semantics. The
behavior of a software component is realized by one or more
atomic programs known as Runnables, which are entities that
are scheduled for execution by the operating system and pro-
vide abstraction to operating system tasks, essentially enabling
behavioral analysis of a software application at the VFB
level. The Runtime Time Environment (RTE), which is the
lower-level abstraction, realizes the communication between
Runnables via RTE Application Programming Interface (API)
calls that respond to events, e.g., timing. Furthermore, the
RTE implementation provides software components with the
access to basic software services, e.g., communication, micro-
controller and ECU abstractions, etc., which are defined in the
Basic Software (BSW) abstraction [16].

B. Timing and Reliability of Applications

The timing information of applications is a crucial input
to the software allocation process. Among other extensions,
the AUTOSAR Timing Extension specification [17] states the
timing descriptions and constraints that can be imposed at
the system-level via the SystemTiming element. The timing
constraints realize the timing requirements on the observable
occurrence of events of type Timing Events, e.g., Runnables
execution time, and Event Chains, also referred to as Cause-
effect Chains that denote the causal nature of the chain. In this
work, we consider periodic events and cause-effect chains with
different rates of execution (or activation patterns).

Although the importance of reliability is indicated in various
AUTOSAR specifications via best practices, the lack of a
comprehensive reliability design recommendations has opened
an opportunity for flexible yet not standardized development
approaches. In this paper, we consider application reliability
as a user requirement and, in the allocation process, we aim at
meeting the requirement via optimal placement and replication
of software components.

III. SYSTEM MODEL

The system model consists of three parts: a software ap-
plication, an execution platform, and a software allocation
scheme. An overview of the system model is illustrated in
Figure 1. The software application is a user-defined soft-
ware system, such as x-by-wire, electronic throttle control,
flight control, etc., which is developed using software compo-
nents [18][19]. The application is deployed on an execution
platform, which is a network of heterogeneous nodes with
possibly different processor frequencies, power consumption,
and failure-rates. The allocation scheme, which defines a
mapping relation from software components to computational
nodes, guarantees that the extra-functional properties such
as application reliability and timing requirements are met.
Furthermore, it takes the optimization of power consumption
as its objective in the allocation process.
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Fig. 1: System Model.

In this work, we target AUTOSAR-based systems due
to the increasing popularity of the specification standard in
the automotive industry, and the challenges and opportuni-
ties that automotive industry is facing especially in resource
optimization and dependability of automotive systems. Note
that our approach can also be applied on different domains
of distributed embedded systems with a slight change in the
application modeling.

A. Software Application Model
In AUTOSAR-based systems, a software application is

developed using AUTOSAR application software components
C that consist of one or more runnables Rc [20]. In this
notation, Rci refers to the set of runnables that are co-hosted
in the component Ci.

Definition 1 (Software Application): We define an AU-
TOSAR software application ζ as a Digraph (acyclic directed
graph) 〈Vr, E〉 of runnable nodes Vr, where 〈u, v〉 ∈ E is a
set of directed links from u to v, which denote the logical



flow of the application, and u, v ∈ Vr. The runnable is a tuple
〈e, p〉, where

⋃N
i=1 ei is a set of execution times, p is a periodic

activation, and ei refers to the execution time of the runnable
r on the node mi.

The following assumptions are made in our proposed soft-
ware allocation method:
• Allocatable software components are considered atomic,

and therefore are allocated only on a single node,
whereas, composite components need to be flattened first
into their respective constituents of atomic components.

• Runnables are activated either periodically by clock
events, or by predecessor runnables.

• Three cases of mapping runnables to tasks are considered:
i) a runnable is mapped to a single task, ii) runnables
that are collocated on the same software component are
mapped to a single task, iii) runnables with the same
activation periods and with triggering dependency are
mapped to a single task. For more information, please
see the AUTOSAR documentation [21].

• We assume that the computation nodes have the same
types of interfaces. If this is not the case, software com-
ponents can be constrained to nodes that the component
supports.

B. Fault-tolerant Software Application Model
Redundancy is the most common way to increase the

reliability of an application. It can be implemented according
to different schemes, such as hot stand-by, cold stand-by,
etc [22]. In this work the details of the redundancy scheme
are abstracted away under the following assumptions: i) Hot
stand-by redundancy technique is used for the replacement of
failed components, which are identical and are allocated on
different nodes, ii) software components need to be replicated
if the application’s reliability requirement is not met without
replication, otherwise they are not replicated, iii) the time
needed to detect and replace a faulty component is considered
negligible and will not be taken into account in the response
time analysis of tasks and delay calculation of cause-effect
chains, iv) Because of its simplicity, the mechanism for detec-
tion and replacement of faulty components will be considered
fault-free, and therefore will not be included in the reliability
calculations.

We denote the kth replica of a software component c as
ck, with 1 ≤ k ≤ K; where K is the maximum number of
replicas allowed for each application component.

C. Platform Model
The application is deployed on a network of heterogeneous

computing nodes that are connected via a reliable commu-
nication network, the CAN bus. The computation node is
specified as a 3-tuple 〈hz, λ, p〉, respectively, refer to the
processor frequency, failure-rate and power consumption of
a computation node. Due to the heterogeneity assumption of
the processors, an application maybe be deployed on nodes
with higher processor frequencies, and therefore fewer number
of nodes in order to minimize the total power consumption
of the system. However, due to the application reliability
requirement, the application could be deployed differently, and
with more resources. The CAN bus is considered reliable, for
instance through redundancy. Therefore, its exclusion from the

overall calculation of the system’s reliability does not impact
our proposed software allocation.

IV. MODELING EXTRA-FUNCTIONAL PROPERTIES

In this section, we discuss the timing, application reliability,
and power consumption models used throughout the paper.

A. Power Consumption Model
Power consumption refers to the energy usage of electronic

components in an integrated circuit, e.g., processor, memory,
I/O devices, etc., per time unit. Depending on the nature
of the integrated circuit and intended use, there exist low-
level and high-level models of power and energy consumption
estimation techniques. The low-level models, for instance in
CMOS-based integrated circuits estimate power consumption
via the power consumption of flip-flops and combinatorial
gates [23][24], and they are frequently used in the design
of power-efficient electronic circuits designs. The high-level
models apply dynamic profiling of computer components, e.g.,
CPU, memory, I/O devices, etc., to estimate power consump-
tion of the computer system, and they are primarily used in
energy management techniques, e.g., in dynamic Voltage and
Frequency Scaling (DVFS) [25].

However, the previously mentioned power estimation tech-
niques have limitations especially for applications in the early
stages of system design. Their limitations are as follows: i) the
lack of complete and accurate information of electrical specifi-
cation of integrated circuits makes the use of low-level power
estimation methods difficult, and ii) the dynamic profiling of
high-level techniques requires runtime mechanisms, such as
performance counter monitor, which is not applicable in our
case. Instead, in this work, we employ a different approach that
is based on processor load (or Processor Utilization) to esti-
mate the average power consumption of a computational node.
Specifically, we use the linear polynomial model proposed by
Fan et al. [26], which is shown in (1). The mode states that
the power consumption of a node is directly proportional to its
load, and is inductively formulated from experimental results:

p(u) = Pidle + (Pbusy − Pidle) ∗ u, (1)

where u is the utilization (or load) of a computation node,
pidle and pbusy , respectively, refer to the power consumption of
a node measured at minimum and maximum processor loads.
Such measurements can be obtained by running performance
benchmark suits, e.g., MiBench [27], AutoBench [28], etc.

B. Software Application Reliability
Application reliability Ra refers to the probability that a

software application functions correctly by the time t, or
within the time interval [0, t] [29]. We assume that applications
are free from design errors and, therefore, an application
failure can be caused only by failures from the computational
nodes in which the application is deployed. The failure rate
of a node over time is represented by λ(t), and the reliability
of a node is represented by the exponential density function
over constant failure rate λe−λt, where λ = λ(t).

In a system without replication, the failure of any arbitrary
node that hosts the software application renders the whole ap-
plication faulty. Reliability calculation is then straightforward,
using a series-parallel model: Ra =

∏
m∈M rm. However,
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with the introduction of replication, to enable fault tolerance,
the reliability calculation is not straightforward due to the
replicas of the same software component allocated to different
nodes that result in functional interdependencies between
nodes. A software application functions correctly if each
software component is executed at least by one non-faulty
node, and will be faulty otherwise (i.e., if there are one or more
software components that are allocated only to faulty nodes
and thus these components cannot be executed correctly).

To calculate the reliability in such cases, we use state
enumeration, which is one of the reliability-preserving meth-
ods that are used to compute the reliability of a system
with dependent components (or subsystems) [30]. The state
enumeration method allows the exploration of all possible
states of a system in the probability space PS. Our goal is
to differentiate between the states in which the application
functions, denoted by Functions(s), and the states in which
the application fails, denoted by Fails(s). The application
reliability Ra is then calculated as follows:

Ra =
∑

s∈PS|Functions(s)

ps = 1−
∑

s∈PS|Fails(s)

ps (2)

To obtain ps, that means the probability that the application
is in state s ∈ PS, we define the Boolean variable zm ∈ {0, 1}
to indicate whether a node m ∈ M is either faulty, zm = 0,
or not, zm = 1. Then, the probability is calculated using (3).

ps =
∏
m∈M

((zm ∗ rm) + (1− zm) ∗ (1− rm)), (3)

where rm and 1− rm are a computation node’s reliability and
probability of failure, respectively.

C. The Timing Model
The software application can be considered as a set of cause-

effect chains, which are directed paths in the application graph,
e.g., activation of a cruise control system by pressing a rotary-
wheel on the dashboard, slowing down of a car by pressing
the brake pedal, etc. Each cause-effect chain is annotated with
an end-to-end timing requirement that specifies the maximum
time between a stimulus and the corresponding response of
a chain. A cause-effect chain can be hosted on a single
node or multiple nodes as illustrated in Figure 2a and Figure
2b, respectively. Moreover, it can be activated by a single
activation pattern, or multiple activation patterns (multirate).

The calculation of data-propagation delays in multirate
software applications is not trivial due to the oversampling
and undersampling effects, caused by the different activation

patterns. Consequently, there are different delay semantics,
which differ depending on the timed paths through which
the data is propagated from the input to the output of the
chains [13]. In this work, we focus on the age and reaction
delays, which are the most widely used delay semantics in
the automotive embedded systems. The two delays in a cause-
effect chain that is distributed over two nodes are demonstrated
in Figure 2c. The tasks t1 and t2 execute on one node, whereas
task t3 executes on the second node. Note that t2 communi-
cates with t3 via a network message, that is not shown in
the figure for simplicity. The red inverted arrows in Figure 2c
represent the arrival of events at the input of the chain, whereas
the dashed-curve arrows represent the timed paths through
which the data propagates from the input to the output of the
chain. The age delay is the time elapsed between a stimulus
and its corresponding latest non-overwritten response, i.e.,
between the 2nd instance of t1 and the 5th instance of t3. This
delay is frequently used in the control systems applications
where freshness of data is paramount. For example, the torque
applied to turn the wheels must correspond to the position of
the steering wheel and must be time bound. The reaction delay
is the earliest time the system takes to respond to a stimulus
that “just missed” the read access at the input of the chain.
Assume that an event occurs just after the start of execution
of the 1st instance of t1. The data corresponding to this event
is not read by the current instance of t1. In fact, the data will
be read by the 2nd instance of t1. The earliest effect of this
event at the output of the chain will appear at the 4th instance
of t3, which represents the reaction delay. This delay is useful
in body-electronics domain where first reaction to events is
important, e.g., in the button-to-reaction applications. We refer
the reader to [13] for the formal semantics of the two delays
used in this paper.

V. SOFTWARE ALLOCATION PROBLEM

In this section, we show our ILP model and the software-
to-hardware allocation of a fault-tolerant application on het-
erogeneous nodes. Equation (4) defines the objective function
for power consumption, with constraints on timing (5-6) and
application reliability (7). The timing constraints consist of
meeting the individual tasks deadlines Deadline as well as
the end-to-end timing requirements of cause-effect chains
E2eReq (6) in the distributed system. The reliability constraint
ensures that a feasible solution meets the application reliability



requirement RelReq.

min
x∈X

P (x) (4)

Subjected to:
ResponseT ime(x) ≤ Deadline (5)

Delay(x) ≤ E2eReq (6)
Reliability(x) ≤ RelReq, (7)

where x is a 3-dimensional binary matrix that represents a
feasible solution, xkij refers to the allocation of a software
component cki on node mj , ck refers to the kth replica of c,
and X is the search space of the function P .

In order to demonstrate our ILP optimization, we use
a simple example throughout the section, which consist of
software application and platform specifications: the software
application is constructed from the set of components C =
{c1, c2, c3, c4, c5}, with maximum number of replicas K = 2.
The application is deployed on nodes M = {m1,m2,m3}.
A detailed specification of the components and the nodes are
shown in Table I and Table 3, respectively. A feasible solution
x to the problem is shown in Figure 4.

C R = [ execution time− (em1, em2, em3), period]

c1 [(0.030, 0.060, 0.090), 1], [(0.041, 0.081, 0.122), 2]
[(0.083, 0.167, 0.250), 5], [(0.310, 0.620, 0.930), 10]

c2 [(0.310, 0.620, 0.930), 10], [(0.310, 0.620, 0.930) 10]
[(0.310, 0.620, 0.930), 10], [(0.310, 0.620, 0.930), 10]

c3 [(0.310, 0.620, 0.930), 10], [(0.291, 0.583, 0.874), 20]
[(0.291, 0.583, 0.874), 20], [(0.291, 0.583, 0.874), 20]

c4 [(0.291, 0.583, 0.874), 20], [(0.291, 0.583, 0.874), 20]
[(0.291, 0.583, 0.874), 20], [(0.093, 0.186, 0.279), 50]

c5 [(0.420, 0.841, 1.261), 100], [(0.420, 0.841, 1.261), 100]
[(0.420, 0.841, 1.261), 100], [(0.420, 0.841, 1.261), 100]

TABLE I: Specification of Components.

M [Pidle, Pmax, λ]

m1 [50.0, 140.0, 1.0E-3]
m2 [10.0, 100.0, 1.0E-4]
m3 [10.0, 140.0, 1 .0E-5]

Fig. 3: Specification of Nodes.
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Fig. 4: A Feasible Solu-
tion x for K=2.

In the subsequent subsections, we explain the Integer Linear
model, including the objective function and the constraints.

A. Power Consumption Optimization
The ILP model of the objective function is shown in (8-11).

For a feasible solution x, the power consumption Ptotal(x)
is computed as the sum of the average power consumption
of individual nodes Pm(x). In order to compute the average
power consumption of a node, first the node utilization is
calculated using (10), which is the sum of the components’
utilization (including replicas) that are allocated to that node.
A component’s utilization is obtained from the sum of sum

of the utilization of the tasks that realize the component’s
functionality as shown in (11).

Ptotal(x) =
∑

pmj
(x) (8)

pmj
(x) = p(umj

(x)) (9)

umj
(x) =

∑
k

∑
i

uci ∗ xkij (10)

uc =
∑
τ∈Tc

Exec(τmj
)

Period(τ)
(11)

Table II illustrates the power consumption calculation of the
software allocation example for the feasible solution (4).

M C Uc(x) Pm(x)

m1 [c12] [0.046, 0.017] 61.155W
m2 [c11, c22, c13, c14, c15] [0.196, 0.248, 0.149, 114.648W

0.091, 0.034]
m3 [c21, c23, c24, c25] [0.224, 0.137, 0.050] 131.731W

Total Power Consumption 307.534W

TABLE II: Average and Total Power Consumption of Nodes.

In the ideal case, the minimum power consumption of the
distributed system is achieved by centralizing the application
on fewer nodes. However, due to the timing and reliability
constraints, which require additional computing resources, the
optimal solution could result in more used nodes.

B. Software Application Reliability
An optimal solution x must fulfill the application reli-

ability requirement RelReq, which is usually in the range
[0.999, 0.999999] for safety-critical applications. The ILP for-
mulation of the application reliability model, which is shown
in (2), is shown in (12).

Reliability(x) =
∑
s∈PS

[f(x, s)] ∗ ps, (12)

where [f(x, s)] is an Iverson function that returns 0 if
the proposition that the application functions in state s is
true. Otherwise it returns 1 if the proposition that application
functions in state s is false (or the application fails in state s
is true). The application functions only if all of its constituent
software components functions and fails if at least of one of its
components fails as formulated in (13), via the floor function.
A software component functions if there exists a node mj that
hosts the component’s replica xkij = 1 and at the same time
the node functions sj = 1, which is formulated in (14) via the
ceiling function. The floor and ceiling functions are piecewise
linear functions, and are linearized by the ILP solver.

f(x, s) =

⌊∑
i fci(x, s)

N

⌋
=

{
1 if application functions
0 if application fails

(13)

fci(x, s) =

⌈∑
k

∑
j x

k
ij ∗ sj

K

⌉
=

{
1 if ci functions
0 if ci fails

(14)



Table III demonstrates the application reliability calculation
for the feasible solution x (4).

s ps [fci(x), i = 1, 2, 3, 4] fa(x)

000 0.0000000000 [0, 0, 0, 0] 0
001 0.0000000099 [0, 0, 0, 1] 0
010 0.0000000099 [1, 1, 1, 1] 1
011 0.0000999800 [1, 1, 1, 1] 1
100 0.0000000099 [1, 1, 1, 0] 0
101 0.0000999800 [1, 1, 1, 0] 0
110 0.0000999800 [1, 1, 1, 1] 1
111 0.9997000299 [1, 1, 1, 1] 1

TABLE III: Application Reliability Calculation using State
Enumeration Method, R(x) = 0.9998999998.

In the case that the application reliability could be met with
less replications, there is no need to keep unnecessary com-
ponent replicas in the system. To this end, our optimization
algorithm imposes soft constraints for k > 1, which implies
that replicas allocated on the same node are reduced to a single
replica, essentially discarding the extra replicas by design,
since the reliability does not improve following additional
replicas on the same node, assuming our fault model.

C. Timing Constraints

The timing constraints ensure that the response times of the
tasks realizing the distributed application meet their deadlines.
Furthermore, they ensure that the cause-effect chains satisfy
their respective end-to-end timing requirements, for all possi-
ble failure-modes of the system. The constraints are formulated
as logical constraints in the ILP problem, as explained in the
rest of this subsection.

Tasks Deadline Constraints: The following pseudo-code
illustrates how the ILP logical constraints of the tasks dead-
lines are prepared. It explores all possible sets of components
combinations (or partitions) that can potentially be allocated
to a node. Only the sets that are schedulable are asserted as
constraints of the optimization problem, which is explained as
follows: Line (1) identifies the power set of the components
Par, followed by synthesis of tasks models of each partition.
Line (2) checks the tasks models’ schedulability and returns a
matrix MT that indicates schedulability, which is true if the
task model is schedulable and false if not schedulable. Line (3)
generates an ILP partition expression E for each node, then
Line (4-6) asserts the expressions to hold in the optimization
for the partitions that are schedulable.

Algorithm 1 Generate Task Partitions Constraints.

Input: C,M
Ensure: Optimization Satisfies Tasks Deadlines, D

1: Par ⇐ 2C

2: MT ⇐ isSched(Par,M)
3: E ⇐MilpParExp(x)
4: for all m ∈M do
5: assertOR(MT

m, Em, true)
6: end for

In general, the number of potential logical constraints grow
exponentially, which is in 2|C| ∗ |M |. However, the effective
logical constraints that are eventually asserted are much lower,
for two main reasons: 1) a portion of the tasks models are not
schedulable, therefore eliminated from the power set, due to
CPU utilization exceeding the bound, hence not satisfying the
response time of either task in the partition; ii) a task model
can be a super set of other tasks model. In this case, only the
super model is checked, hence reducing pre-optimization time
and logical constraints asserted in the solver.

Cause-effect Chains Constraints: These constraints ensure
that the cause-effect chains Γ meet their respective end-to-
end requirements E2eReq. Similar to the previous constraints,
the cause-effect chain constraints are logical assertions, which
must be fulfilled by the optimal solution. The following
pseudo-code illustrates how the ILP logical assertions are
synthesized from the input models. The pseudo-code contains
three main parts: i) the first part in Line (2) identifies the
different deployment cases of the cause-effect chains over a
set of nodes M , ii) the second part in Line (3-5), checks the
schedulability of a deployable cause-effect chain φ against
the reaction or age delays [13] and returns its schedulability
matrix MΓ, with values true if schedulable and false if not
schedulable. For a schedulable φ, Line (5) constructs a con-
junctive ILP expression that indicates the existence of at least
one schedulable φ that satisfies the end-to-end requirement
imposed on γ, and iii) the last part in Line (7) asserts the ILP
logical OR expressions for each γ.

Algorithm 2 Generate Constraints on the Cause-effect Chains.

Require: Γ,M
Ensure: Optimization Satisfies End-to-end Requirements of

Cause-effect Chains
1: for all γ ∈ Γ do
2: Φ← Unique(CTΓ

r ,M)
3: for all φ ∈ Φ do
4: MΓ ⇐ isSched(φ,M)
5: depExp⇐ depExp ∨ sched(MΓ, true)
6: end for
7: assert(depExp)
8: end for

VI. EVALUATION

In this section, we evaluate the proposed approach using
synthesized automotive applications that conform to the auto-
motive benchmark proposed by Kramel et al. [14]. The num-
ber of runnables, timing specification and activation patterns
within the cause-effect chains are also selected according to
the benchmark. In order to show the scalability of our approach
and to assess the scope of its applicability in practice, in
some cases, we use higher specifications standard than what
is indicated in the benchmark, e.g., the maximum number of
activation patterns is extended from three to four.

In the rest of the section, we describe the setup and method
of evaluation, followed by discussion of the evaluation results.

A. Evaluation Setup
The evaluation setup consists of three hardware platforms

with different computing capacities, i.e., processing speed and
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Fig. 5: Allocation of Applications on Heterogeneous Nodes.

memory size as shown in Table IV. The evaluation on different
platforms can be used as performance indicator and also
to identify performance bottlenecks in the model. HP Elite-
Book and Lenovo 20378 are personal computers with core-
i5 and core-i7 processors, respectively, whereas PowerEdge
is a workstation with much higher processing and memory
specification than the personal computers.

Hardware Model Pro. Model #P
ro

.

#C
or

e

C
ac

he

R
A

M

1HP EliteBook 3Core i5, 2.2GHz 1 2 3M 8G
Lenovo 20378 4Core i7, 2.6GHz 1 4 6M 16G
2PowerEdge 5Xeon(R), 2.4GHz 24 6 15M 256G

TABLE IV: Summary of the Hardware Specifications.
1HP EliteBook 840 G2, 2PowerEdge R730 Rack Server
3Intel Core i7-4720HQ @ 2.60GHz, 4Intel Core i7-4720HQ @ 2.60GHz
5Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz

1) Software Application Specification: In order to evaluate
the proposed approach on different ranges of applications, we
automatically generate synthetic examples that comply with
the automotive benchmark [14]. The examples denote sim-
ple to complex automotive functions such as reverse-parking
assistance system and engine control system. For simplicity,
we identify three classes of applications with different sizes
and complexity, shown as tuple (c, r, t, g), respectively for the
number of software components, runnables, tasks, and cause-
effect chains. Table V shows the range of values used in the
applications for evaluation.

Parameter Spec.-I spec.-II spec.-III

components, c ≤ 10 ≤ 15 > 15
runnables, r ≤ 50 ≤ 100 > 100
tasks, t ≤ 30 ≤ 60 > 60
cause-effect chains, g ≤ 30 ≤ 40 > 60

activation-pattern [2, 3, 4]

share of activation-patterns [0.7, 0.2, 0.1]

TABLE V: Specification of the Applications for Evaluation.

2) Platform Specification: The specification of nodes can
be obtained from simulation, vendor product specification and
experience. Figure VI shows the range of values that are used

in the nodes’ specification. In the experiment, the values are
randomly generated while respecting the benchmark.

Parameter Range

nodes 4− 10
power consumption (Watt), p 10− 200
failure-rate (/Mhr), λ 104 − 10−2

speed factor, hz 0.0− 1.0

TABLE VI: Range of Values for the Specification of Nodes.

3) Method of Evaluation: We conduct three experiments
that assess the proposed approach for scalability in terms of
allocation time. The allocation time is defined as the time
required to prepare and solve the allocation problem using
the proposed ILP method. Furthermore, we show resource
efficiency in terms of saving nodes (i.e., using smaller number
of nodes). The experiments consist of: i) varying the size
of applications in order to observe the effect of increasing
components, runnables and tasks in the system, ii) varying
the complexity of applications in order to observe the effect
of cause-effect chains in the system, and iii) varying the
replications. The experiments are discussed in detail in the
next subsection.

A preliminary analysis of the evaluation indicates a suc-
cessful termination of the allocation for Spec-I&II of the
applications. Whereas for Spec-III, the allocation problem is
intractable. In fact, it took days on the PowerEdge machine and
many times it did not terminate successfully. Therefore, the
experimental results that are shown in this paper are conducted
on the Spec-I&II classes.

B. Varying the Size of Application

This refers to increasing the number of software compo-
nents, as well as runnables, tasks, and cause-effect chains in
the system. Figure 6 shows the effect of increasing the size of
an application from (c4, r40, t19, g30) to (c10, r100, t57, g60)
on the allocation time and the number of nodes utilized. The
applications are allocated to a pool of 8 heterogeneous nodes
sharing a single network and with specifications shown in
Table VII. The specifications are generated randomly, with
uniform distribution, within the scope of Table VI.

The CPLEX solver returns an optimal solution for the
application (c8, r80, t44, g30) within 6.06 sec. The allocation
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Node m1 m2 m3 m4 m5 m6 m7 m8

Pmin 10 40 30 20 30 40 20 10
Pmax 80 120 120 170 140 130 140 110
λ 10−3 10−3 10−4 10−5 10−6 10−2 10−6 10−4

TABLE VII: Specification of Nodes.

time increased sharply to 30.3 sec and 129.4 sec respectively
for 9 and 10 components. Even if not indicated in this chart,
the solver, the solver returns an optimal solution within 45
min for components reaching 15 on the PowerEdge machine
and OutOfMemory error on the Lenovo and HP machines.
Figure 5a and Figure 5b show the utilization and power con-
sumption on each node for the different application sizes. The
optimal allocation, in the general case, favor nodes with higher
processor speed and lower power consumption specifications.

C. Varying the Number of Cause-effect Chains

In order to observe the effect of increasing the cause-effect
chains on the allocation time, we vary the number of chains
in the application from 10 to 60, which is consistent with the
benchmark [14]. The share of activation patterns also increases
proportionally with the ratio 1 : [0.7, 0.2, 0.1], respectively, for
two, three, and four activation patterns. For instance, out of
10 cause-effect chains, there are 7 chains (with two activation
patterns), 3 chains (with three activation patterns), and 1 chain
(with four activation patterns). The experiment is conducted
on two cases of schedulability analysis, namely response time
analysis (RTA) and utilization bound (UB), and their result is
shown in Figure 7 for increasing number of chains.

The figures in the data table show an exponential growth
of allocation time whenever the cause-effect chains are in-
creased linearly for a specific application, in both cases of
schedulability analysis. In the case of RTA, the overhead
in the pre-optimization is higher than the overhead in the
optimization for 50 or less chains. Whereas in the UB case,
the computational time of pre-optimization is almost always
less than the computational time of the optimization. The
results are consistent with our expectation that the RTA
computation, in the preparation of the timing assertions, is
expensive, albeit provides schedulable tasks allocation based
on the fixed-priority scheduling policy. In contrast, the UB
computation time is relatively low; however, the search space
gets larger due to more and more feasible tasks partitioning
and chains fulfilling the timing constraints. As a result, the

10 20 30 40 50 60

RTA 8.148 9.223 49.392 77.170 196.228346.228

RTA, Pre-opt. 170 123 142 159 175 193

UB 8.184 9.913 43.006 151.626311.606615.216

UB, Pre-opt. 22 17 93 77 129 182
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Fig. 7: Effect of Increasing Cause-effect Chains (under RTA
and UB) on the Allocation Time.

optimization time in the case of UB is usually higher as
compared to the case of RTA. Therefore, for applications with
chains not more than 40 and naive scheduling assumption
using UB, the experiments favor the UB assumption. Whereas,
the allocation with the RTA assumption should be selected
for applications with exact scheduling requirements. Note, the
scalability of this experiment should be seen in conjunction
with the experiment discussed in the previous subsection.

D. Varying Replications
In this experiment, we evaluate the allocation time of the

applications with the increase in the number of replications.
For the applications specification shown in Figure 8, we vary
the replications from 1 to 4. The allocation in all applications
took not more than 10 sec for replications 1 and 2. For Spec-I
with replication 3 and 4, the allocation time went up close
to 1 min. For Spec-III with replication 3, the allocation time
went up rapidly to 30 min, and took extremely large time for
replication 4 which is also the case for Application-II.

Figure 8b shows the effect of shared constraints on the
overhead of replications during the pre-optimization and op-
timization phases of the allocation. In the pre-optimization
phase, the allocation time was stable for the increased size
of applications. This is due to the fixed constraints regardless
of the replications. In contrast, the allocation time increases
during optimization as the constraints are applied for the
various combination of task partitions, cause-effect chains, and
reliability states generated as the result of replications.

VII. RELATED WORK

In a heterogeneous distributed system where computing
nodes and communications links could have various failure
rates, a reliability-aware allocation of tasks to nodes, and using
links with the lowest failure rates can noticeably improve the
system reliability [31][32][33][34]. Interleaving real-time con-
straints into the problem adds more complexity to reliability-
aware task allocation in distributed systems [35]. As opposed
to [9][5], we assume that software applications are multirate,
which increase the difficulty of software allocation due the
complexity of their timing analysis, and increased search space
as the result of increasing timed paths of cause-effect chains.
Furthermore, we assume a fault-tolerant system model.



1 2 3 4

c4 0.587 0.554 50.446 58.961

c6 0.94026244 0.79283071 157.272824

c8 5.32549774 7.42229134 1618.58824

0
200
400
600
800
1000
1200
1400
1600
1800

A
ll
o

c
a
ti

o
n

 T
im

e
 (

s
e
c

o
n

d
)

Replications

c4

c6

c8

(a) Effect on Allocation Time.

1 2 3 4

Pre-optimization 0.194 0.102 0.294 0.168

Optimization 0.587 0.554 50.446 58.961

0

10

20

30

40

50

60

70

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

O
p

ti
m

iz
a

ti
o

n
 (

s
e

c
o

n
d

)

P
re

-o
p

ti
m

iz
a

ti
o

n
 

(m
il
li
 s

e
c
o

n
d

)

Replications

Pre-
optimization

(b) Effect on Pre-optimization.

Fig. 8: Effect of Varying the Component Replications on the Allocation Time.

Although improving reliability of the system using a
reliability-aware task allocation does not impose extra hard-
ware/software cost, in reliability-based design approach, re-
dundancy (or replication) of software or hardware components
is frequently applied to improve reliability. In such systems not
only optimal allocation of software components (or replicas)
should be taken into account but also the cardinality of
the replicas should be limited for improved efficiency while
meeting the desired reliability requirement. The integration of
these two approaches (i.e., reliability-aware task allocation and
application redundancy) is a promising technique to deal with
high criticality of the system to fulfill the required reliability.
For example, [36] proposes a heuristic algorithm to maximize
reliability of a distributed system using task replication while
at the same time minimizing the makespan of the given
task set. Furthermore, in systems with replication, it uses the
Minimal Cut Sets method, which is an approximate algorithm,
to calculate reliability of a system. In contrast, we apply an
exact method based on state enumeration, which is applicable
to the problem size assumed in this work.

In our problem, power consumption is the other criterion
of the optimization problem. Several research work exist on
improving power consumption in real-time distributed sys-
tems. The research work [37] shows a survey of different
methods on energy-aware scheduling of real-time systems,
which categorizes the study into two major groups: i) Dynamic
Voltage Scaling (DVS) [38][39], and ii) task consolidation to
minimize the number of used computing and communication
units [40], which is the approach followed in our work.

In the context of automotive systems, there are few works
considering the reliability of a distributed system subject to
real-time requirements of the automotive applications [41][42].
There are also other works discussing the allocation of soft-
ware components onto nodes of a distributed real-time systems
that consider other types of constraints other than reliability,
for example, i) [43] which considers computation, commu-
nication and memory resources, and ii) [15] which proposes
a genetic algorithm for a multi-criteria allocation of software
components onto heterogeneous nodes including CPUs, GPUs,
and FPGAs. Our approach also considers a hetrogeneous
platform, i.e., nodes with different power consumption, failure-
rate, and processor speed. In this work, we consider only the
processor time; however, it can easily be extended to take

into account different types of memory consumption that the
software applications require.

VIII. CONCLUSIONS AND FUTURE WORK

Software to hardware allocation plays an important role in
the development of distributed and safety-critical embedded
systems. Effective software allocation ensures that high-level
software requirements such as timing and reliability are satis-
fied, and design and hardware constraints are met after allo-
cation. In fault-tolerant multirate systems, finding an optimal
allocation of a distributed software application is challenging,
mainly due to the complexity of cause-effect chains’ timing
analysis, as well as the calculation of software application
reliability. The timing analysis is complex due to oversampling
and undersampling effects, caused by the different sampling
rates, and the complexity of the reliability calculation is caused
by the interdependency of the computation nodes due to
replicas. Consequently, the formulation of the problem, to find
an optimal solution, becomes non trivial.

In this work, we propose an ILP model of the software
allocation problem for fault-tolerant multirate systems. The
objective function of the optimization problem is minimization
of power consumption with the aim of satisfying timing and
reliability requirements, and meeting design and hardware
constraints. The optimization problem involves linearization
of the reliability model with piecewise functions, formulating
the timing model using logical constraints, and limiting the
number of replicas that can be used in the allocation. Further-
more, the allocation consider two cases of timing analysis:
response time analysis and utilization bound.

Our approach is evaluated on synthetic automotive applica-
tions that are developed using the AUTOSAR standard, based
on a real-world automotive benchmark. Although we consider
automotive applications for the evaluation, the proposed ap-
proach is equally applicable to resource-constrained embed-
ded systems, especially with timing, power and reliability
requirements, in any other domain that are developed using
the principles of model-based development and component-
based software development. Our approach effectively applies
to medium-sized automotive applications, but does not scale
for complex applications. Considering similar system models,
we plan to extend the current work with heuristic methods,
e.g., genetic algorithms, simulated annealing, particle swarm
optimization, etc., to handle large systems.
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[15] I. Švogor, I. Crnkovic, and N. Vrcek, “An Extended Model for Multi-
Criteria Software Component Allocation on a Heterogeneous Embedded
Platform,” Journal of computing and information technology, vol. 21,
no. 4, pp. 211–222, 2014.

[16] N. Naumann, “AUTOSAR Runtime Environment and Virtual Function
Bus,” Hasso-Plattner-Institut, Tech. Rep.

[17] AUTOSAR, “Specification of Timing Extensions,” AUTOSAR, Tech.
Rep., 2017. [Online]. Available: https://www.autosar.org/fileadmin/user
upload/standards/classic/4-3/AUTOSAR TPS TimingExtensions.pdf

[18] S. d. C. Kung-Kiu Lau, What are Software Components? World Sci-
entific Publishing Company (June 29, 2017), 2017. [Online]. Available:
https://www.worldscientific.com/doi/abs/10.1142/9789813221888 0002

[19] I. Crnkovic, M. Larsson, and I. Ebrary, “Building Reliable Component-
based Software Systems,” pp. xxxvii, 413 p., 2002.
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