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Abstract. Concurrency control faults may lead to unwanted interleavings, and
breach data consistency in distributed transaction systems. However, due to the
unpredictable delays between sites, detecting concurrency control faults in dis-
tributed transaction systems is difficult. In this paper, we propose a methodology,
relying on model-based testing and mutation testing, for designing test cases in
order to detect such faults. The generated test inputs are designated delays be-
tween distributed operations, while the outputs are the occurrence of unwanted
interleavings that are consequences of the concurrency control faults. We mutate
the distributed transaction specification with common concurrency control faults,
and model them as UPPAAL timed automata, in which designated delays are
encoded as stopwatches. Test cases are generated via reachability analysis using
UPPAAL Model Checker, and are selected to form an effective test suite. Our
methodology can reduce redundant test cases, and find the appropriate delays to
detect concurrency control faults effectively.

1 Introduction

In many modern software systems, data are partitioned in several nodes across the net-
work, and accessed by concurrent distributed transactions with read and write opera-
tions. Without proper control, concurrent transactions may interleave and access data
arbitrarily, which may lead to inconsistent data. For instance, in a distributed automa-
tion system, whose configuration data are partitioned on different sites, a transaction
may update the configuration data D1 on site S1 and data D2 on site S2, based on their
current values. If another transaction modifies D2 exactly before the former’s update,
the configurations may end up inconsistent. To avoid this, the transaction manager of-
ten ensures the isolation property, that is, the absence of a specified set of transaction
interleavings that cause data inconsistency [1].

To achieve this, lock-based Concurrency Control (CC) techniques are often applied
by the transaction manager to prevent unwanted interleavings [4]. Such type of CC
regulates transactions to acquire and release locks on data at specific times, and resolves
the conflict when two transactions request the same lock simultaneously. In the previous
example, one proper way to guarantee isolation could be to lock both D1 and D2 until
the modification is completed, so that no other transactions can interfere. Consequently,
every transaction behaves to its caller as if it was the only one executed in the system.



Fig. 1. Observation of isolation violation depending on delays

In this paper, we focus on detecting CC faults in a distributed transaction system
with lock-based concurrency control. CC faults are commonly found and notoriously
challenging to detect in software systems [25]. Common CC faults include, for instance,
misplaced locks, or erroneous time of releasing locks [17, 23]. The consequence could
be the violation of the isolation requirements, that is, the occurrence of undesired inter-
leavings of the concurrent transactions. To detect the CC faults, the implemented system
are usually tested by executing the distributed transactions, and monitoring the occur-
rence of the undesired interleavings in the transaction logs. A fault is detected when
such undesired interleavings are observed. Due to the various communication delays
between different nodes, however, such undesired interleavings may not be observed,
even in the presence of CC faults. In order to illustrate the impact of delays, let us con-
sider two transactions, T0 and T1, from the previous example. T0 updates D1 and D2
by reading and write D1 on site S1, and after some delay, followed by reading and write
D2 on S2. T1 reads D2 and then modifies its value. The isolation property forbids the
following sequence of operations: T0 reads D2, T1 reads D2, T0 writes D2, T1 writes
D2, because T1 bases its write on an intermediate value of D2. While a proper CC al-
gorithm would be to lock both D1 and D2 during the execution of T0, we assume that
the developer has made a mistake by forgetting to lock D2. However, isolation violation
may not be observed with this fault. As shown in Fig. 1a, the unwanted interleavings
does occur that T1 reads D2 before the final modification by T0, and can be observed
by the tester. However, if the delay is shorter, as shown in Fig. 1b, the unwanted inter-
leavings do not occur, and thus the fault is not exposed to the tester.

Traditionally, a common testing technique is to insert random delays between the
operations of the transactions, and test the violation of isolation [12,16]. However, even
though a large set of various delays can be used as test inputs, it is still difficult to ensure
the coverage of the unwanted interleavings. Finding a relatively small set of test cases,
which is manageable yet able to expose as many unwanted interleavings as possible,
remains challenging for detecting CC faults of distributed transactions.

To address this challenge, in this paper we propose a methodology for finding an
effective test suite that can expose the CC faults. The inputs of the test cases are desig-
nated delays between operations at design level, which can be used to configure the de-
lays in the implemented system in a controlled testing environment. Instead of randomly
chosen delay values, we propose techniques to generate a set of values for the inserted
delays as inputs, such that the CC faults can be exposed. The outputs are whether or not



the predefined unwanted interleavings that violate isolation have occurred, which can
be examined in the logs. The techniques central to this methodology are model-based
testing [26] and mutation testing [21]. We define a set of mutation operators, each al-
tering the transaction specification by introducing a common CC fault. For instance,
one mutant operator could change the specification by removing the locking of a data.
We model the transaction specification, as well as its mutants, as networks of UPPAAL
Timed Automata (TA) [24], in which the delays are encoded as stopwatches [8]. Test
cases including the designated delays are generated from the models via reachability
analysis.

The process of applying our methodology is listed as follows. (i) We specify the
work units consisting of the operations on the distributed data, the delays between these
operations, as well as the lock operations, in a high-level description language. In addi-
tion, we specify the requirements of desired isolation, which are the interleavings to be
prevented by CC. (ii) By extending a modeling framework for concurrent transactions
in our previous work [7], we model the distributed transaction system as a network
of UPPAAL TA, and formalize these isolation properties in Computational Tree Logic
(CTL) [9], which can be checked rigorously by the UPPAAL Model Checker (MC)
[24]. (iii) The specification in (i) is mutated by applying the mutation operators, based
on which we create a series of mutant TA models that model the common CC faults.
(iv) We generate diagnostic traces for each mutant model via reachability analysis and
obtain test cases from the traces, which are used to form an effective test suite that can
kill all the mutants with a minimal number of test cases.

The remainder of the paper is organized as follows. Section 2 recalls the background
knowledge of this paper, including model-based and mutation testing, UPPAAL TA and
the UPPAAL tools. Section 3 presents the details of our methodology. In Section 4, we
apply our methodology to a case study, followed by a comparison with related work in
Section 5. In Section 6, we conclude the paper and outline our future work.

2 Background

In this subsection, we present the background knowledge of this paper, that is, a brief
overview of model-based and mutation testing in Section 2.1, as well as UPPAAL timed
automata and the UPPAAL tools in Section 2.2.

2.1 Model-based Testing and Mutation Testing

Model-based testing [26,33] encompasses the processes and techniques to perform test-
ing based on behavioral or architectural models of the System Under Test (SUT). A
generic process of model-based testing consists of the following major steps. (1) Create
a model of the SUT. (2) Decide the test selection criteria to guide test generation. (3)
Define the high-level test case specifications. (4) Generate the test cases that satisfy the
test case specifications. (5) Run the generated test cases, manually or automatically.

Mutation testing [21] is a fault-based technique to provide criteria for selecting the
effective test cases. Mutants, which represent common faults, are created, upon which
the candidate test cases are executed. Combined with model-based testing, the mutants



Fig. 2. A network of UPPAAL TA
Fig. 3. An UPPAAL TA with
stopwatch

are also models generated from the original system model using pre-defined mutation
operators. A good test case should be able to distinguish the mutated behaviors from the
original behavior. An effective test suite, selected from the candidate test cases, should
be able to kill as many mutants as possible, with a minimal number of test cases.

2.2 UPPAAL Timed Automata and the UPPAAL Tools

In this paper we use Timed Automata (TA) [2] to model the distributed transaction sys-
tem. A Timed Automaton (TA) is a finite-state automaton extended with clock variables
with real-type values. These clock variables progress synchronously, and are used to
model the progress of time in a system. UPPAAL [24] is the state-of-art model checker
for verifying TA-based models of real-time systems.

Fig. 2 shows two TA, A1 and A2, in UPPAAL. A1 has two locations, L1 and L2,
and has defined a clock variable c to keep track of the elapsed time. An directed edge
connects these two locations, meaning the it is possible to transit from L1 and L2. When
a TA reaches a location, it can non-deterministically choose to delay at the same loca-
tion, or take a transition to another location following an edge. An invariant, which is a
propositional formula over clock variables, may be associated with a location to set an
upper-bound on the delay. In Fig. 2, the invariant c <= 10 on L1 indicates that A1 may
delay at L1 at most until c equals 10 time units. A guard, which is also a predicate of
variables, may be associated with an edge as the required condition to take the transi-
tion. In this example, the guard c > 5 ensures that the transition from L1 and L2 can be
taken only if the value of c is bigger than 5. During a transition, TA can take actions, as
associated with the edge, to update the values of the variables.

The automaton A1 and A2 form a network of TA via parallel composition (“||”).
The two TA can perform handshake synchronization via the channel chan. The “!”
denotes the sender of the signal in the synchronization, and the “?” denotes receiver. In
the example, A1 sends a signal via chan when it transits from L1 to L2. Meanwhile, A2
receives the signal and takes the transition from location L3 back to L3.

The requirements to be satisfied can be formalized in the UPPAAL query language,
which is a decidable subset of TCTL (Timed Computational Tree Logic) [24]. These
formalized requirements can then be verified exhaustively and automatically by the
UPPAAL model checker. In this paper we will use the following queries:

– A [ ] P : P always holds for all possible execution paths (invariance property).



– E <> P : There exists a path in which P eventually holds (reachability property).

P is a logic expression that may contain clock constraints, and logical operators
such as “and”, “or”, “not” and “imply”. In case an invariance property fails, UPPAAL
can provide a trace leading to the violation as a counter-example of the property. If a
reachability property is satisfied, UPPAAL also returns a trace that leads to the state
where P holds. Such traces contain the state transitions as well as the bounds of clock
variables in each state.

In this paper, we also use an extended version of UPPAAL TA, augmented with
stopwatches [8]. Stopwatches allow clocks to be stopped at locations, so that the values
of the clock variables do not progress. Fig. 3 shows an UPPAAL TA with stopwatch.
The invariant c2′ == 0 assigns the rate of the clock variable c2 to be 0. By doing this,
as long as automaton A2 stays at location L3, the value of c2 is never changed.

UPPAAL has been used for generating test cases [19]. The system under test is
modeled in UPPAAL TA, in which test inputs and outputs are encoded in the model.
By executing UPPAAL queries that formalize the testing goal, testers can utilize the
diagnostic traces returned by UPPAAL to form test sequences, which may consist of
synchronizations, discreet transitions and time delays.

3 A Model-based Testing Methodology for Isolation Violation

In this section we present our proposed methodology for testing isolation violation in
a distributed transaction system with lock-based CC. We first give an overview of our
methodology, after which we explain the major steps and techniques in details.

3.1 Overview

We assume that a distributed transaction is a sequence of atomic operations that may
access data located in different sites, and as a whole should satisfy data consistency re-
quirements. Among them, the isolation requirements claim the avoidance of a particular
set of interleavings of concurrency transactions. The transaction manager implements a
CC algorithm with locking and unlocking mechanisms over the distributed data parti-
tions. The delays between nodes, while their actual values unpredictable, are bounded
with maximum and minimum values, which is reasonable for many distributed systems,
such as automotive and factory automation systems. The maximum and minimum re-
sponse times of the operations on each data item is also known a priori. While the
system is tested, designated delays can be deliberately inserted between operations, and
the interleavings can be examined by checking the transaction logs.

Our model-based testing methodology consists of four major steps, which are pre-
sented in Fig. 4, and listed as follows:

1. Specify the work units with bounded delays, the CC operations, as well as the
isolation requirements, in a high-level description language.

2. Construct a network of UPPAAL timed automata for the work units as well as
the concurrency control algorithm. Formalize the specified isolation properties in
UPPAAL queries. Verify that the isolation properties are satisfied by the current
design, using UPPAAL MC.



Fig. 4. Our proposed methodology

3. Mutate the transaction specification using the mutation operators presented in Sec-
tion 3.4, and construct TA models with stopwatches for the mutants.

4. Generate an effective test suite from the mutant models.

The details of the steps are presented in the following subsections.

3.2 Step 1: Specification of Transactions and Isolation

Our methodology starts with the specification of the distributed transactions and the
isolation properties. We assume a high level language is selected, which is able to spec-
ify the sequence of operations in the work unit of the transaction, the nodes where the
data are located, the response times of the operations, as well as the lock and unlock
operations. The language can also specify the delay bounds between operations, which
is calculated by the designer based on the communication delays between nodes. For
instance, Listing 1.1 and 1.2 specify transaction T0 and T1, respectively, in a generic
exemplary high-level language. T0 updates configuration D1 and D2 on site S1 and S2,
respectively. T1 reads configuration D2, and then modifies it after a calculation based on
the read value. In this description language, “delay” specifies the bounded delay value
between operations, with the lower and upper bounds in brackets. “Read” and “write”
specify the data operations, while “calculate” specifies calculations in the client. The
minimum and maximum response time of the operations are specified in the brack-
ets as well. “On” specifies the sites. “Lock” and “unlock” specifies the CC operations.
“Begin” and “commit” specify the boundary of the transaction, respectively.

The isolation property is specified as the avoidance of a set of unwanted interleav-
ings. Such interleavings could be described as a sequence of operations, such as: T0
reads D2, T1 reads D2, T0 writes D2, T1 writes D2.



Listing 1.1. Specification of T0

begin
delay [1, 10]
lock D1 on S1
read D1 on S1 [1, 1]
delay [1, 10]
write D1 on S1 [1, 2]
delay [1, 8]
lock D2 on S2
read D2 on S2 [1, 1]
delay [1, 8]
write D2 on S2 [1, 2]
delay [1, 6]
unlock D1 on S1
unlock D2 on S2
commit

Listing 1.2. Specification of T1

begin
delay [1, 8]
lock D2 on S2
read D2 on S2 [1, 1]
delay [1, 8]
calculate [2, 3]
delay [1, 4]
write D2 on S2 [1, 2]
delay [1, 6]
unlock D2 on S2
commit

3.3 Step 2: Construction of TA Models for the Correct Specification

Our modeling framework for the distributed transaction system is adapted from an ex-
isting modeling framework for real-time concurrent transaction systems [7]. We extend
the original model with the possibility to model distributed data partitions as well as
delays between operations introduced by the distribution.

Assuming a distributed transaction system intended to achieve the isolation that
avoids k unwanted interleavings, we model the system as a network of UPPAAL TA,
denoted as N , defined as follows:

N ::= A0 || ... || An−1 || ACCManager || O0 || ... || Ok−1,

where A0, ..., An−1 are the work units TA of transactions T0, ..., Tn−1, ACCManager is
the CCManager automaton, and O0, ..., Ok−1 are the TA of IsolationOservers that ob-
serve the unwanted interleavings, respectively. A work unit automaton models the work
unit, that is, the operations of a transaction, as well as the delays between them. An Iso-
lationObserver is an automaton that monitors the occurrence of transaction executions
that lead to violation of the isolation property. The CCManager automaton models the
selected lock-based concurrency control algorithm.

Fig. 5 shows the work unit automaton skeleton. The begin location represents that
the transaction actually starts, while commit_trans represents the end of the transaction.
After the start, the work unit performs a set of read, write or calculation operations,
modeled by the instantiated operation patterns (Fig. 6). We extend the original pattern
[7] for distributed transactions in two aspects. First, each read/write operation is per-
formed atomically on a partition. This is modeled by a shared variable cs[partition]
for each partition. When an operation is performed, it sets cs[partition] to 1, so that
other operations on this partition are blocked until the current one has finished. The
other extension is the modeling of delays between operations caused by the distributed
communication. The time of delay for operation_k is modeled by the clock variable De-
lay_k. The operation may delay for at most MAX_DELAY_k time units, and must delay
for at least MIN_DELAY_k time units. Each operation starts from the start_operation
location, and moves to operation. Before moving to operation_done, it may stay at op-
eration for at most WCRT time units, representing its worst-case response time; and for



Fig. 5. The UPPAAL automaton skeleton of a work unit

Fig. 6. Operation pattern extended with delay

at least BCRT time units, representing its best-case response time. The work unit may
also interact with the CCManager in order to acquire and release locks, which is mod-
eled by the instantiated locking and unlocking patterns (Fig. 7 and Fig. 8). The synchro-
nization channel lock[ti][di] models the locking request for data Dj sent by transaction
Ti. The channel unlock[ti][di] and grant[ti][di] represent the unlocking and granting
messages, respectively. These patterns are similar to the ones in [7].

The CCManager is modeled using the CCManager skeleton proposed previously
[7] (Fig. 9). It models the behavior of the concurrency control manager in managing
lock requests and releases, following a selected algorithm. When a locking request is
received via the lock[ti][di] channel, the CCManager evaluates the situation using a
user-defined function satisfyPolicy(), and decides if it sends a grant signal, or refuses



Fig. 7. Locking pattern Fig. 8. Unlocking pattern

Fig. 9. The UPPAAL automaton skeleton of CCManager

Fig. 10. The UPPAAL automaton skeleton of IsolationObserver

the request. When the CCManager receives a unlock signal, it picks the next transaction
in the waiting queue (if any), and grants it the lock.

A violation of isolation can be seen as the occurrence of a series of inappropriate
events, and is monitored by an IsolationObserver, which is modeled using the skeleton
presented in Fig. 10. When the events occur in the specified order, the model eventually
reaches the isolation_violation location.

As the violations of isolation are modeled using IsolationObservers, the verification
of properties is equal to checking the isolation_violation locations are not reachable.
This can be specified in UPPAAL query language and checked by the UPPAAL model
checker. The following query specifies that the isolation property, that is, the violations
encoded by the IsolationObservers will never occur:

A[] (not IsolationObserver1.isolation_violation) ...
and (not IsolationObserverk.isolation_violation).
The outcome of this step is a design of distributed transactions, including the work

units and the CC manager, that are proven to satisfy the specified isolation properties.

3.4 Step 3: Generation of Mutant Specifications and Models

Inspired by the existing work on mutation testing for concurrency bugs [6, 17, 23, 31],
which have proposed mutation operators that represent common CC faults in various
implementation platforms and programming languages, we define a set of mutation op-
erators for the high-level description language, listed in Table 1. Among them, “Remove



Table 1. Mutation operators for created specifications with CC faults

Mutation operator Change in the correct specification
Remove lock Remove a line with “lock” operation for a shared data
Add lock Add a line with unnecessary “lock” operation for a data
Remove unlock Remove a line with necessary “unlock” operation for a locked data
Change lock type Change the type of lock
Change lock position Move the line with a lock operation to another position
Change unlock position Move the line with an unlock operation to another position

lock”, “Add lock” and “Remove unlock” models the common errors that developers
may forget to lock/unlock data, or put on unnecessary locks. “Change lock type” is a
useful operator for CC algorithms applying more than one type of locks. “Change lock
position” and “Change unlock position” adjust the duration when the data are locked,
which captures the error of erroneous length of critical sections.

As examples, Listings 1.3, 1.4 and 1.5 present three mutant specifications, respec-
tively. Mutant 1 applies the “Remove lock” operator, as shown in Listing 1.3, which
removes the lock before reading D2 in T0. Mutant 2 applies the “Change unlock posi-
tion” operator, moves the unlocking of D2 in T0 to before writing D2 (Listing 1.4). We
apply “Change lock position” to create mutant 3, which moves the locking of D2 in T1
to before the writing of D2, but after the calculation (Listing 1.5).

Listing 1.3. Mutant 1

begin
delay [1, 10]
lock D1 on S1
read D1 on S1 [1, 1]
delay [1, 10]
write D1 on S1 [1, 2]
delay [1, 8]
--Remove lock
//lock D2 on S2
read D2 on S2 [1, 1]
delay [1, 8]
write D2 on S2 [1, 2]
delay [1, 6]
unlock D1 on S1
unlock D2 on S2
commit

Listing 1.4. Mutant 2

begin
delay [1, 10]
lock D1 on S1
read D1 on S1 [1, 1]
delay [1, 10]
write D1 on S1 [1, 2]
delay [1, 8]
lock D2 on S2
read D2 on S2 [1, 1]
delay [1, 8]
--Change unlock position
unlock D1 on S1
write D2 on S2 [1, 2]
delay [1, 6]
--Change unlock position
//unlock D1 on S1
unlock D2 on S2
commit

Listing 1.5. Mutant 3

begin
delay [1, 8]
--Change lock position
//lock D2 on S2
read D2 on S2 [1, 1]
delay [1, 8]
calculate [2, 3]
delay [1, 4]
--Change lock position
lock D2 on S2
write D2 on S2 [1, 2]
delay [1, 6]
unlock D2 on S2
commit

The TA models of the mutant specifications are constructed using the same tech-
nique as presented in Section 3.3. However, in order to generate test cases with delays,
the actual delay values need to be captured in the trace. We achieve this by adapting the
models with stopwatches, as shown in Fig. 11. The rule is that, for each delayk loca-
tion, only the kth clock is allowed to progress, while all other clock variables Delay_n
(n 6= k) is set to stop, which is done by Delay_n’==0 in the invariants of this location.
In other locations, all clocks are set to stop using stopwatches in the same way. The
purpose is that, a clock variable for delay only progresses during its delay period, so



Fig. 11. Modified operation pattern for mutant models

that the delay values are preserved in the diagnostic trace. The output of this step is a
set of mutant models, each representing a mutant specification with CC faults.

3.5 Step 4: Generation of Effective Test Suite

For each mutant model, we use UPPAAL tool to verify the following query:
E <> IsolationObserver.isolation_violation.
UPPAAL then generates a trace that leads to the location isolation_violation, if this

location is reachable. At the end of the trace, the clock constraints at location isola-
tion_violation encode the bounds of values of the clock variables, which represent the
feasible ranges of delays that can lead to the violation. Since the clock constraints are
simple linear inequalities between variables and integers, it is easy to solve them using
modern tools, such as Microsoft Z3 SAT solver [11].

We propose an algorithm to generate the effective test suite. If we use CSi to denote
the set of clock constraints of mutant Mi, the delay values as the solution set of CSi

are then the test inputs that can lead to the violation, therefore killing Mi. Ideally, the
effective test suite contains only one test case, which is the set of delay values that
satisfy CS1 ∧ ... ∧ CSk. Therefore, our algorithm starts with looking for one solution
for CS1 ∧ ... ∧ CSk (line 3, when i equals 1). If such a solution cannot be found, we
try to find a larger test suite, by dividing the constraint set into smaller groups, and
finding a solution for each group. For instance, let us consider that i equals 2, meaning
that we try to find a solution containing two sets of delay values, one set satisfying
CS1 ∧ ...∧CSm, the other satisfying CSm+1 ∧ ...∧CSk. From line 12 to line 23, the
algorithm iterates all possible two-group partitions, and tries to find a solution set for
each. For each group in the partition, the algorithm tries to solve the constraints using
Z3 (line 15), and records the solution (line 17). If every group in the current two-group
partition is solvable, the algorithm returns the solutions as the minimum set of delays
that forms the test suite (line 24, in this case the suite contains exactly two test cases).
If any group is found unsolvable, the algorithm skips the current two-group partition,
and tries another one (line 20). If no two-group partition is solvable, which means there



does not exist a two-case test suite, the algorithm continues with a possible three-group
partition (increment i in line 3), trying to find a test suite that contains three test cases.
Using this algorithm, the effective test suite will have at most m test cases, in which
each for one of the mutants; and at least 1 test case, which is able to kill all mutants.

Algorithm 1 Algorithm to find the effective test suite
1: function find_effective_suite():
2: The constraint set of m mutants CS := {CS1, ..., CSm}
3: for i ∈ [1,m] do
4: SOLUTIONS := solve_k_partition_of_CS(i)
5: if SOLUTIONS 6= NULL then
6: return SOLUTIONS
7: end if
8: end for
9: return NULL

10:
11: function solve_k_partition_of_CS(k):
12: for each k-partition Sk of CS do
13: SOLUTIONS := {}, solved := true
14: for each constraints group Si

k in Sk do
15: try solving Si

k using Z3
16: if Si

k is solvable and solution SOLUTIONi is found then
17: SOLUTION := SOLUTION ∪ SOLUTIONi

18: else
19: solved := false
20: break
21: end if
22: end for
23: if solved == true then
24: return SOLUTIONS
25: end if
26: end for
27: return NULL

4 Illustrative Example

To illustrate our proposed methodology, we present an running example, based on the
aforementioned transactions in Listings 1.1 and 1.2 in an unmanned loading system on
a construction site [22]. This system consists of an autonomous wheel loader, an au-
tonomous dump truck, and a controller, each equipped with a computer, and connected
by real-time industrial wireless communication. In a typical scenario, the controller
configures the planned job information (paths, locations, etc.) for the truck and wheel
loader, which are stored in their respective databases. The wheel loader autonomously
discovers and scoops the piles in its surroundings, and dumps them into the truck. The



wheel loader may also adjust its working path, in order to avoid obstacles in its work-
ing surroundings. All data are protected by CC that requires the corresponding locks in
order to access the data.

In this scenario, we consider two transactions. Started by the controller, transaction
T0 updates the next location of the truck (denoted as D1) in the truck’s local system
(denoted as S1), followed by updating the planned location and path (D2) in the wheel
loader (S2). Transaction T1, started by the wheel loader, reads D2 from S2, calculates
a new value, and then modifies D2. The isolation requirement demands the avoidance
of the following sequence: T0 reads D2, T1 reads D2, T0 writes D2, T1 writes D2,
which indicates that, the wheel loader using old data computes a new path, which over-
writes the planned path. Consequently, the truck goes to the newly planned location
while the wheel loader may goes to the old one and miss the truck. We apply our pro-
posed methodology to generate a test suite for testing the CC faults that can lead to the
violation of isolation.

4.1 Specification of transactions and isolation

The first step is to specify the transactions and the isolation requirement. T0 and T1 are
specified in Listing 1.1 and 1.2, respectively. The isolation requirement is formulated
as follows: the following sequence of operations, T0 reads D2, T1 reads D2, T0 writes
D2, T1 writes D2, should never occur.

4.2 Construction of TA Models for the Correct Specification

We model the transactions and CC in UPPAAL timed automata. The automaton of T0,
as an example, is presented in Fig. 12. It is constructed by composing the instantiated
operation, locking and unlocking patterns with the work unit skeletons. An IsolationOb-
server is created to monitor the occurrence of the unwanted interleavings, as presented
in Fig. 13. Isolation is verified by UPPAAL using the following query:

A[] (not IsolationObserver.violation).
The time and memory consumed by UPPAAL for the verification are 0.015s and

28316KB, respectively.

4.3 Generation of Mutant Specifications and Models

We use the mutation operators proposed in Table 1 to manually generate mutant models.
In this case study, we create three mutants, which are specified as Listings 1.3, 1.4 and
1.5 in Section 3.4. The TA models of these mutant specifications are also constructed.

4.4 Generation of Effective Test Suite

We use the query in Section 3.5 to generate diagnostic traces for the mutant models,
and obtain the constraints on the clock variables representing the delays. The time and
memory consumed for the checking of each mutant, respectively, are as follows: M1
(0.014s and 28488KB), M2 (0.007s and 28388KB), M3 (0.015s and 28492KB). The



lock D1

read D1

write D1

lock D2

read D2

write D2

unlock D1,D2

Fig. 12. The UPPAAL model of T0

Fig. 13. The UPPAAL model of IsolationObserver that monitors the unwanted interleavings

constraint sets for mutants M1, M2 and M3 are listed in Listings 1.6, 1.7, and 1.8,
respectively.



Table 2. Test inputs of the test case in the effective test suite

Test input variable Value
T0.Delay_1 3
T0.Delay_2 3
T0.Delay_3 1
T0.Delay_4 1
T0.Delay_5 1
T1.Delay_1 10
T1.Delay_2 1
T1.Delay_3 1
T1.Delay_4 1

Listing 1.6. CS_1

3≤T0.Delay_1≤20
3≤T0.Delay_2≤15
1≤T0.Delay_3≤8
1≤T0.Delay_4≤8
1≤T0.Delay_5≤6
10≤T1.Delay_1≤20
1≤T1.Delay_2≤4
1≤T1.Delay_3≤4
1≤T1.Delay_4≤4
T0.Delay_1-T1.Delay_1≥-17
T0.Delay_1-T1.Delay_1≤0
T1.Delay_1-T0.Delay_2≥4
T1.Delay_1-T0.Delay_2≤17
T1.Delay_1-T0.Delay_3≥8
T1.Delay_1-T0.Delay_3≤19
T1.Delay_3-T0.Delay_5≥-5
T1.Delay_3-T0.Delay_5≤2

Listing 1.7. CS_2

3≤T0.Delay_1≤20
3≤T0.Delay_2≤6
1≤T0.Delay_3≤2
1≤T0.Delay_4≤5
1≤T0.Delay_5≤6
T1.Delay_1==10
1≤T1.Delay_2≤4
1≤T1.Delay_3≤4
1≤T1.Delay_4≤4
T0.Delay_4-T1.Delay_2≥-3
T0.Delay_4-T1.Delay_2≤1
T0.Delay_5-T1.Delay_3≥-3
T0.Delay_5-T1.Delay_3≤3

Listing 1.8. CS_3

3≤T0.Delay_1≤20
3≤T0.Delay_2≤15
1≤T0.Delay_3≤8
1≤T0.Delay_4≤8
1≤T0.Delay_5≤6
10≤T1.Delay_1≤20
1≤T1.Delay_2≤4
1≤T1.Delay_3≤4
1≤T1.Delay_4≤4
T0.Delay_1-T1.Delay_1≥-17
T0.Delay_1-T1.Delay_1≤0
T1.Delay_1-T0.Delay_2≥4
T1.Delay_1-T0.Delay_2≤17
T1.Delay_1-T0.Delay_3≥8
T1.Delay_1-T0.Delay_3≤19
T0.Delay_5-T1.Delay_3≥0
T0.Delay_5-T1.Delay_3≤3

Algorithm 1 is applied to find the effective test suite. The combined constraint set
CS1 ∧ CS2 ∧ CS3 is solvable using Z3, which returns the solution, which is the des-
ignated delays as inputs of one test case that kills all mutants 1. Therefore, the effective
test suite contains one test case, as shown in Table 2.

4.5 Discussion

Our methodology generates a set of delays between operations, which can be utilized to
create concrete test cases for a particular implementation, considering its architecture
and testability characteristics. For instance, if the tested system is instrumented with
configurable delayed operations on each individual site and synchronized clocks across
all sites, a concrete test sequence with designated delays from the abstract test case can
be achieved.

Scalability is one important issue for the verification of distributed transactions,
which may involve data items over many partitions. As a result, the model may in-

1 We used the online Z3 tool provided by Microsoft (https://rise4fun.com/z3) in this running example. The
time to resolve the constraints was less than one second.



clude large numbers of operations, delays and synchronization signals that lead to state
explosion for exact model checking. Another characteristic of distributed system is the
probabilistic behavior, for which we may only know the probabilistic distribution, rather
than exact bounds of the delays in the system. In both cases, we need to adapt the mod-
eling language from UPPAAL TA to UPPAAL stochastic timed automata, in which the
probability of delays can be encoded and analyzed by statistical model checking us-
ing UPPAAL SMC [10]. More scalable than exact model checking, statistical model
checking can estimate the probability of the violation of isolation with a given con-
fidence level, via stochastic simulation. Values of designated delays can be generated
automatically using statistical simulation provided by UPPAAL SMC.

In this example, we manually generate UPPAAL models for the distributed trans-
action system specification, as well as its three mutants by applying three mutant op-
erations directly. In practice, induced from domain knowledge in concurrency faults
and distributed transaction systems, selected mutation operators can be combined and
applied multiple times on a transaction. For instance, the "Change lock type" opera-
tor may be applied together with the "Change lock position" operator in one or many
locking operations in a transaction. This may result in a large number of mutants and
requires considerable modeling effort. Therefore, tool automation is important for the
application of our methodology in practice, which should assist the testers to spec-
ify the mutated specifications easily, and generate UPPAAL models automatically. We
consider it feasible to automate the generation of models by a tool, thanks to the modu-
larization of our modeling framework. The tool should also automate the extraction of
clock constraints from the diagnostic traces, as well as the resolution of the constraints
with Z3, which is also possible. Tool support for our methodology is considered as our
future work.

5 Related Work

Testing for concurrency design faults in database systems, and in software systems in
general, has attracted considerable attention in recent years. Much of the effort has
been dedicated in detecting the interleavings that could lead to consistency violations,
and executing such interleavings in a controlled way. Deng et al. [12] have proposed
techniques for testing isolation violations of concurrent transactions in database sys-
tems. They propose to use dataflow analysis techniques to identify the schedules, which
are ordered operations, that can lead to violations. These schedules are then executed as
test cases by the target database system. The delays between operations are neglected
in this work. In our work, on the contrary, we generate not only the schedules, but also
the delays between the operations, which are an important factor for isolation in a dis-
tributed transaction system. We also propose to use mutation testing to find an effective
test suite. Park et al have proposed the CTrigger method for testing atomicity violation
bugs [30]. In their work, unserializable interleavings that lead to concurrency bugs are
identified by a set of profiling runs of the target program. Such interleavings are ranked
by their probabilities of occurrence, used as a selection metric for pruning the test suite.
Similar to CTrigger, the CHESS tool proposed by Musuvathi et al [28] also identify
race conditions by a small number of runs. In the race-directed random testing (RACE-



FUZZER) framework proposed by Sen [32], the author has applied dynamic data race
detection algorithms [29] to compute the interleavings with potential data races, and
used a scheduler to execute and evaluate these interleavings at run time. Blum and
Gibson [5] have proposed a stateless model checking framework called QUICKSAND
to examine the interleavings at runtime. Contrary to these work, our framework pro-
poses the identification and selection of delays, which is a common issue for testing
distributed system, that can lead to unwanted interleavings. Our methodology is based
on abstract models of the system, which can be automatically processed by existing
model checking tools.

Mutation testing has been recognized as a promising technique for pruning test
cases for concurrent systems. Deniz et al. [13] have proposed a mutation library for
Multicore Communication API (MCAPI), targeting multicore embedded systems. Mu-
tation operators are introduced for concurrent communication messages. Gligoric et al.
[17] have created mutants for multithreaded code in their MutMut tool. Mutation op-
erators have been proposed for various design and implementation languages, such as
SystemC [31], C/C++ [23] and JAVA [6]. Our work shares the same objective and con-
cepts of mutation testing with these mentioned work, and gets inspired by the existing
classification of concurrency control errors. However, as we focus on the mutation at the
model level, our mutation operators are more abstract, rather than concrete operations
in specific programming languages as in most of the existing work,.

6 Conclusions and Future Work

In this paper, we proposed a model-based testing methodology for designing test cases
for concurrency control faults in distributed transaction systems. The test inputs are
delays between distributed operations, while the outputs are the occurrence of isolation
violations, which are consequences of CC faults. We model the transaction system, as
well as the isolation violations, in UPPAAL TA. We create a set of mutated models that
model the common CC faults, based on which we generate test cases via reachability
analysis. A minimal set of test cases that can kill most mutants is generated, which
forms the effective test suite.

One of our future work is to develop tool automation for our methodology, including
automated mutation and model generation, and test case generation and selection. We
also consider to investigate the application of statistical model checking, in order to
improve the scalability and deal with probabilistic behaviors of distributed systems. The
extension of the methodology for other types of concurrency bugs, such as deadlock,
and other properties of distributed transactions, such as atomicity, is another interesting
direction.
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