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GPU Support for Component-based 
Development of Embedded Systems
Gabriel Campeanu

One pressing challenge of many modern embedded 
systems is to successfully deal with the considerable 
amount of data that originates from the interaction 
with the environment. A recent solution comes from 
the use of GPUs. Equipped with a parallel execution 
model, the GPU excels in parallel processing applica-
tions, providing an improved performance compared 
to the CPU.

Another trend in the embedded systems domain is 
the use of component-based development. This soft-
ware engineering paradigm that promotes construc-

tion of applications through the composition of software components, has 
been successfully used in the development of embedded systems. However, 
the existing approaches provide no specific support to develop embedded 
systems with GPUs. As a result, components with GPU capability need to 
encapsulate all the required GPU information in order to be successfully 
executed by the GPU. This leads to component specialization to specific plat-
forms, hence drastically impeding component reusability. 

Our main goal is to facilitate component-based development of embedded 
systems with GPUs. We introduce the concept of flexible component, which 
increases the flexibility to design embedded systems with GPUs, by allowing 
the system developer to decide where to place the component, i.e., either on 
the CPU or GPU. Furthermore, we provide means to automatically generate 
the required information for flexible components corresponding to their 
hardware placement, and to improve component communication. Through 
the introduced support, components with GPU capability are platform-
independent, being capable to be executed on a large variety of hardware (i.e., 
platforms with different GPU characteristics). Furthermore, an optimization 
step is introduced, which groups connected flexible components into single 
entities that behave as regular components. Dealing with components 
that can be executed either by the CPU or GPU, we also introduce an 
allocation optimization method. The proposed solution, implemented using 
a mathematical solver, offers alternative options in optimizing particular 
system goals (e.g., minimize memory and energy usage). 
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Abstract

One pressing challenge of many modern embedded systems is to successfully
deal with the considerable amount of data that originates from the interac-
tion with the environment. A recent solution comes from the use of GPUs.
Equipped with a parallel execution model, the GPU excels in parallel process-
ing applications, providing an improved performance compared to the CPU.

Another trend in the embedded systems domain is the use of component-
based development. This software engineering paradigm that promotes con-
struction of applications through the composition of software components, has
been successfully used in the development of embedded systems. However, the
existing approaches provide no specific support to develop embedded systems
with GPUs. As a result, components with GPU capability need to encapsu-
late all the required GPU information in order to be successfully executed by
the GPU. This leads to component specialization to specific platforms, hence
drastically impeding component reusability.

Our main goal is to facilitate component-based development of embedded
systems with GPUs. We introduce the concept of flexible component which
increases the flexibility to design embedded systems with GPUs, by allowing
the system developer to decide where to place the component, i.e., either on
the CPU or GPU. Furthermore, we provide means to automatically generate
the required information for flexible components corresponding to their hard-
ware placement, and to improve component communication. Through the in-
troduced support, components with GPU capability are platform-independent,
being capable to be executed on a large variety of hardware (i.e., platforms
with different GPU characteristics). Furthermore, an optimization step is in-
troduced, which groups connected flexible components into single entities that
behave as regular components. Dealing with components that can be exe-
cuted either by the CPU or GPU, we also introduce an allocation optimization
method. The proposed solution, implemented using a mathematical solver, of-
fers alternative options in optimizing particular system goals (e.g., minimize
memory and energy usage).
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Västerås, August, 2018

iii





List of publications

Key peer-reviewed publications related to the thesis

Paper A: Allocation Optimization of Component-based Embedded Systems
with GPUs – Gabriel Campeanu, Jan Carlson, Séverine Sentilles, The 44th
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Chapter 1

Introduction

Nowadays, computation devices are becoming increasingly common in sys-
tems from almost all domains. The devices are embedded in the systems and
refereed as embedded systems. For example, we mention pacemakers from
medicine, satellite navigation systems from avionics, and cruise control sys-
tems from the automotive domain. The embedded industry, valued to over
USD 144 billion in 2014, is in a growing pace and will reach, in 2023, to a
market size of almost USD 240 billion [1]. In fact, 98% of all processors that
are produced worldwide, are used in embedded systems [2].

Many of the modern embedded systems deal with a huge amount of infor-
mation resulted from the interaction with the environment. This data needs to
be processed with a sufficient performance in order for the system to handle, in
real-time, the environment changes. For instance, the autonomous Google car1

receives 750 MB of data per second from its sensors (e.g., cameras, LIDAR).
This data requires to be processed with a sufficient performance in order to
e.g., detect moving pedestrians and vehicles.

One trend in embedded systems is the usage of boards with Graphics Pro-
cessing Units (GPUs). Equipped with thousands of computation threads, the
GPU provides an improved performance compared to the CPU, in the context

1https://waymo.com/

1
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of data-parallel applications, where each thread executes the same instructions
on different data. Today, various vendors merge together the CPU and GPU
onto the same physical board. This allows an overall improvement of the sys-
tem performance when a specific workload is distributed on the appropriate
processing unit, such as sequential computation on the CPU and parallel com-
putation on GPU. On the market, there exist many types of boards with GPUs,
with different characteristics (e.g., size, computation resources), which make
them suitable for specific applications. For example, there are boards with
GPUs that have high computation power used in high-performance military
systems, but also GPUs with lower computation power utilized in smart wrist-
watches.

Another trend in embedded systems is the usage of component-based de-
velopment (CBD) [3]. This software engineering paradigm promotes the con-
struction of systems through composition of already existing software units
called software components. The advantages that come with the usage of
CBD include an increased productivity, efficiency and a shorter time-to-market.
CBD proved to be a successful solution in development of industrial embedded
systems, through the usage of component models such as AUTOSAR [4], IEC
61131 [5] or Rubus [6].

1.1 Problem statement and research goals

The existing component models used in the development of embedded appli-
cations offer no specific GPU support. Several disadvantages are introduced
by using these existing approaches, which diminish the benefits of developing
embedded systems with GPUs, by using CBD. In the following paragraphs, we
introduce the shortcomings addressed by the thesis.

In the context of embedded systems with GPUs, the component developer
would explicitly construct components with functionality to be executed by
specific processing units, i.e., either the CPU or GPU. The system developer,
when constructing the component-based application, is restricted to use certain
components in order to conform with the platform characteristics. For exam-



1.1 Problem statement and research goals 3

ple, for a platform that does not contain GPU, the system developer is restricted
from using components with GPU capability. Moreover, this limitation is in-
creased by the fact that sometimes, the detailed platform characteristics are
unknown at the system design-time. For example, without knowing, during
system design-time, the detailed characteristics of the GPU, the system devel-
oper is restricted from using components with GPU capability, that have high
GPU resource requirements.

Furthermore, when developing a component with GPU capability, the com-
ponent developer needs to encapsulate inside the component, specific GPU-
related information required by the component to be successfully executed
on the GPU. This information, explicitly addressing the characteristics of the
GPU platform onto which the component will be executed, leads to the com-
ponent to become specific to particular hardware. As a result, the component
has a reduced reusability between (GPU) hardware contexts. Moreover, hard-
coding inside the component some of the required GPU information breaks the
separation-of-concern CBD principle. For instance, a component with GPU
functionality needs to encapsulate the number of utilized GPU threads to ex-
ecute its functionality. The component developer hard-codes this information
by making assumption about: i) the characteristics of the platform that will
execute the component, and ii) the overall system architecture and the GPU
utilization by other components.

There is another shortcoming related to the development of a component
with GPU capability. The component developer is responsible, besides con-
structing the actual component functionality, to address specific information to
access and use the GPU. For example, the component developer needs to spec-
ify the number of GPU threads used to execute the component functionality.
This leads to a complex and error-prone development.

Once the component-based application is constructed, the allocation of the
components to the hardware is an important step in the development of em-
bedded systems with GPUs. The heterogeneity of the hardware (i.e., platforms
with CPUs and GPUs) and the fact that the application contains components
with different (CPU and GPU) characteristics, introduces a challenge of how
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to allocate the system functionality in order to utilize the hardware resources
in the best way.

Considering the previously described shortcomings of the CBD in embed-
ded systems with GPUs, we state the overall goal of this thesis:

To introduce specific GPU support in component-based development in

order to facilitate the construction of embedded systems with GPUs.

More specifically, the thesis aims to: i) introduce theoretical concepts to tackle
the existing CBD shortcomings, and ii) to show the feasibility of the introduced
concepts.

The overall thesis goal is quite broad and addresses many facets of compo-
nent-based development of embedded systems with GPUs. Therefore, for the
work of this thesis, we refine it into three research (sub-)goals (RGs). The ob-
jectives of these goals are to explore the existing GPU-aware support regarding
component-based development, to facilitate CBD of embedded systems with
GPUs via particular GPU-aware mechanisms, and to assist the component-to-
hardware allocation challenge. The specific research goals addressed by this
thesis are defined as follows:

RG1: Describe the existing research that targets GPU support in systems that
follow a component-based approach.

RG2: Introduce mechanisms to component models for embedded systems, in
order to facilitate the construction of applications with GPU capability.

RG3: Automatically determine suitable allocations for components with GPU
capabilities.

The starting step to address the main goal is: i) to explore and describe
the existing needs of modern systems for embracing GPUs, and ii) the existing
GPU-aware support provided by component-based development. We specifi-
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cally pay attention to the embedded systems domain and how, if any, compo-
nent models address the GPU-aware development.

Using the knowledge obtained from the first goal, a natural continuation in
addressing the main goal is to assist in the development of embedded systems
with GPUs. RG2 targets the required GPU-aware mechanisms to ease CBD for
embedded systems. We mention here concepts to facilitate the GPU resources
access such as memory and computation threads.

The last research goal aims to ease the construction of embedded systems
with GPUs by introducing (automated) means to handle the functionality allo-
cation onto the physical platform. Indeed, providing allocation solutions may
be a challenge in the context of embedded systems with GPUs. On one side we
have the software application which is composed of components that have strict
requirements for the CPU or GPU resource utilization, and on the other side,
the platform has physical limitations with respect to the available resources.

1.2 Contributions

This section describes the main contributions of this thesis. There are four con-
tributions, described in the following paragraphs. These contributions address
the overall thesis goal and the three specific goals introduced in the previous
sections. While studying the state-of-the-art of component-based construction
of applications with GPU capability, the lack of solutions in the domain tar-
geted by our work has been identified. This has led to contribution 1. We have
introduced our own specific solutions to facilitate the component-based devel-
opment of embedded systems with GPUs. The theoretical solutions belong to
contribution 2, while their practical realization are represented by contribution
3. The last contribution introduces (automatic) means to address functionality-
to-hardware allocation when constructing embedded systems with GPUs. The
four contributions are the following:
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Contribution 1. A description of the scientific research regarding GPU sup-
port in component-based systems.

With this contribution, we review the state-of-the-art and describe the on-going
research regarding GPU support in component-based systems. More specifi-
cally, we looked at: i) the trends of the research studies that target component-
based systems with GPUs, and ii) the specific solutions used by these studies.

The research trends show that, up to 2009, there is no particular interest in
the component-based applications with GPU capability. The increased interest
may have been triggered by the fact that, from 2009, several (software and
hardware) GPU technologies were released. Another aspect captured by the
trends is that most of the research is done in academia. The second part of
this contribution reveals that most of the studies do not use specific component
models to target systems with GPUs. Various mechanisms are used to handle
the GPU aspects, where the programming and modeling are the most utilized
ones.

Contribution 1 is covered by Chapter 3 via a systematic literature review.

Contribution 2. Mechanisms that specifically introduce GPU support for
pipe-and-filter component models.

This contribution targets RG2 and has the purpose to introduce theoretical con-
cepts to facilitate component-based development of embedded systems. The
contribution focuses on pipe-and-filter component models, and introduces the
following concepts:

• the flexible component,

• a way to optimize groups of flexible components, and

• the component communication support.

A flexible component is a light-weight component with a functionality that
can be executed on either the CPU or GPU. Basically, a flexible component
is a platform-agnostic component with an increased reusability, that can be
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executed, without any change, either on CPU or the different existing platforms
that incorporate GPUs. One aspect that aids the increased reusability aspect of
the flexible component is through our proposed configuration interface. The
specific GPU-settings such as the number of used GPU threads are send by
e.g., the system designer, to each component with GPU capability through the
configuration interface. In this way, we lift, from the component development
to the system level, decisions that may bind components to specific contexts.

Through the second concept, we provide a way to optimize groups of con-
nected flexible components. In this way, we improve system characteristics
such as memory usage. Flexible components that are connected and are exe-
cuted by the same processing unit (i.e., either the CPU or GPU) are enclosed
in a flexible group that conceptually behaves like a single component. The
flexible group inherits all the configuration interfaces and specific (input and
output) data ports from the components contained in the group.

Due to the different characteristics of embedded platforms with GPUs,
components with GPU capability require different activities (corresponding to
the platform characteristics) for data communication. We improve the com-
ponent communication via special artifacts called adapters. Depending on the
platform characteristics, the appropriate adapters are automatically introduce
to facilitate the component communication.

Contribution 2, which is the core part of the thesis, has been published in
Papers B, C, D, E and F. A comprehensive description of it is given in Chap-
ter 4.

Contribution 3. An extension of the Rubus component model to implement
the introduced mechanisms.

This contribution targets RG2 and presents a way to implement the intro-
duced theoretical concepts. The realization is done using the Rubus component
model, briefly presented as follows.

The flexible components are optimized into flexible groups which are trans-
lated, through a number of transformation and code generation steps, into reg-
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ular Rubus components. The resulted components are automatically populated
with the required platform information in order to be executed on the selected
platform (i.e., CPU or GPU). The configuration interface of a flexible compo-
nent which is inherited by a flexible group is realized as a regular component
port, in order to not introduce additional component model elements.

The adapters, facilitating the communication between the resulted regular
components, are realized as regular Rubus components with a single input data
port and a single output data port.

Contribution 3, which complements the theoretical concepts of contribu-
tion 2 with their implementation, has been published in Papers B, C, D, E and
F. A detailed description that contains code snippets of the concepts implemen-
tation is found in Chapter 4.

Contribution 4. An allocation method that automatically finds suitable com-
ponent allocations for embedded systems with GPUs.

The concept of flexible component presented by contribution 2, introduces a
challenge regarding the flexible component-to-hardware allocation. On one
side, the application is composed of flexible components with different CPU
and GPU resource requirements, while on the other side, the platform has phys-
ical limitations regarding the CPU and GPU resources. Deciding the allocation
of the flexible components while considering important aspects of the embed-
ded systems domain (e.g., memory and energy usage) is facilitated through an
automatic method. Using exact optimization methods (i.e., mixed-integer non
linear programming), the contribution delivers optimal solutions (if exist), with
respect with the decided optimization criteria.

Contribution 4 has been published in Paper A. The description that contains
the mathematical formulation, its implementation and evaluation, is enclosed
in Chapter 5.
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1.3 Research process

A series of guidelines regarding research methodology in software engineering
is provided by Basili [7]. The engineering method introduced by Basili is to
“observe existing solutions, propose better solutions, build/develop, measure
and analyze, and repeat the process”. Following his method, we derive our
research process as illustrated by Figure 1.1.

Overall
research 

goal

Define 
research goal 

(RG2/3)

Propose 
solutions

Implement 
solutionsValidate 

solutions

Research results
(Contribution1)

Initial
literature
review

Define 
research 

goal (RG1)

Systematic
literature
review

Research results
(Contribution2/3/4)

Figure 1.1: Overview of the used research process

We started with an initial literature review, where we looked into the
state-of-the-art knowledge regarding the component-based development of em-
bedded systems with GPUs. The review showed that there is no specific sup-
port for GPU development in this domain, which lead us to the overall research
goal, i.e., to facilitate component-based development of embedded systems
with GPUs. After setting the thesis goal, we went into more depth, by defining
the research details, as follows.

Facilitating the component-based development of embedded systems with
GPUs is a broad problem, therefore we defined research goals that are more
specific. The first goal (RG1) is to present the existing knowledge regarding
the development of systems with GPU capability, using a component-based
approach. The process of RG1 is presented in the upper part of Figure 1.1,
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where, after defining the research goal, we carry out a systematic literature
review (SLR) using well-established guidelines [8]. The output of this SLR
(i.e., Contribution 1) is a research result of this thesis.

For the rest of the research goals (i.e., RG2 and RG3) we used the iterative
process presented in the bottom part of Figure 1.1, based on the method de-
scribed by Basili [7]. After defining the second research goal (i.e., RG2), that
is to facilitate, via specific mechanisms, the construction of embedded sys-
tems with GPUs, we propose solutions that are implemented as an extension
of an existing component model. The extended component model is validated
through a case study. During this part of the process, there is a reverse step
from validation to solution proposal, given that the theoretical proposed solu-
tions may be changed by the practical side of the validation. The results (i.e.,
Contribution 2 and 3) of this research goal are the core contributions of the
thesis.

The third research goal (i.e., RG3), that is, to provide methods for compo-
nent-to-hardware allocation, follow the same process as RG2. More specifi-
cally, after defining the research goal, we propose a formal allocation method
that is implemented using an existing solver. Finally, the allocation method
is validated using a case study. The allocation method (i.e., Contribution 4)
represent the final contribution of this thesis.

1.4 Thesis outline

The thesis contains the following seven chapters:

Chapter 1: Introduction contains an overview of the research context, intro-
ducing the motivation of the work. Additionally, the thesis problem is stated
and the goals are set. In the last part, the research process and a description of
the contributions are introduced.

Chapter 2: Background introduces details about the context of the work,
i.e., a description of embedded systems, the component-based development
methodology, and GPUs and the development of GPU applications.
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Chapter 3: GPU support in component-based systems is a systematic lit-
erature review that describes the trends and the detailed solutions of research
studies on component-based systems with GPUs.

Chapter 4: GPU-aware mechanisms starts by describing the existing chal-
lenges addressed by the thesis and our view on a development process overview
which contains concepts that tackle the presented challenges. The chapter con-
tinues by providing a detailed description of the concepts that we use to fa-
cilitate component-based development of embedded systems with GPUs. The
presented concepts are evaluated using a vision system of an underwater robot
case study.

Chapter 5: Allocation optimization presents a methods that automatically
provides optimized solutions regarding the component-to-hardware allocation.
The method is evaluated using the same vision system case study.

Chapter 6: Related work examines our introduced concepts in relation to
existing work.

Chapter 7: Conclusions and future work presents the conclusions of this
thesis and describes possible directions for its continuation.





II





Chapter 2

Background

The thesis main goal is to facilitate CBD for embedded systems with GPUs.
In this chapter we introduce background information about the context of this
work. In particular, we start by introducing embedded systems, followed by
the component-based development methodology. In the last part of the chapter,
we focus on the GPU particularities and how to program it using the OpenCL
environment.

2.1 Embedded systems

Nowadays, computer systems are part of a majority of all developed electronic
products. In general, there are differences between general-purpose and spe-
cific computer systems. The general-purpose systems such as personal comput-
ers, are used in various general-computing activities such as emailing, Internet
surfing and office applications. In this thesis, the focus is on the specific-type
of systems, that is on the embedded systems; these systems have specialized
purposes. Examples of embedded systems range from simple devices such as
microwaves ovens or music-players, to complex systems such as airplanes or
factories. One of the definitions used to describe an embedded system is pro-
vided by Bar and Massa, as follows:

13
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Definition 1. “An embedded system is a combination of computer hard-
ware and software – and perhaps additional parts, either mechanical or elec-
tronic – design to perform a dedicated function” [9].

A typical embedded system is characterized by limited size, memory and
processing power, and a need for low power consumption. For example, while
a general-purpose system may be equipped with several gigabytes of RAM
memory, an embedded systems has a limit of e.g., few megabytes or kilobytes
of memory system. Besides these typical characteristics, there are special-
ized embedded systems with more stringent physical requirements that are em-
ployed in specific domains. For instance, rugged embedded systems are those
systems that operate in harsh environment conditions such as extreme tem-
peratures or wet conditions [10]. Satellites are such embedded systems; they
are built to endure extreme temperatures out in space and are resistant to ra-
diations. Another specific characteristic of embedded systems is the real-time
requirements that some applications may be subject to. A real-time embedded
system guarantees to deliver a response within a well defined period of time.
The front-airbag of a car is an example of such embedded system; the trigger
to deflates it is initiated at about 25 milliseconds after the crash.

Other properties (also know as extra-functional properties) are important
for the embedded system domain, such as performance and reliability [11].
For example, the embedded systems used in mobile computing domain are
characterized by high performance [12]. When constructing embedded sys-
tems, the focus is not only concentrated on the software development activity,
but also on addressing the extra-functional properties. The extra-functional
properties cover a large diversity of features such as performance, availability,
security and maintainability. Some of the properties may have various facets.
For instance, performance includes aspects such as power consumption but also
time-related characteristics such as execution time and response time.
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2.2 Component-based development

In the last two decades, software applications have greatly increased in size
and complexity [13]. Software development methods utilized in developing
applications faced new challenges in efficiently addressing the increased extra-
function properties (e.g., maintainability, performance). A feasible solution
to tackle these challenges is component-based development (CBD). Its objec-
tive is to address the software applications complexity by composing software
blocks called software components. In this way, complex applications can be
easily developed by composing components.

A definition of the software component is provided by Szyperski as fol-
lows:

Definition 2. “A software component is a unit of composition with contrac-
tually specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition by
third parties” [14].

With his definition, Szyperski introduces several characteristics of a soft-
ware component such as interface and composition. An interface, used to en-
able interaction between components, is a specification of the component ac-
cess point. There are several types of interfaces such as operation-based and
port-based [15]. The so-called port-based interfaces, used in our work, are
entries for sending/receiving different data types between components. Com-
position describes the rules and mechanisms used to combine components. The
component may be developed by an external software producer so called third-
party, and used without any knowledge of how the component was created.
Ideally, all components should be available on a market, as commercial-off-
the-shelf (COTS) components, from where any user or company can use and
reuse components according to their needs. Among benefits of employing CBD
when developing systems, we mention the ability to reuse the same component
developed either in-house or by third-parties, thus improving the development
efficiency.
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An important concept in the CBD community is the notion of the compo-
nent model. The component model defines standards for: i) building individual
software components; and ii) assembling components into systems. For exam-
ple, the Microsoft’s Component Object Model (COM) [16] enforces that all
components should be constructed with a IUnknown interface. There exists a
big variety of component models, some that are focused on specific application
domains (e.g., embedded systems for automotive industry) and other build on
specific technological platforms (e.g., Enterprise Java Beans).

CBD is successfully used in building complex desktop applications through
general-purpose component models such as CORBA [17], .NET [18], COM [16]
and JavaBeans [19]. When it comes to embedded systems, the general-purpose
component models lack means to handle the specifics of this domain such as
real-time properties and low resource utilization [15]. For example, while a
general-purpose system may be equipped with several gigabytes of RAM mem-
ory, an embedded systems has a limit of e.g., few megabytes or kilobytes of
memory system. Another specific characteristic of embedded systems is the
real-time requirements that some applications may be subject to. A real-time
embedded system guarantees to deliver a response within a well defined period
of time. However, several dedicated component models manage to provide fea-
sible solution in developing embedded systems applications. For example, in
the automotive industry, the AUTOSAR framework [4] is used as a standard of
automotive development.

Many component models used in different embedded systems domains are
constructed following well-known architectural styles [15]. These styles de-
scribe e.g., constraints on how components can be combined. In general, dif-
ferent architectural styles employ specific interaction styles. For example, the
client-server architectural style that may be adopted in a distributed embedded
system, specifies a component that sends a request for some data while another
connected component responds to the request. In this particular style, the way
the components communicate with each other is known as the request-response
interaction style. Other interaction styles include the request-response, pipe-
and-filter, broadcast, blackboard and publish-subscribe styles [15].
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The work of this thesis focuses on component models that utilize a pipe-
and-filter interaction style. In this context, components that process data be-
have as filters while the connections between components are seen as pipes that
transfers data from one component to another. The reason of employing such
a pipe-and-filter-based component model in embedded systems is because it
provides a sufficient predictability level with respect to analysis of temporal
behavior required to satisfy the real-time specifications of an embedded sys-
tem. A pipe-and-filter component model is based on the control flow paradigm,
where the control of the system at a specific time is owned by a single compo-
nent and is passed to other components through specific mechanisms. Another
characteristic of this style is the the unidirectional character of the component
communication. Furthermore, in some component models, there is a distinct
separation between data and control flow.

Among the component models that follow the pipe-and-filter style we men-
tion ProCom [20], COMDES II [21] used in academia and IEC 61131 [22] and
Rubus [6] employed by industry. These component models may be applied to
various embedded system areas, such as automotive (addressed by Rubus) and
industrial programmable controllers (addressed by IEC 61131). Our work fo-
cuses on the embedded systems domain that deal with large amount of data that
can benefit from using GPU usage. Moreover, the embedded systems that we
target can be addressed by using pipe-and-filter-based component models. A
good example is the automotive industry where the software applications used
by Volvo construction equipment vehicles (e.g., excavators) are developed us-
ing the Rubus component model and one of the current direction is to make
them autonomous [23].

2.2.1 The Rubus component model

A part of our work focuses on extending the Rubus component model with
GPU awareness. Therefore, the following paragraph describes the Rubus com-
ponents and the component communication mechanism. The Rubus compo-
nent model follows the pipe-and-filter interaction style, and has a separation
between data and control flow. Every Rubus component is equipped with two
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types of ports, i.e., data and trigger ports. Through the trigger ports, the control
is passed between components; similarly, data is passed using the data ports.
A Rubus component is equipped with a single input trigger port and a single
output trigger port; regarding data ports, a component may have one or several
(input and output) ports.

C1

C2
C3

Sync

Legend:

Rubus component 

Data port

Trigger port

Synchronisation element of two triggering signals

Control flow

Data flow

Clock

Sync

Output ports
of C3

Input ports
of C2

…

CLK

sensor2

sensor1

Figure 2.1: Connected Rubus components

Figure 2.1 presents a Rubus (sub-)system composed of three connected
components, i.e., C1, C2 and C3. At a periodic interval of time specified
by the clock element CLK, component C1 is triggered through its trigger input
port, i.e., it receives the control to execute its behavior. The execution semantic
of the Rubus component is Read-Execute-Write. It means that C1 was in an
inactive mode before being triggered by the clock element. Once activated, the
component switches to Read mode where it reads the data from its input data
port, received from sensor1. During Execute mode, the component performs
its functionality using the input data. After the execution completion, the result
is written in the output data port during Write mode, and the output trigger port
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is activated. The control is passed to the next connected component (i.e., C3)
through the output trigger port, and C1 returns to the inactive state. We notice
that there are two components triggered by the same clock. The order of their
execution is e.g., based on the component priorities or the scheduling policy of
the OS.

2.3 Graphics Processing Units

Initially when GPUs appeared in the late 90s, they were only used for graphics-
based applications, excelling in rendering high-definition graphics scenes. Over
time, GPUs were equipped with an increased computation capability, and be-
came easier to program. Having now means to easily program GPUs, devel-
opers manage to port many non-graphical computationally demanding appli-
cations to the GPUs, and were referred as General-Purpose GPUs [24]. For in-
stance, cryptography applications [25] and Monte Carlo simulations [26] have
GPU-based solutions.

GPUs, through their massive parallel processing capabilities, manage to
outperform the traditional sequential-based CPUs in heavy data-parallel com-
putations. For example, the bio-molecular simulations achieved a 20 times
speed-up when executed on GPUs [27].

CPUs and GPUs are constructed with different architecture structures, as
follows. Designed as a general-purpose unit to handle any computation task,
the CPU is optimized for lower operation latency (by using large cache mem-
ories). It may consist of one or several processing cores and can handle few
software threads. On the other hand, the GPU is built as a special-purpose unit,
being specialized in highly parallel computations. It is constructed with tens of
processing cores that can handle thousands of computation threads.

Various vendors such as Intel, AMD, NVIDIA, Altera, IBM, Samsung and
Xilinx develop embedded-board platforms with GPUs. The GPU is made part
of these platforms in two ways, either as a discrete unit or integrated into the
platform. When the GPU is discrete (referred to as dGPU), it has its own
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private memory. For instance, the Condor GR21 is a discrete GPU that is used
in embedded systems. When the GPU is integrated (known as iGPU) on the
same chip with the CPU, the memory is shared between the CPU and GPU.
For example, AMD Kabini2 is a chip-set that contains an AMD CPU and GPU
integrated together.

Embedded boards with iGPU architectures are the predominant platforms
used in industry due to their lower cost, size and energy usage. For instance,
we mention here wearable devices such as Cronovo smart-watch3. On the
other side, dGPUs, with larger physical size and increased GPU resources, are
used by systems that require higher performance. We mention systems from
aerospace and defense domains using ruggedized VPX3U GPU4.

For the iGPU-based platforms, we distinguish three types of architectures
regarding the memory system, i.e., distinct, partially-shared and full shared
memory system. Although the CPU and GPU share the same chip, there are
platforms where each processing unit has its own memory address. Other plat-
forms, that are more technological improved, have a partially-shared memory
system, where a part of the memory is directly accessed by both of the process-
ing units. The latest platforms provide a full shared memory system which can
be directly accessed by the CPU and GPU.

Figure 2.2 illustrates the architectures of different platforms with GPUs.
Systems with dGPUs (Fig. 2.2(a)) are characterized by distinct memory sys-
tems, where data needs to be transfered from one system to the other via e.g.,
a PCIexpress bus. Most platforms with iGPUs have the same physical memo-
ries divided into distinct parts, i.e., one for the CPU and the other for the GPU
(Fig. 2.2(b)). In this case, there is still need for data transfer activities with a
minimized transfer overhead due to the physical location of the data (i.e., on the
same memory chip). There are improved platforms with an optimized mem-
ory access which offer a shared virtual memory (SVM) space (Fig. 2.2(c)). To

1http://www.eizorugged.com/products/vpx/condor-gr2-3u-vpx-rugged-graphics-nvidia-cuda-
gpgpu/

2http://www.amd.com/en-us/products/processors/desktop/athlon
3http://www.cronovo.com
4https://wolfadvancedtechnology.com/products/vpx3u-tesla-m6/
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Figure 2.2: Embedded platforms with different GPU architectures

place data on SVM, specific transfer activities are used; on the other hand, no
specific activities are used by either the CPU or GPU to access the data from
SVM. The latest and most technological advanced architecture (Fig. 2.2(d)) of-
fers simultaneous access to the same memory for both CPU and GPU, without
any need for data transfer.

2.3.1 Development of GPU applications

The challenge of leveraging the parallel computing engine of GPUs and de-
veloping software applications that transparently scales their parallelism to the
GPUs’ many-cores, was tackled by several GPU programming models. The
two most popular programming models are CUDA [28] and OpenCL [29].
While CUDA was developed by NVIDIA to address only NVIDIA GPUs,
OpenCL is a general model supported by multiple platforms and vendors (e.g.,
Intel, AMD, NVIDIA, Altera, IBM, Samsung, Xilinx), that targets various pro-
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cessing units, including CPUs and GPUs. Basically, both programming mod-
els have the same concepts utilized through different terms. We utilized in our
work the OpenCL programming model to develop the GPU functionality.

While using OpenCL to develop an application, there are several hierarchi-
cal steps that needs to be respected. We describe these steps using a simple
application example, i.e., the multiplication of two vectors. The steps are the
following:

1. Defining the platform

A platform is at the very top level; it contains the installed vendor’s
driver. A platform needs to have its own context that may contain one
or several execution devices. For example, a system may have three de-
vices, i.e., one CPU and two GPU (iGPU and dGPU) devices. A device
should be selected in order to execute the functionality. The commands
given by the host (i.e., CPU) to the selected device (e.g., iGPU) are sent
using a command queue mechanism.

Listing 2.1 presents the required steps for constructing the environment
for the vector multiplication application. It starts by creating a platform
(line 7), selecting a GPU device to be used (line 10), defining a context
that contains the GPU device (line 14), and finally, creating a command
queue (line 17) through which commands are sent to the GPU.

Listing 2.1: Setting up the GPU environment
1 cl_platform_id platform_id = NULL;

2 cl_device_id device_id = NULL;

3 cl_uint ret_num_devices;

4 cl_uint ret_num_platforms;

5

6 //create a platform

7 clGetPlatformIDs(1, &platform_id, &ret_num_platforms);

8

9 //define the GPU compute device to be used

10 clGetDeviceIDs( platform_id, CL_DEVICE_TYPE_GPU, 1, &device_id, &

ret_num_devices);

11

12
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13 // Create an OpenCL context

14 cl_context context = clCreateContext( NULL, 1, &device_id, NULL,

NULL, NULL);

15

16 // Create a command queue

17 cl_command_queue command_queue = clCreateCommandQueue(context,

device_id, 0, NULL);

2. Creating and build the program

A program to hold the defined kernel is created and compiled. Listing 2.2
presents the creation of the program which contains the kernel function
vec mult (line 2) and its compilation (line 5).

Listing 2.2: Creating and building the program setting
1 // Create a program from the kernel source

2 cl_program program = clCreateProgramWithSource(context, 1, (const

char **)&vec_mult, NULL , NULL);

3

4 // Build the program

5 clBuildProgram(program, 1, &device_id, NULL, NULL, NULL);

3. Creating memory objects

A next step is the allocation of the memory buffers on the device to hold
data. For platforms with full shared memory, this step is skipped. In this
example, we assume that the platform has distinct memory addresses,
one for the CPU and another for the GPU. Listing 2.3 presents the allo-
cation on the device of two memory buffers to hold the input data (line
1 and 2), and one memory buffer to retain the multiplication result (line
3).

Listing 2.3: Allocation of memory buffers
1 a_in = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) *

n, NULL, NULL);

2 b_in = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) *

n, NULL, NULL);

3 c_out = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(float)

* n, NULL, NULL);
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4. Defining the kernel

The functionality, also known as the kernel, contains a function header
and a function body. The function header contains the name of the func-
tion and its parameters. We mention that the qualifier kernel declares
the function to be a kernel function.

For our application example, Listing 2.4 presents the kernel definition,
where the function header is presented at line 1. The name of the kernel
function is vec mult followed by its input and output parameters. The
body of the kernel (line 3, 4 and 5) describes the kernel functionality as
follows. In line 3, the id of each used GPU thread is computed, while in
line 5, the GPU thread executes the multiplication operation. In line 4,
we make sure we do not exceed the vectors’ length.

Listing 2.4: The creation of a kernel object
1 __kernel void vec_mult (__global const float *input_a, __global

const float *input_b, __global float *output_c, __global

const int *n)

2 {

3 int id = get_global_id(0);

4 if (x >= n) return;

5 c[id] = a[id] * b[id];

6 }

We mention that the kernel is not necessary to be defined at this step and
it may be defined even before setting the platform (step 1).

Once the kernel function is defined, a kernel object is created and argu-
ments are attached to it. Listing 2.5 describes the creation of a kernel
object (line 1) and the setting up of its four parameters (line 3-6).

Listing 2.5: The kernel code
1 cl_kernel kernel = clCreateKernel(program, "vec_mult", NULL);

2

3 clSetKernelArg(kernel, 0, sizeof(cl_mem), &a_in);

4 clSetKernelArg(kernel, 1, sizeof(cl_mem), &b_in);

5 clSetKernelArg(kernel, 2, sizeof(cl_mem), &c_out);

6 clSetKernelArg(kernel, 3, sizeof(unsigned int), &n);
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5. Submitting commands

In this step, various commands are issued such as data transfer and kernel
execution commands. In Listing 2.6, we start by transferring the input
data from the host to the device memory (lines 1 and 2), execute the
kernel object (line 4) and finally transfer the result from the device to
the host memory (line 6). In order to execute the kernel object, some
settings (i.e., global and local parameters) need to be previously defined.
These settings refer to the number and grouping of GPU threads used to
execute the functionality.

Listing 2.6: Sending commands via the command queue object
1 clEnqueueWriteBuffer(command_queus, a_in, CL_TRUE, 0, sizeof(

float) * n, a_data, 0, NULL, NULL);

2 clEnqueueWriteBuffer(command_queue, b_in, CL_TRUE, 0, sizeof(

float) * n, b_data, 0, NULL, NULL);

3

4 clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL, &global, &

local, 0, NULL, NULL);

5

6 clEnqueueReadBuffer(command_queue, c_out, CL_TRUE, 0, sizeof(

float) * n, c_res, 0, NULL, NULL );
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Chapter 3

GPU support in

component-based systems

In this chapter, we aim to present existing knowledge regarding component-
based applications with GPU capability. In the context of the thesis, we in-
troduce this chapter in order to position our work with respect to the existing
research. Regarding the research contributions and goals, the chapter presents
contribution 1 which addresses RG1.

3.1 Study design

To characterize the state-of-the-art of the usage of CBD for applications with
GPU capability, we follow the systematic literature review (SLR) methodol-
ogy [30][31]. Guidelines for performing SLR in software engineering are in-
troduced by Kitchenham et al. [30], where the following three main phases are
suggested, as follows:

1. An SLR starts with the planning phase, which: i) describes the moti-
vation to conduct the SLR, ii) specifies the research questions to be an-
swered, and iii) develops the rules for conducting the SLR.

27
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2. During the second phase, the rules defined in the previous step are fol-
lowed, primary studies are collected and information is extracted.

3. The reporting of the review is covered in the last phase, where all the
information of the SLR, from the motivations to the data synthesis and
to the RQs, are presented through a report.

Following these guidelines, we introduce the research process adopted for this
study in Figure 3.1, where the three phases have one or several included activ-
ities.
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Figure 3.1: Overview of the SLR research process

The following sections describe in depth each phase activity of the followed
research process.

3.1.1 Review need identification

Our work aims at introducing GPU support in component-based embedded sys-
tems. The goal of this SLR is to identify existing research which targets GPU
support in systems that follow a component-based approach, and to summarise
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this knowledge. The motivation that drives us to conduct this SLR is given by
the following reasons:

1. to characterize the state-of-the-art in order to identify and understand
the on-going scientific research on GPU support in component-based
systems, and

2. in the context of this thesis, we want to examine the work that actually
target our problem and to position ourself in the current research.

3.1.2 Research questions definition

We address the goal of the SLR through two research questions, each with a
defined objective, as follows:

RQ1 - What are the publication trends of research studies on component-based
development of software applications with GPU capability? By providing an
answer to this question, our objective is to capture the scientific interest in this
subject and its trend, the venues where the results were published and the ex-
isting contribution types.

RQ2 - What specific solutions are adopted by existing component-based devel-
opment approaches when providing GPU support? By answering this question,
we aim to present a deeper understanding of the existing research solutions.

3.1.3 Protocol definition

During this activity, we define the steps and rules for conducting the SLR.
Basically, we define five steps with their definitions detailed in the following
sections. The five steps are the following:

• the resources and search terms used to search for primary studies,

• the selection criteria used to include or exclude studies from the system-
atic review,
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• the data extraction strategy, i.e., how to obtain the required information
from each primary study,

• the synthesis of the extracted data, and

• the dissemination of the results.

3.1.4 Search and selection process

The search and selection process has the goal to identify the studies that are rel-
evant to answer the aforementioned research questions. It contains four steps,
as follows.

ACM
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Figure 3.2: Overview of the search and selection process

In the first step, we define: i) the databases, and ii) the keywords to be used
for searching primary studies. In the same step, we start the search process
by applying the defined keywords on each database. The second step merges
the results found from all databases in a single spread-sheet, and removes the
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duplicates. During the third step, the merged studies are filtered using a pre-
defined number of (inclusion and exclusion) criteria. Finally, a snowbolling
activity is covered by the last step. These steps and their results are summa-
rized in Figure 3.2, where the output of each step is represented by a number
of studies.

The four steps of the search and selection process are explained in more
details in the following paragraphs.

Step 1. Database search.
We carried out our search on four databases and indexing systems, i.e., IEEE
Library, ACM Library, SCOPUS and Web of Science, which are presented
in Table 3.1. We considered these sources to be the most relevant ones and
suitable for our study due to their high accessibility, their content of many
articles in computer science, and their ability to easily export search results to
standard formats.

Table 3.1: The databases and indexing systems used in the search process

Name Type URL

IEEE Xplore Electronic database http://ieeexplore.ieee.org

ACM DL Electronic database http://dl.acm.org

SCOPUS Indexing system http://www.scopus.com

Web of Science Indexing system http://webofknowledge.com

Considering the two aspects that we want to interplay, i.e., CBD and GPUs,
we define a number of keywords and group them in two categories, each cate-
gory describing an aspect of the review study. The category that targets CBD
aspects contains six keywords, while the other category that targets GPU as-
pects includes three keywords. Table 3.2 presents the nine defined keywords
and their corresponding groups. For the last defined keyword (i.e., G9), we use
the asterisk symbol in order to capture common used terms such as CPU+GPU
or GPU-based.
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Table 3.2: The defined keywords and their corresponding groups

Number Keyword Group

C1 component based

C2 component model

C3 component oriented CBD

C4 software component aspects

C5 cbd

C6 cbse

G7 graphical processing

G8 graphics processing GPU

G9 *gpu* aspects

All the search keywords from each group were combined by using the
Boolean OR operator, while the two groups were combined using the AND
operator. That is, the resulting search string is:
(C1 OR C2 OR C3 OR C4 OR C5 OR C6) AND (G7 OR G8 OR G9).

For the considered databases, we applied the search string on all the fields
of the articles such as the title, author, abstract and full text. In the case of the
Web of Science indexing system, there was no possibility to apply the search
string on all article fields. Instead, we used the Topic field to lead the search,
which included the title, abstract and author keywords fields. Furthermore, we
noticed that there is a lack of standardization between the selected database
sources. Therefore, when searching in all four libraries, we manually adapted
the search string for each source to syntactically match their specifications.

The figure introduced in the beginning of this section (i.e., Figure 3.2)
presents the four selected libraries and indexing systems. After applying the
search string, we obtained a number of 1231 items from IEEE Xplorer, 2103
items from ACM DL, 1312 from SCOPUS and 42 from Web of Science.
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Step 2. Merging, and duplicates and impurity removal
The search results from the previous step are combined together into a spread-
sheet and the duplicated entries (i.e., with same title, authors, publication venue
and year) are removed. Furthermore, we removed entries that were not research
papers (i.e., prefaces, forewords, front covers, conference reviews, proceed-
ings, statistic papers, conference presentations, books and book sections, front
covers, and table of contents). Given that GPUs were introduced in 1999, we
decided to exclude all papers published before the year 2000.

After the merging activity, a number of 3969 entries were available. Sum-
marised by Figure 3.2 in Step 2, the removal of the publications anterior to
2000 led to 3858 entries, and finally the exclusion of non research studies pro-
duced 3574 items.

Step 3. Application of the selection criteria
To further filter the primary studies found in the previous step, we define a set
of criteria, which are detailed below. A paper will be included if it satisfies all
the inclusion criteria, and excluded if it satisfies any of the exclusion criteria.

We define the following six inclusion criteria. A study is included if it:

I1. is full-text available,

I2. describes component-based solutions for developing software,

I3. contains solutions that specifically target platforms with GPUs,

I4. provides an evaluation of the proposed solution,

I5. is peer reviewed, and

I6. is written in English.

There is one exclusion criterion defined as follows:

E1. A study is excluded if it is a secondary or tertiary study (e.g., surveys,
systematic literature reviews).

During the beginning of the study, we carried out two trials (i.e., containing
20 and respectively, 50 studies) with the reason to harmonize our understanding
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of the criteria and/or refine them, if needed. Initially, during the first trial, I2
and I3 were merged into a single criterion, but we decided to separate them
into distinct and simpler criteria. Furthermore, in both trials, we discussed
the included studies with each study participant, in order to reach a common
agreement about the studies to be included.

Applying the inclusion and exclusion criteria on the studies left from step
2, produced 49 research items. We mentioned that the filtering was manually
achieved and we used the adaptive reading depth technique [32], that is, in the
cases where the title and abstract were not providing enough information to
discard or include a study, the full source of the article was browsed through.
Furthermore, for studies that were difficult to decide, the study participants de-
cided altogether their inclusion or exclusion from the review study.

Step 4. Snowballing
In this step, we aim to enlarge the set found by the automatic search from
previous steps, through a snowballing activity [33]. Through the snowballing
activity, we referred to each study and used its reference list to identify addi-
tional studies. Several potential studies were identified but after applying the
inclusion and exclusion criteria, none of them were introduce in the final set.
For example, the study Component-based design approach for multicore SoCs
by W. Cesrio et al. was excluded from the study because I3 criterion was not
fulfilled. This step did not change the number of considered primary studies,
i.e., 49 items.

3.1.5 Data extraction

The total number of studies relevant for this work is 49 and they are enumerated
in Table 3.13 (i.e., found at the end of this chapter). The papers have an unique
id (i.e., from P1 to P49) and are ordered according to their publishing year.
The data extraction activity is done manually with the main goal to collect
data from the selected primary studies through a data extraction form. The
form was composed of two aspects, each corresponding to one of the research
questions. Specifically, to address RQ1 (i.e., regarding the publication trends),
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we captured standard information such as the title, authors, publication year
and venue. To address RQ2 (e.g., regarding the GPU support of component-
based applications), we used a systematic keywording approach [32].

1. Create 
pilot study

3. Group keywords 
and concepts

5. Extract data
from

pilot studies

6. Extract data
from

primary studies

4. Define/refine
 extraction form

2. Define/refine
keywords

and concepts

Figure 3.3: The data extraction process

Figure 3.3 describes in details the process of data extraction used in this
study. It contains the following steps:

1. In the first step, we create a test pilot study that contains 20 random
studies.

2. In the second step, we define the keywords and concepts representatives
for the study1. For example, we define memory as a keyword, and the
provided memory support as a concept. If needed, the keywords are
refined.

3. The defined keywords and concepts are enclosed in two groups, where a
group corresponds to each research questions.

4. In the fourth step, we define the extraction form, or refine it. Basically,
this is a table with several columns, where the first two columns represent
the id and title of each study. The other columns contain information
about e.g., the publication type and year, the domain targeted by the
studies, and the type of the used evaluation.

5. Using the defined keywords and concepts, we extracted data from each
study of the pilot study and filled in the extraction form. The collected in-

1The full list of the defined keywords and concepts can be downloaded using the following
link: https://github.com/gcu01/SLR/raw/master/keywords.pdf
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formation is reviewed and if we consider that the defined e.g., keywords
are not representative enough, we reiterate from step 1.

6. The data from all remaining primary research studies is extracted2.

3.1.6 Data synthesis

During this activity, the data extracted from the previous step is analyzed and
summarized. Using the experience provided by Cruzes et al. [34], we defined
two analysis dimensions, i.e., the vertical and horizontal dimensions, as fol-
lows:

• The vertical analysis presents trends and information about the defined
parameters (see Section 3.2 and Section 3.3).

• In the horizontal analysis, we explored, through the extracted data, pos-
sible relations between the parameters. In this sense, we made com-
parisons between two or several parameters in order to detect possible
relations of various aspects of our study (see Section 3.3).

The narrative synthesis technique [35] is used to explain and interpret the
results found from the analysis. The results of this activity are presented in
Section 3.2 and Section 3.3.

3.1.7 Threats to validity

The validity threats considered for this work refer to the construction, history
record and bias issues. We decrease the first two threats by adopting well-
accepted systematic methods to conduct our research process, and document-
ing all the steps in our research protocol. Furthermore, by providing a well-
documented protocol, other researchers that are interested in the research area
may replicate our study, or the study design framework can serve as a starting
point for new literature review studies.

2The full extraction form can be downloaded using the following link:
https://github.com/gcu01/SLR/raw/master/dataSLR.xlsx
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Another dimension that may threaten the validity of our work is the human
factor and the bias concern. We decreased it two ways, as follows:

• All members of this study discussed, defined and refined together the
keywords, concepts and extraction form.

• We increased the confidence in the inclusion/exclusion criteria filtering
by using the Cohen Kappa coefficient [36]. Two trials were executed on
two different sample studies, the first one containing 20 random studies,
while the second contained 50 random studies. Using the Cohen-Kappa
coefficient, we obtained an agreement of 0.3 for the first trial, and 0.6 for
the second3.

3.2 Results - RQ1

This section describes our findings after analyzing the selected primary studies.
The findings, illustrated by Figure 3.4 are detailed in the next paragraphs.
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Figure 3.4: The distribution of the publications

3The Cohen Kappa statistics show good agreement for anything above 0.6 [37]
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Based on their type, we classified the primary studies in three categories,
i.e., journals, conferences and workshops. Figure 3.4(a) describes the number
of studies for each defined publication category. The most common type of
publication is the conference study (i.e., 25/49), followed by the journal publi-
cations (i.e., 19/49), and workshop studies (i.e., 5/49).

Figure 3.4(b) presents the publications distribution over the years. We no-
tice that the interest in the development of applications with GPU capability us-
ing the component-based approach, started in 2009. The first published paper
(i.e., P1) introduces a solution to support specialized visualizations on GPUs,
applications that are used in e.g., the medicine domain. From 2010, the interest
fluctuates, reaching the peaks in 2012 and 2016.

Up to 2009, our study captured no interest from the research community
regarding the GPU support in component-based applications. The growth of
the research interest in our studied topic coincides with the release of OpenCL
1.0 (i.e., in 2009) and of several System-on-Chip platforms that combined CPU
and GPU onto the same physical chip-set (e.g., Qualcom Adreno4 released in
2009, NVIDIA Tegra5 released in 2010 and AMD Fusion6 released in 2011).

Table 3.3: The research environment

Environment # Studies Studies

Academy 48 P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15,P16,P17,P18,P19,
P20,P21,P22,P23,P24,P25,P26,P27,P28,P29,P30,P31,P32,P33,P34,P35,
P36,P37,P38,P39,P40,P41,P42,P43,P44,P45,P47,P48,P49

Industry 3 P2,P43,P46

Regarding the research environment of the studies, Table 3.3 describes, based
on the author affiliation, the studies written in academia and in industry set-
tings. We notice that most of the studies are written in academia, where only
three studies are written with industrial context (i.e., P2, P43 and P46).

4https://www.pcper.com/reviews/Processors/Qualcomm-History-and-its-GPU-Revolution
5http://www.nvidia.com/object/tegra.html
6https://www.amd.com/en-us/press-releases/Pages/amd-fusion-apu-era-2011jan04.aspx
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Table 3.4: The domain of the primary studies

Domain # Studies Studies

Embedded Systems 17 P5,P6,P11,P19,P20,P22,P24,P32,P33,P35,P36,P40,P42,
P43,P44,P45,P47

General purpose 16 P4,P6,P8,P9,P10,P12,P16,P21,P23,P25,P27,P29,P30,P37,
P48,P49

High-Performance Computing 5 P2,P6,P7,P38,P47

Computer graphics 4 P1,P17,P18,P41

Physics simulations 4 P14,P28,P31,P39

Medicine simulations 2 P3,P26

Mathematics applications 1 P15

Military applications 1 P46

Pattern matching 1 P34

Video encoding 1 P13

Furthermore, our study captured 10 domains that adopt a component-based ap-
proach for applications with GPU capability. Table 3.4 presents the specific
studies that target the 10 domains. The top most targeted domains are the em-
bedded systems with 17 studies, and general purpose with 16 studies. We men-
tion that a study may target one or several domains. For example, P6 targets
three domains, i.e., embedded systems, general purpose and high-performance
computing.

For the evaluation part, the primary studies are divided into three cate-
gories, each one using a different type of evidence. The three distinguished
types of evidence are:

• example which refers to one in-house (not industrial) example;

• set of examples referring to several in-house examples; and

• industrial example that refers to an example that comes from industry
and performed in laboratory.

As presented by Table 3.5, the most used category is the example-based evalu-
ation, where each of the 25 studies applies its proposed solution on a in-house
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example. The second most used category which is based on a set of examples,
is utilized by 22 studies, while the third category used by two primary studies,
apply their solution on an industrial example. The extracted data related to
the evaluation part, shows that the research on CBD and GPU is rather young,
using only three evidence types.

Table 3.5: The type of evaluation used by the primary studies

Evaluation # Studies Studies

Example 25 P3,P4,P6,P7,P10,P14,P19,P20,P22,P23,P24,P28,P29,P30,P31,
P32,P34,P36,P38,P39,P40,P41,P42,P44,P45

Set of examples 22 P1,P2,P8,P9,P11,P12,P13,P15,P16,P17,P18,P21,P25,P26,P27,
P33,P35,P37,P46,P47,P48,P49

Industrial example 2 P5,P43

Table 3.6 presents the venues of the research studies. The research re-
garding component-based applications with GPU capability is spread over 44
different venues, where the table describes the venues that have more than one
study.

Table 3.6: The publication venues

Publication venue # Studies

The Journal of Parallel Computing 3

The Int. Conf. of High Performance Computing, Networking, Storage and Analysis (SCC) 2

The Journal of Procedia Computer Science (ICCS) 2

The EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA) 2

The Journal of Concurrency and Computation 2

Others 38

Based on the presented extracted data, we can conclude that the research
interest on GPU and CBD is rather recent, scattered and immature, and it is not
a mainstream practice in industry.
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The highlights of RQ1 are the following:

� Up to 2009, there is no interest in the component-based applications with
GPU capability. From 2009, there is an increased interest, which may
have been triggered by the release on the market of several (software
and hardware) technologies.

� Most of the studies are researched in academic settings, covering a large
variety of domains.

� Research on component-based applications with GPU capability is spread
over a large number of heterogeneous venues (i.e., more than 40) with a
focus on conference and journal type of publications.

3.3 Results - RQ2

This section presents our findings regarding RQ2. From each study, we have
extracted information to cover various research facets which are presented in
the form of tables and figures, in the following paragraphs.

The first research aspect that we introduce is related to the challenges tar-
geted by the primary studies. We distinguish the following four categories of
challenges:

• Development improvement refers to studies that aim to facilitate the de-
velopment of applications.

• Performance improvement indicate the studies that focus on improving
the application performance.

• Allocation represents studies that handles the software-to-hardware allo-
cation.

• Experience sharing presents studies that share their obtained knowledge.

Table 3.7 presents the main challenges targeted by the primary studies. The
most addressed challenge is development improvement (i.e., 33 studies). For
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Table 3.7: The main challenges targeted by the primary studies

Problem # Studies Studies

Development improvement 33 P1,P2,P4,P6,P7,P8,P9,P10,P11,P13,P14,P16,P17,P18,P20,
P21,P22,P26,P27,P28,P29,P30,P31,P33,P34,P35,P36,P38,
P39,P40,P42,P47,P49

Performance improvement 10 P3,P5,P12,P15,P19,P25,P37,P41,P46,P48

Allocation 5 P23,P24,P32,P44,P45

Experience sharing 1 P43

example, P7 facilitates the development of high-performance computing ap-
plications through software components that can be reused across different ar-
chitectures and resource configurations. The performance improvement (i.e.,
10 studies) is the second most addressed challenge. In this category, P3, for
example, targets the performance of disease simulations, delivering a 4 times
speedup when using a component-based approach. The allocation challenge,
addressed by five studies, refers to studies that cover the software-to-hardware
distribution. There is one study (i.e., P43) that presents the experience gathered
in industry, where the GPU is used to reduce the worse-case execution time in
the powertrain domain.

Table 3.8: The utilized component-based approach

Component models # Studies Studies

No specific CM 34 P1,P2,P7,P8,P12,P13,P14,P15,P16,P17,P18,P22,P23,P24,P25,
P26,P27,P28,P29,P30,P31,P32,P33,P34,P38,P39,P41,P43,P44,
P45,P46,P47,P48,P49

PEPPHER 6 P6,P9,P10,P11,P21,P37

UML 4 P5,P19,P20,P40

CCA 2 P3,P4

Rubus 2 P35,P42

OSGi 1 P36

Regarding the component-based approach, we divided the research studies into
two categories, one that uses a general approach and the other that uses specific
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component models, as described in Table 3.8. While there are 34 studies in the
former category, 15 studies adopt specific component models. The most uti-
lized component models are PEPPHER [38], UML7, CCA [39] and Rubus [6].
Although UML is not a component model per se, we included the studies with
UML-based solutions in the category with specific component models. The
inclusion reason is due to the fact that studies construct their component-based
solution using the UML description. Using the same reasoning, we also in-
cluded in this category all the studies that use UML extensions. For instance,
P19 uses the MARTE extension to develop embedded systems with real-time
characteristics.

Table 3.9: The used approaches in providing GPU support

Mechanism # Studies Studies

Programming 43 P1,P2,P3,P4,P6,P8,P9,P10,P11,P12,P13,P14,P16,P17,P19,
P20,P21,P22,P23,P24,P25,P26,P27,P28,P30,P31,P32,P33,
P34,P35,P36,P37,P38,P39,P40,P41,P42,P43,P44,P45,P46,
P47,P48

Modeling 20 P1,P2,P3,P4,P5,P14,P18,P19,P20,P23,P24,P29,P32,P33,P35,
P36,P40,P42,P44,P45

Library 13 P6,P10,P11,P12,P18,P21,P25,P30,P33,P39,P41,P42,P47

Template 11 P7,P10,P11,P12,P15,P22,P34,P38,P39,P42,P47

Annotations 10 P6,P8,P9,P10,P11,P17,P21,P25,P47,P49

Model-to-code generation 8 P5,P14,P18,P19,P20,P33,P35,P40

Code-to-code generation 7 P8,P9,P10,P11,P15,P17,P21

Model-to-model generation 2 P5,P40

Grammar 1 P49

Parametrization 1 P29

Layer 1 P7

Table 3.9 presents the approaches used to address the GPU support. Program-
ming is the most used approach, followed by modeling and library-usage. A
study may use a combination of different approaches, such as P10 that com-
bines programming, library- and template-usage, annotations and code-to-code

7http://www.uml.org
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generation. We notice that model-to-model and model-to-code generations are
always use as extensions of the modeling approach.

Table 3.10: The memory mechanisms adopted by the primary studies

Memory mechanism # Studies Studies

Specific artifact 18 P5,P6,P7,P10,P11,P12,P15,P17,P18,P22,P33,P34,P35,P38,
P39,P42,P47,P48

Not available 15 P3,P13,P21,P23,P24,P26,P29,P32,P36,P37,P41,P43,P44,P45,
P49

Manual 9 P1,P14,P25,P27,P28,P30,P31,P34,P46

Layer 6 P2,P4,P9,P16,P19,P30

Model transformation 3 P8,P20,P40

The memory aspect is an important issue when utilizing GPUs. We identified
the following four specific categories that deal with it:

• Specific artifact refers to studies that use items specifically developed to
address the system memory.

• Manual indicate the studies that manually address the memory of the
system.

• Layer represents studies that address the system memory via a layer.

• Model transformation presents studies that use model transformation
mechanisms.

Table 3.10 presents the specific memory mechanisms adopted by the pri-
mary studies to address the GPU memory aspect. There are 34 primary studies
that specifically address this aspect, and 15 studies that do not mention the
memory support in their solution. The most popular solution (i.e., 18 studies)
is to use a specific artifact. For example, P18 introduces specific blocks (i.e.,
classes) to handle various data activities such as copy and resizing. Other ap-
proaches include manual implementation (i.e., 9 studies), layer-based approach
(i.e., 6 studies) and using model transformation mechanisms (i.e., 3 studies).
We notice that there are two studies that use combination of approaches, i.e.,
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P30 that combines the manual and layer-based approach, and P34 that uses a
specific artifact with manual implementation.

Table 3.11: The programming languages used by the primary studies

Programming language # Studies Studies

C/Cpp 36 P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P14,P15,P16,P17,
P18,P19,P20,P21,P22,P25,P26,P27,P28,P30,P31,P32,P33,
P34,P35,P39,P40,P41,P42,P47

CUDA/OpenCL 34 P2,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15,P17,P18,P19,P20,
P21,P22,P25,P26,P27,P28,P30,P31,P32,P34,P35,P36,P40,
P42,P43,P46,P47,P48,P49

OpenMP 12 P3,P4,P5,P6,P10,P15,P17,P19,P21,P22,P31,P33

MPI 6 P4,P15,P16,P31,P38,P39

OpenGL 3 P1,P26,P41

Java 2 P4,P36

Fortran 2 P4,P5

OpenACC 2 P28,P31

Vulkan 1 P41

Csharp 1 P38

VHDL 1 P5

OpenVX 1 P33

The programming languages used by the primary studies are presented in Ta-
ble 3.11. The two most used (group of) languages are C/Cpp (i.e., 36 studies)
and CUDA/OpenCL (i.e., 34 studies). We want to mention that a study may
use one or several languages such as P6 that allows its solution to use C/Cpp,
CUDA/OpenCL and OpenMP. Another fact to notice is that most of the studies
that utilize CUDA/OpenCL also use C/Cpp. This is normal because CUD-
A/OpenCL are built using the C/Cpp syntax which allows them to be easily
used together.

Concerning the GPU platform, we distinguish between studies that tar-
get multi-GPU and single-GPU platforms, as described in Table 3.12. The
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Table 3.12: The type of platform targeted by the primary studies

Type platform # Studies Studies

Multi-GPUs 25 P2,P5,P8,P10,P14,P18,P23,P24,P28,P29,P30,P31,P33,P34,
P37,P38,P39,P40,P42,P43,P45,P46,P47,P48,P49

Single GPU 21 P6,P7,P9,P4,P3,P11,P13,P15,P16,P17,P19,P20,P22,P25,
P26,P27,P32,P35,P36,P41,P44

multi-GPUs platforms refer to systems that contain two or more GPUs, and the
single-GPU platforms represent systems with single GPUs. While the former
category contains 25 studies, the later one comprises 21 studies. We mention
that three studies did not specify the type of GPU platform targeted.

Figure 3.5: The memory mechanisms used by the primary studies

Figure 3.5 presents the type of memory mechanisms used by the primary
studies. We notice that, for the solutions that do not use specific component
models, the most utilized mechanisms are the specific artifacts and the manual
manner to address them. In the case of the solutions that use specific compo-
nent models, there are no study that manually addresses the memory aspect.
In these cases, the most utilized method is through specific artifacts. A study
may combine several mechanisms to address the GPU memory. For example,
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P34, based on a non specific component-model approach, uses a combination
of specific artifacts and manual development.

Figure 3.6: The domains targeted by the primary studies

There are 10 domains targeted by the primary studies, which are presented
by Figure 3.6. Nine of the domains are specific (e.g., medicine simulations)
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while one of the domain is generic given that studies do not target partic-
ular domains. The studies that use no specific component models cover all
the reported domains, with a focus on embedded systems, computer graphics
and physics simulations. The studies with specific component models target
three specific domains, with a focus on embedded systems. A study may target
several domains, such as P6 which focuses on embedded systems and high-
performance computing.

Figure 3.7: The programming languages and the addressed challenges

Figure 3.6 illustrates the programming languages used to address the chal-
lenges targeted by the primary studies. It is not a surprise that the GPU spe-
cialized languages (i.e., CUDA/OpenCL) are most used, alongside with C/Cpp.
Given that CUDA/OpenCL are built using the C/Cpp syntax, these program-
ming languages are frequently used together, hence most of the studies that
utilize CUDA/OpenCL, also use C/Cpp. Other used languages are MPI and
OpenMP, which are also used in combination with C/Cpp due to their con-
struction (i.e., using C/Cpp syntax).

The last figure (i.e., Figure 3.8) illustrates the mechanisms used to support
GPU solutions, and the types of platforms (i.e., with one or multi-GPUs). The
utilized mechanisms are evenly used for the two types of platforms. Program-
ming is the most utilized mechanism to develop solutions with GPU capability,
either on platforms with a single or multiples GPUs. Other utilized mecha-
nisms include modeling, libraries and templates.
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Figure 3.8: The GPU support mechanisms and the types of platforms
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The highlights of RQ2 are the following:

� The captured studies focus on development and performance improve-
ment.

� Most of the studies do not use specific component models to construct
their solutions. For the studies that use specific component models,
PEPPHER, UML, CCA and Rubus are the most utilized.

� More than 10 mechanisms are used to support GPU development. Pro-
gramming and modeling mechanisms are the most used ones.

� A specific artifact is the most used mechanism to address the memory
issue. Other mechanisms include manual development and layer-based
solutions.

� The most used programming languages are CUDA/OpenCL and C/Cpp.
Often, CUDA/OpenCL and C/Cpp are used together.
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Table 3.13: The list with the primary studies

Id Title Author Year

P1 Voreen: a rapid-prototyping environment for ray-
casting-based volume visualizations

J. Meyer-Spradow et
al.

2009

P2 2PARMA: parallel paradigms and run-time manage-
ment techniques for many-core architectures

C. Silvano et al. 2010

P3 Component-based design for adaptive large-scale in-
fectious disease simulation

T.M. Riechersm et
al.

2010

P4 A model-driven design framework for massively par-
allel embedded systems

A. Gamatie et al. 2011

P5 Improving programmability of heterogeneous many-
core systems via explicit platform descriptions

M. Sandrieser et al. 2011

P6 PEPPHER: efficient and productive usage of hybrid
computing systems

S. Benkner et al. 2011

P7 Reusable software components for accelerator-based
clusters

M.M. Rafique et al. 2011

P8 Scheduling multi-paradigm and multi-grain parallel
components on heterogeneous platforms

Y. Pen et al. 2011

P9 Computing effective properties of random heteroge-
neous materials on heterogeneous parallel processors

T. Leidi et al. 2012

P10 High-efficient parallel CAVLC encoders on heteroge-
neous multicore architectures

H Su et al. 2012

P11 High-level specifications for automatically generating
parallel code

A. Acosta et al. 2012

P12 High-level support for pipeline parallelism on many-
core architectures

S. Benkner et al. 2012

P13 Improving performance of adaptive component-based
dataflow middleware

T.D.R. Hartley et al. 2012

P14 Leveraging PEPPHER technology for performance
portable supercomputing

C. Kessler et al. 2012

P15 Policy-based tuning for performance portability and li-
brary co-optimization

D. Merrill et al. 2012

P16 Rapid prototyping of image processing workflows on
massively parallel architectures

B. Li et al. 2012

P17 The PEPPHER composition tool: performance-aware
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Chapter 4

GPU-aware mechanisms

The component-based development methodology is successfully adopted by
industry in the construction of embedded systems. Due to the fact that the
existing component models used in the embedded system domain offer no
GPU support, many shortcomings arise when CBD is used to construct em-
bedded systems with GPUs. Because of these shortcomings, CBD may be-
come unattractive in the context of embedded systems with GPUs. The role of
this chapter is:

• to introduce the existing challenges when developing component-based
embedded systems with GPUs, and

• to present our solutions to facilitate the development of embedded sys-
tems with GPUs.

The solutions, initially introduced as theoretical concepts, are implemented in
an existing component model, describing their feasibility aspects.

Regarding the research goals and contributions presented in the Introduc-
tion, this chapter addresses the Contribution 2 and Contribution 3 that both
target Research Goal 2.
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4.1 Running case

In order to describe the detailed challenges of our work, and to introduce and
evaluate our solutions, we use an existing underwater robot as a running case.
The robot autonomously navigates under water, and, based of its vision system,
fulfills various missions, such as tracking and touching red buoys. Similar to
most of the existing embedded systems, the robot contains sensors, actuators
and an embedded board. As sensors, we mention a system of cameras that
provides a continuous flow of data regarding the underwater environment. The
thrusters of the robot are its actuators and allow it to move underwater. The
embedded board contains a CPU and GPU that are integrated on the same
physical chip.

Camera1

Camera2

Merge
And

Enhance

Convert
Grayscale

Edge
Detection

Object
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Sync
Sensor
Camera1

Sensor
Camera2

Logger
Compress

RGB

Compress
Grayscale

Figure 4.1: The component-based vision system

Figure 4.1 describes the vision system of the underwater robot; it is con-
structed using the Rubus component model. The system contains nine com-
ponents, as follows. The Camera1 and Camera2 components receive raw data
from the camera sensors and convert them to readable frames. The resulting
frames are merged by the MergeAndEnhance component. The component also
removes the noise of the merged frame, and forwards its result to the Con-
vertGrayscale component that filters it into grayscale format. The EdgeDe-
tection component receives as input the grayscale frame and provides a black-
and-white frame, where the white lines delimits the objects found in the frame.
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Based on the delimited objects, the DetectObject component takes appropriate
actions.

Another part of the vision system is comprised of three components, illus-
trated in the lower part of Figure 4.1. Two of the components (i.e., Compress-
RGB and CompressGrayscale) compress the frames of the system, while the
Logger component, that has the purpose to record the underwater journey of
the robot, registers the compressed frames.

The vision system contains five components that may be executed on the
GPU, due to their functionality, i.e., image processing. These components
are MergeAndEnhance, ConvertGrayscale, EdgeDetection, CompressRGB and
CompressGrayscale. By executing them on the GPU, the system may improve
one or several aspects such as overall performance.

4.2 Existing challenges

The existing component models used to construct embedded systems provide
no specific support for developing applications with GPU capability. Using the
existing approaches, one way to construct component-based embedded sys-
tems with GPUs is to encapsulate, inside the component, all the GPU-specific
information. More specifically, each component needs to encapsulate all the
specific GPU information and operations in order to address the hardware
platform. Whenever a component uses the GPU to execute its functionality,
it needs to e.g., shift its required input data from the main memory system
(i.e., the CPU address space) onto the GPU memory system, (i.e., GPU ad-
dress space). After finishing its processing activities, the result also needs to
be shifted back onto the main memory system. Therefore, specific transfer
operations and memory initialization mechanisms need to be enclosed in the
component.

Encapsulating GPU information inside components brings the following
disadvantages:

• inefficient component communication,
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• a reduced component reusability,

• a decreased component maintainability,

• a reduced design flexibility, and

• a complex component development process, error-prone and time-consu-
ming.

To present more details on the existing challenges of component-based de-
velopment of embedded systems with GPUs, we use the underwater robot run-
ning case developed using the Rubus component. Figure 4.2 describes the
vision system executed on a platform with GPU. The platform has distinct
memory addresses for the CPU and GPU.
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Figure 4.2: Platform-related activities of the vision system

In its current state of specifications, the Rubus component model needs to
follow the same approach when addressing GPU-based hardware. Each com-
ponent with GPU capability needs to encapsulate all the GPU-specific informa-
tion and operations, such as data transfer operations or the GPU computation



4.2 Existing challenges 59

settings. Both Camera1 and Camera2 components access the main RAM sys-
tem to acquire the raw image frames, process them on the CPU and store them
back onto the RAM. Having GPU computation, the hardware activities of the
MergeAndEnhance component are different. In addition to the RAM access to
obtain the cameras’ frames, the component needs to copy them onto the GPU
memory system in order to process them. Once the frames are merged and
processed, the component copies the result back onto the RAM system.

For a platform in which the CPU and GPU share the same memory, the
transfer activities are not required to be encapsulated inside e.g., the MergeAn-
dEnhance component. This reduces the reusability of components with GPU
capability between contexts. For example, the MergeAndEnhance component
that is constructed to be executed on a share-memory type of platform, cannot
be used on a platform with distinct CPU and GPU memory spaces.

Moreover, the component developer needs to encapsulate inside the com-
ponents: i) environment information to access the GPU, and ii) settings regard-
ing the GPU threads usage. These settings which basically refer to the number
of GPU threads required by the component, are influenced by the physical lim-
itations of the platform resources. Hard-coding these settings inside the com-
ponent leads to a decreased maintainability of the component. Furthermore, it
influences also the reausability aspect, the component being only reusable on
platforms that posses enough resources to execute it.

The component developer, when constructing the component with GPU ca-
pability, needs to address, besides the component functionality, all the required
environment information and GPU settings. This fact leads to a complex com-
ponent development process, error-prone and time-consuming.

Another shortcoming that results from the existing way of developing com-
ponent-based embedded applications with GPU capability, is the fact that the
CBD separation of concerns principle between component and system devel-
opment is broken. When the component developer constructs the component
with GPU capability, the encapsulated settings are sett up by inspecting the
platform characteristics and software architecture (i.e., which components ac-
cess the GPU).
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4.3 The development process overview

The novelties of this work are introduced using our overview of the develop-
ment process, as depicted in Figure 4.3. Basically, the development process is
composed of: i) the component development activity, ii) the system develop-
ment activity, iii) the optimization realization activity, and iv) the source-code
generation activity. In the component development activity, the component
developer constructs the components, which are used during the system devel-
opment activity to build the application architecture. During the optimization
realization activity, the application is optimized and realized into a Rubus-like
application (i.e., contains only Rubus constructs), while in the last activity, the
application is transformed into source-code. In the following paragraphs, the
development process is described in more details.

During the component development activity, the component developer con-
structs components of two types, i.e., regular and flexible components. While
a regular component functionality is always executed by the CPU, a flexible
component functionality is executed by either the CPU or GPU.

When constructing a regular component, the developer defines the com-
ponent data ports (i.e., the number and data type of input and output ports),
and writes the component behavior, i.e., functionality code constructed in a
sequential manner. For constructing a flexible component, the developer also
defines the component data ports and writes the component behavior. The flex-
ible component functionality should be constructed in a parallel manner by
using e.g., the OpenCL environment, in order to be executed, if decided, by the
GPU. The flexible component is equipped, besides the defined data ports, with
a configuration interface. This interface, transparent for the developer, will be
automatically generated for each constructed flexible component, during the
system generation stage.

After constructing the components, the focus of the development process is
shifted on the system development activity. The design of the application is ex-
ecuted during the software design step, by composing the already constructed
(regular and flexible) components. The output of the software design step is
a component-based architecture of the desired software application. Further-
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more, the platform is also modeled at this step, that is, the CPU and GPU
characteristics are described (e.g., available memory). The following activ-
ity is the allocation and settings definition. The allocation may be completed
either manually or semi-automatic. For the manually allocation, the system
developer decides, based on the component-based architecture, the allocation
of the flexible components, i.e., on the CPU or GPU. The way that flexible
components are allocated to hardware may improve one or several application
properties such as performance. The output of this activity is an allocation
scheme, where each component is mapped to a single processing unit. Further-
more, the system developer provides the appropriate configuration settings for
each flexible component, according to its decided allocation. These settings
are established using the platform model, i.e., the physical properties of the
platform such as the available number of GPU threads.

In the following activity, i.e., the optimization and realization activity, con-
nected flexible components that share the same allocation unit are grouped
together in a conceptual component referred as a flexible group. The output
is an application seen as a composition of regular components and flexible
group components. During the following step, that is, the conversion to Rubus
constructs step, the identified flexible groups are converted into regular Rubus
components resulting in an application architecture that is composed of only
regular components that have different allocations. In order to facilitate the
communication between components allocated to different processing units,
adapter artifacts are automatically generated during the adapter construction
step. The adapter artifact connects connected components that are allocated
on different processing units (i.e., using the allocation scheme) for particular
platforms (i.e., based on the platform modeling). This communication artifact
is transparent and generated in an automatic manner. Another step related to
the realization activity is the configuration settings realization. The output of
the adapter construction step is enriched with the configuration setting values
provided by the system developer during the allocation and configuration ac-
tivity.

The following activity in the system development is the source-code gen-
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eration. The output of the configuration settings realization step is transformed
during the Rubus source-code generation activity, into source-code. The code,
spread in different (headers and source) files, represents the application that
is ready to be executed on the platform. We mention that all introduced con-
cepts were converted into regular Rubus constructs. For example, the flexible
group is transformed into a regular Rubus component. In this way, the resulted
system can be handled by the existing Rubus code generation.

4.4 Flexible component

We consider in this work that a system is design by composing regular and flex-
ible components. While a regular component is always executed on the CPU,
a flexible component may be executed by either the CPU or GPU. Formally,
we define a system being a set of regular and flexible components, and their
connections:

S = 〈CR, CF, Connect〉, where

CR = {Creg1
, Creg2

, ..., },
CF = {Cflex1

, Cflex2
, ..., },

Connect = {〈pfrom1
, pto1〉, 〈pfrom2

, pto2〉, ...}.
We define a component, either regular or flexible, as a tuple that contains

the functionality F disclosed through the interface I . All of the components
use port-base interaction style and the underlying component model uses a
pipe-and-filter style.

C = 〈F, I〉, with I = {p1, p2, ...}.
F denotes the functionality. There is a difference between the functionali-

ties of regular and flexible components (described later on).
I defines a set that contains all (data and trigger) ports.

Through the ports of the interface, a component communicates with other
components, i.e., by providing (through output ports) and requiring (through
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input ports) data. Each port has a unique name and a specific data type that
characterizes the (provided or required) data:

∀pk ∈ I , pk.name denotes the name of port pk, and

pk.type denotes the type of port pk.

The ports of a component support data of regular type such as integer or
double. Besides regular data, we introduce m-elem as a data type, referred as
multi-element type, to describe large data that is also supported by the compo-
nent ports. For example, a 2D image is a large data composed of many pixel
elements grouped together, that would be represented by a multi-element type.

Furthermore, we define additional port information related to the multi-
element ports to facilitate the generation to source-code activity. The data of
the multi-element type may have several dimensions. Therefore we introduce
additional attributes to accurate describe multi-element data, as follows:

∀pk, where pk.type = m-elem

pk.width denotes the horizontal size,

pk.height denotes the vertical size, and

pk.size denotes the size of each data element.

A good example is a color (2D) image with two dimensions, that is a width of
640 and a height of 480 pixel elements. Each pixel of the image has a color
(i.e., value) that is obtained from a combination of three colors (Red, Green
and Blue), each with values between 0 to 255. The size of each color pixel
is 3 ∗ 1 bytes (the unsigned char type allows values between 0 and 255 and
has a size of 1 byte). For a multi-element data with one dimension (e.g., array
of integers), pk.height is set to 1. The approach can easily be extended to
support data with more than two dimensions, e.g. by introducing information
about depth for 3D images.

Moreover, another information required during the source-code generation
activity is related to the connections of a port. Therefore, we introduce a way
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to access this information, as follows:

∀pk, where pk.type = m-elem ∧ pk.type �= m-elem

pk.connect denotes the port(s) connected to pk.

For an output port that is connected to one or several other ports, the connect
construct specifies the connected ports. Similarly, for an input port, the con-
struct provides the (only) port connected to it.

The ports of the interface I are grouped into two subsets, i.e., input and
output. Moreover, each subset is further divided according to their data types
(i.e., regular and multi-element). We mention also that a (regular or flexible)
component contains one single input trigger port and one single output trigger
port. Therefore:

I = Iin ∪ Iout, where

Iin = Ireg in ∪ Imulti in ∪ {ptrig in} and

Iout = Ireg out ∪ Imulti out ∪ {ptrig out} with

∀pk ∈ Ireg in ∪ Ireg out, pk.type �= m-elem and

∀pk ∈ Imulti in ∪ Imulti out, pk.type = m-elem.

Due to the characteristics of the GPU, large data (e.g., images) need to re-
side on the GPU memory (e.g., for platforms with distinct memory systems)
in order to be processed by the GPU. The motivation of introducing the multi-
element type and the separation of the interface into two subsets is that auto-
matically generated mechanisms (i.e., adapters) transfer data between CPU and
GPU based on the data type information of the connected ports. For example,
for platforms with dGPUs, when a regular component sends a data of m-elem
type to a GPU-allocated flexible component, that specific data is automatically
transfered on the GPU memory. We do not need to specifically handle data
of a regular type (e.g., integer or double) because the GPU run-time driver
automatically handles it.

The other part of a component is its functionality F . In the case of a flexible
component, the functionality is basically the kernel code constructed using the
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Listing 4.1: Declaration of the m-elem type
typedef struct{

unsigned char *data;

} m-elem;

OpenCL syntax. Written in a data-parallel manner, it can be executed by either
CPU or GPU.

From the implementation perspective, the multi-element type contains a
pointer to the memory location of the data. Listing 4.1 outlines the construction
of the multi-element type.

Concerning the actual implementation of the functionality of a flexible
component, instead of hard-coding the m-elem port information (e.g., 640)
inside the functionality which is considered a bad practice (e.g., poor mod-
ifiability, readability), we provide a number of macros. Moreover, we hide
through a macro definition the fact that a buffer (with one value) is utilized
when addressing regular output data. The macro definitions located in the flex-
ible component constructor, are the following:

∀pk, where pk ∈ Imulti in ∪ Imulti out

p_k.name width to access the width information,

p_k.name height to access the height information,

p_k.name size to access the size information, and

p_k.name data to access the data memory location.

∀pk, where pk ∈ Ireg out

p_k.name data to access the corresponding (one value) buffer.

4.5 Optimized groups of flexible components

In order to reduce the overheads introduced by the flexible component notion,
we propose to group connected flexible components with the same hardware
allocation, into what we call a flexible group. The flexible group is realized as
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a single component that has the same allocation as the enclosed components.
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Figure 4.4: The transition from flexible components to flexible group

Our solution is described through a simple example illustrated in Figure 4.4.
Assuming that we have two connected flexible components, C1 and C2, and is
decided for both of them to be allocated on the GPU. During the source-code
generation activity, C1 and C2 are realized as regular components; the resulted
source-code is graphically described in Figure 4.4a. Each component is real-
ized to encapsulate its own device-environment through which it executes the
functionality. The communication between the components functionalities is
done through the components port-based interfaces.

With our approach, we optimize the realization of the two components via
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a flexible group G, as depicted by Figure 4.4b. In our vision, G contains one
OpenCL device-environment through which, the functionalities of the enclosed
components are executed. Furthermore, the communication (i.e., data and con-
trol flow connections) between C1 and C2 is done at the functionality level,
i.e., directly between FC1 and FC2, by providing the output of FC1 as in-
put of FC2. The encapsulation of FC1 and FC2 inside G does not break the
(functionality) encapsulation of C1 and C2.

The group inherits the input and output ports of the enclosed components,
that communicate with anything outside the group. Therefore, the group input
interface contains two input data ports, i.e., ID1 C1 from C1 and ID2 C2

from C2, since these two ports receive data from outside the group. The group
output interface has OD1 C2 and OD2 C2 data ports, both inherited from C2.
Furthermore, the group is equipped with one input and one output trigger ports.

The remaining of the section presents the definition of the flexible group
and the algorithm that identifies groups in a given component-based system.

4.5.1 Definition

We define a flexible group G as an ordered set of connected flexible compo-
nents that have the same hardware allocation. The order of the components
enclosed in the set, determines their execution pattern:

G = 〈C1, C2, ...〉, where,

alloc(G) = alloc(C1) = alloc(C2) = ..., and

Ci executes before Cj for ∀i < j.

The functionality of a flexible group is accessed through the port-based
group interface. The interface IG is constructed from all the ports of the
grouped components that communicate with anything outside the group, as
follows. An input port of the group is defined as an input port of any of en-
closed components, that receives information from a component that is outside
of the group. Similarly, an output port of any enclosed component that sends
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data to external component(s) is considered an output port of the group.

IG = {p1, p2, ...}, where pm ∈ IC1 ∪ IC2 ∪ ... ∪ {pG
trigg in, p

G
trigg out}

The group interface is divided in two elements, one for the input ports of
the group, i.e., IG

in , and the other enclosing the output group ports, i.e., IG
out.

Furthermore, each (input and output) interface is divided in subsets according
to the enclosed data types of the ports. For example, the group input interface
IG
in contains regular ports (IG

reg in), multi-element ports (IG
multi in) and the input

trigger port (pG
trigg in).

IG = IG
in ∪ IG

out, where

IG
in = IG

reg in ∪ IG
multi in ∪ {pG

trigg in} and

IG
out = IG

reg out ∪ IG
multi out ∪ {pG

trigg out}

4.5.2 Group identification

This section presents the algorithm that identifies the flexible groups in a given
component-based system. We see the system as a directed graph, were each
component is a node and the trigger port connection between two components
is a directed vertex. In this context, identifying the groups is similar to a depth-
first search algorithm.

The algorithm, described in Algorithm 1, starts by initializing the main
variables. For instance, Γ, representing a set containing all identified groups in
the system, is initially an empty set. In Rubus, the clock elements are the sys-
tem elements that initiate component triggering. Therefore, the algorithm starts
traversing the system from the clock elements, by calling the main loop (i.e.,
the Top function) for each triggered clock component. Initially, when starting
to traverse the system and there is no formed group, for each encountered and
not visited flexible component, a new flexible group with the same hardware al-
location is created. The component is added to the created group and the group
is added to Γ. The Top function is recursively executed for all of the compo-
nent’s triggering elements (e.g., regular component, flexible component). In
order to include all connected flexible components (with the same hardware
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1 Γ ← ∅
2 Visited ← ∅
3 foreach clock C in the system do

4 Top(C, NULL)
5 end

6 Top(C, G):
7 if C /∈ V isited then

8 add(C, V isited)
9 if flexible(C) then

10 if G = NULL ∨ alloc(C) �= alloc(G) then

11 G ← createNewGroup()
12 alloc(G) ← alloc(C)
13 add(G, Γ)

14 end

15 add last(C, G)

16 end

17 else

18 G ← NULL
19 end

20 foreach triggering edge C → C′ do

21 Top(C ′, G)
22 end

23 end

Algorithm 1: Identifying flexible groups
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allocation) in the same group, we use a reference to the current group set. This
reference is passed to the loop function as a parameter. Whenever a triggered
flexible component has a different allocation than the reference group, a new
group is created and becomes the current reference group.

4.6 The conversion to Rubus constructs

The conceptual flexible group is realized following the characteristics of a reg-
ular component generation, i.e., through an interface, constructor, behavior
function and destructor, as follows. The generated interface contains all the
(input and output) data ports of the group. The constructor generation ini-
tializes the resource requirements of the group, e.g., allocates memory space
to hold the results from all enclosed components. The group behavior exe-
cutes the functionalities of the grouped components. The destructor releases
the group allocated resources.

Furthermore, we re-wire the connections between the group (input and out-
put) interface and the interfaces of (outside-the-group) components that were
initially connected to the group enclosed components.

4.6.1 Generic API

To increase the maintainability of the components resulted from the conversion
of flexible components to Rubus constructs and to simplify the generation, we
provide a generic API. The API abstracts the different characteristics of ex-
istent hardware platforms through several functions that transparently call the
OpenCL mechanisms that correspond to the utilized platform. There are four
functions provided by the API, as follows:

• the apiCreateBuffer function allocates GPU memory buffers,

• the apiReleaseBuffer function deallocates existing GPU memory buffers,

• the apiTransferBuffer function transfers data between different memory
systems, and



72 Chapter 4. GPU-aware mechanisms

• apiSetKernelArg to set up the parameters for GPU functions.

To illustrate the construction of the API, we present the apiCreateBuffer func-
tion Listing 4.2 and the apiSetKernelArg function Listing 4.3, as follows.

The apiCreateBuffer function inspects the current OpenCL version (exist-
ing on the platform) to determine which mechanism to request. For the 1.1 and
1.2 OpenCL versions (line 3) that correspond to a platform with distinct CPU
and GPU address spaces, the clCreateBuffer mechanism is utilized to create an
object directly in the GPU address space (line 5). For more technological ad-
vanced platforms that support 2.0 and 2.1 OpenCL versions (line 8), it verifies
the hardware capabilities, i.e., if it has a full shared address space or shared vir-
tual memory. Based on the finding, it invokes the right mechanism (i.e., malloc
or clSVMAlloc).

Listing 4.2: The apiCreateBuffer function
1 void *apiCreateBuffer(cl_context context, cl_mem_flags flags, size_t

size, void *host_ptr, cl_int *errcode_ret)

2 { // Create memory buffer on the device

3 #if !defined(CL_VERSION_2_0) && ( defined(CL_VERSION_1_2) || defined(

CL_VERSION_1_1) )

4 //Distinct memory allocation buffer";

5 return ((void *)clCreateBuffer(context, flags, size, host_ptr,

errcode_ret));

6 #endif

7

8 #if defined(CL_VERSION_2_0) && defined(CL_VERSION_2_1)

9 //shared virtual memory

10 cl_device_svm_capabilities caps;

11

12 cl_int err_svm = clGetDeviceInfo(deviceID,

CL_DEVICE_SVM_CAPABILITIES,sizeof(

cl_device_svm_capabilities),&caps,0);

13 if (err_svm == CL_SUCCESS && (caps &

CL_DEVICE_SVM_FINE_GRAIN_SYSTEM) && (caps &

CL_DEVICE_SVM_ATOMICS) ) {

14 // Fine-grained system with atomics

15 return malloc(size);

16 }

17 else if (err_svm == CL_SUCCESS && (caps &

CL_DEVICE_SVM_FINE_GRAIN_SYSTEM) ) {
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18 // Fine-grained system

19 return malloc(size);

20 }

21 else if (err_svm == CL_SUCCESS && (caps &

CL_DEVICE_SVM_FINE_GRAIN_BUFFER) && (caps &

CL_DEVICE_SVM_ATOMICS) ) {

22 // Fine-grained buffer with atomics

23 return clSVMAlloc(context, flags |

CL_MEM_SVM_FINE_GRAIN_BUFFER | CL_MEM_SVM_ATOMICS,

size, 0);

24 }

25 else if (err_svm == CL_SUCCESS && (caps &

CL_DEVICE_SVM_FINE_GRAIN_BUFFER) ) {

26 // Fine-grained buffer

27 return clSVMAlloc(context, flags |

CL_MEM_SVM_FINE_GRAIN_BUFFER, size, 0);

28 }

29 else if (err_svm == CL_SUCCESS && (caps &

CL_DEVICE_SVM_COARSE_GRAIN) ) {

30 // Coarse-grained buffer

31 return clSVMAlloc(context, flags, size, unsigned int

alignment);

32 }

33 else if ( err_svm == CL_INVALID_VALUE ) {

34 // No shared-virtual memory

35 return ( clCreateBuffer(context, flags, size, host_ptr,

errcode_ret) );

36 }

37 #endif

38 }

The apiSetKernelArg function, presented in Listing 4.3, abstracts the dif-
ferent functions that are required to set the kernel arguments, on different type
of GPU architectures. For example, while for platforms with distinct memory
systems, the clSetKernelArg function is needed, on platforms with full shared
memory, clSetKernelArgSVMPointer is required.

Listing 4.3: The apiSetKernelArg function
1 cl_int apiSetKernelArg(cl_kernel kernel, cl_uint arg_index, size_t

arg_size, const void *arg_value)

2 { // Set the argument of the kernel
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3

4 #if !defined(CL_VERSION_2_0) && ( defined(CL_VERSION_1_2) || defined(

CL_VERSION_1_1) )

5 // Distinct memory systems

6 return (clSetKernelArg(kernel, arg_index, arg_size, arg_value));

7 #endif

8

9 #if defined(CL_VERSION_2_0) || defined(CL_VERSION_2_1)

10

11 cl_device_svm_capabilities caps;

12 cl_int err_svm = clGetDeviceInfo(deviceID,

CL_DEVICE_SVM_CAPABILITIES,sizeof(cl_device_svm_capabilities

),&caps,0);

13

14 if ( err_svm == CL_SUCCESS && ( (caps &

CL_DEVICE_SVM_FINE_GRAIN_SYSTEM) || ((caps &

CL_DEVICE_SVM_FINE_GRAIN_BUFFER)) || ((caps &

CL_DEVICE_SVM_COARSE_GRAIN)) )

15 return clSetKernelArgSVMPointer(kernel, arg_index,

arg_value);

16 else return (clSetKernelArg(kernel, arg_index, arg_size,

arg_value));

17 #endif

18 }

All other API functions are developed in the same manner, i.e., inspect-
ing the OpenCL version existing and platform characteristics, and calling the
corresponding mechanisms.

4.6.2 Code generation

During the realization step, the system elements (e.g., regular components,
groups) are converted into source-code. As we introduced the concept of com-
ponent group, this section presents the realization of a group through its parts,
that is:

• the interface – generated as a structure that contains the (input and out-
put) data ports,

• the constructor – generated as a function in which resources are allo-
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cated,

• the behavior function – generated as function, and

• the destructor – generated as a function in which the resources are re-
leased.

Using the existing way that Rubus defines the interface of a regular com-
ponent, we generate the group interface in a similar manner, as presented in
Listing 4.4. The SWC Group iArgs interface is defined as a structure (lines
35-38) with two elements corresponding to the output and input interfaces.
The output interface OP SWC iArgs is constructed as a structure (lines 28-32),
where the elements are the data ports of the group output interface IG

out. Simi-
larly, IP SWC iArgs is a structure that encloses the data ports of the group input
interface IG

in .
Besides input data ports, IP SWC iArgs interface contains the so-called

configuration ports. Each flexible component is equipped with a configura-
tion interface. Through it, the system designer provides appropriate settings
regarding the number of device threads used to execute the functionality. For
example, a flexible component allocated on GPU could receive, through the
configuration interface, settings to use 2048 GPU threads. In the flexible com-
ponent realization, the configuration interface is generated as regular input data
port in order to not introduce additional Rubus framework elements. In our
generation, we use the same rational, i.e, the flexible group is equipped with
a configuration interface generated as an input data port, for each enclosed
component (line 22).

The settings received through the configuration interface are inserted in the
GPU settings structure. The first four elements (lines 5-8) refers to the num-
ber of device-threads used by the functionality, while the rest of the elements
(lines 9-11) are settings related to the environment, such as the command queue
mechanism.
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Listing 4.4: Interface code
1 /* device-settings for each flexible component C */

2 <counter = 1>

3 <foreach C in G>

4 typedef struct {

5 int blockDim_x;

6 int blockDim_y;

7 int gridDim_x;

8 int gridDim_y;

9 cl_context context;

10 cl_command_queue cmd_queue;

11 cl_device_id device_id;

12 }settings<counter+=1>;

13 <endforeach>

14

15 /* the group input ports */

16 <counter = 1>

17 typedef struct {

18 <foreach p in IG
in>

19 <p.type> *<p.name>;

20 <endforeach>

21 <foreach C in G>

22 settings<counter> *cfg<counter>;

23 <counter += 1>

24 <endforeach>

25 }IP_SWC_iArgs;

26

27 /* the group output ports */

28 typedef struct {

29 <foreach p in IG
out>

30 <p.type> <p.name>;

31 <endforeach>

32 }OP_SWC_iArgs;

33

34 /* the interface of the group */

35 typedef struct {

36 IP_SWC_iArgs IP;

37 OP_SWC_iArgs *OP;

38 }SWC_Group_iArgs;

The constructor, illustrated in Listing 4.5, encloses all the information re-
garding the group initialization, as follows. The listing starts by allocating
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memory for each flexible component from the group. That data received by a
component through the input ports is the input data for the functionality, while
the functionality outcomes are sent through the output ports. Therefore, corre-
sponding to each output data port, we allocate memory to hold the functionality
results. Due to the specifics of the OpenCL, a kernel function must store a reg-
ular output value (e.g., integer value) in a one-value memory buffer. Thus, we
allocate one-value memory buffers for regular output ports (line 4). For data of
m-elem type, the memory buffer is allocated with an appropriate size (line 8).
Moreover, in line 15, the multi-element ports that are considered output ports
of the group are linked to the corresponding memory locations. This is done
because these ports will be wired to outside-of-the-group ports, and the sys-
tem communication will be accomplished by using the values of the connected
ports.

The core part of the constructor defines the group functionality. A string
variable encloses the functionalities of the grouped components, i.e., the kernel
function name (line 21), the arguments (lines 23, 26, 29 and 32) that correspond
to the input and output component ports, and the component functionality (line
37). The string variable is loaded into a program object (line 43) and then com-
piled to create a dynamic library (line 46). In the last part of the constructor,
kernel objects are constructed for all flexible components (line 51), alongside
with the individual settings regarding the number of used device-threads (line
54 and 55). We mention that these settings are provided by the system designer,
using the configuration interface port.

The reason to include the group functionality inside the constructor is to
create the dynamic library once (i.e., by creating and compiling the program
object), at the system initialization stage.

Listing 4.5: Constructor code
1 /* create memory buffers for each flexible component that is part of a

flexible group */

2 <foreach C in G>

3 <foreach p in IC
reg out>

4 void *result_<p.name> = apiCreateBuffer(settings->contex,

CL_MEM_WRITE_ONLY, sizeof(<p.type>),NULL,NULL);
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5 <endforeach>

6

7 <foreach p in IC
multi out>

8 void *result_<p.name> = apiCreateBuffer(settings->contex,

CL_MEM_WRITE_ONLY, <p.width*p.height*p.size>,NULL,NULL);

9 <endforeach>

10 <endforeach>

11

12 /* connect the output ports of the group with the created memory

buffers */

13 <foreach C in G>

14 <foreach p in IG
out>

15 <p.name>->data = (unsigned char*) result_<p.name>;

16 <endforeach>

17

18 const char *source_string ="

19 <counter kernel = 1>

20 <foreach C in G>

21 __kernel void flexible_kernel<counter kernel>(

22 <foreach p in IC
reg in>

23 <p.type> <p.name>,

24 <endforeach>

25 <foreach p in IC
reg out>

26 __global <p.type> *result_<p.name>,

27 <endforeach>

28 <foreach p in IC
multi in>

29 __global <p.type> *<p.name>,

30 <endforeach>

31 <foreach p in IC
multi out>

32 __global unsigned char *result_<p.name>,

33 <endforeach>

34 ){

35

36 /* flexible component functionality */

37 <FC>

38 }";

39 <counter kernel += 1>

40 <endforeach>

41

42 /* Create a program from the kernel sources */

43 cl_program program = clCreateProgramWithSource(settings->context, 1,

(const char **)&source_string, NULL, NULL);

44
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45 /* Build the program */

46 clBuildProgram(program,1,&(settings->device_id), NULL, NULL, NULL);

47

48 <counter kernel=1>

49 <foreach C in G>

50 /* Create the kernel object */

51 cl_kernel kernel<counter kernel> = clCreateKernel(program, "

flexible_kernel<counter+=1>", NULL);

52

53 /* individual settings - device threads usage */

54 int total_thrd<counter kernel>[2] = {(settings->gridDim_x),(settings

->gridDim_y)};

55 int group_thrd<counter kernel>[2] = {(settings->blockDim_x), (

settings->blockDim_y};

56 <counter kernel+= 1>

57 <endforeach>

The execution of the group functionality is enclosed in the behavior func-
tion (Listing 4.6) which is performed every time the group is activated. To
execute the functionality using the OpenCL model, the host needs to send to
the selected device (i.e., CPU or GPU), the execution command of the de-
sired kernel function. However, before triggering the execution, the input data
and locations for output results need to be specified. Hence, the first part of
the behavior function handles the parameters (i.e., provide the values) of the
group enclosed kernels. Basically, the parameters of a kernel are the input data
and output data location of the corresponding flexible component. For the in-
put ports of the enclosed components that are not considered the group ports,
we provide the values received from the connected ports by using the defined
connect construct. This is done by directly providing the allocated memory lo-
cation corresponding to the connected ports (lines 11 and 25). In this way, the
communication between kernel functions of different connected components is
directly realized inside the group, at the functionality level.

For (regular and multi-element) output ports, we provide the data existing
in the corresponding allocated memory (lines 16 and 31). Based on the order
of the grouped set, the functionalities (i.e., the kernel objects) of the enclosed
components are triggered to be executed on the selected hardware (line 39). In
the last part, we copy the computed one-value of the allocated memory buffers,
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to the corresponding regular data output ports of the group (line 46). When
the wiring between existing system components and groups will be done, the
regular output ports of the group will provide a regular data (e.g., integer value)
instead of a (one-value) memory buffer (i.e., pointer). In this way, the Rubus
rules that realizes communication between data ports are not interfered.

Listing 4.6: Behavior function
1 /*Set the kernel arguments of each enclosed component*/

2 <counter kernel = 1>

3 <counter arg = 0>

4 <foreach C in G>

5 <for each p in IC
reg in>

6 /* for regular input ports of flexible components that are considered

input ports of the group */

7 <if (p in IG
reg in)>

8 apiSetKernelArg(kernel<counter kernel>,<counter arg+=1>, sizeof(

<p.type>), (void*)&<p.name>);

9 /* for regular input ports of flexible components that are not input

ports of the group */

10 <else>

11 apiSetKernelArg(kernel<counter kernel>,<counter arg+=1>, sizeof(

<p.type>), (void*)&result_<(p.connect).name>);

12 <endif>

13 <counter kernel+= 1>

14 <endforeach>

15 <for each p in IC
reg out>

16 apiSetKernelArg(kernel<counter kernel>,<counter arg>, sizeof(

<p.type>), (void*)&result_<p.name>);

17 <counter+= 1>

18 <endforeach>

19 <foreach p in IC
multi in>

20 /* multi-element input ports of flexible components that are input

ports of the group */

21 <if (p in IG
reg in)>

22 apiSetKernelArg(kernel<counter kernel>,<counter arg>,

<p.width*p.height*p.size>, (void*)&<p.name>);

23 /* multi-element input ports of flexible components that are not

input ports of the group */

24 <else>

25 apiSetKernelArg(kernel<counter kernel>,<counter arg>,

<p.width*p.height*p.size>, (void*)&result_<(p.connect).name>);
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26 <endif>

27

28 <counter+= 1>

29 <endforeach>

30 <for each p in IC
multi out>

31 apiSetKernelArg(kernel<counter kernel>,<counter arg>,

<p.width*p.height*p.size>, (void*)&result_<p.name>);

32 <endforeach>

33 <counter kernel+=1>

34 <endforeach>

35

36 /* Execute the OpenCL kernels of the flexible components */

37 <counter=1>

38 <foreach C in G>

39 clEnqueueNDRangeKernel(settings->cmd_queue, kernel<counter>, 2, NULL

, total_thrd<counter>, group_thrd<counter>, 0, NULL, NULL);

40 <counter+=1>

41 <endforeach>

42

43 /* copy the regular output(s) to the corresponding regular output port

(s) of the group */

44 <foreach C in G>

45 <foreach p in IG
reg out>

46 apiEnqueueReadBuffer(settings->cmd_queue, result_<p.name>, CL_TRUE,

0, sizeof(<p.type>), &<p.name>, 0, NULL, NULL);

47 <endforeach>

48 <endforeach>

The destructor releases the resources allocated by the constructor. Basi-
cally, the kernel objects (line 4), the program object (line 7) and the allocated
memory buffers (line 10) are released.

Listing 4.7: Destructor code
1 /* Clean up */

2 <counter kernel = 1>

3 <foreach C in G>

4 clReleaseKernel(kernel<counter kernel>);

5 <counter kernel+=1>

6 <endforeach>

7 clReleaseProgram(program);

8 <foreach C in G>

9 <foreach p in IC
out>
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10 apiReleaseBuffer(result_<p.Name>);

11 <endforeach>

12 <endforeach>

4.6.3 Connection rewiring

The way Rubus framework models the wiring between the system components
needs to be partially changed by the fact that several components are grouped
as a single component. Inside the group, the connections that wire the enclosed
components are ignored because the data communication is directly accom-
plished now at the functionality (level lines 11 and 25 in Listing 4.6). The
connections between the group’s components and everything outside the group
needs to be modified in the following way. Instead of constructing the wiring
between the interfaces of the outside-the-group components and the interfaces
of the enclosed components, we re-wire the connections between the interfaces
of the outside components and the group.

The trigger connection leading in to the group is handled in the same way
as the data connections, but outgoing trigger connections should all be rewired
to originate from the single output trigger port of the group interface.

Thus, when considering a connection from port p1 of component C1 to port
p2 of component C2 (i.e., where p1 ∈ IC1 and p2 ∈ IC2 ), three cases must be
considered:

• If ∃G : C1∈G ∧ C2∈G, then the connection is removed.

• If ∃G : C1∈G ∧ C2 �∈G, there are two sub cases:

– If p1 and p2 are data ports, then the connection remains.

– If p1 and p2 are trigger ports, then the connection should be rewired
from the output trigger port of the group pG

trigg out to p2 .

• If ∃G : C1 �∈G ∧ C2∈G, then there are two cases:

– If p1 and p2 are data ports, then the connection remains.
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– If p1 and p2 are trigger ports, then the connection should be rewired
from p1 to the input trigger port of the group pG

trigg in.
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(a) Two connected flexible components

IT_C1

ID1_C1

OD2_C2

OT_C2

OD2_C1

OD1_C2
ID2_C2

con1

trigg1

trigg2

trigg4

con3

con6

con4
con5

G = {C1, C2}
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Figure 4.5: The rewiring of a group ports

The connection rewiring rules are described through an example presented
by Figure 4.5. Two connected flexible components C1 and C1, and their con-
nections are presented in Figure 4.5a. C1 has one input data port ID1 C1 and
two output data ports, where OD1 C1 is connected to C2 and OD2 C1 is
connected to another component. Furthermore, its output trigger port OT C1

triggers, besides C2, another component. Assuming that both C1 and C1 are
allocated onto the same processing unit, their realization is optimization via a
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group G presented in Figure 4.5b. The group inherits ID1 C1 and ID2 C2

as input data ports, and OD2 C1, OD1 C2 and OD1 C2 as output data ports.
The connections to the group data ports remain unchanged. Regarding the
group trigger ports, the trigger connections trigg1 is rewired to the input trig-
ger port, while the output trigger port is rewired with trigg2 and trigg4.

Group
(GPU allocated)

Camera1

Camera2

Object
Detection

Sync

Sensor
Camera1

Sensor
Camera2

Logger

…

Figure 4.6: A group and its connections in the vision system

In the vision system case study, assuming that all flexible components were
allocated on the GPU, a group is constructed as presented in Figure 4.6. The
group inherits two input data ports, both from MergeAndEnhance component,
and three out output data ports from EdgeDetection, CompressGrayscale and
CompressRGB respectively. The connections of the inherited data ports re-
main, the data connections between the enclosed components are removed,
and new connections are rewired to the trigger ports of the group.

4.7 Component communication support

A concept that complements the flexible group by letting it to be (re-)used
with no changes on different platforms, is the automatically generated adapter.
When constructing regular components with GPU capabilities, different (data
transfer) operations are required to be encapsulated inside the components. We
automatically externalize these required operations in artifacts that transpar-
ently realize the communication between the groups and components of the
system. In this way, the group becomes platform-independent.
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4.7.1 Adapter identification

Components with GPU capability require, for particular platforms, to encap-
sulate operations that transfer data between memory systems. To exemplify,
we introduce Figure 4.7 which describes the execution of (a part of) the vision
system on three different type of platforms. The vision system is composed of
regular components (e.g.Camera1, Camera2) and components with GPU capa-
bility (e.g., MergeAndEnhace, ConvertGrayscale). For platforms with distinct
CPU and GPU memory spaces, illustrated in Figure 4.7(a), all components,
including the ones with GPU capability, are aware only of the main (CPU)
memory system. Therefore, MergeAndEnhance has encapsulated activities to
transfer the two data frames from the CPU to the GPU memory system, and
the other way around, i.e., the output from the GPU back to the main (CPU)
memory space. In a similar way, ConvertGrayscale component encapsulates
transfer data activities between the CPU and GPU memory systems. For the
second type of platform, where there is a shared virtual memory layer, similar
activities are encapsulated inside the components with GPU capability as de-
picted by Figure 4.7(b). In this case, there is no need for activities to transfer
data from SVM to main memory, due to the characteristics of the platform, i.e.,
components, either regular or with GPU capability, can access directly SVM.
The last type of platform, where the CPU and GPU share the same memory,
no activity is needed to be encapsulated inside ImageAndEnhance and Con-
vertGrayscale. In this case, all components directly access the (same) memory.

Instead of being encapsulated inside the components with GPU capability,
the transfer activities are lifted from the component level and automatically
provided through transparent adapters, based on the platform specifications.

We introduce two types of adapters corresponding to the transfer activity
directions, i.e., inAdapter and outAdapter adapters, each one accomplishing
either:

• a one-to-one port communication between two components, or

• a one-to-many port communication between several components.



86 Chapter 4. GPU-aware mechanisms

CPU GPU
CPU

address space
GPU

address space

MergeAnd
Enhance
(GPU)

Camera1

process

Ex
ec

ut
io

n 
tim

e

copy 

Convert
Grayscale
(GPU)

process

frame1
CPU

frame2
CPU

frame1
GPU

frame2
GPU

frame out
GPU

frame out
CPU

copy 

copy 

frame
CPU

frame
GPU

copy 

frame out
GPU

frame out
CPU

copy 

Camera2

…

(a) Distinct address spaces

SVMCPU GPU
CPU

address space
GPU

address space

MergeAnd
Enhance
(GPU)

Camera1

process

Convert
Grayscale
(GPU)

process

frame1
CPU

frame2
CPU

frame1
SVM

frame2
SVM

frame out
SVM

Camera2

copy 

copy 

frame out
SVM

…

(b) Shared virtual memory

CPU GPU

Ex
ec

ut
io

n 
tim

e

Shared
address space

Camera2

Camera1

Camera2

frame1

frame2

…

Group
(GPU)

Kernel
MergeAND
Enhance

Kenel
Convert

Grayscale

frame out

frame out

(c) Shared address space

Processing 
unit

Private
address space

Shared
address space

Flexible
component

Transparent 
adapter

Shared
virtual space

SVM

Data transfer
operation

Flow of 
data

Legend:

Figure 4.7: Component activities on three platforms

In our approach, adapters are implemented as regular components by following
the component model specification, and are automatically generated in two
steps: I) introduce the adapters, and II) merge the adapters where possible.
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The steps are presented as follows.

C1 C2

p1 p2

Figure 4.8: A data connection between two components

Step I. The following rules, using a simple example presented in Fig-
ure 4.8, define the introduction of adapters and their port connections as fol-
lows:

a) Two components C1 and C2 communicate through p1 and p2 data ports;
both ports are of the multi-element type.

b) One of the components is allocated on the GPU and the other component
is regular (i.e., executed by the CPU).

• If the platform has a full-shared memory architecture, then no adapter
is needed.

• If the platform has a shared virtual memory, then:

– if C1 is regular and C2 is executed by the GPU, than an
inAdapter adapter is needed; it has one input port connected
to p1 and one output port connected to p2. The connected data
ports have the same type.

– if C1 and C2 are allocated on the GPU, then no adapter is
needed.

• If the platform has CPU and GPU distinct memories, then:

– if C1 is regular, than a inAdapter adapter is needed; it has one
input port connected to p1 and one output port connected to
p2.
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– if C1 is allocated on the GPU and C2 is regular, than an out-
Adapter adapter is needed; it has one input port connected to
p1 and one output port connected to p2.

C1 C2

p1 p2

C1trig_out C2trig_in

trigg1

trigg2

Figure 4.9: Two connected components

Regarding the trigger ports of an adapter, their connections are constructed
as following. Using an example as presented in Figure 4.9, let be C1 and C2

two components allocated on different processing units. Using the rules from
Step I, and assuming an adapter is needed, its trigger ports ptrig in and ptrig out

are connected as following:

• the input trigger port ptrig in is connected to trigg2, and

• the output trigger port ptrig out is connected to the input trigger C2trig in.

inAdapter

Regular
component

GPU-allocated
component

Regular
component

GPU-allocated
component

Regular
componentoutAdapter

Figure 4.10: Basic generation of adapters

We exemplify the generation of adapters in Figure 4.10, where an inAdapter
adapter facilitates the communication between regular and GPU-allocated flex-
ible components. Similarly, an outAdapter adapter facilitates communication
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between GPU-allocated and regular components. No adapters are required
when connected components are allocated on the same processing units.

Step II. For optimization purposes, we group several (one-to-one into one-
to-many) adapters, using the following rules:

• when a regular component communicates with several GPU-allocated
flexible components through one output port, the communications are
done through a single inAdapter adapter.

• when a GPU-allocated flexible component communicates with several
regular components through one output port, the communications are
done through a single outAdapter adapter.

Regular
component inAdapter GPU-allocated

component

GPU-allocated
component

Regular
component

outAdapter
Regular

component

Figure 4.11: Optimization of generation of adapters

The reason to have one adapter is that, instead of copying several versions
of the same data on the main/GPU memory system, we transfer the data once
and provide it to several components. Figure 4.11 exemplifies the optimization
step, where one inAdapter adapter transfers data on the GPU memory system
and provides it to two GPU-allocated flexible components. Similarly, a single
outAdapter adapter copies once data on main memory system.

We exemplify the adapter concept via the vision system, when the appli-
cation is executed on three different platforms. In Figure 4.12, two views of
the vision system are presented when executed on a platform with CPU and
GPU distinct memory systems. In the first view, Figure 4.12(a) presents the
generation of all the required adapters for this type of the platform, i.e., two
inAdapter adapters, and three outAdapter adapters. The activities of the vision
system is described in Figure 4.12(b), where the inAdapter adapters transfer
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Figure 4.12: Adapter generation on different type of platforms

the data from the CPU to the GPU memory system, and then, directly accessed
from the kernel of the enclosed MergeAndEnhance component.

Similarly, for platforms with shared virtual memory support, Figure 4.13
presents the two views of the vision system. In Figure 4.13(a), the vision sys-
tem is enriched only with inAdapter adapters. For this particular platform,
there is no need for outAdapter adapters because all components can directly
access the SVM space. The activities are presented in Figure 4.13(b) where the
two inAdapter adapters transfer the data on the SVM memory, from where is
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Figure 4.13: Adapter generation on different type of platforms

accessed by the kernel of MergeAndEnhance.
In the last case, where the platform has full shared memory, Figure 4.14

presents the two views for the vision system. In this case, there is no generation
of adapters; all regular and/or GPU-allocate components can directly access the
memory.

We mention that, for the vision system, we did not apply the step II of the
adapters generation because there were no situations to optimize them.
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Listing 4.9: The adapter behavior function
clEnqueueWriteBuffer(settings->cmd_queue, result_adp, CL_TRUE, 0,

<p in.width*p in.height*p in.size>, <p in.name>->data, 0, NULL, NULL);

4.7.2 Adapter realization

This section describes the generation of the adapters’ constituent parts, i.e.,
constructor, behavior function and destructor, as follows.

The constructor. The adapter has one input data port p in and one output
data port p out, both of multi-element type. The adapter’s constructor allo-
cates memory (line 2) corresponding to the size of input data, on the appro-
priate location, i.e., the device (for inAdapter adapters) or main memory (for
outAdapter adapters). The output port is linked to the location that holds the
copied input data (line 5).

Listing 4.8: Constructor code of adapters
1 /* create memory buffers for the (one) output port */

2 void *result_adp = apiCreateBuffer(settings->contex, CL_MEM_WRITE_ONLY

, <p in.width*p in.height*p in.size>,NULL,NULL);

3

4 /* connect the output port to the created buffers */

5 <p out.name>->data = (unsigned char*) result_adp;

Behavior function. The generated code of this part handles the transfer
of data to or from GPU, corresponding to the hardware allocation of the con-
nected components. The clEnqueueWriteBuffer is synchronous (i.e., returns
the control after it finishes) due to the usage of CL TRUE flag.

The destructor. Opposite to the adapter’s constructor that allocates one
memory space for the input data, the adapter’s destructor releases this memory.



94 Chapter 4. GPU-aware mechanisms

Listing 4.10: Destructor code of adapters
/* Clean up */

apiReleaseBuffer(result_adp);

4.8 Evaluation

For the evaluation, we applied our approach on the vision system example. The
vision system, as described by Figure 4.15, contains five components that are
suitable to be executed on the GPU.
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Sync Logger
Compress

RGB
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Figure 4.15: The Rubus design of the vision system

To evaluate our approach, we constructed five allocation scenarios. Given
that only five components may benefit from the GPU execution, Table 4.1 de-
scribes their allocation in all five scenarios. While in Scenario 1 all five compo-
nents are allocated to the GPU, in Scenario 5 we allocate the components to the
CPU. For the rest of the scenarios, we alternate in allocating the components
to CPU and GPU.

For each of the constructed scenarios, we implemented three versions of
the vision system, as follows. In the naı̈ve version (V1), each of the five com-
ponents is constructed as a regular component that encapsulates all the required
GPU information. In the second version (V2), the five components are seen as
flexible components which are realized as regular components with their cor-
responding allocation. For the third version (V3), the flexible components are
optimized through flexible groups, before being converted into regular compo-
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Table 4.1: Allocations scenarios for the vision system

Flexible Hardware allocation scenario

Component 1 2 3 4 5

MergeAnd GPU GPU GPU GPU CPU

Enhance

Convert GPU GPU GPU CPU CPU

Grayscale

Edge GPU CPU GPU GPU CPU

Detection

Compress GPU GPU CPU CPU CPU

RGB

Compress GPU CPU CPU CPU CPU

Grayscale

nents. Generated adapters are used for V2 and V3 versions. For each scenario,
were used three different hardware platforms that contain GPUs: a) a PC with
an NVIDIA dGPU architecture, b) an embedded platform with an AMD Kabini
SoC with shared virtual memory architecture1, and c) an embedded platform
with an AMD Carrizo SoC with full shared memory architecture1.

To examine the impact of the flexible component concept and their group-
ing into single entities, we compare for all three system versions:

• the size of the generated and manually written code,

• the end-to-end execution times, and

• the correctness of the output frames.

The naı̈ve version is constructed with components that hard-code all the
required GPU information. To exemplify, we present in more details the con-
struction of the ConvertGrayscale component. Listing 4.11 illustrates the code

1https://unibap.com/product/advanced-hetereogeneous-computing-modules/
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that is manually written to construct the behavior function of the ConvertGray-
scale component.

The component receives a 2D color frame via the ID input1 port, processes
it and provides an output frame in gray scale format. The actual functionality
of the component, referred as the kernel function, is described from line 1 to
25, where the function receives the input frame (i.e., via the pointer parameter
in) and its properties (i.e., the width and height parameters), and provides an
output frame (i.e., via the out parameter). Inside the function, the individual
colors of a pixel are accessed by the current processing thread (determined
using the index position), through three different variables that are initialized
with their corresponding values (lines 18, 19 and 20). Finally, each output pixel
is initialized with its gray scale value (line 25).

Setting up the platform and defining the required mechanisms are presented
between lines 28 and 45. For example, at line 39, a queue mechanism is con-
structed; this will be used to send instructions to the device. The program code
continues with the creation of two memory buffers:

• The input buffer is created (line 48) on the device (e.g., GPU) to contain
the data received as input. The data is copied from the host into the
created buffer using the clEnqueueWriteBuffer function, as presented at
line 54.

• The result buffer is created (line 51) on the device (e.g., GPU) to hold
the data resulted from the kernel execution.

The kernel object construction (line 57) and the values of its parameters (line
60-63) are defined. The parameters are initialized with the values received via
the input port. For example, the args → IP.ID input1 → height construc-
tion allows to access the height property of the inputed frame. The settings
regarding the GPU threads are defined at lines 66 and 67, followed by the ex-
ecution of the kernel at line 70. Once the result is computed, a memory buffer
is created on the host (line 73) and the result of the kernel execution is copied
(line 76). In the last part of the kernel, instructions to clean up are defined, such
as the release of the created queue mechanism (line 85).
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Listing 4.11: The code encapsulated by ConvertGrayscale

1 const char *source =

2 "__kernel void grayscale(__global const unsigned char *in, const int

width, const int height, __global unsigned char *out) \n"

3 "{ \n"

4

5 " /* compute absolute image position (x, y) */ \n"

6 " int row = get_global_id(0); \n"

7 " int col = get_global_id(1); \n"

8

9 " /* relieve any thread that is outside of the image */ \n"

10 " if(row >= width || col >= height) \n"

11 " return; \n"

12

13 " /* compute 1-dimensional pixel index */ \n"

14 " int index = row + width * col; \n"

15

16 " /* load RGB values of pixel (converted to float) */ \n"

17 " float3 pixel; \n"

18 " pixel.x = in[3 * index]; \n"

19 " pixel.y = in[3 * index + 1]; \n"

20 " pixel.z = in[3 * index + 2]; \n"

21

22 " /* compute luminance and store to output array */ \n"

23 " float lum = 0.2126f*pixel.x + 0.7153f*pixel.y + 0.0721f*pixel.z; \n"

24

25 " out[index] = (unsigned char)lum; \n";

26

27 /* Get platform and device information */

28 cl_platform_id platform_id = NULL;

29 cl_device_id device_id = NULL;

30 cl_uint num_devices;

31 cl_uint num_platforms;

32 cl_int ret = clGetPlatformIDs(1, &platform_id, &num_platforms);

33 ret = clGetDeviceIDs( platform_id, CL_DEVICE_TYPE_GPU, 1, &device_id,

&num_devices);

34

35 /* Create an OpenCL context */

36 cl_context context = clCreateContext( NULL, 1, &device_id, NULL, NULL,

NULL);

37

38 /* Create a command queue */

39 cl_command_queue command_queue = clCreateCommandQueue(context,
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device_id, 0, NULL);

40

41 /* Create a program from the kernel source */

42 cl_program program = clCreateProgramWithSource(context, 1, (const char

**)&source, NULL , NULL);

43

44 /* Build the program */

45 clBuildProgram(program, 1, &device_id, NULL, NULL, NULL);

46

47 /* Create memory buffer on the device to hold the input frame */

48 void *input = apiCreateBuffer(context, CL_MEM_READ_WRITE, 3*(args->IP.

ID_input1->width)*(args->IP.ID_input1->height) * sizeof(unsigned

char), NULL, NULL);

49

50 /* Create memory buffer on the device to hold the output result */

51 void *result = apiCreateBuffer(context, CL_MEM_WRITE_ONLY, (args->IP.

ID_input1->width)*(args->IP.ID_input1->height) * sizeof(unsigned

char), NULL, NULL);

52

53 /* Copy the input image to its respective memory buffer */

54 clEnqueueWriteBuffer(command_queue, input, CL_TRUE, 0, 3*(args->IP.

ID_input1->width)*(args->IP.ID_input1->height) * sizeof(unsigned

char), args->IP.ID_input1->ptr, 0, NULL, NULL);

55

56 /* Create the OpenCL kernel */

57 cl_kernel krn = clCreateKernel(program, "grayscale", NULL);

58

59 /* Set the arguments of the kernel */

60 SetKernelArg(krn,0,sizeof(cl_mem),(void*)&input);

61 SetKernelArg(krn,1,sizeof(int),(void *)&(args->IP.ID_input1->width));

62 SetKernelArg(krn,2,sizeof(int),(void *)&(args->IP.ID_input1->height));

63 SetKernelArg(krn,3,sizeof(cl_mem),(void *)&result);

64

65 /* Setup the GPU settings */

66 size_t global[2] = {600, 450};

67 size_t local[2] = {8, 8};

68

69 /* Execute the OpenCL kernel */

70 clEnqueueNDRangeKernel(command_queue, krn, 2, NULL, global, local, 0,

NULL, NULL);

71

72 /* Create memory buffer on the host to hold the resulted frame */

73 unsigned char *h_result = (unsigned char*)malloc(sizeof(unsigned char)
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*(args->IP.ID_input1->width)*(args->IP.ID_input1->height));

74

75 /* Transfer the memory buffer result on the device */

76 clEnqueueReadBuffer(command_queue, result, CL_TRUE, 0, (args->IP.

ID_input1->width)*(args->IP.ID_input1->height) * sizeof(unsigned

char), h_result, 0, NULL, NULL);

77

78 /* Clean up */

79 clFlush(command_queue);

80 clFinish(command_queue);

81 clReleaseKernel(krn);

82 clReleaseProgram(program);

83 clReleaseMemObject(input);

84 clReleaseMemObject(result);

85 clReleaseCommandQueue(command_queue);

86 clReleaseContext(context);

Table 4.2 describes the created groups and generated adapters for each con-
sidered scenario and platform. In Scenario 1, when all flexible components
are allocated on the GPU, depending on the used platform, there are different
numbers of generated adapters. For the platform with distinct memory systems
(dGPU), there are two inAdapters and three outAdapters created for V2 and V3
versions as illustrated by Figure 4.16. In Figure 4.16(a), we present the gen-
erated adapters for a platform with distinct memory systems, considering the
flexible component-based version (V2). The two generated inAdapters transfer
data from the host (CPU) to the device (GPU) and provide it to the MergeAn-
dEnhance component. The three generated outAdapters transfer data from the
device to the host as follows:

• the first adapter communicates data between EdgeDetection and Object-
Detection components,

• the second adapter transfers the compressed gray scale frame onto the
host memory and provides it to the Logger component, and

• the last adapter communicates the compressed color frame to the Logger
component.

Figure 4.16(b) presents the flexible group-based version (V3) for the same type
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Table 4.2: The number of adapters and formed groups

Scenario Platform Number of adapters Number of

type inAdapter outAdapter groups

V1 V2 V3 V1 V2 V3 V3

1
dGPU 0 2 2 0 3 3

1iGPU1 0 2 2 0 0 0
iGPU2 0 0 0 0 0 0

2
dGPU 0 2 2 0 3 3

2iGPU1 0 2 2 0 0 0
iGPU2 0 0 0 0 0 0

3
dGPU 0 2 2 0 3 3

3iGPU1 0 2 2 0 0 0
iGPU2 0 0 0 0 0 0

4
dGPU 0 2 2 0 3 3

5iGPU1 0 2 2 0 0 0
iGPU2 0 0 0 0 0 0

5
dGPU 0 2 2 0 3 3

1iGPU1 0 2 2 0 0 0
iGPU2 0 0 0 0 0 0

dGPU - CPU and GPU distinct memory platform
iGPU1 - Shared Virtual Memory platform
iGPU2 - Shared Memory platform
V1 - Naı̈ve version
V2 - Flexible component-based version
V3 - Flexible group-based version
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of platform, where one group is created with two input ports and three output
ports. The same number of adapters are created, connecting the group with the
rest of the system.
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Figure 4.16: Adapter generation and group creation for platforms with distinct
memories

In the case of the platform with virtual memory property, two inAdapters
and no outAdapters are needed as the memory is directly accessed by the host
and device, for both version cases (V2 and V3). For the rest of the scenarios,
there are the same number of generated adapters as Scenario 1, the only dif-
ference is the allocation of the flexible components/group. In the case of the
naı̈ve version (V1), for all scenarios and on all platforms, there is no generated
adapter given that the transfer activities are encapsulated inside the compo-
nents.

Regarding the created groups, in Scenario 2 there are two created groups
where one, that is allocated on the GPU, encloses the connected components
MergeAndEnhance, ConvertGrayscale and CompressRGB, while the other, al-
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located on the CPU, contains EdgeDetection and CompressGrayscale. In Sce-
nario 3 there are three created groups, where one group, allocated on the GPU,
encloses MergeAndEnhance, ConvertGrayscale and EdgeDetection , while the
other two components enclose single components, i.e., CompressRGB and Com-
pressGrayscale. Given that there are no connected components with the same
allocation, Scenario 4 contains five created groups, each enclosing single compo-
nents. The last scenario is similar to the first one with one created group, en-
closing all components, that is allocated on the CPU.

Table 4.3 presents the generated and manually written code for all five sce-
narios, platforms and system versions. Regarding the manually written charac-
ters, the naı̈ve version contains the highest number, with a maximum of 14909
characters for the dGPU type of platform. While the characteristics of the plat-
form change, the manual written code is changing given that e.g., there are
different requirements for data transfer activities. For platforms with virtual
memory (iGPU1), where there is no need for transferring data from device to
host, there are written 13474 characters. For the last type of platform with a
share memory system (iGPU2), due to the fact that there is no need of data
transfer activities, a number of 11961 characters are required.

Regarding the generated characters, the number of generated adapters and
groups (see Table 4.2) influence the generated code size of the vision system.
We notice that for shared memory platforms (dGPU), the flexible component-
based version (V2) has 9007 generated characters that includes two inAdapters
and three outAdapters. For the same system version, in the case of the plat-
form with virtual memory (iGPU1), the number of generated characters drops
to 6852 because there are no outAdapters. Finally, for shared memory plat-
form (iGPU2) where there are no required adapters, there are 5414 generated
characters. In the case of the flexible group-based version (V3), there are less
characters generated than V2 version due to the enclosing of components into
group entities. For all scenarios and platforms, there are no generated charac-
ters for the naı̈ve version as all the code is manually written.

For the second part of the evaluation, Table 4.4 presents the execution time
for all three versions of the system, in all five scenarios. We mention that
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Table 4.3: The code size of the system versions

Scenario Platform Code size (# characters)

type Generated Written

V1 V2 V3 V1 V2 V3

1
dGPU 0 9007 8816 14909 1720 1720
iGPU1 0 6852 6759 13474 1720 1720
iGPU2 0 5414 5223 11961 1720 1720

2
dGPU 0 9007 8953 14909 1720 1720
iGPU1 0 6852 6796 13474 1720 1720
iGPU2 0 5414 5360 11961 1720 1720

3
dGPU 0 9007 8945 14904 1720 1720
iGPU1 0 6852 6788 13474 1720 1720
iGPU2 0 5414 5352 11961 1720 1720

4
dGPU 0 9007 9007 14904 1720 1720
iGPU1 0 6852 6852 13474 1720 1720
iGPU2 0 5414 5414 11961 1720 1720

5
dGPU 0 9007 8816 14909 1720 1720
iGPU1 0 6852 6759 13474 1720 1720
iGPU2 0 5414 5223 11961 1720 1720

dGPU - CPU and GPU distinct memory platform
iGPU1 - Shared Virtual Memory platform
iGPU2 - Shared Memory platform
V1 - Naı̈ve version
V2 - Flexible component-based version
V3 - Flexible group-based version
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the execution time was computed for the entire system, from the starting of the
execution of Camera1 and Camera2 until ObjectDetection and Logger finished
their execution. Furthermore, the experiments were done on a machine with 2,6
GHz i7 processor and two distinct memory systems (dGPU type of platform).

For the naı̈ve version (V1), we notice that for Scenario 1, where all compo-
nents are executed on the GPU, the execution time is the fastest (15 msec),
while for Scenario 5 where all components are allocated on CPU, the execu-
tion time is the slowest (45 msec). In the case of the virtual memory system
(V2), its execution time is faster than the naı̈ve version on all platforms due to
the usage of the adapters. In Scenario 1, the execution time of V2 is faster with
1.2 ms than V1, while in Scenario 5, V2 is faster with 9.2 msec than V1. In the
case of the flexible group-based version (V3), we notice the execution time is
sensible faster than V2.

Table 4.4: The execution time of the system versions

End-to-end

execution time (msec)

Scenario V1 V2 V3

1 15.06 13.86 13.10

2 30.75 29.91 29.60

3 27.83 21.45 20.84

4 33.25 25.52 25.10

5 45.36 36.17 33.87

V1 - Naı̈ve version
V2 - Flexible component-based version
V3 - Flexible group-based version

Regarding the results, we compared the three produced frames (i.e., one in-
put frame of ObjectDetection and the two input frames of Logger) by the three
versions, in all five scenarios and for all types of platforms. The conclusion
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was that the generated frames were identical in all cases and the introduced
solutions (e.g., adapters) did not modify the correctness of the output.
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Chapter 5

Allocation optimization

The flexible component concept introduced in the previous chapter, facilitates
and increases the flexibility of designing embedded systems with GPUs. On the
other side, it brings some additional complexity during the system construction
by increasing the allocation challenge. In a system composed of many flexi-
ble components, it can be difficult to choose a good (or optimal) component
allocation in order to match (or optimize) system requirements.

In this chapter, we introduce a semi-automatic method that provides opti-
mal allocation schemes of flexible components. The chapter starts by describ-
ing the overview of the allocation method, after which it presents its formal
definition. In the last part, we apply the allocation method on the underwater
robot example system.

Regarding the research goals and contributions presented in the Introduc-
tion, Contribution 4 is addressed in this chapter, that covers Research Goal 3.

5.1 Allocation optimization overview

Once the design of the system is constructed, a challenge appears when deter-
mining the allocation of the flexible components with respect to certain opti-
mization goals. Moreover, the challenge is increased by the fact that, at the

107
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adapter construction step, adapters are automatically generated for data trans-
fer activities, and these adapters influence the suitability of the allocation due
to e.g., their memory usage and energy consumption.

As an alternative to the manual allocation method, we propose a semi-
automatic method that computes optimized allocation schemes for a component-
based embedded system. For the proposed allocation method, we focus only
on a single type of platform, i.e., the platform with a single CPU-GPU chip
where each of the processing units has its own memory. As input, the method
receives the system model (capturing relevant properties of both software and
hardware), and the optimization criteria, described in the following section.

5.2 Allocation optimization model

The proposed optimization model is formally defined in the following para-
graphs. The model contains the formal definitions of the input and output, and
the constraints and optimization criteria included in this work.

5.2.1 Input

The system model, which represents the input to our allocation method, in-
cludes both the software and hardware aspects. Using our introduced devel-
opment process overview (see Figure 4.3), the software aspects are described
via the software design, i.e., connected (regular and flexible) components that
follow the pipe-and-filter interaction style, while the platform model provides
the hardware aspects.

We consider that each component is characterized by the following three
properties when allocated on the CPU:

• The internal memory usage represents the CPU memory requirement of
a component to properly execute its functionality. The requirement refers
to the internal memory used by the component, such as the variables
defined in the behavior function, excluding memory for the data ports.
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• The energy usage describes the amount of energy spent by a component
to execute its functionality.

• The execution time specifies the time required by a component to execute
its functionality in isolation.

When a component is allocated on the GPU, it is characterized by four
properties, as follows:

• The internal GPU memory usage represents the component requirement
of GPU memory.

• The internal CPU memory usage represents the CPU memory require-
ment. This property is needed because, besides the GPU memory re-
quirement, a GPU-allocated component may also contain variables that
reside in the CPU memory space.

• The energy usage is the amount of energy used in the component execu-
tion.

• The execution time describes the component execution time on GPU.

Each component is characterized by the two previously described property
sets, i.e., one for the CPU and the other for the GPU. Regular components,
being only CPU executable (i.e., allocated on CPU), have the GPU-related
properties set to zero.

Fig. 5.1 presents a section of a Rubus application composed of a regular
(i.e, C2) and three flexible components (i.e., C1, C3 and C4). A flexible com-
ponent is characterized by two sets of properties with non-zero values. The
component C2 is characterized by the properties related to the CPU such as
it executes on CPU for 2 milliseconds and consumes 0.15 Wattseconds; the
GPU-related properties are set to zero.

As explained in Section 5.1, the hardware platform is currently limited to
a contains a single CPU-GPU chip, where each processing unit has its private
memory space. The properties that characterize the hardware platforms are: i)
the available GPU memory, and ii) the available CPU memory.
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cpuMem = 1.8 MB
cpuEnergy = 0.3 Ws
cpuTime = 4 ms

gpuMem = 2 MB
gpuCpuMem = 0.2 MB
gpuEnergy = 0.2 Ws
gpuTime = 2 ms

C1

C3

C4

C2

cpuMem = 30 kB
cpuEnergy = 0.15 Ws
cpuTime = 2 ms

gpuMem = 0
gpuCpuMem = 0
gpuEnergy = 0
gpuTime = 0

Legend:

Flexible component

Regular component
…

…

…

Figure 5.1: Connected components and their (CPU and GPU) properties

Formally, the model of the system structure is described in the following
paragraphs. Let C = {c1, . . . , cn} be a set of n components, divided into two
disjoint subsets, C = R∪F , with R representing regular and F flexible compo-
nents. Each component is characterized by one or several unique input data
ports, and output data ports. Let I = {ip1, . . . , ipm} be a set containing the
input data ports of all the components of the system, and O = {op1, . . . , opk}
a set containing the output data ports of all the components of the system.

Moreover, we define the set S = {〈f1, C1〉, . . . , 〈fq, Cq〉} describing the
triggering of components, where Ci ⊆ C is a subset containing the components
that are directly or indirectly triggered by the same unique trigger source (i.e.,
clock) that has the frequency of fi. Each component from C must be in exactly
one trigger set Ci, i.e., C1, . . . , Cq are disjoint, with C1 ∪ . . . ∪ Cq = C.

Based on the defined sets, we introduce two functions to describe the sys-
tem structure (i.e., comp and conn), and eight functions to represent properties
of individual components and ports. The definitions of the functions are de-
scribed by Table 5.1.

Regarding the hardware platform, we introduce two variables to describe
the platform characteristics and two variables through which the developer can
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Table 5.1: Ten functions that describe the system model

Function Description

comp(p) = the component that has p as
comp : I ∪O → C an input or output data port.

conn(op) = the set of input ports
conn : O → 2I connected to op.

portSize(op) = the size of data sent
portSize : O → N through the output port op.

cpuMem(c) = the internal CPU memory
cpuMem : C → N usage of c when allocated to a CPU.

gpuMem(c) = the internal GPU memory
gpuMem : C → N usage of c.

gpuCpuMem(c) = the internal CPU mem
gpuCpuMem : C → N usage of c when allocated to a GPU.

cpuT ime(c) = the execution time of c
cpuT ime : C → N on the CPU.

gpuT ime(c) = the execution time of c
gpuT ime : C → N on the GPU.

cpuEnergy(c) = the energy usage of c
cpuEnergy : C → N on the CPU.

cpuEnergy(c) = the energy usage of c
cpuEnergy : C → N on the GPU.



112 Chapter 5. Allocation optimization

impose limitations over the system, as follows:

AvailCpuMem = the available CPU memory

AvailGpuMem = the available GPU memory

MaxEnergy = the maximum energy usage

MaxTime〈fl ,Cl〉 = the maximum execution time of a trigger set Cl

with the frequency fl

We define a weight parameter corresponding to each of the system property
(see Section 5.2.3). They are used when constructing the optimization criteria
(see second part of Section 5.2.4). The weight parameters are the following:

wg = the optimization weight of the GPU memory usage function

wc = the optimization weight of the CPU memory usage function

we = the optimization weight of the energy function

wt
l = the optimization weight of each trigger set Cl of the system, where

wg + wc + we +
∑

〈fl,Cl〉∈S
wt

l = 1

Moreover, we define two constants as follows:

• keng to describe the energy usage of transferring one unit of data between
CPU and GPU memory addresses, and

• ktm to describe the time used to transfer one unit of data between distinct
memory addresses.

We assume that the same energy is spent when transferring one unit of data
from the CPU to GPU memory space, and vice-versa. Similarly, ktm is the
same when one unit of data is transferred from the CPU to GPU memory space,
and vice-versa.

5.2.2 Output

The allocation result is the product of the optimization process, and contains
a feasible solution of the mapping of software components onto the process-
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ing units. The result satisfies the requirements introduced as input, i.e., the
software characteristics and the hardware constraints. Focusing, in this work,
on systems composed of flexible components, the allocation result presents
which flexible components are allocated to the CPU and which are allocated
to the GPU, in order to satisfy the optimization criteria. The allocation result
is represented by a mapping between the components and the processing units
(i.e., CPU/GPU). For example, using the application described in Figure 5.1,
one of the possible allocation results that minimizes the CPU memory usage is
described as follows:

C1 → GPU C3 → GPU

C2 → CPU C4 → GPU

Describing the result in a formal manner, let A = {ac1 , . . . , acn} be a set
of boolean variables, where each element aci represents the mapping of the
corresponding component ci to a processing units.

aci =

{
0, when ci is allocated on CPU

1, when ci is allocated on GPU

5.2.3 System properties

We define four system properties, detailed in the following paragraphs.

GpuMemory

This property, presented by equation 5.1, describes the total amount of GPU
memory required by the system components. GpuMemory is composed of
two parts, as follows. The first part sums the internal GPU memory usage of
only the (flexible) components that are allocated on the GPU (i.e., components
ci that have the allocation aci set to 1).
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GpuMemory =
•

ci∈C

aci
∗ gpuMem(ci) +

•

opi∈O

min
(
1, acomp(opi)

+
∑

ipj∈conn(opi)

acomp(ipj)

)
∗ portSize(opi)

(5.1)

The second part addresses the GPU memory usage of: i) the output ports
of GPU-allocated components, and ii) possible adapters that transfer data from
the CPU to GPU memory space. The output ports of components with GPU
capability, are used to pass large data with multiple elements (e.g., 2D im-
ages), and have an important impact on the components’ GPU memory re-
quirement. Another aspect that affects the system’s GPU memory usage is the
fact that, when a CPU-allocated component communicates with at least one
GPU-allocate component, the sent data is copied, by a late realized adapter,
from the CPU to the GPU memory space.

These aspects are captured by the second part of the equation, which uses
a min function to combine both aspects, as follows. For each output port opi of
the O set:

• if it belongs to a GPU-allocated component (i.e., acomp(opi) is 1), the
min function produces the value 1, regardless of the connections of the
output port.

• if it belongs to a CPU-allocated (flexible or regular) component (i.e.,
acomp(opi) is 0), then the port’s connections are verified in order to ex-
amine if an adapter would be generated. This situation is captured by the
sum operator inside the min function, where, if, at least, one connected
port (i.e., ipj) belongs to a GPU-allocated (flexible) component, than an
adapter will be generated. In this case, the min produces the value 1.

To calculate the memory requirement of an output port or adapter, the value
computed by the min function is multiplied with the port size provided via the
portSize() function.
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CpuMemory

This property describes the total CPU memory usage of the system. It is
calculated in a similar manner as the previous property, using two sum parts,
as presented by equation 5.2.

CpuMemory =
•

ci∈C

(
(1 − aci

) ∗ cpuMem(ci) + aci
∗ gpuCpuMem(ci)

)
+

•

opi∈O

min
(
1, 1 − acomp(opi)

+
∑

ipj∈conn(opi)

(1 − acomp(ipj)
)
)
∗ portSize(opi)

(5.2)

The first part adds the internal CPU memory requirement of the compo-
nents that are allocated on the CPU (i.e., components ci with (1 − aci) as 1)
and the CPU memory requirement of the components that are allocated on the
GPU. The second part adds the CPU memory requirement of: i) the output
ports of CPU-allocated (flexible) components, and ii) the adapters that transfer
data from the GPU to CPU memory space.

Energy

This property characterizes the total energy usage of the system. It is calcu-
lated by adding the energy usage of each set of components Cl triggered by the
same source with the frequency fl, as illustrated by equation 5.3. The energy
usage of each of such component set Cl, described by equation 5.4, is obtained
from two parts, as follows.

Energy =
∑

〈fl,Cl〉∈S

Energy〈fl,Cl〉 ∗ fl (5.3)

Energy〈fl,Cl〉 =
•

ci∈Cl

(
aci

∗ gpuEnergy(ci) + (1 − aci
) ∗ cpuEnergy(ci)

)
+

•

opi∈O∧comp(opi)∈Cl

(
acomp(opi)

∗ min
(
1,

∑
ipj∈conn(opi)

(1 − acomp(ipj)
)
)

+

(1 − acomp(opi)
) ∗ min

(
1,

∑
ipj∈conn(opi)

acomp(ipj)

))
∗ portSize(opi) ∗ keng

(5.4)

The first part calculates the energy usage of the components in the set Cl

by adding each of the components’ GPU energy usage, or CPU energy usage,
depending on the allocation.
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The second part calculates the energy spent in adapters transferring data
between CPU and GPU memory spaces, as follows. The energy spent to trans-
fer data from the GPU to the CPU memory takes each output port opi of the
components ci that are allocated on GPU (i.e., acomp(opi) is 1), and examines
its connected (input) ports ipj . The min function counts how many connected
ports belong to CPU-allocated components. If there is at least one such con-
nected port, an adapted will be generated for this transfer, and the min function
returns the value 1. To calculate the energy spent on the transfer, the size of the
output port (i.e., returned by the portSize() function) is multiplied with the
keng constant.

In a similar way the energy used on transferring data from the CPU to GPU
memory space is calculated. The connections of each output port that belong
to CPU-allocated components, are examined. If there is at least one connected
port that belongs to a GPU-allocated component, then the energy used to trans-
fer the data is given by the size of the output port multiplied with the keng

constant.

Time〈fl ,Cl〉
The property describes the end-to-end execution time for a set of compo-

nents Cl activated by the same trigger source. The execution time of a par-
ticular set of components Cl is formally defined in equation 5.5, through the
addition of two sums, described in the following paragraphs.

T ime〈fl,Cl〉 =
•

ci∈Cl

(
aci

∗ gpuT ime(ci) + (1 − aci
) ∗ cpuT ime(ci)

)
+

•

opi∈O∧comp(opi)∈Cl

(
acomp(opi)

∗ min
(
1,

∑
ipj∈conn(opi)

(1 − acomp(ipj)
)
)

+

((
1 − acomp(opi)

)
∗ min
(
1,

∑
ipj∈conn(opi)

acomp(ipj)

))
∗ portSize(opi) ∗ ktm

(5.5)

The first sum calculates the execution times of the system components allo-
cated on the GPU and CPU, respectively. The second sum deals with the time
spent on transferring data between the distinct memory spaces, similarly to the
way energy is computed above. To compute the time spent on the transfer, the
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size of the output port (i.e., returned by the portSize() function) is multiplied
with the ktm constant.

5.2.4 Constraints and optimization criteria

An allocation scheme is decided based on the properties of the application, the
characteristics of the platform and the system requirements. A given system
may have several feasible allocations. However, not all allocations are equiv-
alent, i.e., there are trade-offs when selecting an allocation over the other. For
example, one feasible allocation may optimize the system memory utilization
to the detriment of the performance. Therefore, it is important to decide, from
all feasible allocations, which one is most suitable for a given system.

A suitable allocation is determined by the constraints and optimization cri-
teria. The constraints need to be satisfied in order for the allocation to be
feasible. For example, one constraint forces to place components on the GPU
such that they together do not require more memory than is available. The op-
timization criteria are used to decide which of the feasible allocation solutions
is better.

In this work, we place ourself in the context of embedded systems and ad-
dress related criteria to this domain. We introduce optimization criteria such
as memory usage, energy usage and performance. In addition, because many
embedded systems have stringent requirements regarding the power consump-
tion, a criterion for our allocation method is to minimize the energy usage of
the system.

The constraints

The optimization model considers four constraints related to the system prop-
erties, and one regarding the regular components, as follows:

1. GPU memory – the required GPU memory of components allocated on
the GPU (defined by equation 5.1) should not exceed the available GPU
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memory of the platform:

GpuMemory ≤ AvailGpuMem

2. CPU memory – similarly, the required memory of components allocated
on the CPU (defined by equation 5.2) should not exceed the CPU’s avail-
able memory:

CpuMemory ≤ AvailCpuMem

3. Maximum energy – the energy consumed by the system (defined by
equation 5.3) should be less or equal to a particular (maximum) limit:

Energy ≤ MaxEnergy

4. Maximum time – the execution time of a particular trigger group (de-
fined by equation 5.5) should be less or equal to a specific (maximum)
execution time:

Time〈fl ,Cl〉 ≤ MaxTime〈fl ,Cl〉

5. All regular components must be allocated on the CPU:

ac = 0 for all c ∈ R

The optimization criteria

Our optimization is concerned with the following aspects:

• Minimize memory usage on the GPU.

• Minimize memory usage on the CPU.

• Minimize the system energy usage.

• Minimize the execution time of the system trigger groups.
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In order to allow the developer to select which of the properties are more im-
portant, or to exclude one or several properties from the optimization process,
we use the weight parameters introduced during the input part of our method
(see Section 5.2.1). We merge all of the concerns in a linear combination, and
minimize the result, as follows:

minimize(F ), where

F = wg ∗GpuMemory + wc ∗ CpuMemory+

we ∗ Energy +
∑

〈fl,Cl〉∈S
wt

l ∗ T ime〈fl,Cl〉, and

5.2.5 Simplification of the system property equations

The system properties described in the previous section, are formalized in a
general manner to cover systems with any number of components equipped
with any number of ports. This leads to rather complicated equations due to
the nested sum and min operations.

However, for any given system, the properties are calculated by unrolling
the sum functions, leading to simpler versions of the generic equations. The
arithmetic expressions of the equations are further simplified by:

• replacing the allocation variables ac with 0 for regular components due
to constraint 5 (see Section 5.2.4), and

• removing min functions when their second argument cannot exceed 1,
for example when it consists of a single aci element.

For instance, for an output port of a component c2 that only has a single outgo-
ing connection, to an input port of a component c3, the first min function used
for the energy calculation (i.e., equation 5.4), is initially min(1, (1− ac3)) but
is reduced to just (1 − ac3) that corresponds to the connected c3 component.
A more detailed example that describes the calculation and simplification of
system properties, is presented in the next section.



120 Chapter 5. Allocation optimization

5.3 Evaluation

The nine components of the vision system are divided in two trigger groups,
i.e., group 1 containing six components (upper part of Fig. 5.2), and group
2 containing three components. The system contains a total of five flexible
components that are fit to be executed, if required, on GPU due to their func-
tionality, i.e., processing images. For simplification, we numbered as c1 to c6

the components of group 1, from left to right. Similarly, the three components
belonging to group 2 are numbered, from left to right, as c7 to c9.

C1
  Camera1

C2
Camera2

C3
Merge
And

Enhance

C4
Convert

Grayscale

C5
Edge

Detection

C6
Object

Detection

Sync
Sensor

Camera1

Sensor
Camera2

C9
LoggerC7

Compress
RGB

C8
Compress
Grayscale

Figure 5.2: The Rubus design of the vision system

Using the described vision system, we conduct two experiments. While the
first experiment examines the feasibility of the allocation method, the second
experiment analyzes the optimization time of the solver.

5.3.1 Experiment 1

The system properties calculated using the equations from Section 5.2.3 have a
simplified form. For instance, Table 5.2 presents the unrolled energy usage cal-
culation for both vision system groups. Equation 5.6 details the energy usage
of group 1. The equation is not linear due to the fact that component c3 (i.e.,
MergeAndEnhance) has an output port connected to two ports; this requires the
min functions to remain. C5 (i.e., EdgeDetection) is another component that
also has an output port that communicates with two different components (i.e.,
c6 and c8). However, because c6 (i.e., ObjectDetection) is a regular component
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Table 5.2: The unrolled and partly simplified energy equations for the two
groups of the vision system

Energy〈f1,C1〉 =

cpuEnergy(c1)+

cpuEnergy(c2)+

ac3 ∗ gpuEnergy(c3) + (1− ac3) ∗ cpuEnergy(c3)+

ac4 ∗ gpuEnergy(c4) + (1− ac4) ∗ cpuEnergy(c4)+

ac5 ∗ gpuEnergy(c5) + (1− ac5) ∗ cpuEnergy(c5)+

cpuEnergy(c6)+

ac3 ∗ portSize(opc1) ∗ keng+

ac3 ∗ portSize(opc2) ∗ keng+

(ac3 ∗min(1, 1− ac4 + 1− ac7) + (1− ac3) ∗min(1, ac4 + ac7))∗
portSize(opc3) ∗ keng+

(ac4 ∗ (1− ac5) + (1− ac4) ∗ ac5) ∗ portSize(opc4) ∗ keng+

(ac5 + (1− ac5) ∗ ac8) ∗ portSize(op5) ∗ keng

(5.6)

Energy〈f2,C2〉 =

ac7 ∗ gpuEnergy(c7) + (1− ac7) ∗ cpuEnergy(c7)+

ac8 ∗ gpuEnergy(c8) + (1− ac8) ∗ cpuEnergy(c8)+

cpuEnergy(c9)+

(ac7 ∗ (1− ac8) + (1− ac7) ∗ ac8) ∗ portSize(opc7) ∗ keng+

ac8 ∗ portSize(opc8) ∗ keng

(5.7)
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(i.e., ac6 = 0), the min function is removed from the equation. For group 2,
where each output port is single connected to a component, the energy usage
reduces to equation 5.7. Furthermore, because c9 (i.e., Logger) is a regular
component (i.e., ac9 = 0), this simplifies the equation even more.

To compute allocation schemes, we use the CPLEX solver1 developed by
IBM. The unrolled system properties alongside with the constraints and opti-
mization function of the vision system are converted into a CPLEX optimiza-
tion model.

Table 5.3: The properties of the vision system components

Properties

Group Component Memory (bytes) Time (msec)

CPU GPU* GPUCPU** CPU GPU

1 C1:Camera1 56 0 0 3.2 0

1 C2:Camera2 56 0 0 3.2 0

1 C3:MergeAndEnhance 69 10575 24 4 0.6

1 C4:ConvertGrayscale 60 8550 22 4 0.5

1 C5:EdgeDetection 132 24750 22 1 0.6

1 C6:ObjectDetection 124 0 0 6 0

2 C7:CompressRGB 100 15300 22 3.1 0.5

2 C8:CompressGrayscale 100 15300 22 3.2 0.5

2 C9:Logger 70 0 0 4 0

GPU* - The GPU memory requirement when allocated on the GPU
GPUCPU** - The CPU memory requirement when allocated on the GPU

The requirements and characteristics of the vision system components are
described in Table 5.3. As we do not have means for energy usage measure-
ments, we use literature results that show the GPU energy efficiency [40], and

1https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
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assume 2 energy usage units for each CPU-allocated component, and 1 energy
usage unit for each GPU-allocated component. The flexible components and
their characteristics are highlighted in gray. For example, the flexible compo-
nent MergeAndEnhance requires 69 bytes of memory when allocated on the
CPU, and delivers and execution time of 0.6 msec when allocated on the GPU.
We mention that the time used to transfer a unit of data between distinct mem-
ory spaces (i.e., ktm) is 0.00002 msec.

Regarding the platform, the embedded board of the underwater robot is
equipped with an AMD Accelerated Processing Unit2, where the CPU and
GPU are integrated on the same chip. The total memory of the chip is 200MB,
but this memory should be used by the entire system of the robot. Therefore,
only a part of the platform memory is available for the vision system. To make
the allocation more interesting, we decided to use 350000 bytes as available
CPU memory, and 500000 bytes as available GPU memory, respectively.

Table 5.4: Four allocation scenarios for the vision system

Group Component Allocation

Scenario1 Scenario2 Scenario3 Scenario4

1 C3:MergeAndEnhance GPU CPU CPU GPU

1 C4:ConvertGrayscale GPU GPU GPU GPU

1 C5:EdgeDetection CPU GPU GPU CPU

2 C7:CompressRGB GPU GPU GPU GPU

2 C8:CompressGrayscale CPU GPU GPU GPU

We considered four scenarios when computing the allocation schemes:

• Scenario1 minimizes the execution time of group 1 (i.e., wt
1 = 1, and all

other weights set to 0).

• Scenario2 minimizes the execution time of group 2 (i.e., wt
2 = 1, and all

other weights set to 0).
2https://unibap.com/product/advanced-hetereogeneous-computing-modules/
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• Scenario3 minimizes all system properties, where all weights are equal
and set to 0.2.

• Scenario4 minimizes all system properties, where the CPU memory weight
parameter wc is double than all other weights).

Table 5.4 presents the four resulting allocation schemes of the vision sys-
tem computed by the CPLEX solver when using a machine with a 2,6GHz i7
CPU and 16 GB of memory. For the Scenario1 case, the result shows that two
of the flexible components from group 1 are allocated on the GPU. The third
flexible component, that has a lower execution time efficiency compared to the
other two components, was allocated on the CPU, probably due to the memory
limitation constraints. In the second scenario, the result shows the allocation
on the GPU of the two flexible components of group 2. Furthermore, in this
case, two of the flexible components of group 1 are allocated on the GPU due
to e.g., memory limitation constraints. In Scenario3 case, all flexible compo-
nents, except MergeAndEnhance, are distributed over the GPU. In the last case,
all flexible components except EdgeDetection, are allocated on the GPU.

5.3.2 Experiment 2

For the vision system, the time used by the solver to compute the allocation
schemes is under 100 milliseconds per scenario. To examine the calculation
time for bigger systems, we constructed three scenarios described in Fig. 5.3.

…

(a) Scenario 1

…

(b) Scenario 2

…

(c) Scenario 3

Figure 5.3: Three types of scenarios for scalability evaluation
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Scenario 1 consists of a chain of connected flexible components. In Sce-
nario 2, each flexible component communicates, via a single output port, with
two other flexible components, and in Scenario 3, each flexible component has
two output ports connected to different components. In each scenario we then
vary the total number of components. An odd number of components is needed
for the connections in Scenario 2 and 3. We decided to use the same odd num-
ber of components in all three scenarios, resulting in three versions with 21, 31
and 41 components, respectively.

Table 5.5: Implementation and execution of the scenarios

Number of Average
flexible output data total optimization

components data ports connections operators time (msec)

21 20 20 638 65
Scenario 31 30 30 938 142

1 41 40 40 1273 3806

21 20 38 883 146
Scenario 31 30 58 1344 395

2 41 40 78 1784 6040

21 38 38 1089 174
Scenario 31 58 58 1661 520

3 41 78 78 2235 21374

Each scenario version was implemented in CPLEX by unrolling the gen-
eral equations (i.e., equation 5.1, equation 5.2, equation 5.3 and equation 5.5).
Table 5.5 presents different information about the scenarios and their imple-
mentation, such as the total number of output data ports, data connections and
implemented arithmetic operators. We provided random values between 1 and
99999 for the component properties. While the available CPU memory prop-
erty is set to a value higher than the CPU usage of all components, the available
GPU memory property is set to half of the GPU usage of all components. The
optimization was ran 1000 times for each scenario version, with different ran-
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dom property values each time. The last table column presents the average of
the optimization time, using a quad-core 2.6Ghz i7 CPU.

Fig. 5.4 gives a more detailed perspective of the time spent computing so-
lutions for the considered scenarios. We notice that the solver easily handles
all the considered scenarios, in less than 100 seconds. We mention that in all
simulations, either an optimal solution was found or no solution existed. The
experiment shows that the optimization time is mainly influenced by the num-
ber of flexible components, but factors such as the number of output data ports
and their distinct connections also seem to impact the optimization time.
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Figure 5.4: The execution time used for computing solutions

This experiment shows that our allocation method is feasible even for fairly
complex systems. In particular, when the number of forked data connections is
low, the method scales well.
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Chapter 6

Related work

This chapter presents contributions divided into three parts. The first part intro-
duces the support for designing systems with GPUs, the second part presents
used programming models to address the GPU, and the third part covers the al-
location optimization contributions. These parts include works that are relevant
to discuss in the context of the novelties introduced in this thesis.

6.1 Support for heterogeneous system design

The latest technological progress has facilitated the development of Systems-
on-Chip (SoC) with multiple heterogeneous processors (e.g., CPU, GPU, FPGA)
into a single chip. In this sense, Andrews et al. propose the usage of COTS
components to address SoC systems with CPUs and FPGAs [41]. The authors
developed, based on the multithreading POSIX programming paradigm, an in-
terface abstraction layer to ease the component synchronization over the shared
memory. The work targets embedded applications composed of components
that concurrently execute and synchronize and exchange data. Although the
work focuses on creating a model for CPU-FPGA systems, the authors point
out that the existing way to develop applications, i.e., developing components
specific to the CPU/FPGA, is opposite to the desired goals (e.g., modularity,

127
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portability, reuse). In the context of component development of systems with
GPU capability, we introduce the work of Bernier et al. [42]. The authors
present a way of developing, using the OpenCL framework, military radio ap-
plications that use platforms with GPUs. The work describes how components
encapsulate the data transfer activities, which makes them platform specific
and greatly affecting the reusability aspect.

Regarding systems with GPU capabilities, we mention a general-purpose
component model called PEPPHER [38] that proposes a way to efficiently uti-
lize CPU-GPU hardware. In this sense, the authors define the PEPPHER com-
ponent as an annotated software unit. The component interface is described
by an XML document that contains the name, parameter types and access type
of the component. Dealing with platforms with different processing units (i.e.,
CPUs and GPUs), the interface may define several implementation variants of
the same component. Regarding the data passed between PEPPHER compo-
nents, this is wrapped into portable and generic data structures called smart
containers. These structures ensure the data transfer between the memories
of the processing units. In our work, we provide a transparent and automatic
way of transferring data between processing units by using adapters. Simi-
lar to the smart container concept which is more complex when dealing with
memory management, our adapters can be considered as high-level memory
management elements. Moreover, regarding the different PEPPHER compo-
nent variants, our work’s advantage is that it has less overhead (e.g., memory
footprint, development time) by using a single flexible component. After the
component is allocated to either the CPU or GPU, automatic means generate
the appropriate variant of the flexible component.

We also mention the Global Composition Framework (GCF) that extends
the PEPPHER component model [43]. Although GCF focuses on performance
optimization, the work addresses the development of systems with GPUs. The
considered component model defines the notion of component that consists of
an interface. The interface describes a functionality and the functionality is
implemented by multiple variants. The interfaces and implementation variants
have attached meta-data (e.g., to target GPU). While in PEPPHER, the meta-
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data is described by an XML, under GCF, pragmas are used to represent the
meta-information. The data used by a component needs to reside in the mem-
ory space associated with the component’s execution platform. The framework
takes care of the data transfer between components that reside in disjoint mem-
ory spaces, using runtime support. This is done via a static data analyzer that
checks the program data flow in order to find out where to place data handling
code. The runtime support allows the data transfer only when an implementa-
tion gets called, minimizing the memory overhead. However, it is difficult to
use runtime assistance in the domain targeted in our work given that a transfer
that is unknown when is realized, may present a big overhead for a control-type
of system.

Another work that targets heterogeneous systems with e.g., CPU, GPU and
FPGA is the Elastic computing framework [44]. Although is not a component
model per se, this framework has similar principles (e.g., interfaces, usage of
already developed functions). The framework uses a library that contains the
so called elastic functions. An elastic function has different implementations.
For example, an implementation may use the CPU and GPU, while another
uses only the CPU. The framework, being focused on the system performance,
analyzes the execution time of the elastic functions for all combinations of
resources, and decides during run-time, the fastest implementation for a given
combination of resources. The Elastic framework handles resource allocation
and data management inside the elastic function. An improvement provided
by our work is that it externalizes the data management outside the component
(i.e., using adapters), in this way enhancing the component reusability.

Brock et al. extend an existing library (i.e., PVTOL) in order to support
GPU architecture [45]. The authors take in consideration multiple memory
architectures which are handled through conduits. Basically, a conduit is a
template, where, based on its arguments, it targets the desired platform (i.e.,
CPU or GPU). The extended library has similarities with our work. While,
in Brock’s work, the developer introduces, at the source-code level, the con-
duits to address the desired platform, in our work we leave this choice to the
designer, that, after the application architecture is constructed, decides which
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platform to be use for the flexible components. Another aspect targeted by
Brock et al. is the memory management which is also done via conduits, im-
plemented by the developer. In our work, (part of) the memory management is
done automatically via the adapter artifacts.

Another work that uses a library to address the GPU capabilities in math-
ematics, is introduced by Winter et al. [46]. The library converts data-parallel
expressions into kernel functions written using the PTX programming language
(i.e., an assembler language which is intermediary between high-level CUDA
C/C++ code and GPU machine code). Furthermore, the library automates the
memory access via a cache and page-out mechanisms. The cache mechanism
extracts required data fields and make them available to the GPU, which are
paged-out (i.e., copied to the CPU) when they are accessed by the CPU or
there is not enough memory to hold other cached data fields. Due to the nar-
row focus (i.e., mathematics) of this library, the mechanism that automatically
generates kernel functions cannot apply to our work. Furthermore, the used
PTX language increases the demands on the developer to posses knowledge
in (low-level) GPU development. Regarding the memory management, the
page-out mechanisms cannot be utilized in our work given the introduced un-
predictability of data transfer activities.

Other works use a different approach, i.e., model-driven engineering, for
development of SoC embedded systems. For example, Gamatie et al. [47]
present the GASPARD design framework for massively parallel embedded sys-
tems. Designing the systems at a high abstraction level using the MARTE stan-
dard profile, the GASPARD framework allows the designers to automatically
generate code of high-performance embedded systems. Another work that is
worth mentioning is the of work of Rodrigues et al. [48]. The authors extend
the MARTE profile to allow modeling of GPU architectures. This work, as
well as the GASPARD framework, introduce mechanisms to handle the GPU
memory system and its interaction with the main memory system. Being de-
veloped in 2011, both frameworks focus on systems only with distinct (CPU
and GPU) memory systems. In our work, we cover newer platforms with GPUs
that have different characteristics regarding the memory access. The compo-
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nents proposed in our work, complemented by the adapter mechanisms, allow
the transparent usage of many of the existing embedded platforms with GPUs.

Flexibility for embedded systems is addressed in different ways and for
different reasons. For example, Lednicki et al. [49] tackled the way that some
component models develop systems (i.e., hard-coding inside the software com-
ponent the hardware platform characteristics) by introducing an additional layer
(i.e., mapping layer). The mapping layer connects the software and hardware
layers, allowing them to be developed independent of each other, improving
the component reusability for different (hardware and software) contexts. Al-
though aiming at a different platform type (i.e., with GPU) that brings partic-
ular challenges, our solution also increases the reusability of flexible compo-
nents for different hardware platforms.

A way to better manage the complexity of component-based systems is to
use composite components. A composite component, composed of several flat
components, follows the same rules (e.g., encapsulation) as regular compo-
nents, and its functionality is given by the combination of enclosed compo-
nents. To support analysis techniques for component-based systems, Lévêque
et al. introduce a solution to flatten systems with composite components [50].
Accordingly, the solution breaks a composite component into its constituent
components, and realizes the (data and control) connections with the rest of the
system. Other work that splits a composite component, is used in distributed
systems, where the decomposed components are executed on different execu-
tion nodes [51]. One of our introduced solution acts in the opposite direction
in order to reduce the system overhead. From a flat component-based sys-
tem, we enclose connected components in groups and “compress” the groups
in conceptual components.

The functionality of a flexible group is composed from the functionalities
of the enclosed components (i.e., kernel functions). We execute the kernel
functions in the order that the components are enclosed in the flexible group
set. The performance of a system may be improved through the composition
of the kernels [52]. Sarkar et al. introduce a methodology to compose kernels
such that the resulting system performance is improved over the sum of the
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performances of the individual kernels.
Flexibility in component-based development is highly desirable in order to

break the barrier of domain-specific components. In this sense, a developed
design approach advertises the usage of common component platform with
various plug-ins [53]. The advantage of the approach is that the component
platform can be re-purposed to meet new domains by using new plug-ins, in-
stead of re-writing the original component platform. Similarly, the “flexible”
notion that we extend from the component to group concept, increases the de-
signer options when constructing a component-based system which may lead
to e.g., a more efficient system.

6.2 Programming models and code generation for

GPU usage

There exist different programming models that target GPUs. Figure 6.1 presents
few representative solutions that facilitate the GPU development. Two dimen-
sions are presented in the figure, where the horizontal axis covers the devel-
opment manner (i.e., manual and automatic), and the vertical axis presents the
management of the CPU-GPU communication.

CUDA [28] is a framework developed by NVIDIA, targeting only NVIDIA
GPUs. Brook [54], a framework used to develop general-purpose graphics
hardware, addresses AMD and NVIDIA GPUs. OpenCL [29] is another frame-
work that bridges the gap between CPU and GPU, being employed even further
to address other processing unit types such as FPGA. For the three previously
mentioned frameworks, the communication between processing units falls un-
der the developers responsibility, being a manual activity.

Other frameworks that address the GPU development in an automatic way
are CUDA-lite [55], a C-to-CUDA code generator [56], and the R-Stream com-
piler [57]. For example, CUDA-lite translates CUDA functions into functions
with improved performance by coalescing and exploiting the GPU memory.
The downside of these works is that the developer needs to manually address
the data transfer between the CPU and GPU.



6.2 Programming models and code generation for GPU usage 133

CUDA[29]
OpenCL[30]
Brook[54]

Baskaran[56]
Leung[57]

Cuda-lite[55]

Lee[59]JCUDA[58]

CGCM[60] CGCM[60]

Manual Automatic

M
an

ua
l

Se
m

i-a
ut

om
at

ic
Au

to
m

at
ic

GPU development

CP
U-

GP
U 

co
m

m
un

ica
tio

n

Figure 6.1: Taxonomy of related work on GPU development

Moving one level up on with respect to the communication management,
we mention the JCUDA framework [58] that uses Java and the framework pro-
posed by Lee et al. [59]. Both frameworks handle in a semi-automatic way the
CPU-GPU communication. For example, JCUDA delegates the generation of
the host-device data transfer activities to the compiler. On the highest level of
the vertical axis, there is the CGCM system that, in a fully automatize manner,
manages and optimizes the CPU-GPU communication [60].

Given that OpenCL is well established in industry, being supported by
most of the existing vendors (e.g., Intel, AMD, NVIDIA, Xilinx), the usage
of OpenCL to develop our introduced solutions, increases the feasibility of this
thesis in the current industrial context. CUDA (or its extensions, e.g., CUDA-
lite) was also a feasible option, being a popular and known development frame-
work for GPUs. The downside resides on its addressed platforms, i.e., only
NVIDIA GPUs. The other presented frameworks (e.g., CGCM, R-Stream) are
fairly new developed and not used in industry.
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Regarding the GPU code generation, Diogo et al. [61] present a compiler
and runtime systems extensions for Single Assignment C (SaC), a functional
array programming language. Using the introduced support, the developer does
not need to explicitly write source-code for platforms with GPUs; the solution
ports, on the GPU, the loop instructions that are capable to be executed in paral-
lel. Furthermore, the memory management is facilitated via dedicated conver-
sion functions. These functions performs the copying of only the needed data
blocks, instead of the entire array. As opposite, the adapter artifacts proposed
in our work, copy the entire data. Given the fact that the component encapsu-
lates all its information, and not having additional information on how the data
is used inside the components, the adapters cannot transfer only parts of data.
Furthermore, in our work, the functionalities of the flexible components can be
very complex and impossible to be automatically generated as opposite to the
simple loop instructions used in Diogo’s work.

To improve the programmability for mainstream programmers, Sandrieser
et al. [62] introduce a framework for heterogeneous multi-core systems. The
approach differs between mainstream and expert programmers, where the main-
stream developer constructs the application at a higher abstraction level using
software artifacts created by an expert programmer that have in-depth knowl-
edge on platform-specific development. The functions (i.e., software artifacts)
of the application that are to be executed on a specific platform (e.g., GPU),
are annotated by the mainstream programmer with source code directives that
target the desired platform, while the expert programmer provides different im-
plementation variants for various platforms. The compiler, using platform de-
scription meta-data, automatically selects the appropriate variant correspond-
ing to the required platform. In our work, we also distinguish between two
types of developers, i.e., the component and the system developers that corre-
spond to the expert and mainstream programmers, respectively. Through our
introduced flexible component concept, we ease the work of the component
developer, which constructs only one version of the component functionality.
This functionality (encapsulated inside a component) is ported on the platform
selected by the system developer.
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It is worth to mention the Aspect-Oriented Programming (AOP) paradigm
where various concerns called aspects, are inserted in the source code. For
example, Wang et al. [63] propose a programming system to assist the devel-
opment of GPU functionality. More exactly, a special compiler inserts GPU as-
pect code fragments (e.g., memory transfer activities) in the C++ source code,
resulting in GPU applications. Similarly with AOP, we generate parts with
GPU-specific information for flexible components and adapters. However, the
AOP paradigm does not provide the encapsulation concept that is required in
our solution.

We also mention several works that construct APIs to decrease the pro-
gramming complexity of GPUs. Fu et al. introduces a simple API that, encap-
sulating the complexity of GPU architectures, allows transparent optimization
strategies for implementation of different graph algorithms [64]. The API, con-
structed on top of the CUDA model, is limited to only target NVIDIA GPUs.
Another API that provides function calls to run common vision algorithms,
is OpenVIDIA [65]. The functions of the API abstract OpenGL calls needed
for vision processing. An improved framework, i.e., MapCG [66], contains a
high level API (C-like language) that hides programming side-burdens (e.g.,
communication). Similarly, we include a generic API (see Section 4.6.1) that
provides platform-independent functions. In our work, the API consists of only
four functions, which makes it small with a reduced memory overhead impact.
From the component communication perspective, there is no need for an API
in our work as transparent communication mechanism (i.e., adapters) are auto-
matically generated.

6.3 Allocation optimization

The fourth research goal deals with the software-to-hardware allocation. There
is a lot of existing work that addresses this issue, such as the systematic lit-
erature review on the architecture optimization methods [67]. Among other
aspects, the authors show that, from the total number of papers that study the
optimization of component-based systems (i.e., 30 papers), only 13% (i.e., 4
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papers) use exact optimization strategies (e.g., MINLP). Although exact meth-
ods provide optimal solutions, the difficulty of formally defining the allocation
model, the search-space and the usually non-linearity (and computationally ex-
pensive) of the objective functions are major challenges in adopting them. We
managed to formally define our optimization model, allowing us to use exact
methods. Furthermore, we showed that our generic allocation model simplifies
its search-space and complexity when applied on existing systems.

We mention the work of Seo et al. that focuses on the energy consumption
estimation of component-based Java systems [68]. The work constructs a de-
tailed optimization model of the system energy consumption. An interesting
aspect is the energy usage of the communication when components reside in
different Java Virtual Machines, on the same host. In our optimization model,
the communication aspect is implicitly covered by the component’s computa-
tional cost. We also treat the energy usage of components communication, but
we specifically capture it in the optimization model.

Another work that deals with the energy usage is proposed by Goraczko et
al. [69]. The authors develop an optimization model expressed using integer
linear programming, that minimizes the system energy usage when the end-to-
end time constraints are given. It is shown that (an older version of) the CPLEX
solver calculates solutions on a dual-core 2GHz machine, in up to couple of
minutes, for systems with more than 30 components. The model applies on
embedded systems that have multi-CPUs. Similarly, our work focuses also on
embedded systems, but the processing units (i.e., CPU and GPU) have differ-
ent characteristics. Therefore, the model of our system is more complex, con-
taining the two distinct perspectives of the (CPU and GPU) processing units.
Furthermore, when applying our optimization model on systems with e.g., 90
components, the newest version of the CPLEX solver computes solutions in a
fast manner (i.e., 10 msec), when executed on a powerful machine (i.e., with
four-core 2.6Ghz).

In the context of embedded real-time systems, Wang et al. provide a compo-
nent-to-platform allocation model [70]. The proposed model considers the
computation, communication, and memory resources of the components, and
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uses weights to define their importance in the allocation process. Interestingly,
the components that require more resources have priority, being allocated first.
In our work, all components have equal allocation priority w.r.t. their resource
requirements. Furthermore, through the used flexible component concept, we
increase the flexibility of the allocation regarding the component resource re-
quirements. Similarly, we use the weight parameters to define the properties
importance in the allocation process. The communication cost, represented in
our work by adapters, is integrated in the way we calculate the system proper-
ties.

We introduced a static allocation method, where an allocation result is com-
puted a priori, and used once the application is executed. A different approach
would be to compute allocation schemes during run-time. In the same embed-
ded system context, we mention an interesting work of Singh et al.[71] which
performs energy efficient allocations of concurrent applications on CPU-GPU
cores of heterogeneous MPSoC. This work handles the application at a lower
granularity level (i.e., thread-level) than our work, and decides, during run-
time, where to place (i.e., either on the CPU or GPU) the working threads
in order to maximize the energy efficiency. Furthermore, this work does not
cover, as our proposed allocation method, the energy consumed on data trans-
fer between CPU and GPU memory systems, being considered as a future work
direction.

In our previous works, we have addressed the optimization challenge as
follows. In one work, an optimization model is formally constructed to allo-
cate component-based systems with GPUs [72]. This work presents its system
model through a hypothetical component model and targets distributed sys-
tems. The model defines abstract system properties such as CPU capacity that
describes the processor workload w.r.t. a conceptual reference unit. Another
work that we also built on a hypothetical component model, allocates compo-
nents during run-time on a distributed platform [73]. Similarly, this work for-
mally describes the system using abstract properties such as CPU capacity, and
covers the parallel allocation of components on GPU. Similarly to these pre-
vious two works, we formally define a component allocation for embedded
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systems with GPUs. In difference, the present work is constructed using an
existing component model (i.e., Rubus) with its defined elements (e.g., flexi-
ble components, adapters). The previous works do not consider, as the present
model does, the data transfer overhead between the CPU and GPU. Further-
more, we characterized the system using realistic properties. We do not ex-
plicitly cover parallel allocation of components on GPU as there are no defined
mechanisms to support this feature in Rubus. Another difference is that we
focus on the component allocation over compact platforms with single (CPU-
GPU) processing chips.

Regarding the assumptions we made related to the energy usage of GPUs
and CPUs, Huand et al. show the GPU efficiency over the CPU [40]. Using an
existing (parallelizable) application, the authors compare the energy usage of a
system when the application is executed by: i) the GPU, and ii) a single-thread
CPU. It is showed that, to execute the same application, the GPU consumes 20
times less energy than the CPU. The energy calculations from the experiments
are done using a power meter tool. Another aspect that helped us in construct-
ing the reasoning related to the energy usage of components is that the energy
consumption of a functionality that executes on GPU is not influenced by pos-
sible previous GPU executions. This leads to independent GPU energy usage
of functionalities that are consecutively executed [74].
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Chapter 7

Conclusions and future work

7.1 Summary and conclusions

Component-based development offers no specific support for the construction
of embedded systems with GPUs. In this context, the existing approaches in-
troduce several shortcomings which diminish the benefits of using CBD in
embedded systems with GPUs. The main goal of this thesis is to facilitate
the component-based development of embedded systems with GPUs. More
concretely, we defined three (sub-)goals to be addressed in this thesis. The
first goal aims to identify the GPU functionality support provided by existing
component-based frameworks. Based on the findings of the first goal, we in-
tend to assist the development of embedded systems with GPUs via specific
mechanisms. The last goal deals with the software-to-hardware allocation,
were our target is to handle the allocation of the functionality onto the physical
platform.

The contribution of the thesis addresses the overall and the three specific
goals of the thesis, and are presented in the following paragraphs:

1. The first contribution presents how the existing solutions handle the GPU
support. Using a systematic literature review methodology, we studied
the state-of-the-art of component-based applications with GPU capabil-
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ity and identified their trends and research specific details, briefly pre-
sented in next paragraph.

The interest in the development of component-based systems with GPUs
started from 2009, a possible reason being the release on the market of
several (software and hardware) GPU technologies. Moreover, most of
the conducted research is done in academia. Regarding the specific de-
tails, most of the captured research use no specific component model,
and the two most used mechanisms to develop solutions are via pro-
gramming and modeling.

2. The second contribution introduced specific GPU mechanisms as fol-
lows. A flexible component is introduced, which can be executed with
no modifications required, on either CPU or a variety of GPU platforms.
The required information to allow the component to be executed on the
selected platform is automatically generated. An optimization step is
also introduced, were connected flexible components that share the same
executable platform (i.e., CPU or GPU) are grouped in entities that be-
have as regular components. To facilitate the communication between
components, we introduce artifacts called adapters to handle data trans-
fer activities between connected components. The adapters are automat-
ically generated when needed, depending on the platform characteristics
and on which executable platform components are placed.

3. The theoretical concepts introduced by the previous contribution are im-
plemented as an extension of the Rubus component model, as follows.
The flexible components were realized as regular Rubus components,
characterized by interfaces, constructors, behavior functions and destruc-
tors. Similarly, we realized the connected flexible components into sin-
gle regular Rubus components, following the optimization step via the
flexible group concept. Adapters were also realized as regular Rubus
components.

4. The last contribution of the thesis is a method for allocation optimization
of component-based applications over platforms with GPU hardware.
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Having components with flexible functionality (i.e., can be executed ei-
ther by the CPU or GPU), we introduce a method to provide allocation
schemes of the system’s components, with respect to various optimiza-
tion criteria (e.g., system performance).

Through the introduced novelties, we facilitate the development of embed-
ded systems with GPUs and provide the following benefits:

1. We provided a reusable SLR framework that can serve as a starting point
for new literature review studies. Furthermore, an up-to-date review of
the state-of-the-art can be used by researchers that are interested in the
research domain.

2. The introduced specific GPU mechanisms bring the following advan-
tages:

• Introducing a type of component that can be executed on different
processing units, without manual modification, increases the flexi-
bility of designing embedded systems.

• The flexible component is platform-independent, being capable to
be executed on platforms with GPUs that have different character-
istics. For example, the same component can be executed, with
no modification required, on platforms that have distinct CPU and
GPU memory systems but also on platforms that fully share the
same memory. This increases the component reusability.

• Due to the mechanisms that automatically generate the required
information which the component requires to be successfully ex-
ecuted on selected platform, the development of components with
GPU capability is simplified. The adapter is another factor that de-
creases the development effort due to the fact that the developer is
not responsible anymore to handle specific data transfer activities.

• The component maintainability is also increased by the adapters.
Through this concept, the specific data transfer activities are not en-
capsulated inside the component anymore, but automatically han-
dled.
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3. Through the introduced allocation method, we provide optimized allo-
cation schemes in a semi-automatic way. The method takes as input the
system characteristics, and compute optimized component-to-hardware
schemes (when existing) with respect to different system properties (e.g.,
memory and energy usage).

The introduced GPU mechanisms were implemented by extending a state-
of-practice component model (i.e., Rubus). The extended component model
was used to construct a vision system and, through it, evaluated the feasibil-
ity of the proposed mechanisms. Similarly, the allocation method was im-
plemented using a mathematical solver and was used to analyze the produced
allocation results. Through the conducted evaluation, we argued the feasibil-
ity of the introduced novelties that facilitate component-based development of
embedded systems with GPUs.
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7.2 Future work

Several future work directions remain to continue our work:

• As there are various types of heterogeneous embedded systems such as
Spartan 6 equipped with FPGA1, ways to apply and/or extend our work
on these types of systems can be considered. FPGA is a processing unit
that excels in parallel processing data, being an alternative to the GPU.
Due to the fact that an FPGA is equipped with a private memory system,
the adapters artifacts may be adopted to facilitate the communication be-
tween components allocated on CPU and FPGA. Furthermore, given that
the OpenCL framework provides also support for this type of systems,
the implementation of the adapters artifacts may be directly use for this
type of embedded systems.

• In this thesis, we consider platforms with uni-core CPUs and GPUs.
Given that many of the modern SoC systems that integrate GPUs contain
multi-core CPUs, mechanisms should be created to allow the multi-cores
to simultaneous use the GPU. In this sense, the GPU is seen as a shared
resource, and mechanisms should also protect it to not be over-used. For
example, the multi-cores can simultaneous use the GPU as long as they
require less or equal processing threads as the GPU has available.

• As the GPU is a parallelizible processing unit, a future work direction
includes the parallel scheduling of components with GPU capability. For
example, if the hardware has much resources, several components with
GPU capability may be run in parallel. This future work direction may
complemented the previous one, where multi-cores simultaneous access
the GPU and execute, in parallel, their functionality.

• Within the same parallelism direction, and related to the grouping of
flexible components with the same allocation into single entities, an-
other approach to extend this thesis is to introduce mechanisms to allow

1https://www.xilinx.com/products/silicon-devices/fpga/spartan-6.html
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the parallel execution of the grouped functionalities. The mechanisms
should analyze which functionalities are independent of each other and
permit their parallel execution, according to the platform resources.

• The allocation model introduced in the fourth contribution, may be ex-
tended to address all types of platforms considered in this work. Besides
the platform that has CPU and GPU distinct memory systems, platform
with e.g., full shared memory and virtual shared memory should be cov-
ered by our method. Furthermore, more system properties (e.g., CPU
and GPU utilization) and optimization criteria (e.g., end-to-end execu-
tion time) may be introduced in order to provide more exact solutions.



Bibliography

[1] Global Market Insights. Embedded system market size by application, by
product. Industry outlook report, regional analysis, application develop-
ment potential, price trends, competitive market share and forecast, 2016
- 2023, 2006.

[2] Alfred Helmerich, Nora Koch, Luis Mandel, Peter Braun, Peter Dorn-
busch, Alexander Gruler, Patrick Keil, Roland Leisibach, Jan Romberg,
Bernhard Schätz, et al. Study of worldwide trends and R&D programmes
in embedded systems in view of maximising the impact of a technology
platform in the area. Final Report for the European Comission, Brussels,
Belgium, 2005.

[3] I. Crnkovic and M. Larsson. Building Reliable Component-Based Soft-
ware Systems. Artech House, Inc., Norwood, MA, USA, 2002.

[4] AUTOSAR - Technical Overview. http://www.autosar.org. Accessed:
2018-07-27.

[5] Karl Heinz John and Michael Tiegelkamp. IEC 61131-3: programming
industrial automation systems: concepts and programming languages,
requirements for programming systems, decision-making aids. Springer
Science & Business Media, 2010.

[6] Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Mats Lindberg, John
Lundbäck, and Kurt-Lennart Lundbäck. The Rubus component model for
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GPU Support for Component-based 
Development of Embedded Systems
Gabriel Campeanu

One pressing challenge of many modern embedded 
systems is to successfully deal with the considerable 
amount of data that originates from the interaction 
with the environment. A recent solution comes from 
the use of GPUs. Equipped with a parallel execution 
model, the GPU excels in parallel processing applica-
tions, providing an improved performance compared 
to the CPU.

Another trend in the embedded systems domain is 
the use of component-based development. This soft-
ware engineering paradigm that promotes construc-

tion of applications through the composition of software components, has 
been successfully used in the development of embedded systems. However, 
the existing approaches provide no specific support to develop embedded 
systems with GPUs. As a result, components with GPU capability need to 
encapsulate all the required GPU information in order to be successfully 
executed by the GPU. This leads to component specialization to specific plat-
forms, hence drastically impeding component reusability. 

Our main goal is to facilitate component-based development of embedded 
systems with GPUs. We introduce the concept of flexible component, which 
increases the flexibility to design embedded systems with GPUs, by allowing 
the system developer to decide where to place the component, i.e., either on 
the CPU or GPU. Furthermore, we provide means to automatically generate 
the required information for flexible components corresponding to their 
hardware placement, and to improve component communication. Through 
the introduced support, components with GPU capability are platform-
independent, being capable to be executed on a large variety of hardware (i.e., 
platforms with different GPU characteristics). Furthermore, an optimization 
step is introduced, which groups connected flexible components into single 
entities that behave as regular components. Dealing with components 
that can be executed either by the CPU or GPU, we also introduce an 
allocation optimization method. The proposed solution, implemented using 
a mathematical solver, offers alternative options in optimizing particular 
system goals (e.g., minimize memory and energy usage). 
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