
Recent Advances and Trends in On-board
Embedded and Networked Automotive Systems

Lucia Lo Bello, Senior Member, IEEE, Riccardo Mariani, Member, IEEE,
Saad Mubeen, Senior Member, IEEE, and Sergio Saponara, Senior Member, IEEE

Abstract—Modern cars consist of a number of complex embed-
ded and networked systems with steadily increasing requirements
in terms of processing and communication resources. Novel
automotive applications, such as, automated driving, rise new
needs and novel design challenges that cover a broad range of
hardware/software engineering aspects. In this context, this paper
provides an overview of the current technological challenges
in on-board and networked automotive systems. The paper
encompasses both the state-of-the-art design strategies and the
upcoming hardware/software solutions for the next generation
of automotive systems, with a special focus on embedded and
networked technologies. In particular, the work surveys current
solutions and future trends on models and languages for auto-
motive software development, on-board computational platforms,
in-car network architectures and communication protocols, and
novel design strategies for cybersecurity and functional safety.

Index Terms—Embedded Systems, Functional Safety, Real-
time Networks, Automotive Ethernet, Time-Sensitive Networking,
On-board Security, Automotive Software.

I. INTRODUCTION

The size of embedded systems market is growing at a
drastic pace. According to an estimate, it will be 258.72
billion USD by 2023 [1]. It is further estimated that auto-
motive applications comprise of over 20% of this market. An
embedded system consists of hardware (HW), processor and
peripherals, and software (SW) that runs on the embedded
processor [2]. In a modern car, the size of the embedded SW
is in the order of millions of code lines. Many automotive
embedded systems are real-time (RT) constrained, i.e., they
must provide logically correct responses at correct times
that are dictated by time-critical functionalities. Particularly,
hard RT requirements apply to Autonomous Driving (AD) or
Autonomous Machinery Operation, according to a pre-planned
path/statement-of-work. Such functionalities are demanding in
terms of both computational and environmental conditions.
Challenging environmental requirements [3] have to be faced,
such as temperature from -40 ◦C to 125 ◦C, mechanical and
chemical stress and moisture resistance over 15-year lifetime,
and electrostatic discharge (ESD) protection of several kV.

The current electric/electronic (E/E) on-board automotive
architectures, with up to 100 dedicated Electronic Control
Units (ECUs), is no longer capable of answering the comput-
ing, communication and memory requirements coming from
innovations with increased needs of fail-operational, functional
safety (FuSa), cyber security and RT behavior [4]–[7]. Such
innovations include: transition from internal combustion en-
gines to full electric cars; introduction of advanced driver
assistance systems (ADAS) and AD functions; increased level

L. Lo Bello is with the University of Catania, Italy, R. Mariani is with
the Intel Corporation, Italy, S. Mubeen is with the Mälardalen University,
Sweden, and S. Saponara is with the University of Pisa, Italy.

of on-board connectivity, mainly wired (e.g. FlexRay [8],
CAN/CAN-FD [9], [10], Automotive Ethernet [11]); vehicle to
everything (V2X) wireless connectivity for advanced services
such as fleet management, platooning, over-the-air SW up-
dates; stringent constraints in terms of FuSa and cyber security.

Fig. 1. Computation needs vs. AD/ADAS functions [4]

Fig. 2. Autonomous platform at function level

Rather than just increasing the number of basic ECUs,
using 32-bit microcontrollers (MCUs), new on-board E/E-
architectures will exploit embedded High Performance Com-
puting (eHPC) platforms. Computational power in the order
of Tera Operations per Second (TOPS), see Fig. 1, is needed
to implement RT perception and AD tasks in modern vehicles,
particularly for high automation (Level 4, L4), in which the
system can perform the driving task without human interven-
tion, and full automation (Level 5, L5), in which the system
takes over all the aspects of driving full time. As shown
in Fig. 2, the automotive eHPC should sustain in RT the
following functions:
1) Observation: building a model of the surrounding environ-

ment, where inputs are the direct observations produced
by sensors [12] (cameras, radars, sonars, lidars) or V2X
wireless data, and output is a geometrical and topological
representation of the environment.

2) Perception: localization of the car, i.e. estimating its path,
position and orientation within a map, by fusion of global



(satellite communication) and relative (gyro and accelerom-
eter inertial sensors) data; detection of all static (landmarks,
road and traffic signs) and moving (vehicles, pedestrian)
obstacles; and classification depending on how well they
match up with a library of pre-determined shape and
motion descriptors.

3) Planning and decision: moving the car, which requires
route planning and trajectory control, used to direct the car
to its destination, while avoiding obstacles and following
traffic rules.

All the above phases will benefit from Artificial Intelligence
(AI) techniques, which are widely addressed in the recent
literature [13]–[21]. Online map data is required to provide
long range planning information such as lane end, speed limits,
construction sites and other changing road conditions. All
these operations have to be repeated in a time scale below 10
ms with stringent low-latency requirements. Perception results
from fusion of all surround sensing and online map data into a
single surround model. For data fusion a grid-based approach
may be used to determine the occupancy probability (Bayesian
approach) of a cell, or the belief function (Dempster-Shafer
approach), by evaluating the current sensor reading and the
history from past cycle [22]. Grid occupancy is calculated from
processed sensor data, with explicit modelling of uncertainties.
Grid cells can bear additional information, such as, moving
object speed, which can be used to predict likely behavior.

In this new scenario RT computational capabilities in
the range of TOPS are required as shown in Fig. 1. This
also involves the connectivity through high-bandwidth time-
sensitive networks of both general-purpose eHPC and number-
crunching accelerators. In addition, high data storage capabil-
ity in non-volatile robust memories is required. As foreseen by
Intel [4], from an average of 1.5 GB of traffic data per Internet
user today, we will move towards 4000 GB of data generated
per day by an AD car including technical data, personal data,
crowd-sourced and societal data.

A. Paper Contribution

The aim of the paper is to provide an overview of the current
technological challenges in on-board and networked automo-
tive systems, reviewing the state-of-the-art design strategies
and also pointing to the upcoming solutions. Unlike other
surveys that focus on one specific challenge, e.g., in-vehicle
communications [23]–[28], this paper aims to provide a full
picture of cutting-edge topics in the addressed context. For this
reason, the paper uniformy addresses core topics for on-board
and networked automotive systems, such as:
• Models, languages, standards and methodologies for auto-

motive software development.
• High-performance on-board computation platforms.
• On-board network architectures, protocols and standards.
• Design strategies for on-board cybersecurity.
• Functional safety.

B. Paper Outline

The rest of the paper is organized as follows. Section II
addresses the recent advancements in models, languages, ar-
chitectures, and standards for automotive SW development.
Section III discusses the automotive eHPC platforms. New
trends and solutions for RT in-vehicle communications are

presented in Section IV. Cybersecurity issues related to in-
vehicle networking and possible countermeasures are analyzed
in Section V, while design strategies for on-board functional
safety are dealt with in Section VI. Finally, conclusions are
drawn in Section VII.

II. AUTOMOTIVE SOFTWARE DEVELOPMENT

Automotive industry has undergone a drastic shift from
mechanic-intensive to SW-intensive applications in the last
couple of decades [29]. According to [30], more than 80%
of innovation in cars come from computer-controlled func-
tionalities. The increasing demand for such functionalities
and data-intensive applications in modern cars has led to the
increasing size and complexity of automotive SW. According
to an estimate in 2014, the amount of SW in a regular four-
door car increased ten times in eight years reaching the size of
approximately 1 GB [31]. Another estimate in 2009 predicted
that a modern premium car shall contain nearly 100 million
lines of code (MLoC) and was expected to reach 200-300
MLoC in the coming years. This estimate seems accurate,
as Ford showcased their car containing 150 MLoC at the
Consumer Electronics Show (CES) in 2016 [32].

Model-based Engineering (MBE) [33] and Component-
based SW Engineering (CBSE) [34] have emerged as an
attractive and cost-effective option to deal with the size and
complexity of the SW. MBE uses models to describe functions,
structures and design artifacts throughout the SW develop-
ment. CBSE allows to build large SW systems by reusing pre-
existing SW components and their architectures. It is estimated
that up to 90% of automotive SW can be reused from previous
releases or other projects if MBE and CBSE are used [35].
There exist several modeling languages and component models
in the automotive domain that employ the principles of MBE
and CBSE for the SW development [36], [37].

EAST-ADL [38] is an architecture description language for
automotive embedded systems. It has developed and evolved
based on several European projects and research works such
as [39]–[42]. The EAST-ADL methodology allows to model
the SW architecture at four abstraction levels. These levels,
together with some of the models, languages, and tools that
are used for the SW development at each level, are depicted
in Fig. 3. At the top level, called the Vehicle Level, end-to-
end requirements on the automotive functionality are captured.
At the Analysis Level, the requirements are refined and
expressed formally. Moreover, several different analyses can
be performed including the requirements consistency analysis
and the functions analysis. The Design Level defines the SW
architecture, HW architecture and SW to HW allocation model
by abstracting implementation details. The concrete implemen-
tation of SW architecture is performed at the implementation
level. The language supports the modeling of automotive
SW architecture only at the top three levels in Fig. 3. The
methodology recommends to employ standard or proprietary
architectures and component models at the Implementation
Level, e.g., AUTOSAR [43] and Rubus Component Model
(RCM) [44], [45]. EAST-ADL is also aligned with the FuSa
standard for road vehicles, ISO26262 [46], [47]. There are
several variants and specific implementations of the language
that are currently used in the automotive industry, e.g., Sys-
temweaver and its variants SE Tool, Rubus-EAST, Fraunhofer
ESK [48], that are also shown in Fig. 3. A detailed comparison
of these tools and models is discussed in [49], [50].



There are several middleware approaches and component
models that are used for the development of automotive SW
at the implementation level. For example, CORBA [51] and
iLAND [52]. COMDES [53] and ProCOM [54] represent
examples of component models from academia, whereas RCM
and AUTOSAR are the examples of industrial component
models. AUTOSAR is a worldwide development partnership
of vehicle manufacturers, suppliers and companies from the
electronics and ICT industry [43]. AUTOSAR-based SW is
widely used by all Original Equipment Manufacturers (OEMs)
in Europe and is gaining momentum in the U.S., Japan and Ko-
rea. Initial version of AUTOSAR did not account for modeling
timing information, which is of utmost importance in vehicular
safety-critical systems. The support for timing modeling in
AUTOSAR is provided by the TADL [55] and TADL2 [56]
languages. These languages were developed within two large
EU initiatives, i.e., TIMMO and TIMMO2USE [57]. The
AUTOSAR standard comprises a way to define the in-car
network infrastructure and communication matrix, the nec-
essary exchange formats as well as an operating system
infrastructure for embedded ECUs (Classic Platform) and per-
formance ECUs (Adaptive Platform). To support automotive
requirements, the SW environment and development kits must
provide these functionalities, see Fig. 4.

Implementation Level
IBM Rational Rhapsody

TADL2

ProComCOMDES-II

DaVinci

Design Level

SystemWeaverMetaEdit+No Magic

Analysis Level TADL
Papyrus

Rubus-EASTSystemWeaverMetaEdit+No Magic

Vehicle Level TADL
Papyrus

Rubus-EASTSystemWeaverMetaEdit+No Magic

TADL2

TADL
Papyrus

Rubus-EAST

TADL2

TADL2

RCM
Rubus-ICE

RCM
Rubus-ICE

Fig. 3. Abstraction levels considered during the automotive SW development

Implementations of the AUTOSAR Classic Platform can
be subject to safety certification according to the Automotive
Safety Integrity Level (ASIL) A-D in the ISO26262 FuSa
standard. Moreover, the requirements on the response times of
run-time entities (tasks) in these implementations are often in
the lower us range. The recent AUTOSAR Adaptive Platform
defines a service-oriented middleware as well as system health
monitoring for automotive performance ECUs, which can run
on POSIX PSE51-compatible operating systems (e.g. Linux,
QNX and Integrity OS). A new standard interface is defined
to access HW accelerator units, which is planned to be
based on the widely accepted OpenCL standard. The Adaptive
Platform is expected to become the automotive standard for
performance and number-crunching ECUs. This is because
the service-oriented network protocols are the same in both
the Classic and the Adaptive platforms. The inter-operability

between the two platforms is also supported.
A common requirement for performance ECUs is the strict

separation of specific SW domains. The introduction of hy-
pervisor supports safety and security, so that in a mixed-
criticality environment SW functions with different ASIL can
be easily separated. Moreover, a hypervisor can separate small
monitoring apps as well as complete specialized operating sys-
tems and driver stacks in virtual machines. This can enhance
security and secure communication to back-end systems and
Internet. To be compatible with a large range of existing SW
packages, especially from the HPC domain, a Linux-based
operating system environment will be chosen as basis for
the performance ECU SW. Since the AUTOSAR Adaptive
Platform is available on Linux, this opens the door to the
world of Linux-based infrastructure SW.

Fig. 4. AD architecture with AUTOSAR Platform.

To develop SW for the eHCP platform, a SW development
kit together with well-defined exchange formats has to be pro-
vided. AUTOSAR ARXML, as the industry-standard format
for exchanging information about ECUs, ECU communication,
integrated self-describing SW-services and SW-components,
makes the system complexity manageable. In the future, the
term “system” in automotive will be redefined from single
ECUs up to complete cars, and even extended to fleets.

Prototyping environments for AD development extend the
Automotive eHPC SW environment into a production envi-
ronment for AD. Examples of such prototyping environments
include Robot Operating System (ROS) 2.0 from Open Source
Robotics Foundation and EB robinos, which is a SW frame-
work and architecture for highly automated driving based on
open interfaces implementing the Open robinos specifications.
Optimized application libraries should be provided for use
by the perception tasks, sensor fusion and situative behavior
analysis. Lidar sensor processing, which involves represen-
tation of data and segmentation into objects, requires effi-
cient implementations of the PCL (Point Cloud Library) and
FLANN (Fast Library for Approximate Nearest Neighbors).
Camera processing implies a variety of computer visions that
are prototyped with the OpenCV library and moved to the
OpenVX programming environment to meet the performance
requirements. Sensor fusion and other high-performance func-
tions of computer vision are implemented in OpenCL when
CUDA is not available. Dense linear algebra libraries such
as BLAS/BLIS and Eigen (C++ templated library) must be
available and optimized, as they are required by machine
learning algorithms and standard deep learning frameworks
(e.g. Caffe and TensorFlow).

III. HIGH PERFORMANCE COMPUTATION PLATFORMS

Today’s embedded automotive-qualified processors, with ca-
pabilities of hundreds of MOPS, see Fig 1, can not handle AD



functions. There is a need for more powerful HW platforms
such as eHPC data fusion platform, see Fig 5, which are
designed by combining an automotive-certified real-time MCU
with general purpose HPC processors and accelerators. The
latter are used to increase the power efficiency and to act as
safe number crunchers with direct access (not shown in Fig 5)
to sensor data through Ethernet or Low Voltage Differential
Signaling (LVDS). A multi-Gbps TSN link should be used
to connect the safe MCU supervisor, the accelerators and the
general purpose HPC processors. This type of interaction will
require reliable and secure communication channels, proper
identity management and assurance, while providing adequate
data and identity privacy. Next-generation AD systems require
that the whole perception process be qualified at ASIL-D level
according to the ISO 26262 automotive FuSa standard [47].
This can be achieved by performing redundant computa-
tions with possibly dissimilar implementation techniques on
the “safe number crunchers”. These safe number crunchers
are qualified at ASIL-B by implementing a range of safety
mechanisms such as Error Detection and Correction Codes
(EDC/ECC) in memory, parity in caches, CRC in network-
on-chip (NoC). The redundant results are then compared by
the safe MCU qualified for ASIL-D, which monitors the com-
putations and decides whether the results can be trusted. The
eHPC platform will be connected to the car backbone with a
run-time environment compliant with AUTOSAR. For the safe
MCU, already available 32-bit cores, like Infineon Aurix or ST
SPC5/Freescale MPC56, can be adopted. The ST SPC5 and
Freescale MPC56 families are built in 40 nm technology on
32-bit PowerPC instruction set, with up to 4 cores (with dual
lock-step approach), single instruction multiple data (SIMD)
floating point unit, 8 MB of embedded flash, multi-channel 12-
bit analogue to digital converter (ADC), interfacing data-rate
up to 10 Mbps with FlexRay, I2C, LIN [58], CAN, SPI [59].
Similarly, the Infineon Aurix ranges from a 300 MHz triple-
core device with 720 MIPS and 8 MB of embedded Flash
down to an 80 MHz single-core with 130 MIPS and 0.5 MB
embedded flash.

Fig. 5. Automotive eHPC platform.

Instead, for the HPC units in Fig 5, massively parallel
platforms are appearing in the car market. Mass production
of the Renesas R-Car H3 in 16 nm technology is expected in
2018 [60]. R-Car H3 includes 9 ARM Cortex cores (8 64-bit
A57/A53 engines with L1/L2 cache plus a 32b R7 with L1
cache), offering 40k MIPS plus a PowerVR GX6650 graphics
engine with 192 ALU cores for 3D graphics (more than 100
GLOPS and 4K video display/streaming) and dedicated video
co-processors (H.26x/MPEGx codec, distortion compensator,
IMP-X5 image recognition). The R-Car H3 is ASIL-B and
has a rich set of high-rate interfaces such as Ethernet, USB,

DVD/blue-ray SATA, SD card, Audio/video I/O, besides I2C
and CAN. The power consumption amounts to tens of Watts.
New actors are entering this application domain like Nvidia
and Intel, to bring on-board TOPS capability and AI technolo-
gies with multi-chip automotive supercomputers. They have
signed core partnerships with mass market car makers, Nvidia
with Audi, Intel with BMW, to have on the roads AI cars
by 2020. To this aim, a new European Processor Initiative
for embedded HPC in autonomous driving has recently been
started [61]. NVIDIA has recently presented the Xavier AI
car’s computer, which features 30 TOPS capability for a power
consumption of 30 W, thanks to 8 ARM 64-bit cores plus a
512-core Volta GPU, a Video Processing Unit supporting 8K
video decode and encode and High Dynamic Range, as well
as a computer vision accelerator. The Xavier AI is fabricated
in 16 nm TSMC FinFET technology with an estimated com-
plexity of 7 billion transistors. The power consumption of such
HPC platforms will be in the range from tens to hundreds of
Watts, e.g. from 30 W of Xavier chip to 500W of the 320
TOPS Drive PX Pegasus board announced at GTC Europe
2017 [62]. Due to the high environmental temperature of
under-the-hood car electronics, passive cooling systems are not
enough. Hence, the design of low-cost/low-size active cooling
systems for HPC ECUs is a new emerging challenge.

Also Intel is developing several platforms for automated
driving: a first multi-chip platform, so called Intel Go, has
been made available using an Aurix ASIL-D 32-bit MCU
enhanced for computation capability by an ATOM C3000 core
in 14 nm technology, and by Arria 10 FPGA [3]. The FPGA
accelerator includes an embedded dual-core 1.5 GHz ARM
A9 core, more than 1M logic elements (a 64-bit 6-LUT with
4 FFs at the output), and 1.7M user flip-flops, and 64 MB
of embedded memory. The Arria 10 family includes hardened
single-precision IEEE 754 floating point units, with an aggre-
gate throughput of 1.3 TOPS. This platform supports driving
automation L3, in which the system performs the driving task,
but a human driver will intervene when requested. The next
evolution of the platform, suitable for all AD levels, will
combine one or more EyeQ5 [63] accelerators (by Mobileye,
an Intel company) and one or more ATOM-based general-
purpose processors (e.g. Denverton). The EyeQ5 will enable
processing of more than sixteen multi-mega-pixel cameras and
other sensors. Its computational power targets 15 TOPS, while
drawing only 5-6 Watts in a typical application. It implements
high performance NoC interconnect and multi-channel low
power DDR interfaces, to support high computational and
data bandwidth requirements. Another INTEL platform is
announced that will use powerful Xeon processors and two
multi-chip boards connected with a 16-port 10 GB Ethernet
to sustain L4 and L5 AD levels, mainly targeting fleets.

According to the scheme in Fig. 5, high-performance
functions that need time-predictability, such as perception
functions in automated cars, need to be implemented on
high-performance accelerators that also provide response-time
guarantees. Time-predictability capabilities start with the core,
then the local memory hierarchy, then the global interconnect,
and finally external memory and I/O interfaces. In the Intel Go
proposal the accelerator role is managed through an Arria10
FPGA or EYEQ5 chip. As alternative, the architecture exten-
sions of the RISC-V accelerator cores have already proven to
be suitable for scalable computing capabilities with high power



efficiency [64], including also machine-learning tasks [65].
RISC-V is developed according to an open HW-SW model,
thus easing interoperability of eHPC solutions.

The accelerator should ensure timing compositional prop-
erty, which means that any global worst-case execution time
(WCET) is composed of local WCETs. This also implies
that the WCET in a core experiencing resources conflicts,
e.g. accesses to the memory hierarchy, is safely approximated
by adding the resource interference times to the WCET on
the core executing without interferences [66]. The timing
compositional property requires in-order instruction pipeline
and is compatible with caches, provided they have a LRU
replacement policy. The basis for the RT accelerator architec-
ture in Fig. 5 can be a Very-Long Instruction Word (VLIW)
extension of the RISC-V ISA. VLIW execution, opposed to
superscalar execution, is a core implementation technique that
enables multiple instruction issues, while being compatible
with the timing compositional property. This VLIW exten-
sion approach ensures that any standard RISC-V binary will
execute correctly, but in single-issue mode on such a VLIW
core. A simple recompilation will enable to achieve multiple
instruction issues on this core. In both the accelerator and the
general-purpose HPC architecture in Fig. 5, a NoC intercon-
nect is responsible for arbitrating access to shared resources,
such as an I/O or a memory. One main issue when using
multi-core or many-core architectures for designing safety
critical systems is to master the impact of contentions that
can arise due to parallel requests for a shared resource, on the
estimation of the WCET of tasks. Current approaches either
rely on a HW approach, for instance Time Division Multiple
Access (TDMA), to ensure no contention can arise at runtime,
or on SW approaches through the use of specific execution
models, such as PRedictable Execution Model (PREM) that
explicitly separates data accesses from computation. The need
to integrate functionalities with different level of criticalities
on such multi or many-core architectures has led to the design
of mixed-criticality systems. Extension of these approaches to
such mixed-criticality systems is currently based on a tech-
nique that drops non-critical tasks whenever a given threshold
contention level has been reached. However, more flexible
strategies are required at the interconnect level to maximize the
utilization level of such multi or many-core platforms. At the
multi-core level, the introduction of a HW contention manager
to monitor the slack activity at the interconnect level will
improve the system capability to allocate resources to non-
critical tasks and adapt the scheduling of requests to shared
resources, such that critical tasks still meet their deadline while
the number of requests from non-critical tasks is maximized.
At the many-core level, a NoC is used to interconnect cores or
tiles. NoC is often designed for a given type of application and
specific characteristics when targeting RT systems should be
developed. Experimentally checking the behavior of a NoC
in case of contention between flows is still an open topic.
Designing a way to execute routers of a NoC in which a
stream would systematically compete with other flows would
facilitate the observation of contentions within a NoC. The
HW mechanisms for regulating streams in contention could
then be enriched to interface with the system SW, in order to
dynamically adapt the control performed vs. the target latency.

The eHPC platform in Fig. 5 should be equipped with HW
resources to sustain V2X connectivity needed for real-time HD

map download and infotainment, over-the-air diagnostic and
SW update, sensor-data upload from the vehicle for machine
learning. To this aim two solutions can be adopted [5], [6]:
IEEE 802.11p or Cellular-V2X. IEEE 802.11p uses 10-MHz
channels within the (5.85-5.925 GHz) band to achieve data
rates of several Mbps for V2X. IEEE 802.11p transceivers are
already available on the market (e.g. STM-Autotalks chipset)
and, as discussed in [5], they can be implemented at low-cost
in mature and already automotive-qualified CMOS technolo-
gies. With 33 dBm of effective isotropic radiated power, a
single-hop connectivity of 1 km can be achieved. Cellular-
V2X connectivity can be achieved with multilayer MIMO
transmission according to emerging 5G transceivers. Operating
both in sub-6 GHz and 28 GHz millimeter wave (mmW)
bands, data rates of up to several Gbps can be achieved [67].
However, high-end technology nodes are required to sustain
mmW and massive MIMO 5G operations and the way to
achieve low-latency guaranteed performance is still an open
issue. A first 5G modem has been announced by Intel at CES
2017 [68], although its automotive qualification is still on-
going and the 5G standardization is still not settled.

IV. IN-VEHICLE NETWORK ARCHITECTURES

Vehicles are becoming increasingly smart, connected and
part of the Internet. While new functionalities such as natural
speech recognition and cloud-based services are developed,
in-vehicle legacy systems have to be maintained and in-
tegrated with the new developments for the sake of cost-
effectiveness. As a consequence, traditional signal-based com-
munication, mainly consisting of cyclic message broadcasts,
like in LIN, CAN/CAN-FD [69], [70], FlexRay, has to co-
exist with service-based communication, made up of event-
based message unicasts, such as the ones typical of IP-based
networks (e.g., Ethernet, Wi-Fi) [71]. SOME/IP (Scalable
service-Oriented MiddlewarE over IP) allows the introduction
of service-oriented transmission of information, in which a
sender only transmits data when at least one receiver in the
network needs this data, thus avoiding to load the network and
all connected nodes with unnecessary traffic.

Dynamic distribution of functions, virtualization of ECUs
and the network controlled by Virtual Machine and network
hypervisor are in the roadmap of future automotive network
architectures, which today are migrating from the current
central-gateway structure to a domain-based architecture. The
vehicle E/E-architecture of tomorrow will be therefore charac-
terized by an automotive Ethernet backbone connecting differ-
ent domains, isolated and protected by domain controllers [72].
The central Ethernet switch will be also connected to a smart
antenna, being LTE/5G, WiFi/BLE, V2X/DSRC the most
likely technologies. Following the development of the IEEE
standards within the TSN Working Group, the vision for the
automotive Ethernet backbone connecting different domains,
each with its TSN control unit, provides for master MCUs
integrating Ethernet PHYs and TSN switch functionalities with
security modules and various protocol converters for local
legacy serial networks.

Ethernet switches implement separate collision domains and
offer several features that can be used to increase security:
VLANs, unicast filtering, multicast filtering and access con-
trol lists. However, many state-of-the-art attacks from the
Information Technology (IT) world can be applied to in-
vehicle Ethernet, so special care must be taken and multiple



levels of defense, should be in place. For instance, performing
deep packet inspection in the switches represents an efficient
solution to avoid forwarding malicious packets to the host
controller, that would be therefore entrusted with security
checks only on a second stage of inspection, that would be
required for specific frames only, e.g., those coming from the
external of the vehicle.

The automotive Ethernet backbone will likely be a TSN-
enabled implementation of 802.3 Ethernet. The recent stan-
dards 100BASE-T1 [73] and Gigabit PHY (IEEE 802.3bp-
2016) [74], already allow the use of a light unshielded twisted
pair of copper wires for automotive usage. Also, a broad
spectrum of bitrates are envisaged for automotive Ethernet
nowadays, also including 10 Mbps and 2.5, 5 and 10 Gbps
(for the backbone and for raw sensor data transmission). For
Multi-Gig Automotive Ethenet PHY, various options, from
shielded cables to coax to optical fiber (for 10 Gbps) are under
consideration.

The recent Layer 2 TSN standards are expected to be
dominating the scene for autonomous driving. In fact, although
current ADAS systems already require processing of high-
resolution data originating from video cameras, radars and
lidars, self-driving cars require a significantly higher number
of sensors, more network connections and better networking
solutions for video links than the current technologies based
on point-to-point connections, that will not be able to support
the packet-based data transport needs of self-driving cars.

A. Automotive Ethernet from AVB to TSN
The IEEE 802.1 AVB is a set of technical standards that

provides the specifications for time-synchronized low-latency
streaming services through IEEE 802.1Q [75] networks. The
AVB documents include: the IEEE 802.1AS-2011 [76] - Tim-
ing and Synchronization for Time-Sensitive Applications in
Bridged Local Area Networks, (whose revision is in progress
as IEEE P802.1AS-Rev project); the IEEE 802.1Qav-2009,
Forwarding and Queueing Enhancements for Time-Sensitive
Streams, which specifies the Credit-Based Shaper (CBS);
the IEEE 802.1Qat-2010 and Stream Reservation Protocol
(SRP). The last two amendments have been rolled into the
IEEE 802.1Q-2014 standard [75]. Finally, the IEEE Std
802.1BA-2009 specifies a set of usage-specific profiles to
help interoperability between networked devices using the
AVB specifications. AVB introduces a number of new and
important concepts to IEEE 802.1 networks to provide Quality
of Service. The first is the support for priority, to distinguish
between time-sensitive flows and ordinary traffic and handle
them differently. The second is bandwidth reservation, to set
aside a certain amount of guaranteed bandwidth across a
portion of the network for handling the high-priority traffic.
Last but not least, AVB provides a set of protocols to manage
the network time for supporting synchronized operations (i.e.,
A/V playback). For seven hops within the network, AVB
guarantees a fixed upper bound for latency. In particular, two
Stream Reservation (SR) classes are defined, i.e., Class A,
that provides a maximum latency of 2ms and Class B, that
provides a maximum latency of 50ms. With AVB, the IEEE
has moved Ethernet into the real-time applications domain.
AVB is expected to replace (or is already gradually replacing)
the Media Oriented Systems Transport (MOST) protocol [77]
in the multimedia/infotainment domain, and the LVDS cables
in camera-based ADAS. The paper [78] deals with the Credit

Based Shaper of AVB and the use of priorities as defined in
IEEE 802.1Q in automotive cases studies. The AVB suitability
for automotive usage is addressed in [79] and [80]. In partic-
ular, [79] provides a comparative performance evaluation of
AVB and TTEthernet, a well-known technology standardized
by SAE (Society of Automotive Engineers) as AS6802 [81],
for ADAS, multimedia and infotainment traffic. The com-
parison was obtained through OMNeT++ simulations based
on realistic traffic patterns on star-based networks under a
high and varying workload. Results show that both AVB and
TTEthernet meet the requirements of ADAS and multime-
dia flows. The two technologies complement each other, as
TTEthernet allows for completely deterministic transmission
and offline verification of time-triggered messages for safety-
critical applications, while AVB allows for online stream reser-
vation, thus fitting entertainment applications with varying
bandwidth demand. The problem of routing AVB streams
to minimize their worst-case end-to-end delay is addressed
in [82], which proposes an effective solution, based on a
search-space reduction technique and a Greedy Randomized
Adaptive Search Procedure (GRASP)-based heuristic.

Despite its advantages, AVB does not provide support for
scheduled traffic, i.e., high-priority small-size time-sensitive
traffic (e.g., control traffic) that has to be transmitted according
to a time schedule without interference from other traffic.
In fact, as AVB provides only two real-time traffic classes,
a mutual interference problem raises if multiple time-critical
traffic flows in the same network are mapped on the same SR
Class, with non-negligible effects on delay. In particular, if
scheduled traffic is handled in the same queue as large video
frames mapped on the same SR class (e.g., Class A), it will
experience very variable latency and high jitter. Moreover,
SR Class frames undergo the CBS algorithm, and shaping
blocks frame transmission for a given class if the credit of
the class is below zero. For this reason, a more effective way
of handling scheduled traffic in AVB networks was proposed
in [83] and [84]. The new approach, called AVB ST, adds a
new, separate traffic class on top of the AVB SR Classes A
and B, which is called the Scheduled Traffic (ST) Class. ST
frames are tagged with the highest priority TAG according
to the IEEE 802.1Q standard, while SR Classes A and B
take the second and the third highest priority, respectively. ST
traffic is handled in a separate queue and does not undergo
credit-based shaping, thus avoiding the undesirable effects of
shaping on the flow latency. SR Class A and B are handled
by CBS, while best-effort traffic by strict priority. Comparative
performance assessments between standard AVB and AVB ST
in a realistic automotive scenario in [84] showed that the
AVB ST is able to support scheduled traffic, offering low and
predictable latency values without significantly affecting SR
traffic. This is thanks to: the introduction of a separate class for
scheduled traffic combined with offset-based scheduling for
ST flows; the temporal isolation provided by the Time-Aware
Shaper mechanism; strict priority scheduling, that offers low
and bounded latencies to scheduled traffic even under a high
SR traffic load. A response time analysis for multi-hop AVB
ST networks that is also applicable to multi-hop AVB networks
is presented in [85]. The analysis uses a bandwidth over-
reservation concept and overcomes the limitations of previous
analysis approaches for AVB networks [86], [87], which, in
most of the cases, do not lead to a schedulable result due to



the tight bandwidth allocation imposed by the AVB standard.
AVB ST is similar to the IEEE 802.1 Qbv-2015 standard [88],
with differences in the way that the ST window is sized and
for the rate at which the increase of one of the CBS parameters
(i.e., the Idleslope) for the SR Classes is determined.

B. Time-Sensitive Networking

The TSN standard family provides precise time synchro-
nization, deterministic communications, ultra-low latency, zero
congestion loss, reliability, and fault-tolerance. These proper-
ties are foundational for the next generation of AD vehicles.
TSN offers other notable advantages. One is the ability to
support both real-time and best-effort traffic over the same
network in a flexible way. Changes in the time-critical flows
can be accommodated without the need for offline reconfigura-
tions and best-effort traffic can use any bandwidth left over by
TSN flows. In addition, TSN offers fast startup, thanks to pre-
configured values for timing and bandwidth reservation, and
faster firmware updates time than other protocols (e.g. CAN),
thanks to the higher datarate. Table I summarizes the TSN
standards published so far and some of the ongoing projects
that are relevant to automotive applications. A brief description
of each of them is provided in the following.

Timing and Synchronization for Time-Sensitive Applica-
tions: The IEEE 802.1AS-Rev [89] improves redundancy,
allowing for configuring multiple grandmaster clocks and
multiple synchronization spanning trees.

Frame preemption: The IEEE 802.1Qbu-2016 [90] amend-
ment enables a bridge port to suspend the ongoing transmis-
sion of a preemptable frame to allow one or more express
(time-critical) frames to be transmitted before transmission
of the preemptable frame is resumed. This standard works in
combination with the IEEE 802.3br-2016 amendment, which
allows critical data packets to break-up into smaller fragments
the non-critical packets in transit over a single physical link.

Scheduled traffic: The IEEE 802.1Qbv-2015 [88] amend-
ment defines policies that enable a bridge or an end station
to schedule transmission from each queue based on a known
timescale thanks to a transmission gate associated with each
queue on a port. When the transmission gate is open, the
queued frames are selected for transmission, while when the
gate is closed, the queued frames are blocked. An ordered
list of gate operations (Gate Control List) is associated with
each port and is cyclically repeated. Building the Gate Control
List is a scheduling problem. As the Qbv standard is quite
novel, there is still not much work on this specific topic.
The work in [91], [92] proposes a formal description of
scheduling constraints for building the Gate Control List and
the adoption of satisfiability modulo theories (SMT) solvers
for the synthesis of communication schedules for Qbv.

Path Control and Reservation: The IEEE 802.1Qca-2015
amendment [93] provides for explicit path control, bandwidth
reservation, and data flow redundancy (protection, restoration).

Frame Replication and Elimination for Reliability: The
IEEE 802.1CB-2017 [94] standard provides for identification
and replication of frames, redundant transmission, identifica-
tion and elimination of duplicate frames.

Stream Reservation Protocol Enhancements and Perfor-
mance Improvements: The IEEE P802.1Qcc project [95] pro-
vides support for more SR streams, configurable SR classes

and streams, Layer 3 streaming, deterministic stream reserva-
tion convergence, and a User Network Interface for routing
and reservations.

Cyclic Queuing and Forwarding: The IEEE 802.1Qch-
2017 [96] amendment specifies a transmission selection al-
gorithm that allows deterministic delays through a bridged
network to be easily computed regardless of network topology,
thus allowing for much simpler determination of network
delays and reduced delivery jitter. Synchronized cyclic en-
queuing and queue draining procedures enable bridges and
end stations to synchronize their frame transmission to achieve
zero congestion loss and deterministic latency.

Per-Stream Filtering and Policing: The IEEE 802.1Qci-
2017 [97] amendment specifies procedures for a bridge to
perform frame counting, filtering, policing, and service class
selection for a frame based on the particular data stream to
which the frame belongs. Such policing and filtering functions
allow the detection and mitigation of disruptive transmissions
by other systems in a network, improving its robustness and
security. When unexpected traffic is present, policing prevents
the intruder from impairing the network.

Asynchronous traffic shaping: P802.1Qcr [98] specifies
Asynchronous Traffic Shaping mechanisms to achieve de-
terministic latency and zero congestion loss without using
network topology information or relying on synchronous com-
munication, thus allowing for higher link utilization. Relevant
to this standard are the works in [99], that introduces the
Urgency-based Scheduler (UBS) and [100], which addresses
the UBS synthesis when assigning queues and priority levels
to hard real-time data flows.

TABLE I
TSN STANDARD OVERVIEW

Standard Title Status
P802.1AS-Rev Robust time synchronization In progress
802.1Qbu-2016 Frame Preemption (amendment to

802.1Q)
Published

802.1Qbv-2015 Enhancements for Scheduled Traffic
(amendment to 802.1Q)

Published

802.1Qca-2015 Path Control and Reservation (amend-
ment to 802.1Q)

Published

802.1CB-2017 Frame Replication and Elimination for
Reliability

Published

P802.1Qcc Stream Reservation Protocol (SRP) En-
hancements and Performance Improve-
ments (amendment to 802.1Q)

In progress

802.1Qch-2017 Cyclic Queuing and Forwarding
(amendment to 802.1Q)

Published

802.1Qci-2017 Per-Stream Filtering and Policing
(amendment to 802.1Q)

Published

P802.1Qcr Asynchronous Traffic Shaping (amend-
ment to 802.1Q)

In progress

V. CYBERSECURITY ISSUES AND COUNTERMEASURES
FOR IN-VEHICLE NETWORKING

Since this survey addresses on-board embedded and net-
worked automotive systems, this Section is focused on cyber-
security issues and countermeasures for in-vehicle networks.
Other cybersecurity aspects, such as those related to cars ex-
ternal connectivity, cloud-based traffic and fleet managements,
just to name a few, are out of scope of this work.

Secure by design in-vehicle networking should ensure sev-
eral properties, such as data integrity, confidentiality, authen-
tication, and availability. However, several security vulnera-
bilities [101]–[108] characterize current in-vehicle networking
technologies, using CAN and/or CAN-FD as a backbone, and



a plethora of other interconnecting technologies for specific
subsystems (e.g., LIN for local interconnection of low data-
rate nodes, MOST for infotainment with USB and Bluetooth
user interfaces, and FlexRay for latency-critical functions).

The net-spanning data exchange via various gateway devices
potentially allows access to any vehicular bus from every
other existing bus system. In principle, each LIN, CAN or
MOST controller is able to send messages to any other exist-
ing car controller [109], [110]. Without particular preventive
measures, a single compromised bus system endangers the
whole vehicle communication network. Whereas attacks on
LIN or multimedia networks may result in the failure of power
windows or navigation software, successful attacks on CAN
or FlexRay networks may result in malfunctioning of some
important driving assistance functions, which leads to serious
impairments of driving safety [111], [112].

While the use of Cyclic Redundancy Check (CRC) en-
sures data integrity, the broadcast nature of CAN/CAN-FD
or FlexRay is a risk in terms of confidentiality, as an attacked
ECU can monitor all data passing on the bus. Moreover, since
new ECUs can be added in a plug-and-play way (assigning
them a new identifier) without modifying the already installed
ECUs, and since the data link layer does not provide any
signature mechanism, there is a high risk of authentication
vulnerability. Similarly, the multi-master feature with an ar-
bitration based on identifier priority poses risks in terms of
availability. For example a hacker can attack a bus and behave
as a new ECU, reading all data on the bus and generating false
packets. Using a high priority identifier, the malicious ECU
can win the arbitration and then continuously send invalid
messages thus making a jamming attack. Even though these
invalid frames will be discarded by the receiving controllers,
the attack makes the bus unavailable to other ECUs connected
to the bus. Denial of service attacks may affect the backbone
bus or the local bus. In the first case, they will lead to system
failure, in the second case they will lead to functional failure.
The malicious ECU, after reading a message from the bus,
can also impersonate another ECU for replay attacks, with a
potential for harmful consequences for the vehicle occupant.

Due to the lack of signature mechanisms for authenticity
and transmission encryption, it is easy for an attacker to
emulate a protocol-compliant behavior. As a consequence,
controllers are not able to verify whether an incoming message
comes from an authorized or unauthorized and/or malicious
sender. Controllers just check rules, such as bit-stuffing, CRC,
data length code consistency, which may be enough for data
integrity, but not for cybersecurity. Moreover, utilizing the
CAN mechanisms for automatic fault localization, malicious
CAN frames can determine the disconnection of every single
controller by posting several well-directed error flags. Similar
to the CAN automatic fault localization, the bus guardian in
FlexRay can be utilized for the well-directed deactivation of
any controller by appropriate faked error messages. Attacks
on the common time base, which would make the FlexRay
network completely inoperative, are also feasible by posting
proper malicious SYNC messages on the bus. Moreover,
the introduction of well-directed sleep frames deactivates the
corresponding power-saving capable FlexRay controllers.

As possible countermeasures, the following techniques are
foreseen and are likely to appear in the new generation of car
connectivity devices:

• To cluster the subnetworks and related subsystems in secu-
rity islands, separated by gateways with embedded cyber-
security functionalities, so that an attack on a non-safety
related bus, like LIN or MOST, cannot propagate to the
safety-related functions connected to Flexray or CAN [103].
This approach will also be applied to the future architectures
based on Automotive Ethernet [113].

• To embed cybersecurity hardware accelerators in new au-
tomotive computing units to sustain message encryption
in real-time. This is the reason why in the literature new
digital macrocells are appearing, that implement in real-time
security techniques like the Advanced Encryption Standard
(AES), with different cipher modes, used in symmetric
cryptography [114] or more complex algorithms like the
Elliptic Curve Digital Signature Algorithm (ECDSA) for
asymmetric cryptography [115], [116]. The use of HW-
based co-processors is required by stringent latency and
energy-efficiency requirements that are not achievable with
software-based implementations.

• To embed signature mechanisms for controller authentica-
tion in new automotive computing units. Authentication of
all senders is needed to ensure that only valid controllers
are able to communicate on automotive bus systems [103],
[115], [117], [118]. All unauthorized messages may then
be processed separately or immediately discarded. Every
controller therefore needs a certificate to authenticate itself
against the gateway as a valid sender. For example, as
proposed to [103], a certificate may consist of the controller
identifier ID, the public key and the authorizations of the
respective controller. The gateway, in turn, should securely
hold a list of public keys of all accredited OEMs for the
considered vehicle. Each controller certificate is digitally
signed by the OEM with the relevant secret key. The
gateway again uses the corresponding public key of the
OEM to verify the validity of the controller certificate. If
the authentication process succeeds, the relevant controller
is added to the gateways list of valid controllers.

• To cluster the ECUs in different trustable classes depending
on how easily they can be attacked. For example, in [119]
a security framework for vehicular systems, called VeCure,
is proposed, which can fundamentally solve the message
authentication issue of the CAN bus. Each node that sends
a CAN packet needs to also send the message authen-
tication code packet (8 bytes). The ECUs are split into
two categories, namely, the Low-trust and the High-trust
groups. ECUs that have external interfaces, e.g., OBD-II or
telematics are put in the low-trust group. The High-trust
group ECUs share a secret symmetric key to authenticate
each incoming and outgoing message.

• To implement intrusion detection mechanisms based on the
physical or packet layer features. For example, a clock-based
intrusion detection system at physical layer is proposed
in [105]. Similarly, an in-vehicle network traffic monitoring
technique is proposed in [120] to detect the increased
transmission rates of manipulated message streams.

• To implement gateway firewalls. For example, as proposed
in [103], if the vehicular controllers are capable of im-
plementing digital signatures, the firewall rules are based
on the authorizations given in the certificates of every
controller. Therefore, only the authorized controllers are
able to send valid messages to the high safety-critical in-



vehicle bus systems. If the vehicular controllers do not
have the abilities to use digital signatures, the firewall can
be established only on the authorizations of each subnet.
However, controllers of less restricted networks such as
LIN or MOST should generally be prevented from sending
messages to the high safety-relevant bus systems as CAN
or FlexRay. Simplified firewall-like functionalities can be
also implemented in each end-node and not only in the
gateways, with the so-called digital data diode [121]. The
idea is to interpose a digital unit between the CAN controller
and the CAN transceiver to detect and block unauthorized
access. When a frame is detected as malicious, the digital
unit corrupts the CRC sequence modifying the CRC-field
bits. Therefore, the transmission and reception of a frame
that is targeted as malicious generates an error condition
which is detected by all the nodes in the CAN network
(i.e., each node that has received the corrupted malicious
frame transmits an error frame). Furthermore, the digital
unit conceals the corruption operation from the sender of
the malicious frame. As a result, the sender cannot detect
the CRC sequence corruption. Hence, the sender will not
attempt to retransmit the malicious frame.

VI. FUNCTIONAL AND RESPONSIBILITY SAFETY

The new world of SW-defined autonomous things brings
both technical challenges and liability concerns [122]. Partic-
ularly, AD vehicles are composed of electronic platforms with
many sensing inputs and many complex processing elements
(see Fig. 2), which involves millions of SW lines of code.
As a consequence, HW and SW may go wrong and this
may cause hazards if no countermeasures are taken. On top
of HW and SW failures, cars operate in a very complex
environment with many variants, e.g., AD cars share the road
with human-driven vehicles. Last but not least, the increase
in connectivity through V2X opens possibility for security at-
tacks. Consequently, several potential issues and requirements
need to be considered by the automotive manufacturers. One
such requirement is FuSA, which is mainly concerned with
making the safe from HW failures and SW bugs.

A. FuSa in the Context of the ISO26262 Standard
The first edition of the ISO26262 safety standard consisted

of 9 normative parts and a guideline as the 10th part. The
second edition of the standard, to be published within 2018,
will consist of 10 normative parts and two guidelines, one
(the part 11) is specific to the application of ISO26262 to
semiconductor components. The goal of the standard is to
provide an automotive safety lifecycle (management, devel-
opment, production, operation, service and decommissioning)
and support tailoring of the necessary activities during the life-
cycle. The standard also covers the functional safety aspects of
the entire development process (requirements specification, de-
sign, implementation, integration, verification, validation and
configuration). Moreover, the standard provides requirements
for validation and confirmation measures to ensure that an
acceptable level of safety is achieved. The standard covers both
systematic and random failures. The systematic failure (either
in HW or SW) is related in a deterministic way to a certain
cause that can only be eliminated by changing the design,
manufacturing process, operational procedures, documentation
or other relevant factors. Whereas, the random HW failure is

one that can unpredictably occur during the lifetime of a HW
element and that follows a probability distribution.

The standard provides an automotive-specific risk-based
approach for determining risk classes (ASIL), where “D” and
“A” represent the highest and lowest safety integrity levels
respectively. Note that ASIL is as a classification for the
overall system, but the safety requirements specified to the
HW and SW elements, in general, inherit the same level. For
example, today SW-defined cockpit systems require ASIL-B
(trending to ASIL-C) while ADAS and AD require ASIL-D.
To give an idea of the implications, in terms of HW random
failures, ASIL-D means that 99% of the faults potentially
violating the safety goal shall be either detected or safely
managed and that the overall system shall have a probability
of residual (i.e. unmanaged) HW random failures less than 10
FIT (10 faults in one billion hours of operation). An important
concept of ISO26262 is the safety mechanism, which is a
technical solution implemented to detect and mitigate (tolerate,
control or avoid) failures in order to achieve/maintain the
intended functionality or a safe state in the case of a failure
without an unreasonable level of risk. The second edition of
the standard emphasises not only on fail-safe systems but also
on fault-tolerant systems. Here the goal is to guarantee the
normal (or reduced) operation after a fault has occurred.

Despite FuSa is measured at system level, there are spe-
cific requirements for semiconductors. The second edition of
ISO26262 will include a new part (part 11) with more than 150
pages of guidelines for digital and analog macrocells, FPGAs
and sensor circuits. Herein, some of the most important topics
and challenges are as follows.

• How to consider safety aspects of semiconductor compo-
nents? The aspects of interest include in-context vs. Safety
Element Out of Context (SEooC) and definition of the As-
sumption of Use (AoU). The AoU refers to the usage modes
or countermeasures that the system maker has to consider
if using the safety related semiconductor component.

• How to define the level of details of the safety analysis as a
function of the safety concept, the stage of the analysis and
the safety mechanisms used?

• How to determine the correlation between fault, error and
failures? The relationship among the fault, error and failures
is depicted in Fig. 6(A). This challenge is also concerned
with the definition of fault models, failure modes and
distribution of failure rate across failure modes. In order
to address this challenge, guidelines are required to derive a
consistent set of failure modes and consider new fault mod-
els (e.g. multiple stuck-at) caused by modern technologies.

• How to handle all kinds of macrocell (hard or soft) with
or without embedded safety mechanisms embedded? This
challenge also extends to legacy macrocells.

• How to determine base failure rate for both permanent and
transient faults? Another challenge in this regard is to deal
with non-constant failure rates and advanced packaging.

• How to perform fault injection? The scope of this chal-
lenge spans over different abstraction levels that support
evaluation of the hardware architectural metrics, pre-silicon
verification of safety requirements and detection of faults
and control their effects.

• How to identify dependent failure initiators (DFI, see
Fig. 6(B))? A related challenge is how to perform the
dependent failure analysis (DFA).



• How to define and apply fault models, failure modes,
safety mechanisms, and avoidance of systematic failures,
with respect to ISO26262, for HW platforms? The plat-
forms include digital and analogue components, memo-
ries, PLDs/FPGAs, sensors/MEMS, multi-cores, and mod-
ern SoCs. The SoCs used in the automotive domain include
a combination of the following HW and SW features.
– EDC/ECC for memories, including caches and registers.
– Built-In Self-Test (BIST) for arrays and logic, that are

operated both at key-on/off and at periodic intervals.
– Safety mechanisms for on-chip interconnects, includ-

ing coherent fabrics (e.g., information redundancy,
data/address codes, firewalls and timeouts).

– Different redundancy types for processing cores, see
Fig. 7.

– End-to-End safety protocols for peripherals. These pro-
tocols are combinations of CRC, time stamp and frame
counter.

– SW Test Libraries (STL) to address permanent failures in
the logic not covered by other safety mechanisms.

– Dedicated HW cores for fault handling (e.g., Safety
Island).

Fig. 6. A) Link between fault, error and failure; B) Dependent failures

B. Responsibility-Sensitive Safety
The most recent trend in FuSA is Responsibility-Sensitive

Safety (RSS). Introduced by [123], the RSS model formalizes
the common sense of human judgment under a comprehensive
set of road situations. It sets clear definitions for what it means
to drive safely versus to drive recklessly. With human drivers,
the interpretation of responsibility for collisions and other
incidents is fluid. Today, in the case of an accident, the blame
is determined based on imperfect information and other factors
interpreted afterwards. With machines, the definitions can
be formal and mathematical. Machines have highly accurate
information about the environment around them; they always
know their reaction time and braking power, and are never
distracted or impaired. We do not need to interpret Machines’
actions after the fact. Instead, we can program them to follow
a determined pattern – as long as we have the means to
formalize that pattern. At its core, the RSS model is designed
to formalize and contextualize today’s driving dilemmas, like
notions of safe distance and safe gaps when merging and
cutting in, which agent cuts in and thus assumes responsibility
to maintain a safe distance. Moreover, this model allows to
specify the right of way, define safe driving with limited
sensing (e,g,, when road users are hidden behind buildings or
parked cars and might suddenly appear), and more. Clearly,
human judgment includes avoiding accidents and not merely
avoiding blame. The RSS model attempts to build a formal
foundation that sets all aspects of human judgment in the
context of driving with the goal of setting a formal “seal of

safety” for autonomous cars. More details on the RSS model
can be found in [123].

Fig. 7. Different redundant architecture solutions

VII. CONCLUSION

This paper analyzed recent technological challenges and
HW/SW solutions for on-board embedded and networked
automotive systems. In this context, the paper mainly fo-
cused on automotive SW, advanced execution platforms, on-
board network communications, on-board cybersecurity and
functional safety with respect to SW and HW. The paper
identified the need for new E/E architectures, exploiting
eHPC and number-crunching accelerators, supervised by a
safe and secure MCU, to meet the computation and memory
requirements in the order of TOPS and TB, respectively, for
perception and fusion tasks. Beside HW, also the automotive
SW complexity has drastically increased in the recent years.
Model- and component-based SW development techniques
have proven helpful and cost effective in managing the size
and complexity of automotive SW, which is often in the
range of several tens to hundreds million lines of code.
The SW complexity is expected to grow further in time.
Hence, there is a strong need to develop efficient models and
languages for the automotive SW development. Moreover, the
existing standard technologies for the SW development (e.g.,
AUTOSAR) need to adapt according to the evolution in the
CAR industry, with respect to advanced computer-controlled
functionality, AD, ADAS and V2X. There is also a strong
need to support interoperability and automation among the
state-of-the-art and state-of-the-practice languages, models and
tools that are used for the automotive software development at
various abstraction levels. In-car communications require new
network architectures. Ethernet, with a broad choice of data-
rates, and the TSN standards will be key enablers for upcoming
automotive scenarios, including autonomous driving. Current
in-vehicle networks suffer from several vulnerabilities in terms
of confidentiality, authentication, and availability. While some
possible countermeasures have been already found, vehicular
communications (V2X) and automated driving are fostering
the steady rise of novel challenging vehicular cybersecurity
issues. In addition to security, other open research topics that
deserve investigation include traffic planning response-time
analysis of TSN networks, and the use of Ethernet for 5G
mobile fronthaul.

ACKNOWLEDGEMENT

The work in this paper is supported by the Swedish Govern-
mental Agency for Innovation Systems (VINNOVA) through
the project DESTINE, the Swedish Knowledge Foundation
(KKS) via the projects HERO and DPAC, University of
Catania through the project CHANCE, University of Pisa
through the grant PRA2017 and EPI H2020 programs.



REFERENCES

[1] Global Market Insights. Embedded system market size by application, by product.
Industry outlook report, regional analysis, application development potential,
price trends, competitive market share & forecast, 2016 to 2023. Technical Report
GMI117, 2016.

[2] F. Salewski and S. Kowalewski, “Hardware/software design considerations for
automotive embedded systems,” IEEE Transactions on Industrial Informatics,
vol. 4, no. 3, pp. 156–163, Aug. 2008.

[3] S. Saponara, G. Pasetti, F. Tinfena, P.Dabramo, and L. Fanucci, “Hv-cmos design
and characterization of a smart rotor coil driver for automotive alternators,” IEEE
Transactions on Industrial Electronics, vol. 60, no. 6, pp. 2309–2317, 2013.

[4] Intel, Technology and computing requirements for self-driving cars, doc. n.
0514/RH/CMD/PDF, 2016.

[5] S. Saponara, G. Ciarpi, and B. Neri, “System-level modelling/analysis and lna
design in low-cost automotive technology of a v2x wireless transceiver,” in 3rd
IEEE International Forum on Research and Technologies for Society and Industry
Leveraging a better tomorrow (RTSI), Sep. 2017, pp. 1–5.

[6] P. Guturu, “Explosive wireless consumer demand for network bandwidth-fifth
generation and beyond [future directions],” IEEE Consumer Electronics Maga-
zine, vol. 6, no. 2, pp. 27–31, Apr. 2017.

[7] S. Brunner, J. Roder, M. Kucera, and T. Waas, “Automotive e/e-architecture
enhancements by usage of ethernet tsn,” in IEEE WISES, Jun. 2017, pp. 9–13.

[8] J. Dvorak and Z. Hanzalek, “Using two independent channels with gateway for
flexray static segment scheduling,” IEEE Transactions Industrial Informatics,
vol. 12, no. 5, p. 18871895, 2017.

[9] ISO 11898-1, “Road Vehicles–interchange of digital information–controller area
network (CAN) for high-speed communication, ISO Standard-11898, Nov 1993.”

[10] G. Zago and E. de Freitas, “A quantitative performance study on can and can fd
vehicular networks,” IEEE Transactions on Industrial Electronics, vol. 65, no. 5,
pp. 4413–4422, 2018.

[11] B. Kraemer, “Automotive ethernet,” IEEE Communications Magazine, vol. 54,
no. 12, pp. 4–4, Dec. 2016.

[12] S. Saponara and B. Neri, “Radar sensor signal acquisition and multidimensional
fft processing for surveillance applications in transport systems,” IEEE Transac-
tions on Instrumentation and Measurement, vol. 66, no. 4, pp. 604–6125, 2017.

[13] A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos, “Using deep neural
networks for inverse problems in imaging: Beyond analytical methods,” IEEE
Signal Processing Magazine, vol. 35, no. 1, pp. 20–36, Jan. 2018.

[14] M. Al-Qizwini, I. Barjasteh, H. Al-Qassab, and H. Radha, “Deep learning
algorithm for autonomous driving using googlenet,” in IEEE Intelligent Vehicles
Symposium (IV), Jun. 2017, pp. 89–96.

[15] W. Shi, M. B. Alawieh, X. Li, H. Yu, N. Arechiga, and N. Tomatsu, “Efficient
statistical validation of machine learning systems for autonomous driving,” in
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Nov.
2016, pp. 1–8.

[16] C. Vallon, Z. Ercan, A. Carvalho, and F. Borrelli, “A machine learning approach
for personalized autonomous lane change initiation and control,” in IEEE
Intelligent Vehicles Symposium, 2017, pp. 1590–1595.

[17] N. Gallardo, N. Gamez, P. Rad, and M. Jamshidi, “Autonomous decision making
for a driver-less car,” in 12th System of Systems Engineering Conference (SoSE),
Jun. 2017, pp. 1–6.

[18] C. Ilas, “Perception in autonomous ground vehicles,” in Proceedings of the
International Conference on ELECTRONICS, COMPUTERS and ARTIFICIAL
INTELLIGENCE - ECAI-2013, Jun. 2013, pp. 1–6.

[19] G. Prabhakar, B. Kailath, S. Natarajan, and R. Kumar, “Obstacle detection and
classification using deep learning for tracking in high-speed autonomous driving,”
in IEEE Region 10 Symposium (TENSYMP), Jul. 2017, pp. 1–6.

[20] M. Giering, V. Venugopalan, and K. Reddy, “Multi-modal sensor registration for
vehicle perception via deep neural networks,” in IEEE High Performance Extreme
Computing Conference, Sep. 2015, pp. 1–6.

[21] C. Laugier and J. Chartre, Intelligent perception and situation awareness for
automated vehicles, GTC Europe Conference, 2016, pp. 1-22.

[22] G. Tanzmeister and D. Wollherr, “Evidential grid-based tracking and mapping,”
IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 6, pp.
1454–1467, Jun. 2017.

[23] S. C. Talbot and S. Ren, “Comparision of fieldbus systems can, ttcan, flexray and
lin in passenger vehicles,” in 29th IEEE International Conference on Distributed
Computing Systems Workshops, ser. ICDCSW ’09. IEEE Computer Society,
2009, pp. 26–31.

[24] U. Keskin, “In-vehicle communication networks: A literature survey”, Computer
Science, Technische Universiteit Eindhoven (TU/e), Eindhoven, The Netherlands,
Tech. Rep., 2009.

[25] S. Tuohy, M. Glavin, E. Jones, M. Trivedi, and L. Kilmartin, “Next generation
wired intra-vehicle networks, a review,” in IEEE Intelligent Vehicles Symposium
(IV), Jun. 2013, pp. 777–782.

[26] N. Navet and F. Simonot-Lion, In-vehicle communication networks A historical
perspective and review, in Industrial Communication Technology Handbook, vol.
96, 2nd ed. Boca Raton, FL, USA: CRC Press, 2013.

[27] S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi, and L. Kilmartin, “Intra-
vehicle networks: A review,” IEEE Transactions on Intelligent Transportation
Systems, vol. 16, no. 2, pp. 534–545, Apr. 2015.

[28] W. Zeng, M. A. S. Khalid, and S. Chowdhury, “In-vehicle networks outlook:
Achievements and challenges,” IEEE Communications Surveys Tutorials, vol. 18,
no. 3, pp. 1552–1571, 2016.

[29] C. Ebert and J. Favaro, “Automotive software,” IEEE Software, vol. 34, no. 3,
pp. 33–39, Jun. 2017.

[30] M. Broy, I. Kruger, A. Pretschner, and C. Salzmann, “Engineering automotive
software,” Proceedings of the IEEE, vol. 95, no. 2, pp. 356 –373, Feb 2007.

[31] J. Schroeder, C. Berger, A. Knauss, H. Preenja, M. Ali, M. Staron, and T. Herpel,
“Predicting and evaluating software model growth in the automotive industry,”
in IEEE International Conference on Software Maintenance and Evolution, Sep.
2017, pp. 584–593.

[32] I. Baas, A glimpse into the future of travel and its impact on mar-
keting, 2016, http://www.thedrum.com/opinion/2016/01/11/glimpse-future-travel-
and-its-impact-marketing, accessed Jan. 15, 2018.

[33] T. A. Henzinger and J. Sifakis, “The Embedded Systems Design Challenge,” in
14th International Symposium on Formal Methods, 2006.

[34] I. Crnkovic and M. Larsson, Building Reliable Component-Based Software
Systems. Norwood, MA, USA: Artech House, Inc., 2002.

[35] Peter Thorngren, keynote Talk: Experiences from EAST-ADL Use, EAST-ADL
Open Workshop, Gothenberg, Oct, 2013.

[36] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. Chaudron, “A classification
framework for software component models,” IEEE Transactions on Software
Engineering, vol. 37, no. 5, pp. 593–615, Sep. 2011.

[37] K. Petersen, D. Badampudi, and alii, “Choosing component origins for software
intensive systems: In-house, cots, oss or outsourcing? – a case survey,” IEEE
Transactions on Software Engineering, vol. PP, no. 99, pp. 1–1, 2017.

[38] “EAST-ADL Domain Model Spec., V2.1.12,” http://www.east-
adl.info/Specification/V2.1.12/EAST-ADL-Specification V2.1.12.pdf.

[39] P. Cuenot, D. Chen, S. Gerard, H. Lonn, M. O. Reiser, D. Servat, C. J.
Sjostedt, R. T. Kolagari, M. Torngren, and M. Weber, “Managing complexity of
automotive electronics using the east-adl,” in 12th IEEE International Conference
on Engineering Complex Computer Systems (ICECCS 2007), Jul. 2007, pp. 353–
358.

[40] D. Chen, R. Johansson, H. Lönn, H. Blom, M. Walker, Y. Papadopoulos,
S. Torchiaro, F. Tagliabo, and A. Sandberg, “Integrated safety and architecture
modeling for automotive embedded systems,” e&i Elektrotechnik und Informa-
tionstechnik, vol. 128, no. 6, pp. 196–202, Jun. 2011.

[41] D. Chen, L. Feng, T. Qureshi, H. Lönn, and F. Hagl, “An architectural approach to
the analysis, verification and validation of software intensive embedded systems,”
Computing, vol. 95, no. 8, pp. 649–688, 2013.

[42] R. T. Kolagari, D. Chen, A. Lanusse, R. Librino, H. Lönn, N. Mahmud,
C. Mraidha, M.-O. Reiser, S. Torchiaro, S. Tucci-Piergiovanni, T. Wägemann, and
N. Yakymets, “Model-based analysis and engineering of automotive architectures
with east-adl: Revisited,” Int. J. Concept. Struct. Smart Appl., vol. 3, no. 2, pp.
25–70, 2015.

[43] S. Fürst and M. Bechter, “Autosar for connected and autonomous vehicles: The
autosar adaptive platform,” in 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshop (DSN-W), Jun. 2016, pp. 215–
217.

[44] K. Hänninen et al., “The Rubus Component Model for Resource Constrained
Real-Time Systems,” in IEEE Symposium on Industrial Embedded Systems, 2008.

[45] S. Mubeen, H. Lawson, J. Lundbäck, M. Gålnander, and K. L. Lundbäck, “Pro-
visioning of predictable embedded software in the vehicle industry: The rubus
approach,” in IEEE/ACM 4th International Workshop on Software Engineering
Research and Industrial Practice (SER&IP), May 2017, pp. 3–9.

[46] “International Organization for Standardization (ISO), ISO 26262-1:2011: Road
vehicles – Functional safety. http://www.iso.org/.”

[47] G. Bahig and A. El-Kadi, “Formal verification of automotive design in compli-
ance with iso 26262 design verification guidelines,” IEEE Access, vol. 5, pp.
4505–4516, 2017.

[48] Fraunhofer ESK, Future Vehicle Software Architectures,
https://www.esk.fraunhofer.de/en/research/projects/adaptives bordnetz.html,
accessed Jan. 15, 2018.

[49] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Communications-Oriented Develop-
ment of Component-Based Vehicular Distributed Real-Time Embedded Systems,”
Journal of Systems Architecture, vol. 60, no. 2, pp. 207–220, 2014.

[50] S. Mubeen, T. Nolte, M. Sjödin, J. Lundbäck, and K.-L. Lundbäck, “Supporting
timing analysis of vehicular embedded systems through the refinement of timing
constraints,” Software & Systems Modeling, Jan. 2017. [Online]. Available:
https://doi.org/10.1007/s10270-017-0579-8

[51] D. Schmidt and F. Kuhns, “An overview of the Real-Time CORBA specification,”
Computer, vol. 33, no. 6, pp. 56 –63, Jun. 2000.

[52] M. G. Valls, I. R. Lopez, and L. F. Villar, “iland: An enhanced middleware for
real-time reconfiguration of service oriented distributed real-time systems,” IEEE
Transactions on Industrial Informatics, vol. 9, no. 1, pp. 228–236, Feb. 2013.

[53] X. Ke, K. Sierszecki, and C. Angelov, “COMDES-II: A Component-Based
Framework for Generative Development of Distributed Real-Time Control Sys-
tems,” in Embedded and Real-Time Computing Systems and Applications, RTCSA
2007. 13th IEEE International Conference on, Aug 2007, pp. 199 –208.

[54] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic, “A Component
Model for Control-Intensive Distributed Embedded Systems,” in Proceedings of
the 11th International Symposium on Component Based Software Engineering,
2008.

[55] TADL: Timing Augmented Description Language, Deliv. 6, Oct 2009.
[56] Timing Augmented Description Language (TADL2) syntax, semantics, meta-

model Ver. 2, Deliv. 11, Aug 2012.
[57] “TIMMO-2-USE Project,” https://itea3.org/project/timmo-2-use.html.
[58] Local Interconnect Network (LIN) Specification, LIN Consortium, www.lin-

subbus.org.
[59] F. Pieri, C. Zambelli, A. Nannini, P. Olivo, and S. Saponara, “Is consumer

electronics redesigning our cars?: Challenges of integrated technologies for
sensing, computing, and storage,” IEEE Consumer Electronics Magazine, vol. 7,
no. 5, pp. 8–17, Sep. 2018.

[60] R. Saussard, B. Bouzid, M. Vasiliu, and R. Reynaud, “A robust methodology
for performance analysis on hybrid embedded multicore architectures,” in IEEE
10th International Symposium on Embedded Multicore/Many-core Systems-on-
Chip (MCSOC), Sep. 2016, pp. 77–84.

[61] M. Valero, European Processor Initiative & RISC-V, RISC-V Workshop,
Barcelona, May, 2018.

[62] J. Huang, NVIDIA CEO Keynote, GPU Technology Conference in Europe
(GTC2017), Oct., 2017, Munich, Germany.

[63] Intel and Mobileye Autonomous Driving Solutions, White Paper,
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/intel-mobileye-
ads-product-brief.pdf, accessed:30th Jan., 2018.



[64] M. Gautschi, P. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi, E. Flamand,
F. Gurkaynak, and L. Benini, “Near-threshold risc-v core with dsp extensions
for scalable iot endpoint devices,” IEEE Transactions on VLSI Systems, vol. 25,
no. 10, pp. 2700–2713, 2017.

[65] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “Neurostream: Scalable and energy
efficient deep learning with smart memory cubes,” IEEE Transactions on Parallel
and Distributed Systems, vol. 29, no. 2, pp. 420–434, 2018.

[66] F. Cazorla, J. Abella, E. Mezzetti, C. Hernandez, T. Vardanega, and G. Bernat,
“Reconciling time predictability and performance in future computing systems,”
IEEE Design and Test, 2017.

[67] S. Saponara, F. Giannetti, B. Neri, and G. Anastasi, “Exploiting mm-wave
communications to boost the performance of industrial wireless networks,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 3, pp. 1460–1470, 2017.

[68] Y. Huo, X. Dong, and W. Xu, “5g cellular user equipment: From theory to
practical hardware design,” IEEE Access, vol. 5, pp. 13 992–14 010, 2017.

[69] Robert Bosch GmbH, CAN with Flexible Data-Rate (CAN FD), White Paper,
Ver. 1.1., 2011.

[70] G. M. Zago and E. P. de Freitas, “A quantitative performance study on can and
can fd vehicular networks,” IEEE Transactions on Industrial Electronics, vol. 65,
no. 5, pp. 4413–4422, May 2018.

[71] Stefan Singer, “High Performance Compute Architecture supporting revolution-
ary requirements, Ethernet & IP @ Automotive Technology Day, San Jose, CA,
US, Nov 2017.”

[72] D. Reinhardt and M. Kucera, “Domain controlled architecture - a new approach
for large scale software integrated automotive systems,” in International Con-
ference on Pervasive and Embedded Computing and Communication Systems
(PECCS 2013), Feb 2013, pp. 221–226.

[73] “IEEE Standard for Ethernet Amendment 1: Physical Layer Specifications and
Management Parameters for 100 mb/s Operation over a Single Balanced Twisted
Pair Cable (100BASE-T1),” IEEE Std 802.3bw-2015 (Amendment to IEEE Std
802.3-2015), pp. 1–88, Mar. 2016.

[74] “IEEE Standard for Ethernet Amendment 4: Physical Layer Specifications and
Management Parameters for 1 Gb/s Operation over a Single Twisted-Pair Copper
Cable,” IEEE Std 802.3bp-2016 (Amendment to IEEE Std 802.3-2015), pp. 1–
211, Sep. 2016.

[75] IEEE, “IEEE Std. 802.1Q, IEEE standard for local and metropolitan area
networks, bridges and bridged networks,” 2014.

[76] “IEEE standard for Local and Metropolitan Area Networks - Timing and Syn-
chronization for Time-Sensitive Applications in Bridged Local Area Networks,”
IEEE Std 802.1AS-2011, pp. 1–292, Mar. 2011.

[77] MOST Spec., Rev. 3, Ver. 2, http://www.mostcooperation.com/, 2010.
[78] J. Migge, J. Villanueva, N. Navet, M. Boyer, Insights on the performance and

configuration of AVB and TSN in automotive networks, in Embedded Real-Time
Software and Systems, Jan., 2018.

[79] G. Alderisi, A. Caltabiano, G. Vasta, G. Iannizzotto, T. Steinbach, and
L. Lo Bello, “Simulative assessments of IEEE 802.1 Ethernet AVB and time-
triggered ethernet for advanced driver assistance systems and in-car infotain-
ment,” in Vehicular Networking Conference, Nov. 2012.

[80] G. Alderisi, G. Iannizzotto, and L. Lo Bello, “Towards 802.1 Ethernet AVB for
advanced driver assistance systems: a preliminary assessment,” in IEEE 17th
Conference on Emerging Technologies Factory Automation, Sep. 2012.

[81] SAE Standard: Time-Triggered Ethernet AS6802, SAE International, published:
2016-11-09.

[82] S. M. Laursen, P. Pop, and W. Steiner, “Routing optimization of AVB streams
in TSN networks,” SIGBED Review, vol. 13, no. 4, pp. 43–48, 2016.

[83] G. Alderisi, G. Patti, and L. Lo Bello, “Introducing support for scheduled traffic
over IEEE audio video bridging networks,” in 18th IEEE Conference on Emerging
Technologies Factory Automation, Sep. 2013.

[84] L. Lo Bello, “Novel trends in automotive networks: A perspective on Ethernet
and the IEEE Audio Video Bridging,” in 19th IEEE International Conference on
Emerging Technologies and Factory Automation, Sep. 2014.

[85] M. Ashjaei, G. Patti, M. Behnam, T. Nolte, G. Alderisi, and L. Lo Bello, “Schedu-
lability analysis of ethernet audio video bridging networks with scheduled traffic
support,” Real-Time Systems, vol. 53, no. 4, pp. 526–577, Jul. 2017.

[86] U. D. Bordoloi, A. Aminifar, P. Eles, and Z. Peng, “Schedulability analysis of
ethernet AVB switches,” in 20th IEEE International Conference on embedded
and Real-Time Computing Systems and Applications, Aug. 2014.

[87] J. Diemer, D. Thiele, and R. Ernst, “Formal worst-case timing analysis of Ethernet
topologies with strict-priority and AVB switching,” in 7th IEEE International
Symposium on Industrial Embedded Systems, Jun. 2012.

[88] “IEEE Standard for Local and metropolitan area networks – Bridges and Bridged
Networks - Amendment 25: Enhancements for Scheduled Traffic,” IEEE Std
802.1Qbv-2015 (Amendment to IEEE Std 802.1Q)), pp. 1–57, Mar. 2016.

[89] “IEEE, Official Project Website of 802.1AS-Rev - Timing and Synchronization
for Time-Sensitive Applications 2016, https://1.ieee802.org/tsn/802-1as-rev/.”

[90] “IEEE Standard for Local and metropolitan area networks – Bridges and Bridged
Networks – Amendment 26: Frame Preemption,” IEEE Std 802.1Qbu-2016
(Amendment to IEEE Std 802.1Q-2014), pp. 1–52, Aug. 2016.

[91] S. S. Craciunas, R. Serna Oliver, and W. Steiner, “Formal Scheduling Constraints
for Time-Sensitive Networks”, Sep. 2017, doi: 10.5281/zenodo.997996, available:
https://arxiv.org/abs/1712.02246.

[92] W. Steiner, S. S. Craciunas, and R. S. Oliver, “Traffic planning for time-sensitive
communication,” IEEE Communications Standards Magazine, vol. 2, no. 2, pp.
42–47, Jun. 2018.

[93] “IEEE Standard for Local and metropolitan area networks– Bridges and Bridged
Networks - Amendment 24: Path Control and Reservation,” IEEE Std 802.1Qca-
2015 (Amendment to IEEE Std 802.1Q-2014), pp. 1–120, Mar. 2016.

[94] “IEEE Standard for Local and metropolitan area networks–Frame Replication
and Elimination for Reliability,” IEEE Std 802.1CB-2017, pp. 1–102, Oct. 2017.

[95] “IEEE, Official Project Website of 802.1qcc - Stream Reservation
Protocol (SRP) Enhancements and Performance Improvements, 2013,
https://1.ieee802.org/tsn/802-1qcc/.”

[96] “IEEE Standard for Local and metropolitan area networks–Bridges and Bridged
Networks–Amendment 29: Cyclic Queuing and Forwarding,” IEEE 802.1Qch-
2017 (Amendment to IEEE Std 802.1Q-2014), pp. 1–30, Jun. 2017.

[97] “IEEE Standard for Local and metropolitan area networks–Bridges and Bridged
Networks–Amendment 28: Per-Stream Filtering and Policing,” IEEE Std
802.1Qci-2017 (Amendment to IEEE Std 802.1Q-2014), pp. 1–65, Sep. 2017.

[98] “IEEE, Official Project Website of 802.1qcr - Asynchronous Traffic Shaping,
2016, https://1.ieee802.org/tsn/802-1qcr/.”

[99] J. Specht and S. Samii, “Urgency-Based Scheduler for Time-Sensitive Switched
Ethernet Networks,” in 28th Euromicro Conference on Real-Time Systems, Jul.
2016, pp. 75–85.

[100] ——, “Synthesis of Queue and Priority Assignment for Asynchronous Traffic
Shaping in Switched Ethernet,” in IEEE Real-Time Systems Symposium, Dec.
2017.

[101] D. K. Nilsson, U. E. Larson, F. Picasso, and E. Jonsson, “A first simulation
of attacks in the automotive network communications protocol flexray,” in
Proceedings of the International Workshop on Computational Intelligence in
Security for Information Systems. Springer Berlin Heidelberg, 2009, pp. 84–91.

[102] C. W. Lin and A. Sangiovanni-Vincentelli, “Cyber-security for the controller area
network (can) communication protocol,” in International Conference on Cyber
Security, Dec. 2012, pp. 1–7.

[103] M. Wolf, A. Weimerskirch, and C. Paar, Secure In-Vehicle Communication.
Springer Berlin Heidelberg, 2006, pp. 95–109.

[104] O. Avatefipour and H. Malik, “State-of-the-art survey on in-vehicle network
communication can-bus security and vulnerabilities,” International Journal of
Computer Science and Network, vol. 6, no. 6, pp. 720–727, Dec. 2017.

[105] K.-T. Cho and K. G. Shin, “Fingerprinting electronic control units for vehicle
intrusion detection,” in 25th USENIX Security Symposium. Austin, TX: USENIX
Association, 2016, pp. 911–927.

[106] E. dos Santos, A. Simpson, and D. Schoop, “A formal model to facilitate security
testing in modern automotive systems,” in Joint Workshop on Handling IMPlicit
and EXplicit knowledge in formal system development and Formal and Model-
Driven Techniques for Developing Trustworthy Systems, Nov. 2017, pp. 95–104.

[107] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to automotive can
networks–practical examples and selected short-term countermeasures,” Relia-
bility Engineering & System Safety, vol. 96, no. 1, pp. 11 – 25, 2011, special
Issue on Safecomp 2008.

[108] M. Lukasiewycz, P. Mundhenk, and S. Steinhorst, “Security-aware obfuscated
priority assignment for automotive can platforms,” ACM Transactions on Design
Automation of Electronic Systems, vol. 21, no. 2, 2016.

[109] T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and M. T. M.
Shalmani, “On the power of power analysis in the real world: A complete break
of the keeloq code hopping scheme,” in Advances in Cryptology – CRYPTO
2008, D. Wagner, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 203–220.

[110] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham, and S. Savage, “Experimental security
analysis of a modern automobile,” in IEEE Symposium on Security and Privacy,
May 2010, pp. 447–462.

[111] R. Currie, “Hacking the CAN Bus: Basic Manipulation of a Mod-
ern Automobile Through CAN Bus Reverse Engineering”, SANS Read-
ing Room White Paper, June, 2017, available: https://www.sans.org/reading-
room/whitepapers/threats/paper/37825.

[112] F. Li, L. Wang, Y. Wu, “Research on CAN Network Security Aspects and
Intrusion Detection Design”, SAE Technical Paper, doi: 10.4271/2017-01-2007,
Nov. 2017.

[113] S. Shreejith, P. Mundhenk, A. Ettner, S. A. Fahmy, S. Steinhorst, M. Lukasiewycz,
and S. Chakraborty, “Vega: A high performance vehicular ethernet gateway on
hybrid fpga,” IEEE Transactions on Computers, vol. 66, no. 10, pp. 1790–1803,
Oct. 2017.

[114] B. Carnevale, L. Baldanzi, L. Pilato, and L. Fanucci, “A flexible system-on-a-chip
implementation of the advanced encryption standard,” in 2016 20th International
Conference on System Theory, Control and Computing (ICSTCC), Oct. 2016, pp.
156–161.

[115] C. Patsakis, K. Dellios, and M. Bouroche, “Towards a distributed secure in-
vehicle communication architecture for modern vehicles,” Computers & Security,
vol. 40, pp. 60 – 74, 2014.

[116] A. Sghaier, M. Zeghid, and M. Machhout, “Fast hardware implementation of
ecdsa signature scheme,” in 2016 International Symposium on Signal, Image,
Video and Communications, Nov. 2016, pp. 343–348.

[117] H. Ueda, R. Kurachi, H. Takada, T. Mizutani, M. Inoue, S. Horihata, “Security
Authentication System for In-Vehicle Network”, SEI Technical Review, N. 81,
2015.

[118] P. Mundhenk, A. Paverd, A. Mrowca, S. Steinhorst, M. Lukasiewycz, S. A.
Fahmy, and S. Chakraborty, “Security in automotive networks: Lightweight
authentication and authorization,” Transactions on Design Automation of
Electronic Systems, vol. 22, no. 2, pp. 25:1–25:27, 2017. [Online]. Available:
http://doi.acm.org/10.1145/2960407

[119] Q. Wang and S. Sawhney, “Vecure: A practical security framework to protect the
can bus of vehicles,” in 2014 International Conference on the Internet of Things
(IOT), Oct. 2014, pp. 13–18.

[120] P. Waszecki, P. Mundhenk, S. Steinhorst, M. Lukasiewycz, R. Karri, and
S. Chakraborty, “Automotive electrical and electronic architecture security via
distributed in-vehicle traffic monitoring,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 36, no. 11, pp. 1790–1803, Nov.
2017.

[121] H. Okhravi, F. T. Sheldon, and J. Haines, Data Diodes in Support of Trustworthy
Cyber Infrastructure and Net-Centric Cyber Decision Support. Springer Berlin
Heidelberg, 2013, pp. 203–216.

[122] G. Xie, G. Zeng, Y. Liu, J. Zhou, R. Li, and K. Li, “Fast functional safety
verification for distributed automotive applications during early design phase,”
IEEE Transactions on Industrial Electronics, vol. 65, no. 5, pp. 4378–4391, 2018.

[123] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model of safe
and scalable autonomous vehicles,” in arXiv:1708.06374v4, Dec. 2017.


