
 i

Mälardalen University Licentiate Thesis

No. 19

UTILIZING CONCURRENCY TO GAIN

PERFORMANCE IN AN INDUSTRIAL

AUTOMATION SYSTEM

Leif Enblom

November 2003

Department of Computer Science and Engineering

Mälardalen University

Västerås, Sweden

 ii

Copyright © Leif Enblom, 2003
ISBN 91-88834-21-2
ISSN 1651-9256
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

 iii

Abstract

This work presents and discusses the results from a study, focused on achieving
more performance for an industrial real-time control system. The real-time control
system is used to protect electrical power stations from being destroyed by strokes of
lightning. Sensors in the system continuously collect information on currents and
voltages from the electrical power station which the control system protects. The
sensors deliver the collected data to a computer system that bases its decisions on the
arriving data. When a dangerous situation is detected circuit breakers decouple the
hazardous power line.

Today, the computer system is based on a single processor architecture. The
problem is that this architecture does not provide enough performance to
support demanding system configurations such as more advanced application
algorithms and increased amount of data collected from the sensors. In order to
obtain correct, timely execution of the protection applications, designers may need to
optimize application code aggressively. Unwanted simplifications of algorithms or
low sampling frequencies of sensor data may be the result.

The motivation of this work is to study how the real-time control system is affected
by being adapted to a multiprocessor or distributed architecture in order to increase
the available computing resources. The objective is to improve the performance of
system components in general and application components in particular. By
identifying components in the existing control system that exhibit a large amount of
concurrency and a relatively small amount of data exchange the study found a
performance improving solution. The I/O system that is responsible for collecting
sensor data and the application functionality both exhibit a large amount of mutual
concurrency and may therefore scale on a system with multiple processors. In
experimental configurations the I/O system components and an application model
were arranged to execute in parallel on two processors. This approach exploits the
concurrency available at the interface between the I/O system and application
components. Results from measurements show that processing resources (up to 66%
when compared with a single processor system configuration) can be freed for
application components by utilizing this concurrency in a two processor
configuration. The advantage gained is an increase in flexibility for application
designers to select a multiprocessor system configuration for demanding
applications.

While parallel architectures are used in some industrial systems, not much has
been written about the possibilities and threats when legacy systems are adapted to
such architectures. By describing a model of an industrial real-time control system
and extending that model with a mechanism that enables multiprocessor execution,
we contribute to the understanding of both the functional composition and
performance issues concerning parallel execution in such industrial systems.

 iv

 v

Contents
ABSTRACT.. III

1 INTRODUCTION AND BACKGROUND..1

1.1 OBJECTIVE..4
1.2 RESEARCH QUESTIONS ...6
1.3 METHODOLOGY..6

1.3.1 Limitations ..7
1.4 CONTRIBUTION...7
1.5 RELATED WORK...9
1.6 OUTLINE OF THE THESIS ...10

2 PARALLEL COMPUTER SYSTEM COMPONENTS ..11

2.1 PROPERTIES AND TERMINOLOGY OF PARALLEL SYSTEMS ..11
2.1.1 Speedup...11
2.1.2 Amdahl’s Law ...12
2.1.3 Gustafson’s Law ...13
2.1.4 Concurrency and Parallelism...13
2.1.5 Shared Resources..14
2.1.6 Three levels of Parallelism ...14
2.1.7 Locality ...16
2.1.8 Latency and Bandwidth ..16
2.1.9 Synchronization ..17
2.1.10 Granularity ..17
2.1.11 Scalability ..17

2.2 PARALLEL HARDWARE ARCHITECTURE ...18
2.2.1 Single Processor Architecture ..19
2.2.2 Processors from a Parallel Perspective ...19

2.2.2.1 Interrupts and External Events ...21
2.2.2.2 The Alternative to Interrupts: Polling ..22

2.2.3 Categorization of Parallel Architectures..23
2.2.3.1 SIMD Architecture...23
2.2.3.2 MIMD Architecture ...24
2.2.3.3 Shared-Memory Multiprocessor Systems ..24
2.2.3.4 Cluster Architectures..25

2.2.4 Examples of Multiprocessor and Distributed Real-Time Systems........................26
2.2.4.1 HARTS...26
2.2.4.2 Spring ...27
2.2.4.3 UltraSmart ..28

2.2.5 Interconnects...29
2.2.5.1 Bus Functionality ...29
2.2.5.2 I/O Buses..30
2.2.5.3 Local Area Network Interconnects ..32

2.3 MULTIPROCESSOR OPERATING SYSTEMS ...33
2.3.1 Fundamentals of Operating Systems ..33

 vi

2.3.2 A Small Survey of Multiprocessor Operating Systems ...35
2.3.2.1 Operating Systems for Bus-Based Cache-Coherent Multiprocessors............35
2.3.2.2 Amoeba ..36
2.3.2.3 QNX ...37
2.3.2.4 RTU..38
2.3.2.5 UNIXes ..38
2.3.2.6 VxWorks ..41

2.3.3 Monitoring and Measurement Techniques ...42
2.4 PARALLEL AND REAL-TIME COMMUNICATION MECHANISMS42

2.4.1 The Anatomy of Communication in Computer Systems..43
2.4.2 Parallel Communication Protocols and Architecture ..44
2.4.3 Hardware Communication Assists..45
2.4.4 Parallel and Distributed Communication Mechanisms and Frameworks46

2.4.4.1 RPC and RMI...46
2.4.4.2 CORBA..47
2.4.4.3 Publish/Subscribe Mechanisms..48
2.4.4.4 SPLICE ..49
2.4.4.5 NDDS...49
2.4.4.6 The Data Distribution Service for Real-Time Systems Specification50
2.4.4.7 Functional Parallelism, Parallel I/O and Data Concentrators50

2.4.5 Scalable Network Architectures and Parallel Communication Services..............51
2.5 PROGRAMMING MODELS ..52

2.5.1 Message Passing versus Shared Memory...53
2.6 DEFINITIONS...56

3 PERFORMANCE IMPROVING ALTERNATIVES FOR AN INDUSTRIAL
SYSTEM..59

3.1 THE CASE-STUDY SYSTEM ...60
3.2 HARDWARE ARCHITECTURE ALTERNATIVES..63

3.2.1 Hardware Accelerators and Assists..64
3.2.2 Hardware Architectures with Multiple Processors ..65

3.2.2.1 Distributed Architecture...65
3.2.2.2 Backplane Bus-Based Multiprocessor Architecture66
3.2.2.3 Symmetric Multiprocessor (SMP) Architecture ..68

3.2.3 Faster Single Processor Architecture...69
3.3 SOFTWARE ARCHITECTURE CONSIDERATIONS ...70
3.4 IDENTIFYING CONCURRENCY ...71

3.4.1 Concurrency within Components..72
3.4.2 Parallelism between Components...73

4 PARALLEL EXECUTION OF I/O SYSTEM AND APPLICATION
COMPONENTS..75

4.1 A MODEL OF A DATA-DRIVEN REAL-TIME SYSTEM ..75
4.1.1 System Architecture ..78
4.1.2 System Semantics and Functionality...79

 vii

4.1.3 The Data-Driven Real-Time System Model Applied to a System with Multiple
Processors ..80

4.2 EXECUTION ANALYSIS OF THE MODEL...82
4.2.1 Performance Metrics ..84
4.2.2 Extensions to the Model..85

4.3 IMPLEMENTATION AND DESIGN OF IOMP ..86
4.3.1 Design ...86
4.3.2 IOMPWrapper ..87
4.3.3 IOMPPeer...88
4.3.4 IOMPProtocol ..88
4.3.5 IOMPServer..89

4.4 MEASUREMENTS AND RESULTS..89
4.4.1 Experimental Setup...89
4.4.2 Processor Utilization ..92
4.4.3 Optimizing for Performance ...94

4.4.3.1 The RPC Approach ..94
4.4.3.2 The PreWait Approach...96
4.4.3.3 The Subscribe Approach..98

4.4.4 Latencies ...100
4.4.4.1 High Priority System Threads..100
4.4.4.2 Network Related Latencies and Contention...102

4.4.5 Synchronous RPC ...103
4.5 PCI-BUS COMMUNICATION PERFORMANCE ...103

4.5.1 Overview...104
4.5.2 Memory Layout...105
4.5.3 Performance Measurements ...105
4.5.4 Message Passing Utilizing Writes over the PCI-bus..109
4.5.5 PCI-bus as the Communication Mechanism in the Case-Study System111

5 CONCLUSION AND FUTURE WORK ...113

5.1 RESEARCH QUESTIONS REVISITED ...113
5.2 A CONDENSED SUMMARY ..118
5.3 GENERAL APPLICABILITY...119
5.4 FUTURE WORK ...119

6 REFERENCES...123

6.1 PUBLISHED REFERENCES ..123
6.2 UNPUBLISHED REFERENCES, MAINLY WWW MATERIAL ..128
6.3 OTHER REFERENCES...129

7 APPENDIX A, PCICOM...131

7.1 MESSAGE QUEUES..131
7.2 INTERFACE ...132

 1

1 Introduction and Background

The number of applications of electronic systems to the control of industrial
processes has increased rapidly during recent decades. Microcontrollers and
processors have found their way into processes that were formerly controlled solely
by analog or mechanical components. Examples of applications in which mechanical
or analog components have been in part or completely replaced by electronic
components include vehicles, substation protection equipment and other industrial
systems. The benefits of this evolution include increased flexibility for users in
configuring functionality, improved possibilities of controlling the process and
system under control and reduced costs.

This development has given rise to a growing volume of software executing on
microcontrollers/processors embedded in devices located adjacent to the process.
Software involved in controlling the system must often satisfy real-time
requirements. Depending on the seriousness of the consequences of the system
failing to react correctly to the system under control, timing issues become more or
less important. The correct and continuous response of a real-time system to stimuli
from the environment is of the greatest importance. Figure 1 illustrates the
continuous interaction of a real-time control system with the system under control.
The real-time control system studied within the scope of this thesis (illustrated in
Figure 4) is used to protect electrical power stations from being destroyed by strokes
of lightning. Sensors in the system continuously collect information on currents and
voltages from the electrical power station (the system under control) which the
control system protects. The sensors sample the system under control and deliver the
collected data to a computer system that bases its decisions on the arriving data.
When a dangerous situation is detected circuit breakers decouple the hazardous
power line by issuing an actuation event to a circuit breaker.

Real-Time Control System

System under Control

Environment

Sampling Actuation

Figure 1, A Real-Time System controlling an industrial process, the System under

Control.

Systems in industry often reside in demanding and harsh environments which has
called for computer systems with durable mechanical and electrical properties. A

 2

number of bus-architectures and form factors, i.e. the size of the physical boards,
have been defined for processor boards and rack-mounts. One architecture designed
to reside in such harsh environments is the CompactPCI passive backplane bus-
architecture which can be equipped with 6U (Unit) processor boards. In such a
system, I/O boards for sampling and actuation purposes reside in the same rack-
mount as the processor board executing the application. Figure 2 illustrates such a
configuration in which I/O boards produce data for the application to consume.

Real-Time
Control System

Sensor /
Sampling

Device

I/O
Board

Sensor /
Sampling

Device

I/O
Board

Control
System

Processor

Board

Interconnect

Actuator

I/O
Board

System under Control

Environment

Sampling Actuation

Figure 2, A typical Real-Time Control System and its interaction with an industrial

process, the System under Control

This thesis studies a system resembling that illustrated in Figure 2. One or multiple
I/O boards provide sampling respective actuation services for the application. The
application executes on a single general processor board in the same physical chassis.
Figure 2 illustrates a general view of the system that distinguishes between the
environment and the system under control. The system under control includes
actuators as well as the power grid itself and the environment includes the world
surrounding the system under control. The majority of the sampling consists of the
sampling of voltages and currents from the system under control (the power grid).
We have focused on performance and constraint parameters internal to the real-time
control system [Dasdan99 p. 5]. We have therefore not considered the time it takes
for data to arrive at the nodes (chassis) but only how the system behaves internally,
i.e. the events on the processor boards.

The thesis focuses on a study of parallel execution issues in real-time software
system components and how they may scale on a system with multiple processors.
The means of achieving scalability is to arrange for the I/O system and the

 3

application components to execute in parallel. This approach allows for exploitation
of available concurrency at the interface between the I/O system and application
components. Figure 3 illustrates a system configuration where the I/O system
components have been partitioned on one processor board and the application
component on another processor board.

Real-Time
Control System

Sensor /
Sampling

Device

I/O
Board

Sensor /
Sampling

Device

I/O
Board

Processor
Board

I/O System
Components

Interconnect

Actuator

I/O
Board

System under Control

Environment

Sampling Actuation

Processor
Board

Application
Components

Figure 3, A hardware architecture with multiple processors and the location of the I/O

system and application components on two separate processor boards.

The real-time control system is used to protect electrical power systems and
especially substations where power distribution lines merge (an example of such
systems is illustrated in Figure 4). The protection devices are designated protection
relays and are designed to respond to abnormal conditions in the electrical power
system [Davies96]. These protection relays operate a circuit-breaker and disconnect a
faulty section of the power system when an abnormality occurs. One abnormal
condition is a lightning strike on a power line, the excessive current propagating into
the substation and threatening to destroy the equipment. In such a situation the
circuit breaker must disconnect the power line from the rest of the power grid in as
short a time as possible, usually within at the most 20 milliseconds. The system is
designed to continuously sample data from the power system grid, delivering this
data to interested subscribers. Subscribers to the data are the protection application
threads, but other system components, such as event loggers, may also be interested
in the data. The protection algorithm needs an amount of historic data (a backlog) to
be able to identify the anomaly, which means that the sampling frequency of the
system must be high. In our case, the sampling frequency is 1000Hz which means

 4

that the application receives a snapshot of the system every millisecond. This means
that the protection application executes once every millisecond, a rather demanding
real-time application. If we can find a way of increasing the amount of work
performed every millisecond we can increase the volume of sampled data and/or the
amount of work which can be performed by the protection application.

Real-Time
Control System

Sensor /
Sampling

Device

I/O
Board

Interconnect

Actuator

I/O
Board

Power System
(System under
Control)

Sampling Actuation

Circuit-
Breaker

Power Line

Abnormal
Condidion
(Lightning)

Control
System

Processor
Board

Figure 4, the Real-Time Control System protecting a Power System from abnormal

conditions.

1.1 Objective
Large industrial systems are often complex because of the amount of source code

and the inherent complexity of the application domain. The history of the design of
systems for the specific application domain has led to a complex architecture
consisting of different hardware configurations as well as a special software
architecture. Application developers base their design on a software platform
consisting of components with special functionality tailored for the specific
application domain. The objective is to develop a standard way of designing
applications without the necessity to “reinvent the wheel” each time. Today
application development on the target platform is in part governed by the available
performance of the architecture. The accuracy of the application calculations and
application components is limited by the available execution capabilities of the
architecture, which results in applications having to be optimized and simplified in
order to be able to perform their work. This problem can be exemplified by an event

 5

at the beginning of the project. The director of the Platform and Development
Department was inspecting the performance of an application prototype running
new application code. Performance was poor; the application could not keep up with
the amount of data arriving at the node. The director exclaimed: “This is not
acceptable. We really need more performance and I hope that the multiprocessor
project will be successful soon”. How the problem regarding performance was
solved is unknown to the author but illustrates the constant demand for system
performance. The obvious way to improve performance is to use higher performance
processors but for these, we must wait for the next generation processors to arrive in
the market. In the scenario described above, however, such an alternative was not
available. Perhaps there is a way to improve performance with the architecture
available today? Obviously, the use of multiple processors cooperating in solving the
same tasks as before comes to mind. Increased computing resources can help
application designers in implementing better systems and thus achieving an
advantage over competitors. By introducing multiprocessor or distributed computer
architecture we may be able to improve the performance of the system as a whole
and especially of application components.

A fundamental issue that arises when introducing a system with multiple
processors is the ability for each system component to scale. The operating system
must be able to scale on the hardware architecture. Software system components
such as application and software platform components must be able to scale on the
operating system. The central part of the software platform in this case-study is the
I/O system, which enables applications to receive data from I/O boards. The I/O
boards can be located in the same chassis as the application, but the I/O system can
also establish network connections to I/O boards located remotely (in other chassis).
Even though it is possible to connect nodes with the help of a special purpose I/O
system, the use of multiple processors to execute the same application has not been
discussed widely. These premises were the starting point of the project, leading to
the study reported in this thesis.

The overall purpose and motivation of this work is to study how an industrial real-
time system designed for a single processor environment is affected by being
adapted to a multiprocessor or distributed architecture in order to increase the
available computing resources. We therefore need to study how the software system
should be designed for execution in such architectures, and we need indications on
how performance would be affected by implementing the proposed design. Expected
benefits include increased computing resources for the system in general and for
application components in particular. Enabling scalability may make increased
design space available, giving the designers of applications the freedom to select a
more powerful multiprocessor or distributed architecture for demanding
applications, and thereby increasing flexibility.

 6

1.2 Research Questions
Given the existing data-driven industrial control system designed for single

processor computer architecture, two research questions were asked. These were:

1. “Which time-critical software system components utilize the most processor
resources and do they show a large amount of mutual concurrency?”

2. “Given the existing software architecture, can the components requiring the

utilization of a considerable proportion of available processor resources scale on
a distributed or bus-based multiprocessor architecture and how does the
suggested parallel execution of the concurrent system components affect
performance?”

When we write “scale on a distributed or bus-based multiprocessor architecture”

we mean the ability of the software components to execute on the available multiple
processors in the respective architectures. The research questions reflect the iterative
process in the search for improved performance and flexibility in the original system.
Question 2 is thus a question resulting from question 1. Question 2 targets how
performance is affected by parallel execution in the system and we have focused on
performance from two points of view (sub-questions of question 2):

2.1. The first point of view relates to available processing resources for application and

system components in the single and multiprocessor system configurations.

2.2. The second point of view relates to timing properties that are important in the

real-time system. These timing properties include; latencies on data, response
time on important system events as well as inter-processor round-trip latencies.

We conclude the discussion with the answers to these questions, given in Chapter

5, “Conclusion and Future Work”.

1.3 Methodology
The starting point of the study was an investigation of the existing system, its

components and its behavior. Parallel to that investigation we assembled information
on the state-of-the-art as well as the state-of-practice for relevant system components
and similar systems. This phase of information collection indicated that a large
number of evaluation and design paths were available. At the lowest level, different
hardware architectures were available and the choices made at that level affected the
possible choices at the higher levels (such as available operating systems). The
existing system is designed for a single processor environment which led to different
scalability issues depending on the choice of hardware architecture.

 7

The case-study system provided a platform for studying performance and
scalability issues for systems with relatively stringent timing requirements. The
software and system architecture required us to study different issues related to
performance and scalability in parallel systems. Chapter 4 presents the findings of
the state-of-the art study. We focused on a bottom-up approach, beginning with
parallel hardware architectures and concluding with parallel programming models.
Where possible, we have focused on other industrially-related research projects and
systems but results from other areas are also included wherever they give relevant
insight into the subject.

We have focused on two ways of evaluating the system. The first is how the I/O
system can be used in order to scale on a distributed architecture or backplane bus-
based multiprocessor architecture. The second is how performance is affected by
varying I/O configurations of the system in both the single and multiprocessor
architectures.

1.3.1 Limitations

Many parameters, such as price/performance ratio, reliability and fault tolerance
are limiting factors that must be considered before a product can be released and
sold, but we have limited our study to pure performance and scalability issues. It
should be possible, from the results of this study, to obtain information on the
available choices and how scalability can be achieved. These performance and
scalability results can then be combined with the current prices of processor boards
and system components to be able to estimate a price/performance ratio. For
example, the cost function of utilizing two chassis (as in the distributed approach)
and employing a multiprocessor system in the same chassis can be established. The
study has shown how to reduce the processor utilization by approximately 27% at
the application node. This represents a 66% increase in computing resources for the
application components. It would be possible to obtain a price/performance ratio by
calculating the total cost of the hardware used in the distributed architecture
configuration as compared with the hardware used in the single processor system
configuration. Although we present no price/performance ratio, we are aware of this
important factor.

The case-study system is rather limiting because of its design and structure.
Periodical sampling of data, the use of a predictable network and fine granular time-
synchronization of processor nodes as well as sampling nodes are parameters that
contribute to the predictable system behavior. Our results apply to other systems
with a similar structure.

1.4 Contribution
This work includes an analysis and model description of a specific real-time

industrial system as well as the design and implementation of a mechanism (IOMP)
that enables the existing system to scale on a distributed or backplane bus-based
multiprocessor architecture. IOMP is an extension of the existing I/O system that

 8

enables applications to utilize I/O system functionality in another execution
environment, i.e. address space. IOMP has similarities with a remote procedure call
(RPC) mechanism, but it has been tailored and optimized for the existing platform.
The new mechanism has been analyzed with respect to performance in a distributed
environment and its suitability for use in the existing system. We thereby contribute
to the understanding of both the composition and the performance issues of such
systems and their use in environments with multiple processors. The work and ideas
have been presented in the following published papers and technical reports:
§ The paper entitled “Adding Flexibility and Real-Time Performance by

Adapting a Single Processor Industrial Application to a Multiprocessor
Platform” [Enblom2001], published in the Proceedings of the ninth Euromicro
Workshop on Parallel and Distributed Processing, issued in conjunction with
the workshop with the same name held in Mantova, Italy in February 2001. It
presents a design solution for an industrial system multiprocessor rack-mount
CompactPCI NUMA architecture in which the operating system is
implemented in hardware. The paper was written mainly by the author under
the supervision of Professor Lennart Lindh of Mälardalen University and the
approach was a legacy of a master’s thesis developed at the university. In
addition to the concept of accelerating the operating system with custom
hardware, the paper includes the first thoughts on the partitioning issues of
existing software.

§ The paper entitled “Parallel Execution of I/O System and Application
Functionality” [Enblom2003], presented at the International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA2003)
held in Las Vegas, USA, June 2003. It presents the model of the case-study
system and introduces measurements and results from an evaluation in a
distributed system environment. The paper was written entirely by the author
and the work was performed in an industry environment by the author. Three
performance metrics are studied in the comparison between the single
processor system and the distributed system; processor utilization, latencies on
data and inter-processor latencies. The results of the paper are the basis of the
discussion in chapter four.

§ The technical report entitled “PCI-Bus Communication Performance”
[Enblom2001_2], filed as a technical report at Mälardalen University. It presents
the design and performance results from an implementation of a message-based
communication mechanism that enables communication between processor
boards located on a CompactPCI-bus. Section 4.5 bases its discussion on the
results from this technical report.

§ The state-of-the-art technical report entitled “Parallel Computer System
Components” [Enblom2003_02], presented as a Mälardalen Real-Time Research
Center Technical Report at Mälardalen University. It describes multiprocessor
hardware architectures, operating systems for multiprocessor architectures, as

 9

well as communication mechanisms relevant to the work performed in this
dissertation. It is included as chapter 2 in this thesis.

1.5 Related Work
The problem of scaling the software platform for systems which resemble that

described in this thesis involves multiple disciplines. It is related to hardware
architectures suitable for such systems, the predictability and bandwidth of the
available interconnects as well as operating system support for this architecture. It is
also related to offloading I/O system and communication functionality by using
dedicated hardware, such as the hardware communication assists described in
chapter 3.2.1. The work, however, is conceptually related to the benefits of utilizing
proxy servers for offloading application nodes. Conceptually, there are resemblances
between the approach of separating the I/O system and the application components
on different nodes and the use of proxy nodes in networked environments. We have
mentioned a proxy server architecture (CSP) in section 2.4.5 and we identify
similarities and differences with our approach with respect to that architecture.
Similarities include:

• The offloading and decoupling of communication processing from servers (the

application node in our case).
• The data is forwarded to the application nodes with the help of lightweight

transport protocol, which applies for our bus-based approach that utilizes a
message queue for communication between the I/O system node and the
application node.

Differences include:

• The proxy server (CSP) approach is based on the concept of decoupling TCP/IP
processing from application nodes. We, on the other hand, decouple a
publish/subscribe I/O system from application nodes. The inherent difference is
that the CSP approach is connection-oriented from end-point to end-point. The
I/O system used in the case-study is not connection-oriented but rather data-
oriented.

In summary, mechanisms that dedicate computational resources for the purpose of
offloading application components are related to the work performed in the scope of
this thesis. The difference and originality of this work lie in the special limitations
and properties that were available to us in the case-study system and the semantics
of data delivery (correlation and delivery on complete arrival of data) that enabled us
to exploit the existing concurrency between I/O system and application components.

 10

1.6 Outline of the Thesis
The thesis consists of four main chapters describing the work performed within the

scope of this project. It begins with a state-of-the art report (chapter 2) which gives
insight into techniques and concepts that have been of importance for the
understanding of the underlying set of problems with systems using multiple
processors. In chapter 3 we discuss alternatives for improving performance in the
case-study system, and discuss the design alternatives that were available to us, i.e.
the design space. Chapter 4 describes the work performed in executing the I/O
system and application/client components in a distributed network; creating a
model and synthetic execution analysis as well as presenting relevant measurements
of important metrics of execution in the distributed system. Section 4.5 presents an
implementation and performance measurement of a message-based communication
mechanism used for communication over a PCI bus-hierarchy. The objective of that
is to determine how communication performance of a more tightly coupled system
(as compared with the distributed architecture) would affect parallel execution of
I/O system and application/client components. Finally, in chapter 5, we sum up
with our conclusions and experiences from studying multiple processor systems
available for use in industrial automation systems, and present possible future work
on the subject.

 11

2 Parallel Computer System Components

Many issues need to be considered when migrating from a single processor system
to an architecture that uses multiple processors. System designers are facing a
plethora of design choices and need to understand state-of-the art technologies from
many domains including hardware architecture, software architecture and
programming techniques. This chapter intends to describe both state-of-the art and
state-of-practice of technology domains we have identified and used during the
work. We will start by establishing properties and terminology of parallel systems
that is needed in the rest of the discussion. Thereafter we start a bottom-up
discussion that begins with a chapter on parallel hardware architectures. Next
chapter crosses into the domain of software and discusses the lowest level of
software, which is the operating system. We focus on operating systems for
multiprocessor and distributed system. Important software components include the
communication mechanisms, especially for parallel and real-time systems. The
chapter labeled “Parallel and Real-Time Communication Mechanisms” discusses
such mechanisms. Finally, we bring up and discuss relevant programming models
that are used in parallel systems. Focus has been on industrial applications where
possible.

2.1 Properties and Terminology of Parallel Systems
Issues regarding parallelism cut through all levels of technology, regardless of

whether the technology is targeted at Systems on Chip (SoC) or software executing
on commercial off-the-shelf (COTS) architectures. The system designer will have to
handle issues such as synchronization, communication and shared resources. This
chapter will discuss properties concerning parallel systems as well as introduce
terminology that will be used throughout the rest of this text.

2.1.1 Speedup

The term speedup is related to parallel computer system performance and is widely
used as a metric to quantify the benefit of executing programs on a parallel
architecture compared to executing the same program on single processor
architecture. Speedup can be defined [Wilkinson99 p. 26] as:

units processing Non P execute toTime
unit processing 1on P execute toTime

)()(== NSNSpeedup

where P is the program that is being run and N quantifies the number of

processing units in the parallel architecture. The definition of speedup is thus the
time it takes for a program to execute on 1 processing unit divided by the time it
takes to execute on N processing units. A speedup of more than 1, S(N)>1, represents
a speedup, while a speedup of less than 1, S(N)<1, will in effect be a slowdown. A

 12

speedup where S(N)=N illustrates a situation with a linear speedup and a speedup
where S(N)>N depicts a super-linear speedup. This definition of speedup applies to a
program that is fixed in problem size (problem-constrained scaling).

2.1.2 Amdahl’s Law

In a pioneering article published in 1967 [Amdahl67], Gene Amdahl described the
problems of achieving speedup of programs on a parallel architectures. The
maximum amount of speedup that a program can achieve is limited to how large
proportion of it can execute concurrently and how large proportion must execute
sequentially. Amdahl’s law is expressed as:

S(N) =

N
f

f
−

+
1
1

S(N) defines the speedup, f is the fraction of sequential work and N quantifies the

number of processors. Now, as the number of processors approaches infinity (N→∞)
we get this relation:

S(∞)→
f
1

This shows that the maximum amount of speedup possible for the program is

dependent on how much of the program that is inherently sequential.

Figure 5, Speedup under Amdahl's law.

Let for example the fraction of sequential work for a certain program be 2%. This
will give an upper limit of speedup that approaches 50 (1 / 0.02). The maximum

 13

speedup according to Amdahl’s law, as a function of the serial fraction in the
program, follows the curve in Figure 5 above.

2.1.3 Gustafson’s Law

Amdahl’s law portrays a pessimistic picture for parallel computer architects, but
despite of this parallel systems are sold and employed successfully. Gustafson
[Gustafson88] have tried to explain why the implicated performance problem
portrayed by Amdahl does not explain the whole picture of parallel system speedup.
Gustafson argues that by changing the problem size, such amount of data used, it is
possible to achieve a super-linear speedup. The reason for this is that in practice the
problem size is not independent of the number of processors. Amdahl’s law will hold
true for a system where the problem size does not change. Gustafson argues that this
is not the situation for many problems and that it is more realistic to assume a
constant run-time in contrast to a constant problem size.

2.1.4 Concurrency and Parallelism

Concurrency is a term that quantifies the amount of operations that can execute
independent of each other. If a system component does not interact with or depend
on any other component we can say that the components are isolated. The
component has its own state and does not change its behavior based on events from
other components. A system or program with totally independent and isolated parts
is sometimes labeled embarrassingly parallel [Wilkinson99 p.82], but not all
problems are this appropriate for parallel execution.

There is a distinction between the definition of parallel execution and concurrent
execution [Lawson92 p. 35]. For example, two processes in a uniprocessor system are
said to execute concurrently but they never execute in parallel. They execute in what
can be called a pseudo-parallel manner (interleaved), scheduled by the operating
system. Two processes executing on separate processors on the other hand are said to
execute in parallel.

Two or more system components, such as processes, can exploit parallelism in a
variety of ways. Andrews [Andrews2000 p. 11-26] identifies five concurrent
programming paradigms that exploit parallelism differently. These are:

1. Iterative Parallelism. An application utilizing iterative parallelism usually
consists of a pool of identical processes that cooperate in solving a problem.
Each process is parameterized and consists of one ore more loops, each
performing a part of the job.

2. Recursive Parallelism. In this form of parallelism recursive properties are
exploited to utilize multiple processing elements. In each recursive step
processes are spawned and execute concurrently. This may lead to a vast
amount of processes, which poses a performance threat. Therefore parallel
recursive algorithms often prune into sequential recursive calls (without
spawning new processes) at a certain level (for example when the number of

 14

processes exceeds a certain number). Sorting algorithms and chess games are
problem domains that usually use this kind of concurrency.

3. Producers and Consumers. Processes that communicate utilize this form of
concurrency, usually in the form of pipelining. Each process performs its
calculations and forwards its results to its collaborators and each process is a
part of the pipeline.

4. Client and Servers. In this is a form of parallelism processes communicate and
exchange data, but now in a two-way manner. The client sends requests to the
server, which responds with an answer. This form of concurrency has an
analogy in procedure calls, invoked either locally or remotely (RPC).

5. Peers. This form of parallelism utilizes peer processes that interact and
communicate with the help of messages. No global variables are used and
usually a coordinator distributes tasks to the waiting processes. This form of
parallelism is common in distributed programming.

2.1.5 Shared Resources

There are several resources in a computer that can be shared. The most obvious are
the processor, the memory and the interconnects. Sections of a program that act on
shared resources are said to execute in a critical section [Dijkstra65]. If two or more
processors contend for the same resource they are in a so-called race condition
[Tanenbaum92 p. 34]. Deadlock occurs when a system cannot progress due to a
situation where processes wait indefinitely for a resource. A formal definition of a
deadlock situation is [Tanenbaum92 p. 242]:

A set of processes is deadlocked if each process in the set is waiting for
an event that only another process in the set can cause.

If this is the case, all processes will wait forever to acquire the resource. Another
form of unwanted lock is the so-called livelock. Livelock [Culler99, p. 379] is a
complex form of deadlock, where subsystems interact and transactions are being
performed, but where no progress towards the final result is made. The execution is
going to continue forever, without the final result ever being presented. When
designing system components such as for example message queues for inter-
processor communication mechanisms contention and race conditions for shared
resources are an important issue.

2.1.6 Three levels of Parallelism

The first computers executed one instruction each cycle, starting the next only after
the first had finished completely. These computers utilized bit-level parallelism;
instructions operated on more than one bit at a time. Over time, the processors
incorporated more and more of this parallelism, increasing the width of the data path
from 8 bits up to the 64-bit processors that are available today [Culler99 p. 15]. Next
level of utilizing parallelism was to exploit Instruction Level Parallelism, ILP. The RISC
processors developed during the 1990’s have improved ILP substantially, but

 15

aggressive machine design studies (with perfect branch prediction and unlimited
processing resources) show that the amount of issued instructions per cycle does not
increase performance infinitely. A study has shown that ILP has been exploited to
what the limit for many applications [Lam92]. Other studies have shown that
instruction throughput does not increase significantly, even with a four-way
superscalar, as shown in Figure 6.

Figure 6, a graph showing the estimated processor speedup with ideal superscalar

resources available [Culler99 p. 18].

In many processor architectures where a concurrent flow of instructions is
executing, relaxed memory consistency models [Adve96] are used in order to promote
high ILP. Relaxed memory consistency models let memory operations compete out
of order. A processor that completes memory operations in order is said to support
serial consistency. In some processor architectures, which utilize relaxed memory
consistency models, special memory barriers instructions can be inserted into the
sequential instruction flow. This can be a nuisance for the programmer of the
operating system, and even for application programmers. For example, the PowerPC
architecture [Motorola] requires a program wanting to access a peripheral register to
issue a ‘sync’ or ‘eieio’ instruction before continuing using values involved in the
transaction. As described in [Motorola94]: “The sync instruction ensures that all
instructions previously initiated appear to have completed before any subsequent
instructions are initiated”.

Other ways of increasing processor performance have been studied.
Multiprocessors that allow for multiple threads executing simultaneously is an
alternative. The implied limit of ILP pushes the evolution of processors and today
some processors exploit Thread Level Parallelism, TLP. Future processors may include
implementations that utilize TLP on chip, such as the Stanford Hydra

 16

[Hammond2000]. This chip supports thread-level speculation, which means that all
threads run in parallel until a dependency is detected. We will discuss this issue
further in section 2.2.2.

2.1.7 Locality

Data (or spatial) locality is an important factor when designing both hardware
architectures as well as software systems. Good spatial locality of a program depicts
a situation where memory locations that are addressed close to other addresses have
a higher chance of being accessed than other addresses. Caches exploit spatial
locality (the cache lines) available in application programs to reduce memory access
latencies. The closer the data is to the execution engine of the CPU, the faster the
memory accesses can be completed. System architects should strive to keep the data
as close to the CPU as possible, ideally the CPU should be able to access all memory
within one cycle.

Temporal locality is the property that expresses the inclination of a program to
repeatedly access the same memory locations. A program that exhibits good
temporal locality has a high probability of accessing the same memory locations
multiple times in the near future.

2.1.8 Latency and Bandwidth

The effects of bandwidth and latencies have been studied in multiple papers,
among them in a paper by Chong [Chong98]. Latency is associated to
communication and is a problem for modern computer system architects. Memory
latencies increase every year relative to processor execution engine performance.
Three approaches to alleviate this have been identified [Johnson92 p. 2]:

1. Avoid long latency operations by introducing a memory hierarchy (caches).

Data reuse is enhanced through exploitation of temporal and spatial locality in
the program.

2. Reduce latencies [Gupta91] by minimizing the physical communication distance
and thereby exploit physical locality.

3. Tolerate long latencies [Gupta91] by exploiting multithreading, prefetching and
relaxed memory consistency techniques. These approaches exploit overlap of
long latency operations. Latency tolerance aspects for software distributed
shared memory mechanisms has for example been studied by Mowry
[Mowry98].

Bandwidth describes the rate at which data is delivered from one component to

another. Latency is related to bandwidth in the sense that low bandwidth can incur
higher latencies in the system, especially for request-reply protocols.

 17

2.1.9 Synchronization

An important mechanism in parallel and concurrent systems is that of
synchronization. The purpose is to achieve program order among processes and/or
to achieve mutual exclusion for shared data. These two methods are called
synchronization for precedence and synchronization for mutual exclusion [Quinn94
p.91]. Different forms of synchronization include barrier synchronization and point-
to-point synchronization. Barrier synchronization is used whenever multiple processes
agree to wait for every other peer to advance to a certain point. At that point they all
synchronize and are thereafter allowed to proceed. Point-to-point synchronization
depicts two processes and their mutual synchronization. An example of point-to-
point synchronization is when a message based communication mechanism utilizes
send and receive primitives to synchronize.

Synchronization relies on indivisible atomic read-modify-write actions. Each
hardware architecture has its own mechanism to provide for atomic actions.
Compare&swap and test&set are two examples of processor instructions that are
indivisible, and on which all other forms of synchronization can be built. In a
multiprocessor system, atomic actions must be performed by other means. This
includes mechanisms that lock the local bus in order to achieve exclusive read-
modify-write access to a shared variable. Busy wait/spin-locks can enable mutual
exclusion, but consume resources since the processor is not doing any useful work at
all while spinning. Other threads on the same processor should be able to run while
the first thread is waiting for the lock. A common technique of guaranteeing mutual
exclusion in a single processor system is by disabling interrupts.

2.1.10 Granularity

Granularity is used to describe the number and size of tasks into which a problem
is decomposed [Grama2003 p. 89]. The spectrum stretches from fine to coarsely grain
and the granularity of tasks (fine or coarse grain) depicts the possibility to divide a
task into multiple threads and thus exploit concurrency. The granularity of
communication depicts for example the amount of data being passed in a memory
reference [Culler99 p.186-187]. Granularity as a term can be applied to describe the
characteristics of synchronization as well.

2.1.11 Scalability

Scalability is the ability of a computer system component to be partitioned on other
computer system components in a flexible and efficient way. To be able to fulfill the
requirements of an application to grow in the future, it is important to decide which
parts need to scale. Most parts of a computer system are able to scale to a certain
degree. Interconnects can support a variable number of devices, and processor
boards and the operating system need to be scalable enough in order to support
these extra devices. Two approaches concerning scalability have been stated. The
first approach is scalability over machine size [Culler99 p. 206] which focuses on being
able to scale the machine hardware and software while still fulfilling the original

 18

requirements. The second angle of approach is scalability over problem size, which
focuses on being able to scale the application and the problem, i.e. being able to run
new applications and introduce new functionality.

Scalability as a term is used for describing a system component that can be
enhanced in some respect. A computer can increase its available amount of memory
or increase its number of available processors. Culler [Culler99 p. 456] identifies three
domains of interest regarding scaling at the architecture level; bandwidth scaling,
latency scaling and cost scaling. These three are the main metrics for determining the
scalability of the hardware architecture, but the system user cannot ignore how well
the software scales on that particular machine. If the algorithm cannot be partitioned
on the underlying hardware architecture in an efficient way, there is a minimal
incentive of introducing a scalable multiprocessor architecture.

Culler [Culler99] illustrates the fundamentals of hardware architecture scalability
with an abstract view of how the essential components of a system, the processing
unit (processor), the memory and interconnects (links and switches), are organized.
In a parallel system that scales well, a large number of processing units should be
able to interconnect with a sufficient large amount of memory modules. How
successful the assembly and design of the system is, depends mainly on the three
architecture scaling parameters mentioned earlier; bandwidth, latency and price.
Building efficient and high-performance parallel systems leads to many common
factors in design, regardless whether the design is for large distributed database
systems, industrial automation systems or multiprocessors on chip. Factors such as
locality in all levels of design (memory system, location of software modules based
on their usage, as well as the physical distance between processors), minimizing the
workload on each node by for example creating more efficient algorithms or
optimizing code or logic, minimizing overhead in relationship to useful work, as well
as partitioning tasks among multiple processing units are important in every
multiprocessor system. Loosley and Douglas [Loosley98] discuss these issues in
respect to database systems and distributed systems.

An important metric in this context is the computation-to-communication ratio
[Culler99 p.132]. This ratio is relevant for scientific applications and industrial
systems alike, but the term is mostly used as a metric for large scalable systems. The
larger the computation-to-communication ratio is the more important the ability to
achieve overlap of communication and computation becomes.

2.2 Parallel Hardware Architecture
This chapter discusses parallel hardware architecture in general, but directs the

discussion to systems implemented for industry environments where possible. The
discussion strives to present the state-of-the-art designs but also define terms and
techniques that are fundamental for the discussion. The text intends to give a walk-
through view of the architectural components of multiprocessor architectures, issues
that have been relevant for understanding the architectural alternatives that were
available in this project.

 19

2.2.1 Single Processor Architecture

In order to describe multiprocessor architectures we will first briefly discuss the
basic parts of a common single-processor machine. A computer does essentially
consist of five components; input, output, memory, datapath and control
[Patterson98 p.16]. Datapath and control are usually combined to what is commonly
called the processor. The processor fetches instructions as well as reads and writes
data to the first level of memory, the level 1 (L1) cache. If data or instructions are not
available to the processor in the first level cache, the memory subsystem will have to
fetch the instructions or data from the lower levels of the memory hierarchy. The
final instance of random access memory is the primary memory (in this context we
overlook facilities such as disks which are seldom used in real-time industrial
systems).

Basically, two historical hardware architectures exist; the Von Neumann
architecture and the Harvard architecture. The Von Neumann architecture
[Heuring97 p. 24] architecture (processor) has a unified view of memory, which is in
contrast to the Harvard architecture that has separated instruction and data memory
areas. The processor fetches instructions from the memory hierarchy thereby
controlling the datapath and manipulating data in memory. Input and output is
commonly performed by peripheral devices, which are initialized and controlled by
the processor. Modern peripheral devices can usually access memory directly (DMA)
and notify the processor by interrupting it. A single processor system has, per
definition, only one processor and the system does not need to incorporate facilities
that enable multiple processors to work consistently. In a single processor system
only one processor accesses memory at every instant even though multitasking
operating systems may schedule multiple processes onto one processor in an
interleaved fashion.

Processor performance has been increasing according to Moore’s law over the past
decades, which means that on average performance of a modern processor has
doubled every 18 months. The development of memory-technologies has not been
able to keep up to this enormous increase in speed. The solution to this problem has
been to create a hierarchic memory system, in which smaller but faster memories are
high up in the hierarchy (close to the processor) and slow but larger primary
memory are at the bottom. Memory hierarchies have been the commonly used
mechanism to bridge the gap between processor and memory performance. Memory
is also a very important component in multiprocessor systems, and computer
architectures can be categorized according to their memory system design, as
discussed in section 2.2.3.

2.2.2 Processors from a Parallel Perspective

Modern processors increase performance by employing non-predictive methods or
components. Branch prediction, superscalar pipelining, out of order execution and
memory hierarchies cause the system to be difficult of predicting in terms of
execution time of programs, yet these techniques are a necessary component in

 20

achieving high performance. Even though such processors are less predictable, they
are used in many real-time systems since they yield higher performance than simpler
architectures.

These modern processors try to exploit parallelism among individual instructions
within a sequential flow of instructions. The amount of parallelism available within a
block of sequential code is commonly labeled Instruction Level Parallelism (ILP) as
mentioned in section 2.1.6. Data dependencies limit the ability of the processor to
execute and retire more than a few instructions concurrently each cycle. An example
of how limiting to performance data dependencies can be, and how important it is to
break the data dependency limit of processors, is illustrated by two techniques that
exploit value prediction and computation reuse [Wu2001]. Value prediction is a
speculative method that uses the values of recent executed regions of code in order to
predict the results of future calculations of the same region of code. If the result turns
out to be incorrect the predicted values must be discarded. Computation reuse is a
non-speculative technique that caches inputs and outputs of previous computations
to be used in later computations. Results from integrating the two techniques shows
a speedup of up to 1.4 compared to using one of the techniques alone.

Thread Level Parallelism (TLP) is being exploited in MIMD architectures (see section
2.2.3 for multiprocessor categorization), as for example in symmetric multiprocessors
(SMP). The development of processors has been dramatic from the dawn of the
microprocessor in the early 1970’s. During these years bit-level parallelism and
instruction level parallelism, have been exploited extensively. Multithreading
architectures and multithreaded processors such as the Stanford Hydra
[Hammond2000] or the Tera MTA [Alverson90] have been created but have had
limited commercial success.

A multithreading technique that has been studied recently is the so-called
Simultaneous Multi Threading (SMT) processors [Tullsen96], where instructions
from multiple threads compete for the available execution resources. Unlike other
multithreaded architectures, SMT-processors let multiple thread contexts issue
instructions simultaneously. A commercial product that employs SMT, i.e. exploits
thread level parallelism on chip, is the so-called Hyper-Threading technique
[Elektronik] [Intelwww] from Intel. Each logical processor is equipped with two L1
caches and two register sets but only one L2 cache. This allows for two threads to
execute simultaneously, which improves latency hiding. With this technique the two
threads compete for the same execution resources, such as the ALU. The main
purpose of this technique is to “use thread-level parallelism and instruction-level
parallelism interchangeably” [Lo97]. The Hyper-Threading technique has been
released as an implementation in the Pentium 4 processor.

A way of handing over responsibility of guaranteeing independence between
instructions to the compiler is to implement Very Long Instruction Word (VLIW)
architectures [Patterson98 p. 528]. The compiler analyses the code to find data
dependencies and thereafter creates VLIW instructions that enables independent
execution at the greatest possible extent. Advantages include simplified instruction

 21

decoding and reduced need for hardware resources. The disadvantage is the need for
frequent recompilation of executables, due to the binary incompatibility of different
generations of processors. The new 64-bit generation processors from Intel, the IA64
architecture, will incorporate VLIW instructions [Stallings2000]. This technique is
named Explicitly Parallel Instruction Computing (EPIC).

Reduced Instruction Set Computers (RISC) [Patterson80] have increased processor
performance during the 1990’s and almost all processor architectures have
introduced pipelined execution of instructions and many high-performance
processors are superscalar, i.e. have more than one parallel instruction pipeline. The
purpose of the RISC is to achieve effective execution by letting all instructions have
the same size, allowing only load and store instructions access memory and execute
one instruction per cycle (single pipelined). Example RISC architectures are the MIPS
and the PowerPC. Complex Instruction Set Computers (CISC) do not share these
properties but can have variable length instruction formats and usually incorporate
more functionality per instruction. The common objection to implementing such
architectures is that it is more difficult to exploit ILP. Traditional CISC architectures
include DEC PDP-11 and the VAX11, and Intel’s IA-32 architecture is usually
depicted as a CISC as well (even though it is implemented as a RISC architecture
internally).

In industrial and embedded systems, Digital Signal Processors (DSP) such as the
floating point capable DSP SHARC from Analog Devices [Analogwww] provides
floating-point and signal analysis capabilities for real-time control applications
(especially for frequency analysis). The system we have studied does not incorporate
DSPs at the numerical module level (processor boards) but in the sampling
peripherals. Since the trend has been to move functionality from DSPs to general
purpose processor boards, we have not considered the use of such components in
our study.

Some modern processors utilize instructions that act upon multiple data locations
at the same time such as the MMX instruction set and the streaming SIMD extensions
(SSE) [Intelwww2] for Intel’s Pentium processors. These architectures will be
discussed further in section 2.2.3.1.

2.2.2.1 Interrupts and External Events

Interrupts is the means by which devices notify the processor of events, as for
example when it has completed a memory transfer. Interrupts are in effect the
technique for peripherals and the processor to synchronize their actions. In the
system we have studied interrupts are an important issue due to the many
peripherals that are present.

Modern implementations of interrupt handling have evolved into including
handling traps, i.e. internal or program interrupts. Manufacturers use terms such as
exceptions, traps, and faults differently but all describe a reaction to an event,
collectively known as interrupts. Interrupts occur either synchronously or
asynchronously. Synchronous interrupts occur due to events that originate from the
instruction flow, such as floating-point imprecise exceptions or division by zero

 22

exceptions. Asynchronous interrupts on the other hand occur due to external events
such as system reset or external interrupts from peripheral devices. Asynchronous
interrupts are important from the parallel point of view as well, in that they are the
notification mechanism not only for peripheral devices and processors, but between
processors and processors as well (as in SMP architectures).

Walker [Walker95] has classified interrupt implementation choices. When an
interrupt occurs the state information of the running process/thread has to be saved.
This saved information is used to restore the processor to the same state as it was in
before the interrupt occurred. This includes at least saving the program counter but
usually it also incorporates saving vital registers and switching to another stack.
Interrupts can be either precise [Smith85] or imprecise. Imprecise interrupts allow for
instructions executing out-of-order to complete without serial correctness, meaning
that the user is responsible for guaranteeing serial correctness. The Alpha processor
enables the user to issue special instructions, i.e. memory barriers, to prohibit any
instructions from issuing until a following arithmetic instruction has completed.
Precise interrupts on the other hand guarantee serial correctness, and the user
(usually the compiler) does not need to use memory barrier instructions. Processors
utilize precise interrupts when a page fault interrupt occurs. The processor saves the
processor state at the time of an interrupt, which enables the system to have another
process run while the correct page is collected from the hard drive or another media.

An important issue in real-time and industrial systems is interrupt service time
latencies. Modern operating systems such as Linux [Bovet2003] and Windows
[Solomon98] have a two layered handling of interrupts, where a minimal interrupt
handler acknowledges the interrupt and then schedules a routine to be executed later
(Deferred Procedure Call in Windows, and so called tasklets in Linux). Solaris also
minimizes long-latency interrupt response by allowing interrupts to be scheduled as
threads [Mauro2001]. Real-time operating systems such as VxWorks let all Interrupt
Service Routines (ISR) share the same stack and are not allowed to block. This means
that ISR are not allowed to take synchronization objects such as semaphores.

2.2.2.2 The Alternative to Interrupts: Polling

The alternative to interrupt handling is polling, in which software or possibly
another hardware device periodically examines whether a certain event has
occurred. Polling may be useful in systems with fast network interfaces, such as
Gigabit Ethernet. Receiving an interrupt for each frame received would not be
feasible for a processor to handle, and many fast network interfaces do not even
provide the possibility to issue interrupts. In this case polling is an alternative as
described by Perkovic [Perkovic99]. The paper discusses both how multithreading
and automatic insertion of polls can increase average performance and interrupt
latency can be minimized using a watchdog at millisecond intervals. Polling as term
can be used in other research areas. Takagi [Takagi88] describe polling models where
a single server accesses multiple queues in cyclic order and no asynchronous
notification mechanism exists.

 23

In the case-study system an example of a component utilizing polling techniques is
the watchdog. It periodically polls devices and their status in order to detect system
faults.

2.2.3 Categorization of Parallel Architectures

It is useful to categorize multiprocessor hardware architectures into groups where
each category represents hardware architectures with certain common properties.
Such attempts exist, where a famous categorization based on the instruction and data
streams (control flow) was created by Flynn [Flynn96]. According to the taxonomy
created by Flynn four combinations of single or multiple instruction and data
streams exist:

§ The Single Instruction stream, Single Data stream (SISD) computer represents a

traditional uniprocessor.
§ Single Instruction stream, Multiple Data Stream (SIMD) computers work with

data parallel constructs on vectors of data. In short, this is an architecture where
“a single instruction specifies operations on several data items” [Jordan2003
p.7].

§ Multiple Instruction streams, Single Data stream (MISD) computers constitute
one of the four variations of computers described by Flynn. Pipelined
processors that cooperate in performing a part of the computation on the same
data stream [Narayanan93] constitute an example MISD architecture.

§ Multiple Instruction streams, Multiple Data streams (MIMD) computers are the
most commonly used architectures today. SMP, CC-NUMA and clusters all
belong to this category of computers, and these architectures are described in
section 2.2.3.2 below.

2.2.3.1 SIMD Architecture

SIMD computers consist of Processing Elements (PE) that synchronously execute a
single instruction from a single program counter [Patterson98 p.749]. Every PE
executes synchronously and is controlled by a central control unit (usually a general-
purpose processor). Many modern general-purpose processors implement SIMD
instruction sets. Example instruction sets include the MultiMedia eXtensions (MMX)
from Intel and the AltiVec [AltiVecwww] for the PowerPC architecture from
Motorola and IBM. These instruction sets are designed to increase performance for
operations that are common in audio and video applications. Algorithms using these
instruction sets can issue one instruction and have the processor acting on a vector of
data in parallel. The data is contained in special data registers, in the case of MMX
they are represented by 64-bit internal registers. The evolution of MMX and AltiVec
instructions illustrates the need for specialized instructions that internally utilize
parallelism.

Traditionally large SIMD architectures that focus on data parallelism are labeled
Massively Parallel Computers. Two such architectures are the MasPar MP-1

 24

[Nickolls90] from MasPar Computer Corporation and The Connection Machine 2
[Tucker88] by Thinking Machines Corporation. SIMD architectures exist for
industrial applications as well. The special-purpose Linear Picture Processor (LAPP)
[Lawson92 p.431] is a SIMD architecture capable of scanning silicon strings used in
the manufacturing process of motor blocks. The massively parallel architecture is
capable of performing a visual examination of the silicon strings in real-time.

2.2.3.2 MIMD Architecture

The MIMD architecture is by far the most used computer systems architecture and
a plethora of possible MIMD architectures are possible. Hwang [Hwang98] has
presented a categorization of MIMD architectures that decomposes into the
subcategories shown in Figure 7 below. The first division is between the Uniform
Memory Access (UMA, Central Memory) architecture, the Non-Uniform Memory
Access (NUMA, Distributed Memory) architecture and the No-Remote Memory
Access (NORMA) architecture. Hwang divides the MIMD architecture into sub-
categories that describe the access to memory in the parallel system.

MIMD

UMA

NORMA

SMP

PVP

NUMA

Cluster

MPP

COMA

CC-NUMA

NCC-NUMA

Figure 7, a categorization of multiprocessor architectures [Hwang98 p. 238].

2.2.3.3 Shared-Memory Multiprocessor Systems

Two of the sub-classes in Hwang’s categorization allow the processors to share
memory (UMA and NUMA). A categorization that divides shared memory
architectures according to different memory layouts has been defined by Culler
[Culler99 p. 271]:

• The shared cache architecture is symmetric, meaning that all processors have

equal length to access memory. Since all processors share all cache memory, no
cache-coherence problems arise. This approach has only been shown to scale up
to eight processors, but may become interesting again for system-on-chip (SoC)
architectures. Interconnects are obviously the limiting factor since all processors
share the same interconnect to the caches.

 25

• The bus-based shared memory architecture is popular in for example server
systems due to its good price/performance ratio. Efficient use of shared
resources, such as I/O buses and printed circuit boards, contributes to that. The
architecture has shown to be scalable up to over 30 processors. The most
common bus-based shared memory architecture is the symmetric
multiprocessor (SMP). SMP architectures are being used to a greater extent in
industrial systems today, and companies such as Concurrent Computer
Corporation [Concurrentwww] are designing complete systems for use in real-
time industrial applications.

• The dancehall architecture exchanges the bus in the bus-based shared memory
architecture with a scalable point-to-point interconnect network. All memory
modules are still uniformly far away from the processors; therefore the
architecture can be described as a symmetric architecture. This memory
architecture is not widely used today.

• The distributed-memory architecture (DSM) lets all nodes in the system have a
share of global memory resulting in that memory accesses are not uniform. This
architecture promotes scalability and can be efficient if data locality can be
exploited in the local node.

2.2.3.4 Cluster Architectures

Clusters or NOW (Network of Workstations) provide a way of using personal
computers and/or workstations to achieve a high price/performance ratio. Personal
computers improve their price/performance ratio by approximately 80% per year,
while supercomputers only increase the same ratio at a rate of 20-30% per year
[Anderson95]. NOW can provide a cheap and highly available (it is possible to
compensate for nodes going down) network of computers, using multiple CPUs for
parallel computing. The system does usually scale well and every node executes its
own operating system (suitable for heterogeneous environments).

Berkeley NOW [Anderson95] and Beowulf [Beowulfwww] are two well known
cluster systems that have been developed. Berkeley NOW uses switch-based
networks (ATM or the Myrinet) and the original NOW system had a hardware
configuration of 105 SUN Ultra 170 workstations. Beowulf clusters have become
popular mainly due to the fact that they can be implemented using free operating
systems as Linux and FreeBSD. Beowulf clusters reside on a dedicated network and
nodes can communicate with processes on other nodes through the use of global PID
(Process Identification). There is no software package that is called “the Beowulf
cluster system” [Beowulfwww2]. Rather, a Beowulf cluster consists of different
software packages such as PVM, and a special Linux kernel (supporting global PIDs
etc.).

Cluster architecture is being used increasingly in industry, scientific computing
and biochemistry. In industry the main use is for simulation purposes, but real-time
properties of clusters are being investigated as well [Suzuki2003]. We have seen no
obvious use for cluster architecture in the case-study system.

 26

2.2.4 Examples of Multiprocessor and Distributed Real-Time Systems

This section describes three systems that have contributed to the understanding of
distributed multiprocessor real-time systems. We have focused on describing aspects
of those systems that are relevant for our project, such as for example network nodes
and the utilization of functional parallelism.

2.2.4.1 HARTS

HARTS [Shin91], Hexagonal Architecture for Real-Time Systems, is a distributed
real-time architecture developed at University of Michigan in the early nineties. The
project focused on supporting time-constrained and fault-tolerant communications.
The architecture consists of clusters of nodes interconnected by a hexagonal mesh. A
HARTS node consists of application processors (AP), a network processor (NP) and
an Ethernet Processor interconnected by a VME-bus [Kandlur91] (Figure 8). Every
node is synchronized with the help of specialized hardware which provides a global
time base which is used by the HARTOS operating system to allocate shared
resources [Ghosh94 p.38].

Processor Card (AP)
MC68020
Processor Memory

VME Bus
Interface

Processor Card (AP)
MC68020
Processor Memory

VME Bus
Interface

Processor Card (AP)
MC68020
Processor Memory

VME Bus
Interface

Network Processor (NP)

VME Bus
Interface

Ethernet Processor

VME Bus
Interface

VME

Hexagonal
Mesh

Ethernet IEEE
802.3

Figure 8, a HARTS Node [Kandlur91].

The purpose of incorporating the network processor was to offload the application
processors and implement communication functionality from the physical layer up
to the transport layer. Communication between the application processors and the
network processor is implemented by using a DMA interface on the VME-bus.
Achieving low communication latency was one of the goals when designing the
network processor and it is also capable of monitoring the load on the network as
well marking messages with time-stamps.

The impact of the HARTS project was not as profound as compared with the
Spring system, but network and I/O Nodes in real-time systems have parts in
common with the approach in our study. The most important similarity is the
functional separation of communication and application components.

 27

2.2.4.2 Spring

The Spring system and kernel was an academic project developed by, among
others, John A. Stankovic and Krithi Ramamritham [Stankovic91] [Stankovic92]
[Stankovic99] [Molesky90]. The motivation for the project was to provide basic
support required for large and complex real-time systems, and special focus was on
fulfilling timing constraints. Current real-time operating systems, in their view, use
the wrong paradigm for enabling predictable execution. These real-time systems are
in fact only stripped-down and optimized versions of time-sharing operating
systems, stressing fast context switching as well as ability to respond to external
interrupt quickly. The main critique brought up against these current real-time
systems include the lack of explicit consideration of timing constraints, the difficulty
to predict task executions and the lack of explicit handling of tasks with complex
characteristics.

With this critique in mind the creators of the Spring kernel tried to create a system
that uses the information known beforehand about the tasks in the application. This
information is then used during runtime and the result is a system where flexibility
and predictability is ensured. The system uses a value system on tasks that values the
tasks ability to meet their timing requirements.

Figure 9, The Springnet distributed system [Stankovic91].

Tasks are classified according to two main criteria: importance and timing. There
exist critical tasks, essential tasks and unessential tasks where the critical tasks

 28

include tasks that must meet their requirements (a task deadline miss will result in a
negative infinite value to the system). Essential tasks include those that do not cause
catastrophic events in the system if their requirements are not met but will degrade
performance in the case that the requirements are not met. Unessential tasks on the
other hand are usually background tasks that perform maintenance functions and
long-range planning. Springnet is the distributed system that utilizes the spring
kernel and it consists of spring nodes as can be seen in Figure 9 below. A spring node
is a multiprocessor that consists of application processors, system processors and an
I/O subsystem.

Three important components of a real-time kernel are highlighted in the Spring
kernel, the task management, the scheduling policies and the memory management.
A fourth important component, the inter-task communication is omitted in the
discussion in [Stankovic91].

The Spring kernel presupposes that the application designer has a priori
knowledge about the characteristics of tasks. This includes knowledge about WCET
(Worst-Case Execution Time), deadlines, periods, the maximum number and type of
resources needed, its type (critical, essential and unessential tasks), and its
importance level. Knowledge about precedence graphs and communication graphs is
also needed. All this information is maintained by the task descriptor.

The architecture consists of application nodes, system processors and an I/O
subsystem and an advantage of the architecture is [Burleson99]:

System processors offload the scheduling algorithm and other OS
overhead from the application tasks both for speed and so that external
interrupts and OS overhead does not cause uncertainty in the
execution of guaranteed tasks.

The Spring Kernel has been used in different environments, such as for example
manufacturing industry [Stankovic94] and a co-processor [Burleson99] has been
developed to accelerate scheduling in the Spring kernel. The paper [Burleson99]
claims a threefold speedup compared to software scheduling. The coprocessor is
designed as a memory module and processors communicates with the accelerator by
means of memory accesses.

2.2.4.3 UltraSmart

UltraSMART [Boxer94] is a parallel real-time architecture that was developed by a
company called Concurrent Computer Corporation [Concurrentwww]. The
UltraSMART architecture was at that time (1994) developed for the widely used
industry standard VME bus but today the company supplies a more modern
symmetric multiprocessor architecture for industry and military under the name of
PowerMAXION. UltraSMART provides a directory based cache-coherent mechanism
that lets the code executing on the processing modules (XPU) access a coherent
memory space. An ASIC, the so called Crosspoint Processing Module (XPU), handles

 29

memory accesses to local and remote memory. The UltraSMART architecture is
accompanied by a UNIX operating system with a kernel that is preemptive and that
is specially developed to handle disk system I/O. Features, aside from common
features such as an optimized interrupt system and priority real-time scheduling
policies, is its capability to dedicate a processor to specific tasks. The company’s
motivation for this mechanism is that “reserving processors guarantees optimum
response for the dedicated tasks”. As with the systems described above, this allows
for functional partitioning. It would be possible to statically pin communication tasks
to a dedicated processor, thereby offloading the other functionality (applications).

2.2.5 Interconnects

Together with processor performance and memory access latencies, interconnects
have historically been a major bottleneck in computer systems. Insufficient
bandwidth and high latencies of interconnects have rendered distributed and parallel
computing difficult. The maximum possible length of interconnects has affected the
physical topology of systems. Interconnects enable communication between nodes
and components, and a broad range of commercial products are available, spanning
from on-chip buses to local area networks and wireless data links. Parameters that
affect which interconnect to use include; physical extent, fault tolerance
requirements, how easily links are affected by electro-magnetic interference (EMI)
and price. The goal of this section is to introduce interconnects that are used in
industry environments and will include some new and emerging interconnects
(RapidIO and PCI-Express).

2.2.5.1 Bus Functionality

A bus provides paths between various parts of a computer system and implies the
possibility of communication between more than two devices [Gustavson84]. Devices
on a bus request access grant to the bus by communicating with the arbitrator. The
arbitrator is usually a centralized component that resolves the contention between
transaction initiators [Dawson99]. The time that it takes for a bus master, i.e. a device
that initiates a transfer of information, to gain bus mastership, is labeled access
latency. Each current bus-master, only one at a time, is labeled the commander. The
time that the bus is held by a commander is called bus tenure. Multiple masters on
the bus may contend for initiating a transfer, which leads to contention for the bus.
Masters and slaves exchange information by using different address ranges. Masters
can therefore select the slaves which it wants to communicate with. When connected,
the master and the slave can exchange information. The devices that participate in
the transfers are called the listener and the talker. After data has been exchanged, the
commander can chose to break the connection, i.e. disconnect. This sequence of
actions – setting up a connection, transferring data and breaking the connection - is
defined as a transaction. The set of rules that governs the use of the bus by masters
and slaves is called the bus protocol. A bus can be either parallel or serial. A
completely parallel bus dedicates each bit of the bus protocol to a dedicated signal

 30

line. In a serial bus all information is multiplexed over a dedicated signal line.
Multiplexing is a time sharing technique that reduces the number of bus-lines by
enabling both address and data phases on the same set of signal lines.

DMA (Direct Memory Access) provides a way for peripheral devices to directly
access memory. The main advantage of using DMA is that the processor does not
spend cycles [Heuring97] by moving data from peripheral devices to primary
memory. An example of an integrated circuit that provides DMA functionality
(channels) in the PC architecture is the 8237A [Intel8237A]. It is a remnant from the
PC-AT architecture and is used mostly to transfer data from slow devices such as
floppy disk drives [Bovet2003 p. 436] to main memory. The setup time for the DMA
channels is usually high which makes it more efficient to let the CPU perform small
data transactions.

The next sections will describe I/O buses and relevant network based
interconnects. We have decided to separate interconnects into two categories; I/O
buses and local area interconnects. The categorization divides according to the
physical extent of the interconnects, where I/O Buses have the least physical extent
and local area network interconnects have the largest physical extent. More
categories of interconnects, such as processor buses and field buses (for example
ProfiBus [Profibuswww]), could have been added to the discussion, but we have
limited our overview to interconnects that are most relevant for the case-study
system.

2.2.5.2 I/O Buses

This section describes some well known I/O buses used in industrial systems
today and that are used for connecting both peripherals and processor boards.

The PCI-bus is together with the VME-bus the most common bus for industrial
automation applications. A large amount of devices and appliances have been
constructed for the PCI-bus, and a wide range of tools are available to the users of the
bus. The first version of the PCI-bus appeared 1992 (v1.0) while version 2 was
released in 1995 [Shanley99]. The latest version is v2.2, which dates to back to 1999.
The bus is processor independent and supports up to ten electrical loads. Logically
the PCI-bus consists of buses (up to 256 buses), devices and functions within devices.
A function is a form of logical device in a physical device and each function contains
its own individually addressable configuration space. The bus hierarchy can be
scanned by software in order to find available devices and functions. Each device has
a unique vendor and device identifier and each PCI-device is assigned those unique
identifiers when manufactured [PCIwww2]. The purpose is to have a configurable
bus hierarchy where peripherals may physically occupy different slots. Physically the
PCI-bus is a reflected-wave switched bus [Shanley99], meaning that a wavefront
reflection of the signal issued needs to be propagated back across the bus to be able
to drive the signal lines to the desired logic state. The PCI specification states that the
devices must only sample their inputs on the rising edge of the PCI-clock signal.

Important performance related techniques of the PCI-bus includes the possibility
of performing burst read- and write- transfers, i.e. a transfer consisting of one

 31

address phase and multiple data phases. Burst functionality eliminates the need of
constantly regaining mastership of the bus. Theoretically, optimal use of bursts gives
rise to a maximum transfer rate of 132MB/s for the 33MHz 32-bit specification (v1.0).
In practice, the sustained bandwidth may be much lower.

The PCI specification allows for arbitration requests to be issued while another
bus-master is performing a transfer. Overlapping arbitration and data transfers are
thereby enabled, thus promoting performance. The arbitration scheme is required to
be fair by the PCI-bus specification, meaning that all devices must be allowed to
eventually perform a transaction on the bus. The specification defines the arbitration
implementation very loosely, but most implementations are reported to adhere to
round-robin arbitration [Wolf2001 p.455].

PCI-to-PCI bridges glue together multiple PCI-buses in a hierarchy, and the bridge
forwards data from one side to the other (upstream and downstream). A PCI-to-PCI
bridge acts as a target on one side and master on the other when forwarding data.
Latencies through PCI-to-PCI bridges have been reported to be in the order of tens of
nanoseconds up to milliseconds [Chamé98].

PCI-Express [PCIwww] is a serial backward compatible extension of the PCI Bus.
Backward compatibility is assured on the software level in that devices are
enumerated as on a conventional PCI-bus and that devices are accessed in the same
manner. Therefore device drivers need not to be altered when migrating to PCI-
Express. Instead of defining a parallel bus, PCI-Express provides a serial point-to-
point I/O interconnect that can scale better than the conventional PCI-bus. The
number of physical pins as well as the frequency used is configurable, which
promotes bandwidth scalability. The serial interconnect does not have as stringent
synchronization restrictions as the conventional PCI-bus. Data throughput
performance has a maximum of 250MB/s per lane (PCI-SIG terminology for a link)
resulting in a total available bandwidth of 16 GB/s for a 32 lane configuration.

RapidIO [RapidIOwww] is a packet-switched, point-to-point interconnect that is
designed for a memory mapped programming model. Peer-to-peer communication
is possible and the interconnect provides for a globally shared distributed memory
[EETimeswww]. Furthermore, the hierarchy is not strictly fixed, and up to 64,000
devices can be addressed on the bus. Each device can be targeted through memory
accesses depending on an offset. The I/O system is packet oriented; each node is
either rejecting or forwarding packets from one side to the other, assuming the
packet is not bound for the node itself. Up to 256 outstanding transactions between
each sender and receiver pair can be active.

While not designed for process control or for real-time industrial use, we mention
the Universal Serial Bus (USB) [Anderson97] here due to its increased popularity. The
maximum bandwidth of the first USB version is 12 Mb/s, while USB v2.0 enables a
data rate of up to 480 Mb/s. USB devices connect to the host system via a USB host
controller and the host controller driver software defines the transactions that are to
be scheduled during the next timeframe. This timeframe is usually 1 ms in which all
pending transactions are broadcasted on the serial bus. While many devices can be

 32

attached to the USB-bus, each device does not occupy system resources such as IO or
memory address space, IRQ lines or DMA channels, which is beneficial compared to
for example conventional serial devices (UART).

2.2.5.3 Local Area Network Interconnects

Networks are usually packet-based, where a packet is the segment of information
that is transported over the channels and that is unpacked at the receiver [Culler99].
A switch is a device that acts as a ”man in the middle” on the physical link. It can
interpret the information contained in the packets and forward them to the correct
destination. The wires or fibers that carry the analog signal constitute the link to
which the transmitter, a physical device that converts digital information from the
system to analog signals on the link, is connected. The receiver, the physical device
that converts analog signals on the link to digital signals is also connected to the link.
The physical protocol converts the stream of digital symbols into an analog signal. The
amount of data transmitted across a link in one cycle is called a physical unit, or a
phit. Now, a channel for digital information consists of the transmitter, the link and
the receiver. The channel has a width w, which denotes the number of signal lines,
and a signaling rate of f=1/τ, where τ denotes the cycle time. Therefore the channel
bandwidth can be defined as b=wf [Culler99]. The link-level protocol segments the
stream of symbols crossing a channel into larger logical units, such as the packets or
messages.

Ethernet (IEEE 802.3) [Molle96] [Tanenbaum96] is the most commonly used
network technology used today, and it is even used in real-time systems. The IEEE
802.3 protocol is a Carrier Sense Multiple Access / Collision Detect (CSMA/CD)
protocol where transmissions are scheduled by each node independently. The nodes
transmit as soon as the link is quiet and if a collision occurs, each node backs off a
random amount of time until it tries again. The most prominent performance effect is
that a highly loaded network will show poor channel utilization. Furthermore, delay
guarantees cannot mathematically be proven on the Ethernet datalink layer
[Banerjea96 p.5], which is of high importance in real-time systems.

The 100VG-AnyLAN [HP95] [Molle96] [100VGwww] network is a shared-medium
LAN protocol that has been ratified by IEEE as the 802.12 standard. It is a protocol
that was released in 1995 and originates from the IEEE 802 project. The minimum
data rate is 100Mbits per second and the standard is capable of transmitting both
IEEE 802.3 (Ethernet) and IEEE 802.5 (Token Ring) frames on the link, and it is
available both for twisted-pair cable and fiber-optic cable. It differs from the IEEE
802.3 standard in that it does not define a CSMA/CD medium access control (MAC)
algorithm. Instead it defines a so called Demand Priority MAC protocol that uses a
switch repeater as a node in the network topology. The repeater continuously polls
the connected nodes according to a round-robin policy to determine which node is
allowed to send. Two priorities are allowed, normal and high, and high priority
frame requests will immediately have priority over normal frames. The protocol was
created so that the LAN would provide deterministic access and priorities
[Martini95]. Therefore the protocol is able to provide guaranteed-performance

 33

services [Banerjea96 p.5]. The technology was used by industry after the introduction
in 1995, and components for 100VG AnyLAN were sold a couple of years after the
protocol introduction. Despite the deterministic advantages over Ethernet, the
market for 100VG-AnyLAN has vanished, and virtually no manufacturers produce
100VG-AnyLAN related devices today.

2.3 Multiprocessor Operating Systems
The purpose of an operating system is to control the computer resources and

provide the base upon which application programs can be written [Tanenbaum92 p.
1]. An operating system has essentially two interfaces, one towards the hardware and
one towards the application. This chapter focuses on operating systems that are able
to operate in multiprocessor environments. Even though main focus is on embedded
and real-time operating systems we also describe some operating systems that are
not usually described as “real-time”. There is a difference between how academia
and industry defines a real-time system. Our discussion is more inclined to follow
the industry “definition”. Industry tends to define a real-time system as a stripped-
down and optimized version of a general time-sharing (often pre-emptive) operating
system.

2.3.1 Fundamentals of Operating Systems

Before discussing the peculiarities of each selected operating system some
fundamental issues of operating systems are discussed. The first concept is that of
processes and threads. Processes and threads consist of a code segment (that may be
shared among other threads and/or processes) as well as memory regions (a stack,
static data and memory allocated from the heap) and a process/thread descriptor in
the kernel. The process descriptor is commonly denoted Process Control Block (PCB)
and the thread descriptor is commonly denoted Thread Control Block (TCB). The
layout of the contents of a thread or process is illustrated in Figure 10.

Code Data (static
and heap) Stack PCB/

TCB

User space Kernel

Figure 10, Address space layout of a process or thread [Hwang98 p. 65].

A thread is more “lightweight”, sharing memory together with other threads of the
same process. Threads are the contexts of a process, acting upon the shared resources
held by the process. An opened file can for example be written to by multiple threads
in the same process. Threads must therefore use operating system mutual exclusion
mechanisms to be able to correctly access these shared resources. Due to the more
lightweight characteristics of the threads, they are usually not as time consuming to
context switch as processes.

 34

Most modern operating systems introduce at least two processor execution modes,
privileged and non-privileged modes. These modes are sometimes called kernel mode
and user mode. The use of these different modes depends on the processor’s ability to
automatically switch mode whenever an event such as a system calls, traps and
interrupts occur. Code running in user mode can thereby be prevented from
manipulating data structures that are internal to the kernel, such as the page-tables.

The scheduler is the operating system entity responsible for controlling context
switching of processes and threads. Employing correct scheduling algorithms is
important in real-time systems. Some systems have stringent requirements on
timing, as for example operating systems used in airplanes and cars. These systems
are used in products where human lives are in danger, and are labeled safety-critical
systems [Storey96]. In order to verify these systems, all parts of the system have to be
predictable, from the hardware architecture to the software application. This does
also include the scheduling policies, and many different scheduling algorithms and
methods have been proposed over the last decades.

The seriousness of improper execution of the system leads to a distinction of real-
time systems. Hard real-time systems are located in safety critical environments where
a need of temporal verification is of importance. Timing constraints are set on
threads in order to guarantee temporal correctness. A system designer associates a
number of parameters to a thread or process that must be fulfilled during run-time.
The thread may not start executing before a specified start time, called the release
time. After the start the thread or process must complete within the specified deadline
interval. To be able to predict the deadline it may be necessary to try to determine the
worst-case execution time (WCET, or sometimes called Maximum Execution Time,
MAXT [Puschner89]) of the code that represents the threads. In a periodic system it is
also meaningful to talk about the period of a thread, the known interval between
release-time. Events occur in the system, and their arrival times may be either
aperiodic (events occur irregularly), sporadic (the maximum frequency of the arrivals
of the events is known) or they may be periodic (The events occur at known regular
intervals). The designer has the possibility of either allowing scheduling to occur
before run-time (pre run-time / static scheduling) or dynamically at run-time.
Dynamic run-time scheduling algorithms include rate-monotonic [Liu73], Earliest
Deadline First (EDF) or the Priority Inheritance Protocol [Sha90]. Soft real-time systems
have less safety critical requirements. A definition of a soft real-time system is where
the “consequences of failures are of similar magnitude as the system benefit”.

Every thread in the system is at any instant in a special state. These states decide
when threads are to be scheduled. Only one thread per processor can at any instant
be in a ready state. Whenever a thread is not able to gain access to a resource the
thread enters a blocked state. As the resource is freed, the thread leaves the blocked
state and is linked to the ready queue. When the priority of the thread is high enough
it is made running again. Another thread may sometimes suspend another thread by
putting into a suspended state.

 35

Schedulers may use different methods to schedule threads in the system, basically
using one of three methods [Hwang98 p. 67]. The first is the use of batch-queues where
jobs are executed one after another until they are finished. The second is a method
where threads execute in short interleaved time-slices (quantum). These schedulers
are labeled time-sharing. The third a pre-emptive event-driven scheduler where threads
can be interrupted by a higher prioritized thread or interrupt.

In multiprocessor and distributed systems, a non-uniform distribution of work on
individual processor can yield less than optimal system performance. The general
technique of distributing work evenly on processors is called load balancing
[Kakulavarapu99] [Culler99 p. 123-131] [Wilkinson99 p. 198-207]. In large
multiprocessor systems, fine-grained tasks are easier to load balance due to the large
amount of processes that can be spread out on multiple processors [Culler99 p.129] (a
higher degree of concurrency is utilized). Counteracting parameters to that are the
implied increase in task management overhead and the increase in contention. In
distributed systems, migrating processes [Elson98] from one node to another can help
in achieving efficient load balancing. It is expensive and difficult to move the state of
a process to another node. Pending requests to services, open files and bindings to
other services must be modified to reply and point to the new node. In the case-study
system, dynamic process or thread movement has not been of immediate interest.

Inter-Process Communication (IPC) defines data exchange and synchronization
events among processes in different execution environments. It is therefore, per
definition, erroneous to use the term IPC to describe data exchange between threads
in the same execution environment. IPC mechanisms used in modern operating
system include sockets, POSIX signals, semaphores, message queues, monitors and
shared memory between processes. In the scope of this work we have implemented
an inter-processor FIFO message queue for a bus-based multiprocessor system.

2.3.2 A Small Survey of Multiprocessor Operating Systems

This section describes operating systems that were interesting for the work
performed within the scope of this project. One of the first questions encountered at
the start of the project was of which importance the operating system had for
enhanced system scalability. Therefore the functionality of selected well known
operating systems was studied. Focus has been on the operating system’s suitability
in multiprocessor systems, SMP-support, scheduling, as well as fundamental kernel
characteristics.

2.3.2.1 Operating Systems for Bus-Based Cache-Coherent Multiprocessors

Symmetric Multiprocessing is a hardware architecture where all processors have
symmetric access to system components. Operating systems for SMP architecture
reside in a memory area shared by all processors and where threads are scheduled
on all available processors. True SMP is often referred to as “shared everything”,
since threads can be scheduled on any processor at any time. In a SMP
multiprocessor system every processor can potentially access every region in the

 36

entire memory space. This means that two or more processors can execute kernel
code at the same instance, and may thereby act on shared resources in the kernel
simultaneously. Reading data from a resource may be allowed, but writing to a
shared resource must always be protected from parallel intervention. In an SMP
operating system every shared data structure must be identified and protected.
Kernel synchronization becomes an issue since both other processors and external
interrupts can intervene when a processor is executing a critical section. Single
processor operating systems usually protects the resources by disabling interrupts.
Symmetric multiprocessor operating system kernels rely on spin locks [Solomon98 p.
125] to protect the same resources. Kernel components that need to protect critical
resources include the scheduler, the memory management facilities and device
drivers.

SMP operating systems performance is dependent on how fine-granular the critical
sections are. Spin locks deny all other processors access to the shared resource and
minimizing the time a processor execute while holding a spin lock is important.
Generally, operating system developers try to make the kernel critical sections as
fine-granular as possible. The developers of QNX [QNXwww] argue that there are
less shared resources that have to be protected in a micro kernel compared to a
monolithic kernel such as Linux. QNX is a micro-kernel with very little kernel code
compared to for example Linux. The Linux kernel has on the other hand been
equipped with more fine-granular kernel locks with each release. First versions used
a single lock on the whole kernel, while the in the latest releases employ fine-
granular kernel locks.

2.3.2.2 Amoeba

The Amoeba project [Mullender90] was started at Vrije University in Amsterdam,
as early as 1981. We include this operating system in this survey since it is a historical
example of a microkernel. The main goal was to create a transparent distributed
operating system where a user is not aware of exactly where the program he or she
started is executing. It may execute on any node in the system depending on where
the load is low at the moment.

Amoeba is not limited to certain hardware architecture but can run on
heterogeneous systems. The memory system architecture supports both shared
memory programming and message-passing programming. Figure 11 illustrates the
architecture consisting of simple workstations (running for example a shell or X-
Windows), a processor pool (abstracted into one box, but they can be geographically
widespread) as well as dedicated servers.

 37

Figure 11, The Amoeba architecture

The kernel is a microkernel, i.e. a small kernel where only the basic functionality of
processes and threads, memory management, IPC and low level I/O is provided. All
other functionality is handled in the servers that execute as processes. The servers are
abstracted into so called objects, which is an encapsulated piece of data upon which
operations may be performed. The objects return a so-called capability, a long binary
number, to the client that is used in the future correspondence. All communication is
performed with the help of point-to-point RPC (Remote Procedure Calls) or group
communication over RPC. The RPC layer uses a protocol called FLIP (Fast Local
Internet Protocol) that provides network layer functionality.

The pool of servers is available to the users (workstations). The user can utilize a
file system based on a file storage server (bullet server) a directory server (handles
naming and directory management) and a replication server. A boot server manages
fault tolerance aspects, such as continuous polling of servers in order to determine if
they are still alive. Other servers include a TCP/IP stack, a disk server, an I/O server,
a time-of-day server, a random number server as well as a mail server. The Amoeba
kernel is not an SMP operating system in that sense that it runs in the same address
space on a SMP system. There is no discussion about real-time properties in
[Mullender90] or [Tanenbaum92 p. 588-636] and the operating system is categorized
as a distributed time-sharing microkernel.

2.3.2.3 QNX

QNX [QNXwww] is a microkernel (Neutrino) based real-time operating system
implementing minimal functionality in the microkernel (synchronization, IPC,
signals, mutual exclusion and POSIX message queues). Every other service execute as
optional processes. Neutrino supports POSIX processes, threads as well as virtual
memory. A Neutrino thread can be in 14 different states, depending on what action
or event it is currently waiting on. Neutrino supports FIFO and round robin
scheduling, as well as priority inheritance based scheduling (64 priorities). QNX can
execute on SMP architectures, which makes it unique among the large real-time
operating systems (for example VxWorks). SMP scheduling support was simple to

 38

implement according to the company since Neutrino is a microkernel. Only a small
amount of code had to be adapted in order to protect critical sections. Today, SMP
support is only provided for the Intel platform and up to eight processors are
supported. It is possible for the user to control processor affinity of individual
threads, i.e. it is possible to tie (or pin) a thread to a specific processor (by
manipulating a bit-field). By default scheduling of threads is allowed on all available
processors. Only one thread can access the kernel at any instant, but the developers
of QNX argue that time spent in the kernel is only a small fraction of the other work
performed. No published material has been found that confirms that assertion.

2.3.2.4 RTU

The RTU [Lindh98] is a hardware accelerator for operating systems. The concept is
applicable to many operating systems but research has mainly been performed in a
real-time architecture. The main goals have been to increase performance and
predictability in the system with the help of the accelerator. The benefits are achieved
mainly due to the use of parallelism in the hardware. The parallel nature of the RTU
can increase scheduling performance substantially. The RTU has not been tested on
SMP hardware, but has successfully scheduled tasks in a CompactPCI backplane
multiprocessor architecture. In section 3.2.2.2 we discuss the use of such architecture
in the case-study system.

2.3.2.5 UNIXes

FreeBSD is a UNIX-like operating system [FreeBSDwww] that is free for use and
modification. The operating system is ported to many hardware platforms including
Alpha processors, PowerPC, Intel x86 and Sparc64. The FreeBSD project has a SMP
branch [FreeBSDSMPwww] and many open-source programs and applications can
run under FreeBSD.

The Linux kernel [Linuxhqwww] (from version 2.0 and upwards) supports SMP
[LinuxSMPwww] for the Intel x86, UltraSparc, SparcServer, Alpha and PowerPC
architectures. As mentioned earlier the kernel lock granularity is becoming finer for
each new kernel release. Version 2.0 of the kernel locked the whole kernel during the
execution of a service call. The next version (2.2) improved kernel locks on signal
handling, interrupts and I/O handling. The most recent version (2.4) has added fine-
grained locks in the VFS (Virtual File System), the VM (Virtual Memory) component
as well as the scheduling and I/O kernel components.

The most recent stable kernel (x86), version 2.4, conforms to Multiprocessor
Specification from Intel [Intelwww4] [Maxwell99], and therefore supports up to 16
processors in a symmetric multiprocessor system. The official kernel release has three
scheduling policies; real-time non-preemptive scheduling, real-time preemptive
scheduling and time-sharing scheduling. Preemptive scheduling in Linux refers to
user processes; the kernel is still not preemptive.

Solaris is a mature UNIX implementation from Sun [SUNwww]. The operating
system [Mauro2001 p.10] has real-time capabilities in the sense that it implements a
pre-emptive kernel and supports kernel threads (which means that kernel

 39

functionality can block). High-resolution timers and fixed priority scheduling along
with fine-grained processor control are other real-time implemented properties. The
kernel supports dynamic loading of modules (at run time), such as schedulers, file
systems, system calls and device drivers. This is a useful addition to an otherwise
monolithic kernel. The dispatcher (scheduler) selects which kernel threads are to be
run, and there are scheduling classes involving 170 priorities. There are four
scheduling classes for kernel threads as well as a special scheduling class for
interrupt threads as can be seen in Figure 12 below. TS (Time Sharing, default thread
class) and IA (Interactive, for faster windowing) share the same priority range.
Threads assigned with system class priorities (SYS) run until they are blocked. The
highest priority level of thread priorities is the RT (Real-time) scheduling class where
threads are assigned a fixed priority.

Figure 12, Solaris thread priorities [Mauro2001].

As in most UNIXes there exists a distinction between user level threads and kernel
level threads. Figure 13 illustrates the relationship among threads, processes and
LWPs (Light Weight Processes). The black boxes at the bottom depict the available
processors and the dotted lines illustrate the mapping of threads onto those. In the
multithreaded process (with its own virtual memory range) the user is aware of at
least one LWP or kernel thread at a time. Additional libraries are available that allow
for the use of user threads that the kernel is not aware of. Multiple user level threads
are thus able to be executed in the context of one LWP. In Figure 13 this is illustrated
as multiple threads above to the leftmost LWP in the process.

 40

Figure 13, Solaris Threads, Processes and Lightweight Processes [Mauro2001].

Interrupt threads have the highest priority in the whole system. At the time of an
asynchronous interrupt (external interrupt), all lower priority interrupts are masked
and the interrupt handler executes in the context of a partially initialized interrupt
thread. Only if this interrupt thread is being blocked at synchronization object is the
thread completely initialized. This decreases the necessary time needed for handling
the interrupt. The thread that was interrupted by the interrupt is pinned, meaning
that the interrupt thread borrows the LWP (Light Weight Process) from it. This
eliminates the need of a complete context-switch. Lower level interrupts are disabled
while handling the interrupt, even when the interrupt thread is being blocked.

Solaris is a capable of executing on SMP architectures and is employed in many
server systems. It supports up to 64-way symmetric multiprocessors and the SMP
scheduling module supports processor affinity (binding), i.e. supports a process to be
fixed at a certain processor. Solaris has for example been employed in a billing
gateway system, which collects billing information about calls from mobile phones
[Häggander2001]. Originally the system ran on in single processor architecture but
tests were made on running the application on an 8-way Sun Enterprise 4000. The
application suffered from a slowdown when using multiple processors. One of the
reasons for the performance loss was that multiple threads needed dynamic memory
allocation. The C-library functions used were not re-entrant and the interface to the
malloc() and free() functions was protected by a global mutex [Häggander2001 p. 37].
Exchanging the lock with parallel heaps, enabling threads to allocate memory in
parallel, gave a near linear speedup. This illustrates the need of creating fine-
granular locks in SMP operating systems.

 41

2.3.2.6 VxWorks

VxWorks [Windriverwww] is one of the mostly employed real-time and
embedded operating systems in the world. Distinguishing characteristics include a
memory footprint that scales down to less than 100 KB and support for a large
variety of hardware architectures. The kernel (Wind) is a priority based preemptive
microkernel that provides scheduling with the priority inheritance algorithm. The
kernel implements a subset of the POSIX standard including POSIX semaphores and
message queues. Wind is a kernel that does not provide memory protection or virtual
memory support by default (can be added through the VxVMI module) and the
kernel is constructed to handle resources in single processor environments. A user
that wants to communicate between two or more processors in an architecture that
provides for shared memory can add the VxMP [Windriverwww] module. This is an
add-on to the Wind kernel that provides access to shared memory objects through
the use of global memory areas (to be used in for example CompactPCI based
architectures). Additional libraries have been added to support this: smObjLib,
smObjShow, semSmLib, msgQSmLib, smMemLib, smNameLib. These libraries
provide the support for shared semaphores, shared message queues and shared
message partitions. Every participant (as for example tasks on different processor
boards) has to know where to access each shared object, and this is implemented
with the help of a shared name database. The id and the name of the object can be
stored together and resolved by the participants. VxMP provides a transparent
interface for the use of the above features, only the create routines are different. The
shared memory objects can be used in a single processor system as well and it is
possible to run VxMP in heterogeneous environments, executing on both the Intel
architecture and the PowerPC architecture.

While VxMP enables programs to communicate and synchronize their activities, no
support for executing VxWorks as a single kernel image on a SMP multiprocessor
system does exist. Board Support Packages (BSP) from SMP processor board
manufacturers enables users to start multiple kernel images on SMP architectures.
But with such a solution each processor executes one kernel image. The kernel does
not contain kernel locks that are necessary for true SMP execution. A dual processor
board from Synergy [Synergywww] (SBC-KGM5) is an example where two kernel
images are booted. The implementation relies on the VxMP module for
synchronizing and communicating between processors. The implication is that two
threads cannot invoke the same kernel functionality, and the kernel cannot load
balance between the processors.

An alternative approach to the above is called Real-Time Asymmetrical Multi-
Processing (R.A.M.P.) from General Micro Systems [GMSwww]. R.A.M.P. does not
implement a pure SMP kernel but lets slave processors (application processors) load
a microkernel (RAMP/MK) that is able to communicate with the VxWorks kernel
image executing on the master (bootstrap processor) with the help of mailboxes and
semaphores. This communication is provided by a module contained in the VxWorks
BSP. Consequently, only one VxWorks kernel image is needed (one license).

 42

2.3.3 Monitoring and Measurement Techniques

Monitoring and measuring techniques are used to estimate system performance
and run-time behavior. Information that can be observed includes data flow
information, e.g. input and output, or control flow observations that include task
switches, interrupts, kernel execution overhead as well as clock tick rate and resources
in the system, such as memory, CPU utilization and network utilization and
contention.

The probe-effect in concurrent systems has been described in a paper by Gait
[Gait86]. The definition of the probe-effect is “an alternation in the frequency of run-
time computational errors observed when delays are introduced into concurrent
programs”. The delays that a software debugger introduces in a system can either
mask errors in such a way that a non-functional concurrent program works or make
a functional concurrent program stop working.

Software monitor tools install a software component that enables the debugger or
monitor device to continuously extract information. This includes collecting
information about the average amount of IPC-messages or the number of cache
misses during execution. The main disadvantage of software monitors and other
software debug facilities is the probe-effect that is the result of the debug mechanism
using the CPU, memory and other resources in the system. The main advantage is
flexibility and the ease of configuration. Most commercial tools available are
intrusive, usually buffering information on a fast medium (i.e. memory) or
continuously streaming the data to a host system. One such tool is WindView from
Windriver [Windriverwww] that is bundled with development tool Tornado.

Collecting information from a running system will almost always be intrusive.
Some attempts have been made to minimize the probe effect, and a project called
MAMon [Shobaki2002] has successfully shown that it is possible to monitor system
level events without interference. This approach is dependent on special customized
hardware that includes an operating system hardware accelerator.

Probing the system and saving the data in memory can be one way to extract data
from the system, but it is also intrusive (memory overhead and memory-bus
congestion). It might be more attractive to use an external peripheral device attached
to the target that continuously snoops and saves data on an external medium. This is
an example of a hybrid monitoring tool consisting of a minimal software probe that
sends collected data to the external device.

2.4 Parallel and Real-Time Communication Mechanisms
The purpose of this section is to define general communication terminology and

properties as well as providing a survey of modern communication mechanisms. We
will start with a general monologue on the anatomy of communication in computer
systems since many of the techniques discussed have been encountered in the scope
of this work.

 43

2.4.1 The Anatomy of Communication in Computer Systems

Communication involves at least two participants that exchanges information with
each other. The information needs to be delivered through some medium (does not
apply to light) and participants (peers) involved in communication need to agree on
a common protocol for data exchange. The protocol defines both the sequence of the
messages between the peers as well as the format of the data [Coulouris94 p.69]. Peer-
to-peer communication occurs between two participants and information can flow in
either one direction (simplex) or in both directions (duplex). It is also possible for one
participant to communicate with multiple peers in so-called multicast or broadcast
communication. Multicast communication is targeted to a selected group of receivers,
while broadcast communication is targeted to everyone who is listening. Broadcasts
can be targeted at all possible receivers in the network, while multicasts are targeted
at a selected group of receivers within the network, as for example a set of nodes.
Both multicast and broadcast communication is categorized as one-to-many
communication.

Communication can be initiated either by the sender or by the receiver, called
sender-initiated or receiver-initiated communication. In the first case, the sender is the
initiator and in the second case, the receiver is the initiator. Message passing is
categorized as sender-initiated communication, while shared memory communication
between processing elements is categorized as receiver initiated communication
(every read to a shared memory location is initiated by the receiver). Senders are
labeled producers or suppliers of information. Receivers are labeled consumers of
information. Message passing can combine synchronization with data exchange
while shared memory communication requires the use of some explicit
synchronization mechanism, as for example semaphores, in order to combine data
exchange with synchronization.

Communication can be asynchronous or synchronous. Asynchronous (non-
blocking) communication allows the sender to continue execution directly after the
sending phase. Synchronous (blocking) communication implies that the sender blocks
until the receiver has entirely received the message. Rendezvous is a special case of
synchronous communication where both the sender and the receiver agree to
synchronize before continuing.

The medium over which the communicating peers are sending information can be
either reliable or unreliable. If the protocol that utilizes an unreliable medium requires
reliable delivery of data, the protocol implements a feedback technique such as
acknowledgement of data exchange. Acknowledgements give information to the
sender that the data has arrived at the receiver, the end-point. The time for data to
arrive at the receiver from the time it was sent is called the latency. Multiple
parameters are the cause of latencies or delays. The medium or communication
channel can experience traffic congestion which can cause delays in the
communication and the bandwidth of the medium also limits the amount of data that
can be exchanged per time unit.

 44

During the communication phase, both explicit and implicit data can be
exchanged. Explicit communication is for example performed when data is sent over a
reliable communication channel. Implicit communication is for example performed
when a reliable communication protocol transmits acknowledgement packets. The
protocol does also introduce artifactual communication, i.e. data that is not explicitly
attached by the user.

Multiplexing occurs when a data exchange is split up over multiple channels
(logical or physical). A data stream may for example be fragmented into multiple
packets and sent over a network to a receiving node. At the end-point, the receiving
node, the stream of fragmented packets can be de-multiplexed into the original order.
Both the sending and the receiving node can buffer data. Output buffering (sender
buffering) includes temporal storage of data that is to be dispatched onto the
communication channel. Input buffering (receiver buffering) includes the buffering
of incoming data in a node before delivering it to the receiving processing element or
process.

In order for peers to notify each other of events, two basic approaches can be
employed. The first one is for the peer to interrupt the other and the other is for the
receiver to continuously poll a shared synchronization object (such as for example a
shared memory location). Some communication protocols allow receivers to subscribe
to events. In distributed computer environments it is common for peers to interact as
clients and servers. Clients send requests to servers that execute the requested services.
Servers do reply with the result to the clients.

2.4.2 Parallel Communication Protocols and Architecture

Heddes [Heddes94] has completed survey of parallelism in communication
subsystems that describes the levels of parallelism that can be targeted in a parallel
protocol implementation. These levels include stack level, layer level, entity level,
function level and operation level parallelism. Parallel protocol stacks on shared
memory multiprocessors have been investigated by, among others, Yates [Yates97]
and Björkman [Björkman93]. Communication systems can internally exploit
parallelism in different forms, such as layer-level parallelism or connection-level
parallelism. Erich M. Nahum [Nahum97] as well as Björkman [Björkman93] has
presented a taxonomy of protocol stack parallelism:

• Layer parallelism is a coarse grained level of parallelism according to Nahum.

Each distinct layer of the protocol stack is the unit of concurrency and the
approach exploits clean interfaces between layers. Drawbacks include increased
amount of context switching and synchronization as well as concurrency being
limited to the number of layers in the protocol.

• Connection-level parallelism exploits concurrency among processing elements that
are associated with different connections. Multiple connections can be
processed independently and this level of parallelism exploits the natural

 45

concurrency among connections and keeps locking to a minimum. A drawback
is that it is difficult to achieve speedup within individual connections.

• Packet-level parallelism dedicates a processing element to the processing of
individual packets. With this approach it is possible to achieve parallel
execution both with multiple and single connections. A drawback is that each
layer usually needs locking of the shared states (as for example sequence
numbers in the TCP/IP stack).

• Functional parallelism exploits parallelism in a single protocol layer, such as for
example checksum and acknowledgement generation. Parallelism within the
layer can be exploited, but synchronization among the functional entities can
become a problem.

• Data-level parallelism lets separate pieces of data (from the same message) be
processed by multiple processing elements.

The appropriateness of deciding whether to use one or multiple levels of

parallelism of those presented above depends on the available concurrency within a
protocol stack. Kaiserswerth [Kaiserswerth93] identified three forms of parallelism
that can be exploited within a protocol stack:

• Pipelining among protocol layers represents an approach where parallelism is

exploited between layers. An example is for example network interface cards
that implement the medium access control layer and the host processor
executes the higher layer functionality of the OSI reference model.

• Parallelism and Pipelining within a protocol layer represents a parallelism that
for example exploits independency among connections to handle data from
separate connections independently. Another example is the parallel execution
of checksum and routing decisions within a layer.

• Parallelism among shared components represents a form of parallelism that
exploits parallelism of components that are used by multiple layers. An
example is buffer managers or timers.

2.4.3 Hardware Communication Assists

One way of increasing performance for communication mechanisms is to dedicate
special purpose hardware, or a dedicated processor, for the task of assisting the
processors with communication. Network processors are used to relieve the
processor/s in the system from handling communication. Most commercial network
processors are suitable for use together with Internet protocols, e.g. IP and TCP.
Network processors are configurable, but usually a special development
environment targeted at a special operating system will be needed. For example, the
Intel IXP series of network processors [Intelwww3] are programmed with the help of
a software developer kit (SDK) tailored for certain operating systems such as Linux
and VxWorks. The IXP 1200 is equipped with a StrongARM processor and six

 46

programmable micro-engines that operate on the incoming IP packets
[Vassiliadis2001].

Another architecture providing communication assistance is the QUICC
[Motorolawww] architecture developed by Motorola. It has an integrated network
processor with dedicated memory that is able to operate in parallel with the main
processor. The architecture is described as an “Integrated Multiprotocol Processor
(IMP)” where both the general purpose processor and the communication processor
reside in the same die. The main MC68000 processor is offloaded by a RISC processor
that can be programmed operate on incoming data from the I/O ports. Compared to
the network processors described above, the QUICC architecture is more simple, yet
useful for many embedded applications. Other products and techniques for
accelerating communication exist and we discuss some of them in section 3.2.1.

2.4.4 Parallel and Distributed Communication Mechanisms and Frameworks

Data originating from data producers (e.g. I/O boards) needs to be transmitted to
consumers (e.g. applications) efficiently. In order for an application to connect and
receive data from the data producers, an I/O systems service is needed. In its
simplest form, an I/O board may be located on an I/O bus in the system, notifying
the processor of a data delivery by issuing interrupts. In such a system, the
application designer is forced to explicitly program Interrupt Service Routines (ISR)
and to read and handle incoming data, as well as synchronize with the receiving
application thread or threads. Therefore, it is desirable to let a system component
provide an abstraction toward the underlying hardware, operating system and
communication mechanisms. Such a system component is commonly termed a
middleware software layer [Andrews2000 p. 32]. The benefits of middleware are:

• To provide a standardized interface for users of the middleware. This promotes

execution in heterogeneous architectures by hiding the underlying hardware
architecture, communication mechanism and operating system. The
middleware hides the distributed system components so that local and remote
functions can be accessed uniformly and that their location does not have to be
known. The middleware is said to be transparent.

• It provides a programming model for the user that unifies the components
using the middleware. For example, middleware relying on remote method
invocation steer the users of the middleware to design with request-reply
semantics.

• The middleware should promote scalability in the sense that multiple nodes can
access the available distributed resources efficiently.

2.4.4.1 RPC and RMI

In heterogeneous systems the need of creating an abstract data representation
becomes important. Nodes in such systems must be able to exchange data structures
regardless of hardware architecture. The process of mapping data structures into

 47

forms suitable for transmission over the communication medium is called marshalling
[Coulouris94 p. 103]. The reverse process is called unmarshalling. RPC and RMI
mechanisms provide for a standardized way of data representation. XDR is an
example of such a data representation language and is used in the Remote Procedure
Call (RPC) component developed by SUN. Other remote invocation techniques
include JavaRMI and XML-RPC [Allman2003].

Remote Procedure Call (RPC) and Remote Method Invocation (RMI) are related in
terms of the interaction model. Both allow clients to remotely invoke procedures or
methods at the server side. The major difference between RPC and RMI is that RMI
adheres to an object oriented design where methods of remote objects are invoked
while RPC mechanisms are useful in non-object oriented mechanisms. Remote
Procedure Calling (RPC) [Bloomer92] is an important concept in a client/server
environment. By utilizing RPC the process can access and receive references to
procedures and data that are not accessible in its local memory space. ONC RPC by
SUN and NCS by HP [Bloomer92] are examples of two RPC mechanisms that are
commercially available. Many UNIX services are built on RPC mechanism, but
remote invocation is much slower than invocations in the same address space. Null
RPC-calls, i.e. remote invocations carrying no parameters and no data in response to
the requester, have shown to take hundreds of microseconds to complete in a
100Mbit LAN environment. Bandwidth is not the limiting factor in this case but
rather delays that originates from operating system operations such as network
driver execution and context switches as well as RPC-mechanism code [Coulouris01
p. 234].

Many RPC calls actually occur between processes on the same local machine. In
these cases it is inefficient (due to overheads originating from marshalling and data
copying) to execute a complete RPC-mechanism designed for remote invocations
between nodes. Therefore, RPC optimizations such as Lightweight RPC (LRPC)
[Bershad90] have been proposed. Since local RPC-calls can use local memory to pass
parameters, they do not need to copy data. A node-to-node RPC call can have up to
four copying phases.

2.4.4.2 CORBA

CORBA, the Common Object Request Broker Architecture [OMG2002], is a
specification of a middleware platform that enables objects to be distributed on
multiple nodes in the system. Its main use is in client/server environments, where
method invocation can be performed on remote objects as well as local objects. The
purpose is to decouple communication between objects, thus increasing scalability
and reusability of the distributed applications. Since the CORBA middleware
platform is capable of running on various operating systems and architectures,
heterogeneous computing is made possible.

The reference model consists of clients making requests to objects via the ORB core.
While remote invocations of methods promote scalability and reusability, the
mechanism relies on a request/response communication paradigm (server method

 48

invocation). Request/Reply design uses a two-way communication pattern which
may be ineffective in real-time systems.

OMG has defined a real-time extension to CORBA. The extension targets real-time
related issues such as priority queuing, priority inheritance and ORB guarantees on
execution [Wolfe97]. A CORBA implementation that targets real-time system design
is the TAO (The Ace ORB) architecture [Harrison97] [Schmidt98] [Kuhns99]. It is
operating on many real-time operating systems including VxWorks. TAO enables the
user to specify Quality of Service requirements, requirements that then affect the way
TAO schedules messages and resources. TAO has been used in many real-life
applications, spanning from avionics systems to telecom systems [Schmidt98].

The CORBA model is object oriented while the publish/subscribe mechanisms
described in the next section are data centric. Some, among them the creators of
NDDS (described below), therefore claim that publish-subscribe mechanisms are
more suitable for distributed real-time systems.

2.4.4.3 Publish/Subscribe Mechanisms

RPC mechanisms are widely used today in distributed applications. Internet
services use RPC, but embedded and real-time systems [Windriverwww] can also
utilize RPC. However, there are limitations and difficulties with this communication
paradigm. The most notable is the inherently synchronous exchange where the
requester needs to wait for the reply, which leads to static applications and possible
performance degradation due to busy wait. Publish/Subscribe mechanisms
[Rajkumar95] on the other hand decouple the producer of events and data from the
consumer of events and data. Subscribers inform the publish/subscribe mechanism,
i.e. the middleware, of its interest in certain events or data. Publishers then publish
data to the middleware, which asynchronously sends the data to the subscribers.
Some interesting properties apply for such mechanisms [Eugster2001]. First,
subscribers need not need to know of the producers, not their exact numbers nor
their locality. The same applies for publishers; the number or locality of the
subscribers need not be known. Secondly, the interaction between the subscribers
and the publishers does not necessarily need to occur at the same time, publishers
may even unregister before all events have arrived at the subscribers. Finally,
subscribers can be notified asynchronously thus enabling the subscriber to perform
concurrent work. A positive aspect of publish/subscribe mechanisms is that
scalability is promoted. This is mainly because publishers can dynamically connect to
subscribers without explicitly stating dependencies [Hill2002]. This promotes
flexibility; the whole system does not have to be reconstructed because of adding a
new application or new functionality in an existing application. In recent years both
academic and commercial publish/subscribe mechanisms and real-time object
brokers have been released. As we shall see in the following sections, the need for
publish/subscribe mechanisms is growing and a new standard has been released
from OMG.

The publish/subscribe paradigm is implemented in distributed event and
notification servers where objects of interest change their states and deliver the

 49

notification of that event to interested subscribers [Coulouris2001 p.190]. Objects of
interest, i.e. the event publishers, connect to an event server that forwards the event
notification to the subscriber. In such an approach the event service has the
opportunity to filter and correlate the events. This can for example include
publishing a notification whenever a defined number of events have arrived. This is
similar to the semantics of the case-study I/O system. Another mechanism that
enables subscribers to receive notifications from publishers is the CORBA Event
Service [OMG97] and its real-time enhancement. The real-time event service enables
the user to filter events and select to correlate events either by conjunction (AND) or
disjunction (OR). Thereby the application can for example request the event service
to wait for events from supplier objects A and B to arrive before pushing the
notification. The CORBA Event Service provides three main features that enhance the
original CORBA specification [Harrison97]:

1. Asynchronous message delivery.
2. Allows one or many suppliers to send messages to one or more consumers.
3. Suppliers and consumers are decoupled in the sense that they do not know

about each other explicitly.
2.4.4.4 SPLICE

SPLICE (Subscription Paradigm for the Logical Interconnection of Concurrent
Engines) is an early work implementing the subscription paradigm for embedded
systems [Boasson93] [Boasson96]. The work was performed for the military and the
experiences from the project are now used by the company THALES. THALES has
been a contributor to the OMG Data Distribution Service Specification described
below. The basic functionality of SPLICE is that it provides a shared data model
based on the two primitives read and write. A receiver performing a read on a set of
data will block until it arrives. The architecture consists of applications, agents and
the network. Agents handle all communication needs on behalf of the application,
and provide the necessary functions for maintaining the shared data space.

The designers of SPLICE criticize the CSP (Communicating Sequential Processes)
model as well as the client/server paradigm for connecting the senders and receivers
tightly, thus leading to complex designs. They argue that the subscribe paradigm, by
providing a loosely coupled connection between data producers and data consumers,
will provide a more flexible system design.

2.4.4.5 NDDS

NDDS (Network Data Delivery Service) [Pardo-Castellote1997] [Pardo-
Castellote2001] is a publish/subscribe mechanism available as a middleware for
many platforms and operating systems. The company that has developed this
product is Real-Time Innovations (RTI), which is one of the contributors of the Data
Distribution Service Specification described in the next section.

NDDS consists of a run-time library, a database and tasks (threads) that perform
all the necessary marshalling, addressing and transporting services. The creators of

 50

NDDS claim to provide symmetric design and real-time performance [NDDS]. By
symmetric design they mean that all nodes in the distributed system are equal, no
specific node is for example responsible for address lookup, thus avoiding a single
point of failure. NDDS is built on top of the unreliable connectionless transport
protocol UDP. All semantics provided by NDDS, such as reliability, quality of service
(QoS), and data representation (CDR) is implemented on top of UDP. NDDS has
been used in multiple commercial and real-time systems and the mechanism has its
heritage from the robotics industry.

2.4.4.6 The Data Distribution Service for Real-Time Systems Specification

A consortium of companies including THALES, RTI and Objective Interface
Systems have submitted a specification for a Data Distribution Service (DDS) for
distributed real-time systems [DDSRTS2003] [EETimeswww2] to the OMG group.
The model is called as a data-centric publish-subscribe mechanism (DCPS) and the
application domain is expected to be high-performance and predictable real-time
systems, found in industrial automation, distributed control, telecom equipment and
sensor networks. The previous work of SPLICE and NDDS has been the driving
technique for this specification and the goal is that the mechanisms should scale to
hundreds and even thousands of publishers and subscribers. The data model consists
of unrelated data-structures that are identified by topic and type. The topic uniquely
identifies data items in the global data space, while the type gives information to the
middleware about how to handle items (resembles marshalling functionality of RPC
mechanisms). The Data Distribution Service for Real-Time Systems Specification has
been issued as a mechanism that can be used together with the CORBA standard.
Even though object models and the design can be mapped to CORBA platforms, the
standard is largely platform independent, i.e. it can be used on other platforms as
well.

2.4.4.7 Functional Parallelism, Parallel I/O and Data Concentrators

Depending on area of subject, I/O denotes different aspects of architecture. In
industrial systems, I/O usually depicts data transfers related to sensors and
actuators, or the signals connecting an Integrated Circuit (IC) to other IC. In the high
performance computing (HPC) community, the term parallel I/O is commonly used to
describe the system exchanging data with the file system [May2001]. I/O system can
therefore come to mean different mechanisms depending on context. We mention
parallel I/O in order to clarify the difference between the use of the term in industry
and in the high-performance community.

Parallel I/O can be defined as providing a form of functional parallelism. Functional
parallelism was exploited in early parallel systems that utilized special-purpose file
processors and dedicated programmable peripheral processors [Lawson92 p.252].
The approach of separating I/O system and application functionality on separate
nodes can be described as exploiting functional parallelism.

The term Data Concentrator is used in different contexts ranging from devices that
provide monitoring and protocol conversion [BVMwww] (for example transmitting

 51

serial data over Ethernet) to devices providing data collection functionality in
SCADA systems [IPCASwww]. The IPCAS system is called ipDaco and one of its
purposes is to increase performance by limiting communication with the data
concentrator. It lets a communication server handle communication with the SCADA
system. In that sense the ipDaco acts as a proxy server for the data acquisition
devices.

2.4.5 Scalable Network Architectures and Parallel Communication Services

In applications that are larger than targeted in the scope of this work, scalability for
nodes in a network and especially the Internet has been examined. This section gives
an introduction to those issues since some of the concepts are related to the parallel
execution of I/O System and application components examined within the scope of
this work.

Shah [Shah2001] has presented a scalable system architecture called Comm Services
Platform (CSP) that offloads and decouples the TCP/IP processing from servers. The
purpose is to improve the performance of services built on top of TCP/IP and the
architecture is illustrated in Figure 14 below. Network nodes accelerated by network
processors perform the first level of packet forwarding to the proxy nodes, mainly for
load balancing purposes. The proxy nodes decouple network transport protocol
processing cycles from application node compute cycles. The proxy node is the
terminating end-point for TCP connections, and the data contained in the connection
is forwarded to the application nodes with the help of a lightweight transport
protocol.

Figure 14, the CSP architecture [Shah2001].

The creators of the CSP architecture identified these main benefits of using their
system platform:

 52

• The decomposition of the system into a functional pipeline allows scaling of
each pipeline stage independently. Therefore proxy nodes can be scaled
independently from application nodes.

• Proxy nodes can also execute higher level functionality (above the transport
layer) and thereby offload protocol processing in the application nodes.

The platform is based on the idea of functional pipelining and independent scaling
of application and communication. The use of proxies is a technique related to
building secure and scalable networks. A proxy is a communication mediator that
allows for two nodes to communicate indirectly. A proxy usually maintains two data
connections, one to each node, and the proxy (“in the middle”) can thereby govern
the data flow as well as the content of the data. This technique is discussed in a paper
written by Spatscheck [Spatscheck98] et. al., who have defined TCP Forwarding as:
”…communication relayed over two TCP connections via a proxy”.

2.5 Programming Models
A parallel programming model specifies what data can be named by the threads,

what operations can be performed on the data, and what ordering exists among these
operations [Culler99 p. 53]. A parallel programming model is the data parallel
processing [Culler99 p. 44] model. The data parallel processing model enables
operations to be performed on each individual element in a data structure (SIMD
architecture according to Flynn [Flynn96]). This model has evolved into the SPMD
(Single Program Multiple Data) model thus converging with message passing and
shared memory.

The two most commonly used parallel programming models are the message
passing model and the shared memory model. The message passing programming
model has become popular and widely used with the advent of MPI (Message
Passing Interface) [MPIwww]. MPI is based on the use of send and receive
primitives. While MPI has been used in clusters and in the HPC (High Performance
Computing) world, the deployment of MPI in the embedded and real-time system
domain has not been common. In real-time and embedded systems message passing
is commonly implemented as an IPC mechanism.

The shared memory programming model needs an underlying hardware or
software mechanism that provides access to shared memory. When such
mechanisms are available, the application designer may use multithreading to
support parallel execution. PThreads [Nichols96], i.e. POSIX Threads, and OpenMP
[Chandra2001] are widely used mechanisms for parallel programming on a shared
address space.

In industrial automation and control systems the factor governing the
programming model are standards. IEC 1131-3 [Lewis98] is for example a standard
that governs the programming of programmable logic controllers (PLC), devices
common in industrial control systems. The most important feature in the IEC 1131-3
standard is the function block. A function block defines input and output data
parameters that interconnects with other function blocks, and also defines an

 53

algorithm that executes every time the function block is invoked. In today’s modern
industrial systems it is getting more common to execute logic and algorithms on
general purpose processors, but the programming models and techniques remain.
This means that functional blocks resembling IEC 1131-3 functional blocks are
executed as a part of the application on the general purpose processor.

2.5.1 Message Passing versus Shared Memory

There has been much debate regarding which communication model is preferred
by parallel application designers. In our case-study we had the choice of adhering to
message passing or shared memory (the bus-based architecture provides for non-
cache coherent shared memory) and we therefore studied the pros and cons of the
two communication models. An important remark is that this summary concerns
cache coherent shared memory architectures. Not all attributes of the cache coherent
shared memory column are therefore applicable to a non-cache coherent shared
memory architecture. For example, a bus-based backplane architecture utilizing a
shared memory area does not reuse remote data; every access is to its primary
storage.

The advantages and disadvantages of message passing mechanisms and shared
memory mechanisms are summarized below in Figure 15. The information originates
from multiple papers, which are referenced below.

 Message Passing Cache Coherent Shared Memory

+

Offers efficient bulk-transfer of data
[Culler99 p. 187] if DMA transfers cover
for the gathering overhead [Chong98 p.
5].

Fine-grained data transfers (cache-
lined) are efficient.

+

Offers good performance with known
communication patterns [Chong98 p. 1].
Data can be communicated when
produced which enables overlapping of
the transfer with computation [Woo94 p.
219].

Global naming and coherent
replication of data eases programming
[Shan2001 p. 1], especially for
irregular, dynamically changing
communication patterns [Woo94 p.
219].

+ Combines synchronization with data
transfer [Chong98 p. 1].

Reuse of remote data.

+ Robust to relative changes in processor
to network latencies and bandwidth
[Chong98 p. 2].

The user accesses the hardware
directly with loads and stores, which
eliminates a need for an extra software
layer [Culler p. 269].

+ Messages are usually unacknowledged
[Chong98 p. 2].

+ Only a single pass through the network.
+ Data is replicated in local main memory

[Woo94].

 54

+ Easier to scale to large numbers of
processors compared to shared memory
architecture [Byrd98 p. 1].

+ No cache or memory consistency
problems [Andrews2000 p. 9]

- Higher overhead for fine-grained data
transfers [Chong98 p. 1].

Overhead increases when shared data
is frequently modified on different
processors [Chong98 p. 1].

- Extra copying to and from buffers is
needed when data is not consecutive
[Chong98 p. 1].

Adds round-trips latencies in the
network. This can be facilitated by
implementing prefetching [Kranz93]
or using a more relaxed memory
consistency model.

- Higher communication overhead since
messages (headers) must be constructed.

Generally requires more network
bandwidth.

- Message Passing can be extremely
difficult to program, especially for
irregular structured computations
[Shan2001 p. 1].

- Low computation to communication
ratio yields many messages and thus
much overhead [Chong98 p. 6]. Interrupt
synchronization may be a major
overhead.

 Messages are sender-initiated and thus
asynchronous for the receiver.

Shared memory communication is
receiver-initiated [Byrd94].

 Messages are value oriented; all data must
be contained in the message to make
computation progress at the receiver
[Byrd98 p. 1].

Shared memory communication is
reference oriented. References to
memory locations can be passed to the
receiver for further computation
[Byrd98 p. 2].

 Pre-communication may avoid round-
trips needed for a read-on-request model
[Chong98 p. 5]

Shared memory programmers should
be aware of locality.

 Shared Memory Prefetching depends
heavily on a low computation to
communication ratio [Chong98 p. 4]

Figure 15, Advantages and disadvantages of message passing mechanisms versus cache
coherent shared memory mechanisms.

Frederic Chong [Chong98] has addressed the subject by performing a series of
experiments on the MIT Alewife system. The goal was to “gain insight into the
relative performance of communication mechanisms as bisection bandwidth and

 55

network latency wary” and the study compares message-passing mechanisms to
cache-coherent shared memory. Chong used the bisection bandwidth as a measure
on the bandwidth of the system as a whole. The bisection bandwidth is the “sum of the
bandwidth of the minimum set of channels that, if removed, partition the network
into two equal unconnected sets of nodes” [Culler99 p. 761]. This metric is rather
useful if the communication pattern is completely uniform in the whole system. If
this is not the case, the metric is pessimistic. The access latencies to memory are
variable in the MIT Alewife (NUMA), in converse to a SMP system (UMA) in which
all processing elements have equal latencies to primary memory. Figure 16 shows the
expected performance scaling of the two communication mechanisms when the
bisection bandwidth varies.

Figure 16, Regions of performance in processor cycles as bisection bandwidth varies

[Chong 98].

Three regions are identified; the congestion dominated region, the latency
dominated region and the latency-hiding region. In the congestion-dominated region
the effects of congestion are bigger than the decrease in bisection bandwidth. Shared
memory mechanisms require much communication and suffer from congestion
problems earlier than the message passing mechanisms. In the latency dominated
region message-passing communication suffers because of lack of parallel work
compared to latency, while in the shared memory (sequential consistency) case the
processors are stalled when data is not in the cache. In the latency hiding region
latencies in the network are hidden by low communication volume compared to the
amount of work being performed. Network latencies can also be varied as illustrated
in Figure 17. Here it is worth mentioning that message passing tolerates network
latencies better due to one-way nature of the mechanism. Noteworthy is also that

 56

shared memory architectures need to use prefetching techniques in order to hide
network latencies. Other studies such as the one performed by Chandra [Chandra94]
et al. suggest that the differences between message passing mechanisms and shared
memory mechanisms are not big (no prefetching or DMA transfers were used). In
one case where computation was dominant, the shared memory’s higher cost was
offset by the higher latency of handling messages in software. The higher overhead
from handling buffers for message passing was visible. In another test case the
shared memory mechanism required a noticeable amount of explicit
synchronization.

Figure 17, Regions of performance in processor cycles as network latency varies

[Chong 98].

2.6 Definitions
We adhere to the definitions below.
§ Concurrency. The degree of concurrency is defined as by [Grama2003 p. 89]: “The

… number of tasks that can be executed simultaneously in a parallel program”.
§ Correlation. Actions that relate individual items into a group according to a

specification. Simple correlation specifications include AND and OR logic
operators on item characteristics. Item characteristics include topic, time and type.
Correlation actions are common in event services and notification services
[Liu97].

§ Distributed System. Coulouris [Coulouris01 p. 2] defines a distributed system to be
a system where: “Hardware and software components located at networked
computers communicate and coordinate their actions only by passing messages”.

 57

§ Execution Environment. An execution environment consists of an address space,
thread resources such as semaphores and higher level resources such as open files
[Coulouris01].

§ Independence of Parallel processes. Let the read set of a part of a program be the
variables it reads but do not alter. Let the write set of a part be the variables it
writes into (and possibly also reads). Two parts of a program are independent if
the intersection of their write sets is empty. This definition is taken from
[Andrews2000].

§ Multiprocessor system. We adhere to the definition of a multiprocessor by Stone
[Stone90 p.452]: “A parallel computer composed of multiple independent
processors and facilities for controlling their interaction and cooperation”.
According to the definition of a multiprocessor by Enslow [Enslow77] only a
system that can be controlled by a single operating system can be depicted as a
multiprocessor.

§ Parallel System. Almasi and Gottlieb, cited from [Culler99 p.1] define a parallel
computer to be: “A collection of processing elements that communicate and
cooperate to solve large problems fast”.

§ Process. A process consists of an execution environment and one or many threads
of control.

§ Task. There is much confusion concerning where to use the term thread and task.
Usually the terms represent the same entity, a context of a program, where
memory may be shared among other tasks. Stankovic [Stankovic91] defines a task
to be a schedulable entity that consists of reentrant code, local and global data, a
stack, a task descriptor and a task-control block. See also Thread.

§ Thread. A context of a program, which may run concurrently with other threads
or processes, and may share memory with other threads.

 58

 59

3 Performance Improving Alternatives for an

Industrial System

In the search for more computing performance, system designers face a plethora of
possibilities. Choices regarding the platform and components need to be made in at
least four main areas of the system, each level asserting certain requirements on the
others. A layered model, as illustrated in Figure 18 below, illustrates how the system
components depend on each other (the grey area depicts the definition of the whole
platform). Requirements flow from the hardware and upwards, as well as from the
application and downwards. Each layer enhances and hides the functionality of the
layer immediately below it [Kaiserswerth93].

Application

Software
Platform

Operating System

Hardware Architecture

R
eq

u
ir

em
en

ts

R
eq

u
ir

em
en

ts

Figure 18, a layered view of the system.

The design decisions are governed by the needs and requirements of the
application, and in a broader sense the requirements and needs of the system under
control. The application asserts requirements on the platform and operating system
layers. Operating systems expose interfaces to its users and where its main purpose
is to abstract away the hardware architecture from the design of the application and
the platform. The application should for example not be responsible for managing a
file system. Conversely, the operating system interface asserts requirements on how
the higher levels of the system are designed, including the application. In order to
promote easy porting to different hardware architectures, operating interface
standards such as for example POSIX [Quarterman93] have been defined. The POSIX
standard is an example of the need for standardized interfaces among system
components as well as the need for platforms and applications to be easily ported to
multiple hardware architectures.

This chapter will discuss architectural design decisions encountered within the
scope of this work and during the study of the case-study system. The discussion is

 60

based on the precondition that we have an existing system platform that has been
designed for single processor architecture and where instructions of any thread are
allowed to access any memory position.

3.1 The Case-Study System
The target of this study is an industrial system that is used to control and protect

power system equipment such as for example transformers. Papers that describe the
research with this system include [Enblom2001][Enblom2003][Enblom2001_02].
Applications are of a large variety and therefore the company has created a platform
consisting of useful and necessary services to be used in application design in order
to promote reusability. The platform has been tailored for the need of applications
and has four major characteristics:

• Hardware architecture dependencies have been hidden in the sense that
devices, such as I/O boards, are handled and configured by the platform.

• I/O boards and the flow of data to and from these is governed by a
publish/subscribe middleware; the I/O System. The I/O System is capable of
subscribing to data from remote nodes as well as devices located in the local
chassis.

• The platform is modular in terms of file-structure and interfaces to components.
Yet, the platform has been designed for a single execution environment in the
respect that every platform and application compiles to a single executable
image presently executable only in a single processor environment.

• The platform has been designed for a multi-threading environment, where
services are executing in the context of threads with various priorities. These
threads are at present scheduled by the priority-based real-time operating
system VxWorks [Windriverwww].

 61

Software Platform

I/O System

Database

Communication
System

Time-
Synchronization

Facility

HMI

System
Configuration

Service

System Event
Service

Hardware

Operating System

Operating System Abstraction Layer

Application

Figure 19, System Overview.

Figure 19 above presents an overview of the system and its most important
components. The software platform components are abstracted away from the
operating system by means of an operating system abstraction layer that is to be used
by the components of the software platform and the application alike. Choosing to
use such an abstraction promotes portability, enabling developers to move existing
applications and framework from one operating system platform to another without
having to explicitly adopt the code to a new operating system. Operating systems
providing the services required by the abstraction layer can be used in the system.

The real-time requirements of the system-under-control are challenging, delays in
the removal of the anomaly may increase the damage to the faulty equipment or
damage healthy equipment [Davies96]. Therefore the maximum end-to-end response
time for the system to respond to a critical event in the environment is less than 20
milliseconds. Within this timeframe parameters of the environment and the system
under control must be sampled and the data must be transmitted to the receiving
application node. The operating system and I/O System on the node must receive
the data in a timely fashion and the application must have enough history of the data
in order to take the correct action. The decisions taken by the application must
thereafter propagate to the actuator via the I/O System and the operating system,
and finally over the interconnect to reach the actuator (circuit breaker). This implies a
maximum allowed response time of the computer system of less than 10
milliseconds. Our case-study system relies on a periodic sampling of the
environment and system under control that currently has a period of 1ms (1000Hz).
This means that 20 sets of sampled data are produced before a fault in the
environment (the power grid) must have been isolated. Ideally the application
completes executing its protection algorithm each period, a pattern applications are
designed according to. This periodic execution of the application is defined to be

 62

data-driven since the application execution is dependent on the arrival of data from
data producers.

The hardware architecture is based on a rack-mount Compact PCI system
consisting of I/O boards and a processor board. The existing software system is
divided into different modules where the time-critical components are the I/O
system and the execution of the application protection and control functionality. The
time-critical part of the application is written in such a way that it blocks for data to
be delivered from the I/O System. The most common approach is to wait for a
complete set of sensor data has arrived in a data structure (DS). The common
structure this part of the application is illustrated with C-like semantics in Figure 20
below. The sequence of events is such that the application waits for data to arrive,
executes the application semantics and thereafter acknowledges the data structure so
that it can be reused by the I/O System. The application performs the same task
every cycle of execution (sample period).

Identifier dataStructureId;
DataStructure *dataPointer;
while(running == true) {
 dataPointer = waitForDataStructure(dataStructureId);
 executeApplicationCode(dataPointer);
 acknowledgeDataStructure(dataPointer);
}

Figure 20. Application structure example.

The system is based on the periodic collection of data from the environment and
the last functional component executing before delivery of data structures to the
receiving application is the I/O System thread. Function calls to components that
return references to data structures that have been allocated internally by the I/O
System may be invoked. It is expected that the caller should read and write to those
data structures with ordinary processor loads and stores (using RISC architecture
terminology).

Figure 21 below illustrates a function call to a software module that returns a
reference to a data structure allocated within it. First, as illustrated by arrow 1, the
receiver invokes a wait function that blocks at a synchronization point, awaiting
notification from the producer (I/O System thread). Thereafter, illustrated by arrow
2, data is collected, correlated (defined later) and prepared for delivery. Arrow 3
represents the notification of new data to the receiving thread, in turn enabling the
application thread to progress (arrow 4). A reference to the delivered data is passed
back (arrow 5) along with other parameters. At some point later in time, the
application thread may act upon the data as illustrated by arrow 6.

 63

Execution Environment

I/O System Application

Data
Structure 6

A
P
I

1

4
5

I/O
System
Thread 2 Application

Thread

Sync
3

Figure 21, Component interaction in the system.

When separating the application and the I/O System into separate execution
environments (such as in a distributed system), reading the data in the data structure
may not be possible. In such as system the data structure must be copied to the
execution environment of the application which can be achieved with the help of
IOMP described in section 4.3.

3.2 Hardware Architecture Alternatives
For a system designer that wants to increase performance by migrating a product

and platform that is designed for a single processor environment to a distributed or
multiprocessor architecture, a number of issues arise. The main purpose for
considering such a migration is usually to increase performance, e.g. increasing the
number of operations that the application and the system as a whole can handle.
Other reasons may be to provide redundancy and fault-tolerance [Storey96], but we
have not analyzed any explicit fault-tolerance aspects, even though that would be of
interest for the application domain. Three approaches that are potential ways of
increasing performance in the system have been identified during the analysis of the
case-study system:

1. Accelerate a system component with the help of dedicated hardware.
2. Introduce a multiprocessor architecture.
3. Upgrade the existing system with faster single processor architecture.

Figure 22 below illustrates these approaches and we have also identified three

hardware architectures with multiple processors.

 64

Considered in this work.

Hardware Architectures
that may increase

performance

1. Hardware
Accelerators and

Assists

2. Hardware
Architectures with

Multiple Processors

3. Faster Single
Processor Architecture

2.1. Distributed System
2.2. Backplane Bus-

Based Multiprocessor
System

2.3. Symmetric
Multiprocessor (SMP)

Figure 22, Hardware Design Alternatives.

The symmetric multiprocessor (SMP) is a Uniform Memory Access (UMA)
architecture according to the classification of Hwang (see section 2.2.3.3). The
backplane bus-based multiprocessor can be classified as a Non Cache-Coherent Non-
Uniform Memory Access (NCC-NUMA) architecture. The distributed system
alternative can, when only considering the ability to access memory, be classified as a
NORMA architecture.

3.2.1 Hardware Accelerators and Assists

Increasing performance with the help of hardware assists and accelerators is
possible for many systems. An obvious component that may be accelerated is the
communication system. But, the communication system of industrial automation
systems is usually developed by the manufacturing company itself, and is therefore
unique. The system may execute on off-the-shelf processor boards while peripheral
sampling and actuation devices are special purpose custom designs. This is the case
with the case-study system. Therefore it can be hard to find third party components
that can easily increase performance in the system by offloading the communication
system. For systems relying on standardized communication protocols, such as for
example TCP/IP, there exist products such as protocol processors, network
processors [Vassiliadis2001] [Vitessewww] and TCP/IP Offload Engines (TOE)
[Tensilicawww] [10GEAwww] that can offload the system in order to gain
performance. These solutions are usually deployed for use in gigabit networks where
the network speed is more demanding compared to the data rate at which the host
can process, i.e. the host processing capability is the bottleneck. Three factors that are
processing intensive for such protocol stacks are reassembling packets, copying of
memory and interrupts [10GEAwww].

Another approach is to use an operating system hardware accelerator in order to
increase performance. Research on hardware accelerated operating systems has been

 65

performed at Mälardalen University [Lindh98] and a similar approach has been
proposed for the Spring [Burleson99] system. A hardware accelerator for the
operating system can offload time-critical components in the operating system, as for
example interrupt handling, scheduling and synchronization. An approach with a
hardware accelerator for the case-study target system has been proposed in
[Enblom2001], and this approach is discussed in more detail in section 3.2.2.2. One
possible hardware architectures for accelerating functionality in the case-study
architecture includes reconfigurable boards such as Wildcard [Annapmicrowww]
from Annapolis Micro Systems, but these products are still quite expensive.

We have analytically identified three main subsystems that could benefit from
being hardware accelerated by hardware:

1. Application functionality such as algorithms, filter (FFT) and/or logic are

candidates for hardware acceleration. In our case-study system application
functionality is mainly generated from graphical tools, that automatically
generate software. After a brief review and analysis of the design flow using
those tools we (together with an application designer) concluded that the
amount of concurrent tasks in the application is to low to be considered
within the scope of this study.

2. A second approach would be to accelerate subsystems of the I/O system.
This could include accelerating the in-house real-time protocol stack or the
dispatch engine of the I/O System. After a brief review and analysis of the
I/O System together with a designer we found no obvious ways for
parallelizing and/or accelerating the I/O System.

3. Platform functionality, such as for example the database engine and the
time synchronization facilities are also candidates for hardware acceleration.
No comprehensive review or analysis has been performed on the
possibilities of accelerating these components, so the possible impact is
unknown at present.

3.2.2 Hardware Architectures with Multiple Processors

The second approach is to introduce a multiprocessor architecture for parallel
execution of system components. We have identified three parallel architectures that
are possible to utilize with the current case-study system; a distributed architecture
utilizing the existing network topology, a bus-based (CompactPCI) multiprocessor
architecture and a symmetric multiprocessor architecture. The next sections will
discuss these architectures as well as the approach of hardware accelerating the
operating system on a bus-based architecture.

3.2.2.1 Distributed Architecture

Today nodes in the system can communicate over a network (AnyLAN-100VG) in
order to exchange data. It is possible to connect processor boards using this network,
and in chapter 4 we analyze the approach of executing I/O system and application

 66

functionality separately in such architecture. The following applies for the
distributed architecture approach:

• The nodes do not share the same execution environment.
• Communication is limited to the passing of messages between the nodes.
• Bandwidth is limited to approximately 12,5 MB/s.
• The processor clock of each node must be synchronized independently.
• Each node consists of a chassis containing processor boards as well as

peripheral boards. Therefore the distributed approach will require more
hardware and will thus be more costly than the backplane bus-based
architecture approach.

3.2.2.2 Backplane Bus-Based Multiprocessor Architecture

A passive backplane is a printed circuit board with connectors placed at regular
intervals to allow connection between printed circuit boards. Processor and
peripheral boards are inserted into slots that enable boards to connect to the
backplane bus, and an example is the CompactPCI-bus. It is possible to connect
multiple processor boards in the same chassis (rack-mount). An approach of utilizing
a centralized operating system accelerator in hardware for such a system has been
discussed in [Enblom2001] and the proposed hardware architecture is illustrated in
Figure 23 below. In such an architecture context switches are triggered by the
hardware operating system (RTU), and the remaining software RTOS on each board
saves current context and makes next task running. The RTOS does also provide an
interface for accessing the features of the hardware operating system such as
changing priority of the tasks, setting periodic timers as well as synchronization and
inter-process communication functionality.

While an operating system accelerator certainly can increase performance for
functionality such as IPC in a system [Furunäs2000], the main part determining
whether the system will scale on a multiprocessor is how well the software system
scales on the particular hardware architecture. An efficient synchronization
mechanism does for example not provide that enough concurrent tasks are found in
the system in order to enable parallel execution. Figure 23 below illustrates an
approach where a hardware operating system (from now on abbreviated RTU, i.e.
Real-Time Unit) controls operating system related functionality. The RTU
implements the following operating system functionality in hardware; task/thread
handling, timers, interrupt handling, shared resource handling (semaphores) as well
as message passing functionality [Furunäs2001]. The remaining software of the
operating system (RTU Software OS) provides for functionality that cannot be
performed by the hardware accelerator, such as for example saving and restoring the
context of a thread. An inherent benefit of utilizing an external operating system is a
performance increase due to the lack of timer-interrupts on processor boards. The
tasks do not require rescheduling or corresponding actions until the RTU issues a
taskswitch command. This gain can be as large as 32% [Furunäs2001], compared to a
system with a conventional scheduler in software having to administer clock ticks.

 67

Yet, in the system we have studied, the processor administrative load for each clock
tick was 16µs (the Intel Pentium 3 hardware platform). The period time for the clock
tick was 1ms which means that the clock tick administration overhead for our case-
study system is 1,6%. Clock tick administration is not judged to be a serious
overhead in the case-study system.

Peripheral
Board

Peripheral
Board

Application Board

CPU

Compact PCI-bus

Input
Device

I/O System

CPU

A
ct

u
at

or

System Under
Control

RTU

System MemorySystem Memory

Application

Platform

RTU Software
OS

Platform
including

IOSys

RTU Software
OS

Figure 23, Proposed Hardware Architecture with an operating system accelerator
[Enblom2001].

As described in section 2.3.2.5, VxMP enhances VxWorks with the ability to share
semaphores, provide mutual exclusion to shared data structures, shared message
queues and shared memory management. A possible system configuration using
these components is illustrated in Figure 24 below. A comparison between the RTU
and the functionality provided by VxMP showed that the same operating system
functionality necessary for functional separation of the existing platform is provided
by both approaches. Functional differences between a VxWorks+VxMP system and
the RTU includes that the RTU provides a centralized system clock, provides
scheduling of external interrupts and provides a global scheduling policy for tasks on
multiple boards. The conclusion is that it is not necessary to utilize a centralized
hardware operating system accelerator in order to achieve functional scalability for a
backplane bus-based multiprocessor system. Therefore, in order to understand how
scalability could be achieved in the target system we decided to study how system
components could be partitioned on multiple processors in the system in order to
achieve both functional scalability and increase performance. This approach led to
the study of the separation of I/O System and application level functionality in a
distributed system, as described in chapter 4.

 68

Application Board I/O System

Peripheral
Board

Peripheral
Board

Compact PCI-bus

Input
Device

A
ct

ua
to

r

System Under
Control

CPU CPU

System MemorySystem Memory

Application

Platform

VxWorks +
VxMP

Platform
including

IOSys

VxWorks+
VxMP

Figure 24, a possible alternative approach using VxWorks + VxMP.

3.2.2.3 Symmetric Multiprocessor (SMP) Architecture

A third architecture alternative is Symmetric multiprocessors (SMP) that represent
a hardware architecture where all system components such as primary memory,
peripherals and buses are equally distant to each processor. The most important
difference between this architecture and the two described above is that it can
execute the same system image, meaning that both processors have access to the
same primary memory for fetching instructions and data. This in turn means that
two processors can issue the same operating system call simultaneously thus
executing operating system code in parallel. Possible dual processor SMP system
architecture is illustrated in Figure 25 below and the SMP System board could for
example be the cPCI-DT64 equipped with dual Pentium III processors
[Kontronwww].

SMP System Board

System Memory
Peripheral

Board
Peripheral
Board

CPU

Compact PCI-bus

Input
Device

A
ct

ua
to

r

System Under
Control

Application

Platform Including
IOSys

SMP Capable OS

CPU

Figure 25, possible dual processor SMP system architecture.

 69

The following applies for the SMP system architecture approach:

• The nodes share the same execution environment.
• Communication between processors is performed by accessing shared memory,

equally distant from each processor and where cache coherence is enforced by
hardware.

• Bandwidth to memory is high, over 1GB/s for most contemporary
architectures.

• All processors share the same clock.
• The SMP system board can fit into one chassis. Therefore such an approach will

require less hardware than the distributed approach and will thus be less costly.
• It is necessary to utilize a SMP-capable operating system.

SMP architecture may be interesting for future consideration for the following

reasons:

• No functional partitioning is necessary in order to scale on the multiple

processors of the SMP.
• Individual dynamic load balancing of threads and processes governed by the

operating system is possible.
• Minimal or no software differences are needed for execution on a single

processor and the multiprocessor.

Obstacles to introducing SMP architecture include:

• The power dissipation of each processor board is larger than for a single
processor board. Since the systems studied in this work cannot have any
moving parts such as for example fans, power dissipation for each board is
limited.

• The cost for SMP architecture boards have generally been high, but lately the
prices have dropped compared to single processor boards.

3.2.3 Faster Single Processor Architecture

Waiting for faster single processor architecture is presently the way of increasing
performance in the target system. Today the target system has supports two
generations of hardware architectures, a 100MHz PowerPC based architecture and a
Pentium III 266 MHz based architecture. While the next generation system, as for
example a faster clocked Pentium 3 architecture, can increase performance
dramatically, an architecture with multiple processors can potentially enable
execution of demanding applications and configurations that cannot execute in the
most powerful single processor architecture available. This is what is defined as
flexibility; the possibility of introducing a multiprocessor system and thereby having
the ability to scale beyond the performance of the most powerful single processor

 70

architecture. It is not necessary to run the new system on a multiprocessor
architecture, so for the cases where extra performance is not needed a single
processor solution is sufficient [Enblom2001]. At the same time as we have
introduced flexibility with the multiprocessor solution we have also introduced
complexity [Pancake96] in terms of increased difficulty debugging the application
and more parameters to remember when writing applications.

3.3 Software Architecture Considerations
When functionally partitioning existing system components onto multiple

processors, load balancing issues become important. The challenging part is the
adaptation of the application and software platform, which has been written for a
single-processor system environment and a single processor RTOS. Partitioning of
threads on separate processor boards therefore becomes an important question.
There is a need to differentiate between the real-time parts of the system (I/O System
and real-time tasks having stringent timing constraints) from less timing constrained
tasks such as logging functions and HMI (Human Machine Interface) functionality.

CPU
Board

T2 T3

T1

T4

Input from
Peripheral
Board (AIM) Output to

Actuator

CPU
Board
1

CPU
Board

2

T2

T1

Input from
Peripheral
Board (AIM)

T3

T4

Output to
Actuator

Figure 26, example of tasks in the original system as well as the new multiprocessor

system and a possible configuration [Enblom2001].

In the beginning of the project we reasoned about how functionality should be
partitioned among the processors in order to achieve the goals of increased
performance. The initial ideas are illustrated in Figure 26 above where the original
application and platform has been created and partitioned into many tasks as (the
tasks merely illustrate how the application can be configured). One initial conclusion
was that communication between the boards has to be minimized to gain
performance in the multiprocessor system. Different groups of tasks that share
common assignment and cooperate intensely can be identified in the original system.
Tasks that communicate intensely are from the communication point of view
appropriate to let execute on the same processor. A counteracting factor is the

 71

amount of concurrency available between two or more tasks in the system.
Concurrency can be exploited by partitioning tasks on separate processors in order to
set free more computing resources. The I/O System and the application were
identified of showing a high degree of mutual concurrency and were therefore
candidates for parallel execution. The counteracting factor of communication
between those components must thereafter be taken into consideration. Fortunately,
the communication between I/O System and application has some favorable
properties:

• The delivery of sensor data is periodic, meaning that the application will not be

temporarily be overloaded by communication data.
• When configured, the same amount of data is delivered from the I/O system to

the application each data delivery period. Between applications configurations,
the amount of data varies from a few tens of bytes up to hundreds of bytes (the
data delivered during the DDP as described in section 4.1.).

• Protection applications deliver a small amount of out-data, actuation actions are
only necessary when an anomaly occurs. For those applications it is not
necessary to continuously deliver actuation events during the AADP phase
(actuation events delivered during the AADP is described in section 4.1.).
Control applications on the other hand may yield a higher amount of out-data,
where continuous delivery of data during AADP is necessary. We have focused
mainly on protection applications within the scope of this work.

At the beginning of the project we considered separating application code from the
complete software platform (called the base system) onto multiple processors. This
would mean that all functionality available in the software platform would execute
in one execution environment and the application code in another execution
environment leading to that all interfaces between application and base-system
components would be mapped to RPC-calls. The round-trip latencies of RPC makes
such an approach unfeasible. We therefore turned from the approach of separating
the application from the software platform (base-system) to the approach of
separating the I/O system from the rest of the system (including the application and
its use of the software platform).

3.4 Identifying Concurrency
In the system that has been studied within the extent of this project an architecture

with multiple processors requiring different execution environments was chosen for
evaluation. Partitioning of existing components is an important task in order for the
system to be efficient. Since we are investigating an existing system, the functionality
and semantics of the system must be preserved. The main task will therefore be to
identify existing concurrency in the system. If components in the existing product
have a large amount of concurrency, the potential of speeding up the total execution
of the product is also large. The software system executes as a number of tasks (i.e.

 72

threads) in the VxWorks [WindRiverwww] priority based real-time operating
system. These threads express an amount of thread level parallelism, TLP, which can
be utilized in a parallel system. We have identified parallelism among threads in
order to find the best option for parallel execution. Parallel execution of components
within each existing thread is certainly possible, as for example hardware
acceleration of mathematical functions. But that would require new analysis of
existing functionality and how acceleration would be implemented. The designers of
the system have already identified parallelism in the form of the existing threads. An
easy and natural way of scaling on multiple processors is to rely on this existing
concurrency.

The system that has been studied in the case-study consists of a platform which is
used for application designers to connect to I/O boards, synchronize the system
boards to a high precision to an external clock, data base components as well as
logging and monitoring of system events. Concurrency can be exploited either within
existing multithreaded components or between components. The two approaches
have different characteristics that may enable more or less parallel execution, and
some of these aspects will be discussed below.

3.4.1 Concurrency within Components

• Concurrency within applications. Existing concurrency within or between
application threads may enable parallel execution and thus an performance
increase. Overlapping independent activities within or between threads is
usually depicted as slackness in literature. Finding slackness between
application threads can indicate that they can scale on multiple processors, i.e.
be configured to execute in parallel on multiple processors. An analysis of the
execution of a an existing application and an analysis of the code structure of
applications have showed little opportunity of parallel execution among
application threads. Existing applications must complete their job within a
fraction of a millisecond, typically less than 0,5 milliseconds and the real-time
critical parts are contained within one thread of execution. Partitioning
application threads onto processors in a network will yield a very high
communication overhead, latencies for nullRPC calls have been measured to
0,36 milliseconds [Enblom2003]. Even with a PCI communication mechanism,
round-trip latencies for messages consisting of 100 bytes are in the domain of 50
microseconds [Enblom2002], even for contemporary processor architectures. It
will be very hard to find enough concurrency within application threads so that
a feasible communication /computation ratio can be achieved. This is true for
both the distributed and board based architecture.

• Parallelism within the I/O System. A system component that consumes a large
amount of computing resources is the I/O System. Depending on how many
input and output devices are connected to the application via the I/O system, a
processor utilization of approximately 10% up to 100% derives from I/O system
activity. This includes interrupt handling, interrupt service routine (ISR)

 73

execution, as well as data correlation and dispatching of data to receivers
(usually applications). Parallelism within the I/O system component for data
originating from local peripherals (on the PCI-bus) is hard to achieve mainly
due to the intricate software structure. Memory references between modules
and functions are common and only one thread context exists in the I/O
System. Remote data reception (via the network) utilizes a real-time transport
mechanism which could be separated from the dispatcher functionality. No
obvious way of exploiting parallelism within the I/O System was found.

• Parallelism within other components. Other components such as time
synchronization and data-base components are other candidates for exploiting
concurrency. Many of those components are designed for existing in the same
execution environment as the callers, which makes redesign necessary. The
components would need to rely on copying of data instead of returning
references to memory locations in the same address space. We have not seen
any straightforward way to achieve speedup of those components.

3.4.2 Parallelism between Components

• Parallelism between I/O System and Applications. Parallel execution of I/O
system and application components is the approach that has the best chances of
increasing performance for system configurations subscribing to data from
many remote nodes. Both components, the I/O system and the applications,
execute in a way that enables parallel execution. The I/O System receives data
and dispatches it to the receiving application threads. Parallel execution of this
approach in a distributed configuration shows up to 27% less total processor
utilization on the application node [Enblom2003] (66% more computing
resources available for application functionality). With a PCI board based
solution, even more computing resources are expected to be available for
applications, see section 4.5.

• Parallelism between other system components. Other components may also
show the possibility of parallel execution. No measurements have been
performed to prove the possibility of parallel execution between other
components.

 74

 75

4 Parallel Execution of I/O System and Application

Components

This chapter consists of five sections describing and analyzing issues regarding
parallel execution of the existing I/O System and application/client components. In
section 4.1 we introduce a model of the existing industrial I/O System that has been
studied, and we then extend the model to enable parallel execution on multiple
processors. Thereafter, in section 4.2, we present a synthetic execution analysis of the
system in both a single and multiprocessor configuration consisting of two processor
nodes. In section 4.3 we describe how we designed and implemented a software
component called Input Output for a Multi Processor (IOMP) in order to exploit the
concurrency between the I/O system and application/client components. Section 4.4
then presents the results from execution in both single and multiprocessor
configurations and we discuss possibilities, threats and suggest improvements to the
approach. Finally, in section 4.5, we present results from inter-processor
communication between two processor boards in a CompactPCI bus-based
architecture.

4.1 A Model of a Data-Driven Real-Time System
Before describing the system and introducing the system model we discuss the

concept of modeling. A model consists of a set of assumptions about how a system,
i.e. real-world facilities and processes, works [Law2000 p.1]. The purpose is to gain
understanding of how the corresponding real system behaves in situations where it
is impossible to experiment with it or where the system has not yet been built.
Furthermore, a system designer may want to change system parameters that cannot
be modified in the real system, such as for example the memory hierarchy, the
bandwidth of the interconnect or the clock-speed of the CPU. The assumptions of the
model lead to simplifications, i.e. the impact of some parameters is simplified or
totally removed in the model compared to the real system. This does in turn lead to
that an amount of error is introduced in the model compared to how a real system
may behave. The simplifications do by necessity introduce errors in the model
compared to the real system. Absolute model validity is impossible to achieve, but it
is desirable to achieve as much model credibility as possible compared to the
invested effort. It is on the other hand desirable to simplify the model description if
we want to achieve an analytical solution [Law2000 p.5], e.g. providing a solution
with the help of a mathematical model. A good model should in that case describe
the behavior of the system as accurately as possible as well as be simple enough to
solve [Hu97]. Law et. al. have categorized ways to study the behavior and
parameters of a system, a categorization that is illustrated in Figure 27 below.

In this work we have emphasized on experimenting with an actual system, but we
have also described and presented an execution model of the system. Generally, if it

 76

is possible and cost-effective, experimenting with the actual system increases validity
of the results. In our case we had an existing system available, enabling us to alter
and add functionality in order to examine the impact of parallel execution.

System

Experiment
with the actual

system

Experiment with
a model of the

system

Physical
model

Mathematical
Model

Analytical
solution Simulation

Emphasis in
this work

Execution
Model

introduced
in this
study

Figure 27, possible ways to study a system [Law2000] and the emphasis in this work.

The execution model is not based on assumptions about how the system is
behaving, but rather on the actual system. Execution traces from the system as well
as a functional study of program code has been the source of information for the
system model. The model, including its simplifications, has been the foundation for
identifying concurrency in the system.

The alternative to experimenting with an actual system is to experiment with a
model of the system. One of the ways of experimenting is by physical modeling, such
as for example models of cars in wind tunnel experiments. This method can be
excluded for our purposes. The alternative to physical modeling is mathematical
modeling which, if it is simple enough can be solved analytically or analyzed by
means of simulation. Simulation may be performed in various forms and at various
levels of abstraction. Simulation is the task of imitating a system together with a
model of the surrounding system under control, in order to evaluate, understand and
identify characteristics of the system. A definition stated by Shannon [Paul93 p.1] is:
“Simulation is the process of designing a model of a real system and performing
experiments with this model for the purpose of either understanding the behavior of
the system or of evaluating various strategies for the operation of the system”.

The purpose may be to increase performance by understanding the execution
behavior of the system as a whole. The model of the system and the environment
may be simple or complex. For example, in order to understand how the queuing of
sensor data arriving to a computer system affects the response time of tasks it may be
interesting to model the inter-arrival time of sensor data and the associated
notification (i.e. interrupt) together with a software model. Simulation of a system
can also be a way of decreasing the volume of faults of a design in the early phases of

 77

construction. This can save time and money in a project as well as helping in the
verification of the design.

Different levels of abstraction can be chosen in order to study a computer system
[Banks2001 p. 529]:

1. Gate Level (Lowest abstraction level).
2. CPU Level, including models of microcode, ALUs, memory interfaces etc.
3. Processor Level, including models of caches, memory and disks.
4. Computer System Level (Highest abstraction level).

Choosing abstraction level affects parameters such as the speed of the simulation,

the complexity of the hardware and software model, the accuracy of the simulation
results as well as the ability to model in-house peripherals. Generally, low
abstraction levels of simulation result in high accuracy, slow simulation and high
complexity of the models. The converse applies for high abstraction levels.

A number of simulation techniques are available for the system evaluator. A subset
of potential simulation techniques available are listed below (beginning with the
lowest abstraction level):

• Co-simulation [Adams96], or co-design, is a technique using the same

methodology when designing digital systems including both hardware and
software systems. Since our case-study system consists of standard hardware
components co-simulation is not very useful for our purposes.

• Complete system simulation is a technique where the complete target
architecture is modeled. Peripherals and system components such as network
interface controllers, interrupt controllers and the processor instruction set as
well as address space are accurately modeled at the functional level.
Unmodified software may run on such simulators. Available simulators are
SimOS [Rosenblum97] and Simics [Albertsson2000] [Virtutecwww]. We have in
our work chosen not to create such a simulation environment due to factors
such as complexity of the tools, complexity of modeling in-house peripherals
(the data producers) and the initial lack of interest in studying factors such as
cache hit ratio and memory footprint. If factors such as cache behavior, memory
footprint and interaction with peripheral devices is assumed to play a
significant role in performance in future systems, complete system simulators
may become interesting tools for system analysis.

• Discrete-event system simulation [Banks2001] [Arshamwww] is a technique
where a model of a system is run and where state variables change at discrete
points in time. It would be possible to implement a discrete-event system
simulator for the system model and vary parameters such as task execution
times, network latencies and input data distributions. But when examining the
existing system, very little variation in for example input data arrival was
detected due to the predictable dispatching of messages on the AnyLAN

 78

network and the system-wide fine-granular time synchronization. In order for
us to perform sensible experiments we had to invent input data distributions
that were not in accordance with the real system. In the future, if it is interesting
to study the effects of varying input data frequency, discrete-event simulation
may be an alternative. Discrete-event simulation packages have been criticized
of showing poor scalability and that “the complexity of the simulation model
approaches the complexity of the system under development” [Chatterjee97].

As described in the next couple of sections, we have created a model of the system.

We had three main reasons for creating and describing this model:

1. To gain a comprehensive understanding of how the system is designed and
enable us to disseminate results without exposing proprietary information.

2. To enable us to reason about system properties at a high abstraction level
and identify relations between system parameters and system performance.

3. To enable us to describe and present metrics from the performance
experiments, e.g. processor utilization, response time, latencies and
communication/computation ratio.

Having discussed modeling in general, we now progress by describing a model of

a data-driven real-time control system, as used in the case study and in part
described in [Enblom2003].

4.1.1 System Architecture

The modules of a processor node in the system are illustrated in Figure 28 below.
Components which communicate with peripheral devices such as data producers,
network peripherals and actuators are illustrated at the bottom of the figure. Three
types of peripheral devices are represented in the system:

1. An output peripheral device which performs actuations toward the

environment according to requests from the IOSys via software component
A.

2. An input peripheral device which produces data to corresponding system
software component B.

3. A combined input/output device (for example the AnyLAN network interface)
handled by software component C.

These three types of peripheral components can be added to the IOSys by the
application designer, and the application can define which data is to be received
from and/or sent to these. Data is delivered through the Application Program
Interface (API) to the application, and actuation data is delivered to the IOSys
through the same API.

 79

CPU
Node/Board

Application

 API

I/O
System,
IOSys

Output
to
Peripheral A

Input/Output
from
Peripheral C

Comp.
B

Comp.
C

Comp.
A

Peripheral
A

Peripheral
B

Input
from
Peripheral B

Peripheral
C

Figure 28, a single processor data-driven node.

A data-driven system is in this context defined as a system in which the execution of
the application is dependent on the reception of data from data producers, such as
I/O nodes or peripheral devices. Each time data arrives at the node, the application
begins executing on the basis of new data and makes decisions based on the history
of the collected data. The core component of the system is the I/O system (from now
on abbreviated as the IOSys), which provides access to peripheral boards, actuators,
remote nodes and possibly other system components.

4.1.2 System Semantics and Functionality

The IOSys provides functionality which can be categorized as being a middleware,
serving as a layer of software between the I/O devices and the application. The
purpose is to hide heterogeneity of the I/O devices and enable portability to many
hardware architectures. Data arriving from I/O producers is delivered to the
application thread or threads according to the semantics of the IOSys. The API
provided to the application developers enables them to control the run-time
functionality of the IOSys. The application can for example be configured towards a
certain set of data producers by using this API.

In this data-driven system model, it is possible to combine the delivery of
correlated and correlated data (see the discussion regarding correlation of data
below) from the producers. The application can define data structures (DS)
containing data from possibly multiple sources. Thus the application can wait for
data items destined for a DS to arrive at the IOSys before the receiving application
thread is ready to run. The I/O producers can be said to “publish” data to the IOSys
and the application can be said to “subscribe to” data from the I/O producers via the
IOSys.

 80

IOSys

Application

Data
Producers

In-Buffer

Items

Items

Items

DS1

DS2

DS3

Data
Consumers

Out-Buffer

Items

Items

Items

DS1

DS2

DS3

Items Items

DS DS

Figure 29, Illustration of data exchange between the data producers/consumers, the I/O

system and the application.

The IOSys is in effect executing concurrently with the application, buffering and
correlating data to be delivered later. Figure 29 above illustrates a buffer of three data
structures, each data set containing a number of data items (possibly from multiple
data sources). The IOSys will independently from the application correlate/group
incoming data. Data item correlation is based upon timestamps related to each data
item in order to achieve a correct snapshot of the environment. Each data producer
must therefore be synchronized to a high degree of precision in order to correlate
data into the data structures. Data being delivered from remote nodes (items are time
stamped) to the local node may be delayed, but the IOSys can still correlate the data
into the corresponding DS correctly. The main functionality of the IOSys can be
summarized as:

1. Applications can select to receive data items from multiple sources and

have IOSys correlate them into data structures (DS).
2. Data is delivered whenever a DS is completely filled with items.
3. The correlation, i.e. grouping, of data in the data structures is performed

upon the timestamps of each item, i.e. correlation is performed depending
on the time at which data items were produced.

4. All data producers produce data at the same rate in the case-study.

4.1.3 The Data-Driven Real-Time System Model Applied to a System with
Multiple Processors

In a single processor system, as illustrated in Figure 28 above, both software and
hardware system components contend for shared resources, such as the processor,

 81

memory and the interconnects. Priority-based operating systems therefore provide
the assignment of priorities to threads depending on task importance. Threads on a
single node are scheduled in an interleaved fashion according to “highest priority
first”. A thread with a lower priority, ready to execute, may therefore have to wait to
run due to the contention for the processor. Whenever such situations occur, the
amount of thread level parallelism (TLP) of the software is higher than the
underlying computer architecture is able to utilize. An execution analysis (section
4.2) of the system model allows for the parallel execution of the IOSys and the
application threads. The concurrent execution and buffering that the model provides
can therefore be exploited by a parallel system at the interface between the
application and the IOSys.

In Figure 30 below, we have introduced a delivery mechanism which enables the
application and the IOSys to exchange information. If, for example, the application
issues a request to wait for the next data structure, the IOSys will deliver it when it is
filled with items through the use of the DS delivery mechanism.

I/O Node/
Board

IOSys

Peripheral
B

Peripheral
A

Peripheral
C

Comp.
B

Comp
C.

Comp.
C

Application
Node/Board

DS
Delivery

Mech.

DS
Delivery

Mech.

Application
with

Wrapper

 DS DS

AnyLAN

Application
Peer

API
Call

Figure 30, The multiprocessor system model.

In comparison with the single processor system, we have introduced an
application peer thread for each application thread that exists on other boards in the
system. Calls from the application threads to the IOSys are marshaled by a wrapper
class on the application board and demarshaled by the application peer at the I/O
board. This enables the applications to execute Remote Procedure Calls (RPC) across
the IOSys API, such as “waiting for data” and “acknowledging data”. A problem
common to every remote procedure call mechanism is references to data in different
execution environments. References to complex data types owned by the IOSys
cannot be passed back to the application thread. Therefore such references are
substituted with opaque references [Coulouris94 p.129] and complex data structures
are flattened. The effect of this mechanism is that the application can be written with
the same semantics as in the single processor case.

 82

4.2 Execution Analysis of the Model
In order to understand the behavior of the system we analyze the execution pattern

of the system for a delivery of a data structure to the application for both the single
processor case and the multiprocessor case. In Figure 31 we illustrate data delivery
over two sample periods (TSample).

Figure 31. A single processor execution scenario.

We can identify five major phases in the execution, which also are common in real-
time control systems based on continuous sampling and actuation of I/O
peripherals. The Data Acquisition Phase (DAP) represents the total execution time for
all data collection functions. The Data Delivery Phase (DDP) represents the time for
delivery of the collected data during the DAP phase to the receiver. The receiver is
usually an application thread, and the execution of the application is represented by
the Application Phase (AP) in the execution model. At the end of the application phase
the buffer used in delivering the data structure is acknowledged and actuation
actions that may be due are delivered to the IOSys as well. These actions are
represented by the Actuation and Ack Delivery Phase (AADP). Finally, during the
Actuation and Ack Phase (AAP), the buffer of the data structure is released in order to
be used again by the system and data is sent to respective actuation peripheral board.

We introduce five timing parameters that are representing the executing time of
each component during the five phases:

• TDAP represents the execution time of IOSys during DAP.

 83

• TDDP represents the communication overhead between the IOSys and
the application during DDP.

• TAP represents the execution time for the application during AP.
• TAADP represents the communication overhead between the application

and the IOSys during AADP.
• TAAP represents the execution time in the IOSys during AAP

(acknowledgement of DS).

When the load on the system increases, i.e. application that subscribes to more I/O

and, it may not be possible to execute the application on the single processor as
illustrated in Figure 31 below. The first execution of the application thread has not
been completed when the data acquisition phase begins. Basically, the rate at which
data is produced is higher than the rate at which the application can consume data.
This example illustrates only a small timeframe of execution, but is intended to
illustrate a transient overload.

Figure 32, A scenario in which the application has insufficient execution resources.

The execution of the same scenario in a multiprocessor system could yield an
execution diagram as shown in Figure 33 below. Parallel execution of DAP and AP
could enable an increase in computing resources for the application. But, the
increased computing resources provided to the application must be compared with
how much the communication overhead actually is. As can be seen in Figure 33,
there is an overhead in communication which must be weighed against the benefit of
having enabled parallel execution. For the application, the communication overhead
TDDP plus the communication overhead of TAADP on the application board is pure
overhead. Note that compared to the single processor system, this overhead is
divided into three phases from a system-wide perspective. The first is the execution
time of the communication mechanism on the I/O board. The second is the
communication latency of the channel (illustrated by the dotted arrows) and the
third phase is the execution time of the communication mechanism on the
application board.

A relevant question is how we view and detect deadline misses in the system. Data
structures (DS) are produced periodically by the stream of data items which originate
from the data producers. At every instant when a data structure (DS) is ready to be
delivered to the application, we can study how many previous DS’s have not yet

 84

been acknowledged by the application. In short, this property of the system provides
the age of buffered data. This view is due to the data-driven structure of the system
and deadlines are thus not associated with the execution times of threads, but rather
with the delivery and consumption of incoming data.

Figure 33, example execution of the application in Figure 32 in the multiprocessor
system.

4.2.1 Performance Metrics

Performance metrics [Lilja2000], i.e. quantitative values that are used to describe
performance of the system, are introduced in this section. We discuss the relevance of
each of the chosen parameters and how they are calculated.

• Processor Utilization is a metric that represents the amount of work (in percent)
performed each measured time interval compared to the amount of processor
idle time. The granularity of the metric can vary, ranging from fine-grained
processor utilization measured each sample period (millisecond granularity) up
to coarsely grained processor utilization measured over the whole
measurement period (second granularity). In our measurements we have
measured processor utilization over the whole measurement interval
(400TSample). This is due to that processor utilization has traditionally been
measured at a coarse granularity by system developers. We have concluded
that processor utilization is an important metric to use for two main reasons;
firstly it is the number one metric used by system developers to measure
performance, and secondly it is a metric describing performance of the most
central resource of the system; the processor.

• In a system where the execution of main application functionality is dependent
on delivery of sampled data, the age of buffered data is important. A commonly
used term for describing unimplemented work or unhandled data is the
backlog. Its importance is due to its ability to indicate a temporary overload of
the system, as well as indicate response times on for example actuation events
that are causally related to input data.

 85

• Communication-to-computation ratio is a metric that is commonly used to
indicate the impact of communication in parallel systems. In the high
performance computing subject area the ratio is usually calculated as the ratio
between the amount of bytes sent and the computation time, i.e. amount of
bytes over time [Culler99 p.132]. In our case we are more interested in a metric
that indicates the performance as communication time over the time available
for useful work. The definition of communication-to-computation ratio (CCR) is
thus:

nComputatio

ionCommunicat

T
T

CCR =
 (1.1)

This definition of communication-to-computation ratio resembles the
performance definition of parallel architectures introduced by Tokhi et. al.
[Tokhi2003 p.15]. The difference is that they introduce a ratio that is the inverse
of our definition, i.e. time of computation over communication. Since we
compare an architecture consisting of multiple processors with a single
processor architecture with no communication overhead we would get an
undefined ratio (division by zero) for the single processor system with this
definition. Therefore we chose to use our definition.

• Speedup is a metric that describes the ratio between execution time for one
system configuration over another system configuration. Usually it is measured
as the execution time of the task on one processor over the execution time of the
same task on multiple processors. In our approach of parallel execution of I/O
system and application components speedup has not been a useful metric. We
have not intended to speed up the execution of neither the I/O system, nor the
application, but have had the goal to free more computing resources for the
system as a whole. In that sense, we adhere more to the scalability over problem
size definition, see section 2.1.11 and 2.1.3. In a system where each execution of
application functionality needs to finish each sample period, i.e. application
with real-time properties, it is more interesting to assume a constant run-time in
contrast to a constant problem size. Therefore measuring speedup as defined by
Amdahl was not relevant for our measurements.

• The round-trip time of nullRPC calls is a metric that measures the time it takes to
execute a procedure call in a remote execution environment, and where the
procedure does not perform any actual work. The metric is good as it quantifies
the minimum communication latency for request-reply protocols, and therefore
latencies that are a consequence of such requests can be given a minimum
value.

4.2.2 Extensions to the Model

It is possible to extend the model to be more accurate with respect to the actual
system. These extensions include:

 86

• The Data Acquisition Phase (DAP) can be extended to include timing for
tasks executing within the phase. This would include:

o Interrupt handling routines during data reception, including
operating system interrupt dispatchers (ISR) and interrupt service
routines for the network interface card (NIC).

o Timing of the protocol stack during reception of data from remote
data producers.

Figure 34 below illustrates a scenario where the DAP has been extended to
show the interrupts from the devices delivering data and the execution of
IOSys for each interrupt.

Processor
Node/Board

0 1 2

1

TSample

DAP
DDP

AP
AADP

DAP
DDP

AP
AADPAAP AAP

2 3 1 2 3

Figure 34, Extended model of DAP including interrupts and execution time per data
reception.

• Execution time induced by correlation dependent on number of items, i.e.
the work performed in context of the I/O System thread, in order to group
(correlate) incoming data into respective data structure (DS).

• Amount of data in every delivery from remote producers. We performed a
test to see the impact of this in the actual system and found that a variation
from the minimal amount of data to maximum amount of data yielded a
processor utilization increase of 3% (20% increase compared to the
minimum). Most of this overhead is due to correlation activity in the I/O
System.

4.3 Implementation and Design of IOMP
This section describes the design of a software component called Input Output for

a Multi Processor (IOMP) designed in order to exploit the concurrency between I/O
system and application/client components.

4.3.1 Design

We introduce a mechanism that allows for an application remotely use the I/O
System and describe the implementation of it and how it can be used together with
the existing control system. The system has been called IOMP, Input Output for a
MultiProcessor, and consists of the following components:

 87

• An application side wrapper (IOMP Wrapper) for the I/O System API.
• Application Peers (IOMPPeer) on the I/O System side, one thread servicing

each application thread.
• A server (IOMPServer) for servicing application thread in the creation of

peers.
• A protocol (IOMPProtocol) utilizing a reliable communication protocol (an

existing mechanism), enabling communication between IOMPWrapper and
IOMPPeer.

Figure 35, Overview of IOMP.

Figure 35 above illustrates the IOMP mechanism and its interaction with the I/O
System. The following sections will describe the internals of each component.

4.3.2 IOMPWrapper

IOMPWrapper was designed in order for I/O System API calls to be executed in
other execution environments. This includes the mapping of the interface for
creating, reception and acknowledgement of data structures. The purpose is to
enable easy porting of the original application code towards the IOMP system. As an
example we illustrate in Figure 36 below how the application code presented in
Figure 20 should be changed to enable execution in the IOMP framework. A goal
with the design is to minimize the changes of the application when used in a
multiprocessor environment. The user (application designer) only has to instantiate a

Execution Environment /
Application Node

Execution Environment /
I/O Node

Application

IOMPWrapper

Application
Thread

IOMPPeer

IOMP
Peer

Thread

IOMPProtocol

Communication Link

IOMPServer

Reliable
Communication

Protocol

Reliable
Communication

Protocol

I/O System

I/O
System
Thread

IOMP
Protocol

IOMP
Server
Thread

IOMP
Protocol

 88

IOMPWrapper object in order for a peer-thread to be created on the I/O System side.
The wrapper object does, in the context of the application thread, send a request to
the IOMPServer on the I/O System side, which in turn creates the specified
IOMPPeer. The design could be described as a tailored RPC mechanism for the
specific I/O System API. We will see in Section 4.4.3 below that different
optimizations need to be implemented in order to achieve optimal or near optimal
performance.

IOMPWrapper wrapperObj;
Identifier dataStructureId;
DataStructure *dataPointer;
while(running == true) {
 dataPointer = wrapperObj.waitForDataStructure(dataStructureId);
 executeApplicationCode(dataPointer);
 wrapperObj.acknowledgeDataStructure(dataPointer);
}

Figure 36, Application code for execution in IOMP.

4.3.3 IOMPPeer

The IOMPPeer thread is created when an IOMPWrapper object is instantiated and
a connection between those two (the context the IOMPWrapper is executing in and
the IOMPPeer) is established. If a reliable interconnect is used, it would not be
necessary to establish a connection, only a uniquely addressable endpoint would be
needed. The basic design of the IOMPPeer thread is that of a non-terminating loop
waiting in a blocked state for requests from the IOMPWrapper. Say for example that
the application invokes the waitForDataStructure() method in the wrapperObj object
as illustrated in Figure 36. This call will trigger a request to be sent from the wrapper
object to the peer, which in turn will invoke the waitForDataStructure() function in
the I/O System.

4.3.4 IOMPProtocol

IOMPProtocol is a component that defines how requests and replies between
wrappers and peers are constituted. The protocol is used by the wrapper objects and
the peers in order to transparently, from the applications point of view, execute I/O
System services in the other execution environment.

The protocol includes the data structures that are being sent between peers and
wrapper objects, including their sizes and content. Memory references cannot be
passed back to the caller (in this case the wrapper and application) by the I/O
System. Such references must be converted to remote object references [Coulouris2001
p.144] (opaque references). An object does not exclusively represent objects in an
object-oriented sense. It could also include identifiers and references to data
structures located in another execution environment. For example, the I/O System

 89

does return identifiers and memory references embedded into data structures. These
references must not be accessed in the other execution environment, but they will be
used by the peer when a method is invoked.

4.3.5 IOMPServer

The IOMPServer is not a necessary part for the execution of IOMP, but provides a
dynamic way of binding application threads and peers together. An application can
request for a peer to be created by IOMPServer via the instantiated IOMPWrapper. In
the case that the user does not want to use IOMPServer, it is possible to explicitly
define the number of peers and their interaction with each application thread. The
communication between the application threads and the server is initiated through a
predefined port.

4.4 Measurements and Results
The measurement platform that has been used resembles the model architecture

illustrated in Figure 30. In order to investigate the effects of a separation of the I/O
system and application components, we have created a number of system
configurations which match the behavior of a data-driven periodic system. The
configurations we are interested in investigating are single/multiprocessor
configurations with varying I/O data loads.

4.4.1 Experimental Setup

We have experimented with actual hardware in the industrial environment,
building on existing components. Two processor architectures were available and we
have experimented with both, but focus has been on the more powerful Intel P3
based architecture. We wanted to vary hardware configuration where possible,
compare single and multiprocessor configurations as well as vary the input stream of
data into the system. The single processor setup is illustrated in Figure 37 below.
Every node, including the remote data producers, is synchronized to a station clock.
The station clock is connected to the nodes by optical fiber, periodically transmitting
a synchronization pulse. In the extension, the station clock is usually synchronized to
some other external clock, e.g. the GPS satellite system. The effect is that every node
is synchronized at a high precision, a necessary condition for the publish/subscribe
I/O system to operate correctly (in the cases we need to correlate or group data that
have been sampled at the same instant).

 90

Remote
Data

Producer 1

Remote
Data

Producer 2

Remote
Data

Producer 3

Remote
Data

Producer 4

AnyLAN
Switch

System Node

AnyLAN
NIC

Ruggedized
Processor Board

Time
Sync.
HW

CPCI

Station
Clock

Sampling Sampling Sampling Sampling

Figure 37, Single Processor Experimental Setup

Figure 38 below illustrates the two processor based experimental setup. We have
named the two nodes differently based on their intended operation. The I/O node
operates the I/O system including the peer part of IOMP. The application node
operates the application thread.

Remote
Data

Producer 1

Remote
Data

Producer 2

Remote
Data

Producer 3

Remote
Data

Producer 4

AnyLAN
Switch

I/O Node

AnyLAN
NIC

Ruggedized
Processor Board

Time
Sync.
HW

CPCI

Station
Clock

Sampling Sampling Sampling Sampling

Application Node

AnyLAN
NIC

Ruggedized
Processor Board

Time
Sync.
HW

CPCI

Figure 38, Two Processor Experimental Setup

All measurements were performed using the VxWorks [Windriverwww] operating
system. In order to collect data and monitor the system under runtime we used

 91

Windview [Windriverwww], a software monitoring tool provided in the Tornado
IDE environment. Windview is integrated with the kernel, and we used the tool
exclusively in post-mortem mode. In this mode the monitoring tool continuously
collects data in a buffer without transmitting any data to the monitoring host. By
using this mode we minimized the interference and the probe effect compared to
using a mode where data is periodically sent to the host during runtime. Every
measurement was performed similarly in order to minimize measurement errors. We
used a cold start period of 400 TSample, thus allowing for the system to stabilize in
terms of data deliveries and threads executing during startup. All measurement
periods were thereafter 400 TSample long during which performance parameters such
as processor utilization were collected. Since we were experimenting with a complete
system platform we inspected every trace to ensure that no other system services, e.g.
the flash control thread, were executing. The flash control thread executes
periodically on low priority, but since our processor utilization measurement figures
are based on the fraction of background thread execution, we had to ensure that no
such threads executed during our measurement interval.

In order to more easily understand how the system is constituted we have
included a picture showing the experimental setup of the P3 architecture. The I/O
node is located to the left and the application node to the right. Optical fibers
originating from the AnyLAN switch are connected to the NIC located on a CPCI
carrier board, i.e. the time synchronization hardware board. The nodes used for
experimenting with the PowerPC based architecture appears in the background.

Figure 39, Picture of the system setup, I/O node to the left and application node to the

right.

Different configurations are obtained through the variation of three components.
These components are the hardware configurations, I/O configurations and other

 92

system workloads. The purpose of varying hardware configurations is to permit
reasoning about the feasibility of a separation of the IOSys and applications for the
respective hardware architectures. The hardware configurations are:

• Single_HW1. Single processor system based on an Intel P3 architecture in a

configuration as illustrated in Figure 37.
• Multi_HW2. Multiprocessor system with two Intel P3 processor

nodes/boards in a configuration as illustrated in Figure 38.

Single_HW1 represents a computer architecture based on an Intel P3 clocked at a

frequency of 266MHz and with a L2 cache. Multi_HW2 represents a hardware
configuration in which two Intel P3 based processor boards (same as in Single_HW1)
are connected a fiber optical 100VG AnyLAN switched network. The 100VG network
technology [Molle96] has been ratified by IEEE as standard 802.12 and achieves a
minimum data rate of 100Mb/s.

We also vary the origin of produced data, and four configurations have been set
up, please refer to Figure 37 and Table 1. As Table 1 lists, data originates from remote
nodes through communication over a connection-oriented protocol developed in-
house. Data is periodically produced at a rate of TSample and as data items arrive at the
node, the IOSys groups (correlates) them into data structures (DS).

I/O Configuration Characteristics

I/O1 I/O originating from one remote peripheral data
producer. Remote peripherals communicate with
the processor board through an in-house
communication protocol over the 100VG
network.

I/O2 I/O originating from two remote peripheral data
producers.

I/O3 I/O originating from three remote peripheral
data producers.

I/O4 I/O originating from four remote peripheral data
producers.

Table 1, I/O Configurations.

4.4.2 Processor Utilization

A measure of available system performance is the amount of processor utilization
over time. The measurements are based on a data collection interval 400 TSample
periods long and in which TSample is one millisecond in duration. The processor
utilization metric gives no actual information regarding for example real-time
responsiveness, but indicates the amount of available processing power. The test
includes one client thread which waits for an incoming data structure (DS) and

 93

immediately acknowledges it. No other work is performed. All four hardware
configurations have been tested together with the four I/O loads, and the results are
presented in Table 2 and Figure 40 below.

 I/O1 I/O2 I/O3 I/O4
Single_HW1 20,5 31,7 46,2 58,6

I/O App I/O App I/O App I/O App Multi_HW2
50,6 31,2 60,0 31,0 69,3 31,2 82,3 31,4

Table 2, Processor utilization over the measurement interval.

We see that the communication mechanism used between the nodes does affect
performance significantly, i.e. the overhead of DDP and AADP, but that this
overhead is rather constant. For example, running Single_HW1 (single Intel P3
board/node) with the I/O1 configuration leads to a processor utilization of 20,5%.
The Multi_HW2 multiprocessor configuration indicates that the overhead for the
communication between the nodes increases the load on each processor by
approximately 30%. The actual figures for I/O1 indicate a 30,1% (50,6%-20,5%) and
31,2% overhead for the communication on the I/O node and the application node
respectively. All I/O from the data producers are handled by the I/O node, hence
the higher load on that board (50,6% processor utilization with the I/O1
configuration).

0

20

40

60

80

100

I/O1 I/O2 I/O3 I/O4

I/O Configuration

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

 (
%

)

Multi_HW2 I/O
Node

Multi_HW2
App. Node

Single_HW1

Figure 40, A plot of mean processor utilization based on the figures in Table 2.

The application thread has, in the multiprocessor case Multi_HW2, an almost
constant amount of processing power available, regardless of the increased amount
of I/O in the I/O1 and I/O2 case. This is due to the effect of only one data structure
(DS) delivery across the boards being necessary, irrespective of how many origins the
individual items in that DS have. In the I/O1 configuration only one data producer
delivers data items, while in configuration I/O2 two data producers deliver data
items to the I/O board. This form of de-multiplexing of incoming data into data

 94

structures (DS) is the foundation of the benefits of such a separation of I/O system
and application components. The I/O4 multiprocessor configuration showed the
largest performance gain for the application functionality configuration. In that case,
the gain was 27,2% (58,6%-31,4%) less processor utilization (in absolute processor
utilization terms). The relative improvement for application components is thus 66%
more available processing resources.

We observe that the crossover point, where the parallel execution of IOSys and
application components is beneficial, occurs when loading IOSys with configuration
I/O2. Loading the system with configuration I/O1 gives a system where available
processing resources for the application is less when utilizing the multiprocessor
system compared to the utilizing the single processor system. At the crossover point
the processing resources available in the single and multiprocessor systems is
approximately equal. Not until we load the system with the I/O3 and I/O4
configurations we increase the computing resources for application functionality
when utilizing the multiprocessor system.

Measurements on hardware configurations equipped with PowerPC 603
processors have been performed as well. The multiprocessor configuration of the
PowerPC processor boards does not manage to consume as many data structures
(DS) as are produced, even when loading the system with configuration I/O1.

4.4.3 Optimizing for Performance

We have identified three interaction approaches that between I/O System and
application components. They are called the RPC approach, the PreWait Approach
and the Subscribe Approach respectively.

4.4.3.1 The RPC Approach

A RPC mapping of each function call of the I/O System interface is functionally
feasible for a multiprocessor system, but the approach does not perform well. As an
example, please refer to Figure 36. Both the waitForData and acknowledgeData
function calls are request-reply oriented. This implies that the application thread is
busy waiting for the reply for each of the function calls, thus decreasing performance
drastically.

 95

IOMPWrapper wrapperObj;
Identifier dataStructureId;
DataStructure *dataPointer;
while(running == true) {
 dataPointer = wrapperObj.waitForDataStructureAndAck(dataStructureId);
 executeApplicationCode(dataPointer);
}

Figure 41, the RPC approach with merged dataWait and ack.

We (refer to section 4.4.5) have measured nullRPC calls to have a latency of 0.36 ms
in the system, which implies that approximately one third of the processing
resources are used busy waiting (with a TSample period of 1ms) when this approach is
used. The RPC approach illustrated in Figure 36 leads to two request-reply round-
trip communication cycles. This would lead to a approximate total of 0,36 * 2 = 0,72
ms (based on nullRPC measurements in section 4.4.5) of busy wait at the application
board. This would in effect nullify the benefits of parallel execution of application
and IOSys components. As a first step in alleviating the negative effects of two RPC
calls we merged the two waitForDataStructure and acknowledgeDataStructure
function calls into the single waitForDataStructureAndAck function call. The effect of
one RPC call still persists, and the disadvantage of this request-response based
approach is illustrated in Figure 42 below. Data delivery is triggered by the
waitForData call issued during the AADP phase.

Figure 42, the disadvantage of a pure request-response based approach.

Of importance is the high negative impact of inter-processor latencies when using
the consumer-initiated (receiver-initiated) communication of RPC. The goal is to
utilize the application board with useful work. Therefore we needed to change the
interaction between the application and the I/O System.

 96

4.4.3.2 The PreWait Approach

An improvement over the RPC approach is to create a new interface where
waitForData is issued before the AP is finished calculating on previous data
structures. In that way the I/O System can operate concurrently with the application,
and sending the next data structure as soon as all items are received. The buffering of
data structures is handled by the communication mechanism, i.e. the receive buffers
of the connection endpoint. This optimization is possible if the application is aware
of that it will need next data structure at some point of time in the future and where
the communication mechanism between the peers and the application or
communication mechanism does support buffering of at least one message. The
structure of an application we have studied does not prevent this optimization and it
would have to be rewritten accordingly in order to function without the performance
decrease incurred by the RPC approach:

IOMPWrapper wrapperObj;
Identifier dataStructureId;
DataStructure *dataPointer;

while(running == true) {
 dataPointer = wrapperObj.acknowledgeDataAndPreWait(dataStructureId);
 executeApplicationCode(dataPointer);
 dataPointer = wrapperObj.waitForDataStructure(dataStructureId);
}

Figure 43, the PreWait approach.

The acknowledgeDataAndPreWait is called at once at data reception at the
application board. Next function call, waitForDataStructure, is local and progresses
whenever the next data structure has arrived. The PreWait approach can be
compared to what is called precommunication for shared memory architectures
[Culler99 p.838]. With precommunication the receiver/consumer issues a request for
data before it is needed, in hope that whenever it is needed data has arrived at the
receiver/consumer. The purpose is to allow the sender, in our case the IOSys board,
to deliver the data structure when it becomes ready. The effect is that we hide the
latency of the request-reply approach. The approach was used during measurements
and the execution diagram for two TSample periods would be as shown in Figure 44
below.

 97

Figure 44, Execution diagram with the acknowledgeDataAndPreWait approach.

When we compare the PreWait approach to the RPC approach we see that the
amount of communication overhead is the same with both approaches. Still the
communication overhead is approximately 30% at each board and can be expressed
as (on each board):

AADPDDPdionOverheaCommunicat TTT += (1.2)
The relation determining whether a separation of I/O System and application

components is profitable compared to the single processor system can be expressed
as (execution time on the I/O Node):

dionOverheaCommunicatDAP TT > (1.3)
and thus:

AADPDDPDAP TTT +> (1.4)

In short; this relationship states that the amount of work performed within the
DAP phase must be greater than the overhead of communicating the data structures
to the other node. The Communication-to-Computation (CCR) ratio as defined in
section 4.2.1 is an indicator of the same relationship, i.e. the relationship between
inter-processor communication overhead and the amount of useful work. A CCR of 1
indicates an equal amount of communication overhead and useful work performed
during the measurement period (indicated by the crossover point). A smaller ratio
indicates a system where a separation of the I/O system and application components
is beneficial. Figure 45, presents the CCR ratio for the measurements performed. The
single processor configuration is defined of having a CCR of zero; the time of
parameter passing of the API function call is neglected. The CCR of the I/O node
crosses 1 (from 1,47 to 0,89) when introducing a second I/O producer (I/O2), thus
indicating that we have crossed the crossover point. We have also introduced the
system wide CCR for the multiprocessor configuration indicating how much total
communication overhead there exist in the system.

 98

 I/O1 I/O2 I/O3 I/O4
Single_HW1 0 0 0 0

I/O App Sys I/O App Sys I/O App Sys I/O App Sys Multi_HW2
1,47 0,31 0,31 0,89 0,31 0,30 0,5 0,31 0,27 0,40 0,31 0,28

Figure 45, the calculated Communication-to-Computation Ratio (CCR) on each node.

The relationship that indicates at which point the IOSys board becomes overloaded
is (as measured during one TSample):

SampleAADPDDPDAP TTTT >++ (1.5)

In the Intel Pentium system configuration a system overload would occur if
another I/O producer is added, i.e. when subscribing to data from five data
producing nodes. The conclusion is that the PreWait approach is not suitable for
system configurations subscribing to data from one or five (or more) remote data
producers. The PreWait approach gives approximately the same available processing
resources for the application when subscribing to data from two remote data
producers and shows an increase in processing resources for configurations with
three and four remote data producers.

4.4.3.3 The Subscribe Approach

The overhead of the RPC and PreWait approach leads us to continue looking for
more efficient approaches. The IOSys is developed with a publish/subscribe
methodology in mind. Therefore it would be natural to adopt a system executing on
a multiprocessor towards this methodology as well. The acknowledgement
semantics of AADP of the model presented above could be removed since its
purpose is to free a buffer in IOSys (in a separate execution environment). The data
structure is already copied into the receiving execution environment. If the
continuous actuation of peripherals is not needed, which is true for protection
applications, and calculated values of the application is not remotely exported via the
IOSys, we may remove the AADP phase during execution (until an event that needs
actuation occurs). The execution diagram for this approach would then look like
illustrated in Figure 46 below.

 99

Figure 46, Execution diagram without the AADP phase.

In order to be able to estimate the effects on processor utilization for such an
approach we measured the difference of receiving and sending data, i.e. the
processor utilization of DDP and AADP at the IOSys and application board
respectively. The result was that receiving data is approximately 50% more processor
demanding compared to sending data. According to this line of reasoning we have
reduced the communication overhead with 60% on the IOSys board by removing the
receiving part of the AADP. We also reduced the communication overhead with 40%
on the application board by removing the sending part of AADP. Figure 47 below
illustrates the estimated processor utilization when removing AADP, based on the
figures of Figure 40. Now, the crossover point we observed in Figure 40 has been
removed, meaning that we release more processing resources for application
functionality in all I/O configurations. Please observe that Figure 47 does not contain
measured values, only estimated values when removing the communication
overhead of AADP.

0

20

40

60

80

100

I/O1 I/O2 I/O3 I/O4

I/O Configuration

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

 (
%

)

Multi_HW2 I/O
Node

Multi_HW2
App. Node

Single_HW1

Figure 47, Estimated processor utilization with the subscribe approach.

According to the model we achieve an increase in available processing resources
for application functionality when:

 100

dionOverheaCommunicatDAP TT < where DDPdionOverheaCommunicat TT = (1.6)

which results in:

DDPDAP TT < (1.7)

The estimated maximum performance improvement (with I/O4) in terms of less

total processor utilization is approximately 47% (58,6%-12%) and the relative
improvement for application components is thus 111% more available processing
resources.

4.4.4 Latencies

We have already been reasoning about latencies that deprecate performance for the
RPC approach in section 4.4.3, Optimizing for Performance. Now, we extend our
study to include what effects on responsiveness various configurations of the system
give rise to. Data responsiveness is defined as the response time of the system on
sampled data. From a system-wide perspective it is defined to be the time from
sampling the environment to the actuating the system under control. In our model
and measurements responsiveness on data it is defined to be the time from the
arrival of data to the processor board until the application is finished using the data.
It is measured as the number of buffered data structures to be delivered to the
application.

4.4.4.1 High Priority System Threads

In order to estimate how high priority threads affect the execution of application
threads we introduce a system thread with various workloads. The priority of the
system thread in the single processor configuration was higher than that of the
application threads, but lower than that of the communication threads. The thread
was to represent functionality that need to be handled instantly.

 101

I/O
Node

IOSys

Peripheral
B

Peripheral
A

Peripheral
C

Comp.
B

Comp
C.

Comp.
C

Application
Node

DS
Delivery

Mech.

DS
Delivery

Mech.

Application

 DS DS

AnyLAN

Application
Peer

API
Call

HP System
Thread

Figure 48, Introduction of a high priority system thread.

Different threads representing different workloads were created, the characteristics
of these being the time it took to run them without disturbance on a single board.

0

5

10

15

20

1 2 3 4 5 6 7 8 9 1

Workload in ms

R
es

p
o

n
se

 T
im

e
in

 m
s

Single
Multi
Ideal

Figure 49, Response time of system thread vs. its undisturbed workload.

One-millisecond workloads up to 10-millisecond workloads were created and run
on both hardware configurations Single_HW1 and Multi_HW2. In the single
processor configuration (Single_HW1) we see that we have a continuously increasing
execution time for the system thread compared with the ideal undisturbed execution.
The disturbance, from the system thread’s point of view that leads to its execution
time increase, is the data stream arriving continuously from the data producers at a
rate of TSample. In the multiprocessor configuration (Multi_HW2), the system thread
kept the same priority but in this case, the application thread and the system thread
did not compete for the same processor. The extra communication overhead between

 102

the nodes, which is higher prioritized than the system thread, leads however, to an
even longer execution time for the system thread (see Figure 49).

For the same measurement, we also kept a log of how many outstanding data
structures (DS) not yet acknowledged were queued on the delivery of a new DS, i.e.
at each sample period. The result is presented in Figure 50 below.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

Workload in ms

M
ax

im
u

m
 q

u
eu

in
g

 o
f

D
S

Single_HW1

Multi_HW2

Figure 50, Maximum data structure buffer utilization.

We see that the multiprocessor configuration (Multi_HW2) never has the queue to
grow. This is due to the parallel execution of the application and the system thread.
The single processor configuration on the other hand has a continuously growing
queue due to the fact that the application thread never has the time to consume data
on the incoming queue. A queue with, for example, six queued data structures (DS)
will lead to a system that has not reacted on incoming sampled data for at least six
TSample periods. While this synthetic test is somewhat unfair in since it introduces
starvation, it can be concluded that for a multiprocessor design (such as Multi_HW2)
a tradeoff can be made between the responsiveness of the application vs. the
responsiveness of other system threads. The test also shows that unexpected delays
not accounted for during design and erroneous behavior of system threads in the
I/O node does not affect the execution of the application. Thus the robustness of the
system has been improved.

4.4.4.2 Network Related Latencies and Contention

Of importance is the timely delivery of data over the interconnect. The case-study
system uses an AnyLAN network and while the AnyLAN network is predictable
regarding traffic scheduling the links are not secure. This meaning that packets
transmitted over the network can be lost. It is up to the transport protocol to secure
the delivery of data, detecting a situation where packets are lost and retransmitting
them. During a measurement period we detected an incurred latency of 1293µs from
the time the data structure was delivered until the response from the application
arrived.

 103

During measurements we found another source of latency originating from
contention between the AADP and the DAP. Figure 44 does actually illustrate such a
situation where AADP (on the IOSys board) delays the DAP and ultimately the AP.
This situation occurs whenever the application board wants to execute AADP
concurrently with the DAP on the IOSys board. For most applications this incurred
latency (in the range of 150-200µs) is not a serious problem, but an effect the
application designer should be aware of.

Actuation events should in most cases be higher prioritized than DAP
transmissions on the link. In the current implementation only normal prioritized
AnyLAN [HP95] frame transmissions are used. Therefore AADP could use frame
transmission with high priority in situations where critical actuations need to have
precedence over data acquisition.

4.4.5 Synchronous RPC

The multiprocessor design of Multi_HW2 assumes a clean interface between the
application and the IOSys. In the multiprocessor case, all function calls in the single
processor architecture design must be mapped to inter-processor synchronous
remote procedure calls (RPC). If the function call expects a result of any kind from
the I/O board/node, execution of that application thread is stalled. Function calls
that do not need a result could be exchanged with asynchronous RPC calls. RPC calls
can be resource demanding and can have large round-trip times. In our system, in
which application threads are executed every millisecond (TSample is 1 millisecond) a
high round-trip time can have very degrading effects on performance. We therefore
measured the round-trip time of null RPC calls utilizing our inter-board mechanism.
The result was a round-trip time of approximately 0.36 milliseconds, which in our
system means about a third of a sample period TSample. A conclusion is that RPC calls
between the nodes must be minimized to the greatest possible extent since even a
single RPC call would cause a very high performance degradation of the application.
If the semantics of the application permit, all data needed by the application thread
should be delivered together with the data structures at the beginning of each sample
period.

4.5 PCI-Bus Communication Performance
In order to estimate performance when utilizing a PCI-bus based multiprocessor

system, we implemented a communication mechanism that enables tasks to
exchange messages over the Compact PCI bus. The motivation for this work was to
analyze and identify threats to efficient communication in backplane bus-based
computer architecture that is suitable as the multiprocessor platform in a separated
I/O System and application approach. This section and Appendix A describe the
implementation of the communication mechanism, called PCICom, and presents
measurement results as well as a discussion regarding the potential use of it together
with the IOMP approach.

 104

4.5.1 Overview

The software implementation of PCICom consists of a C++ class that utilizes a
shared memory area. It is possible to use PCICom in shared memory architectures
where it is possible to issue processor loads and stores to memory located externally
to the processors own execution environment. A passive CompactPCI-backplane bus
architecture, with a system and a non-system board connected to the bus is an
example of such an architecture.

System Board

Shared
Memory

Non-System Board

T1

T2

T3

T4

Notification
Receiver

(ISR)

Notification
Receiver

(ISR)

CompactPCI

1

2

8

3

5

6

4

7

Q1

Q2

Figure 51, Overview of PCICom.

The difference between a system board and a non-system board is that the system
board has a transparent PCI-PCI bridge and the arbiter for the CompactPCI bus (PCI-
PCI bridges not shown for simplicity in Figure 51). A non-system board does have a
PCI-PCI bridge with configurable address translating windows, enabling filtering of
CompactPCI memory transactions not intended for the non-system board. In our
tests, both the System and the Non-System boards were Pentium III boards running
at 850MHz (CT7 single processor boards produced by SBS Technologies [SBSwww]).

Each processor board has a notification receiver, responding to interrupt events
from other boards and the notification receiver is represented by an Interrupt Service
Routine (ISR). The ISR will be run by an interrupt triggered by transactions to the
doorbell register in the Intel 21554 PCI-PCI bridge [21554www] residing on the non-
system board. Figure 51 also illustrates how two pairs of threads exchange messages
over the PCI-bus. A receiving thread, for example T2, will take a semaphore and
block forever until the release of the semaphore. The sending thread, T4, writes (1) a
message into next available message entry in queue number two, Q2. Thereafter a
write to the doorbell register (2) on the Intel 21554 bridge invokes the notification
receiver ISR on the system board. The ISR will in turn release the semaphore (3) that
has been taken by T2 and T2 can thereafter read (4) the message in Q2. The same

 105

procedure is repeated whenever T1 wants to send messages to T3, but in this case the
receiver (T3) reads (8) data from shared memory located on the system board.

4.5.2 Memory Layout

The first test with PCICom were using a shared memory area on the CompactPCI
system slot board. VxWorks by default takes control all of the available primary
memory, which cannot be allowed when defining a shared memory area such as the
one needed by PCICom.

System Board

Memory

Controlled by VxWorks
up to sysMemTop()

PCICOM_SHARED_MEMORY (from
system board) and
PCICOM_UPSTREAM_BASEADDRESS
(from non-system board)

sysMemTop()

PCICom

0x00000000

0x10000000

0x08000000

Figure 52, Memory Layout on the System Board

A definition (USER_RESERVED_MEM) in the Board Support Package (BSP) for
VxWorks was altered so that VxWorks would not use memory allocated by PCICom
(this limit can be read with the sysMemTop() function). This definition changes the
amount of memory that will be controlled by VxWorks from the top of the address
space and downward. The only information that has to be provided by the user to
find the shared memory area on either processor board (system and non-system) are
the respective base addresses. On the system board the base address is provided with
the PCICOM_SHARED_MEMORY definition and on the non-system board it is
defined by PCICOM_UPSTREAM_BASEADDRESS. Figure 52 illustrates how the
memory of the message queues are placed in memory with respect to the operating
system. From PCICOM_SHARED_MEMORY and towards higher addresses,
message queues with index 0, 1, 2 up to N are located.

4.5.3 Performance Measurements

A number of measurements have been performed to study the behavior of
communication using the PCI-bus. Each test was made on two SBS CT7 [SBSwww]
CompactPCI boards running at 850MHz. The first test performed was a uni-
directional communication from the system to non-system board. With the help of
the spy tool available in VxWorks, the average execution percentage of the
background task could be observed. A clear tendency could be seen at once; the non-

 106

system board was being heavily loaded and the processor utilization figures are
presented in Figure 53 below.

Message Size Frequency System Board

Processor
Utilization

Non-System
Board

Processor
Utilization

10 byte 1000Hz 1% 3%
100 byte 1000Hz 1% 7%
1000 byte 1000Hz 2% 59%

Figure 53, Processor Utilization with uni-directional communication from system to non-
system board.

It is clear that performance is suffering from reads from the non-system board over
the PCI-hierarchy. Even at moderate 1000 bytes sent at a frequency of 1000Hz
(˜ 1MB/s) the non-system board was suffering under heavy load.

In a second test two message queues were created and we stressed the system with
a ping-pong test. One thread on each board exchanges messages in an interleaved
fashion, without any delay. Complete copying from the memory area of each thread
to the other is performed in the process. This test yielded results that are presented in
Figure 54 below. The SendReceive threads represent user threads performing ping-
pong message passing. Bkgnd is a thread running at a low priority, i.e. the idle
thread. Kernel is the fraction of time spent in the kernel, e.g. scheduling, and Int
represents the fraction of time spent at interrupt level.

 107

Message Size Messages per
second and

direction

Load on
individual threads

or modules on
System Board

Load on
individual threads

or modules on
Non-System

Boards
1000 byte 2200 SendReceive 1%

Bkgnd 96%
Kernel 0%
Int 1%

SendReceive 95%
Bkgnd 2%
Kernel 0%
Int 1%

100 byte 15200 SendReceive 4%
Bkgnd 87%
Kernel 2%
Int 5%

SendReceive 75%
Bkgnd 13%
Kernel 2%
Int 7%

10 byte 34000 SendReceive 9%
Bkgnd 70%
Kernel 6%
Int 14%

SendReceive 51%
Bkgnd 28%
Kernel 5%
Int 14%

0 byte 45400 SendReceive 11%
Bkgnd 60%
Kernel 6%
Int 20%

SendReceive 38%
Bkgnd 35%
Kernel 6%
Int 20%

Figure 54, Performance of Ping-Pong test between system and non-system boards.

Two conclusions can be drawn from these figures. Firstly, as has been noted
earlier, the reads from the non-system slot are disastrous for performance and is
reflected in the load on the SendReceive thread on the non-system board. The
SendReceive thread is responsible for reading the message, and in the case of large
messages the execution of this thread is occupying the whole processor. As the
messages become smaller and smaller, the significance of the reads become lesser,
while the significance of context switches and interrupt handling becomes more
significant. The Kernel module and interrupt module figures in Figure 54 are good
indicators on context switch overhead and interrupt overhead. The performance of
pure notification, where the message size is zero, is quite impressive. The boards are
able to handle 45400 interrupts, including one semaphore release and one context
switch to the receiving thread per second.

Another interesting figure to note is the load on SendReceive on the system board
in the case of large messages of 1000 bytes where the CPU load is as low as 1%. This
is due good memory locality, i.e. PCICom copies to a memory with primary memory
on the board itself.

 108

The significance and latency of bus transactions on the PCI-bus was analyzed with
a bus-analyzer from VMETRO [VMETROwww], and a timing sample is presented in
Figure 55 below. The figures are taken from a test with a message size of 100 bytes
and the analyzer was placed on the CompactPCI-bus. Bus access latencies, the
amount of time that expires from the moment a bus master requests the use of the
PCI-bus until it completes the first data transfer of the transaction, consist of three
components; arbitration latency, bus acquisition latency and target latency
[Shanley99]. In a bus-hierarchy as in the case of a local PCI-bus and a CompactPCI-
bus, these latencies will accumulate.

Figure 55, Timing on reads from the non-system board to the system board.

Each address that will result in a 4 byte transfer from system memory on the
system board to the non-system boards, will also take a long time to complete. The
first transfer shown in Figure 55 takes as much as 956,8ns + 149,5ns + 149,5ns +
149,5ns + 149,5ns 179,4 = 1734,2ns. This represents 1743,2ns / 29,9ns = 58 PCI clock
cycles. During this time the processor on the non-system board is busy waiting for
the result of the transaction. A large amount of processing power is thus wasted.

 Figure 56 below shows the figures from our test where the non-system board
issues writes over the CompactPCI-bus to the shared memory area on the system
board. Timing is much better compared to issuing reads from the non-system board,
but not optimal. The first write marked in the figure takes 149,5ns (five PCI-clock
cycles) and the next, due to burst effects, allocates only one PCI-bus cycle (29,9ns).

The positive effects of using write-buffers is a well-known fact [Patterson98 p.554],
but the tests also show the necessity of know the limitations of PCI-bus transactions
in a bus-hierarchy. Memory references issued transparently transferred over the PCI-
bus hierarchy to memory locations with bad locality can sacrifice many clock cycles

 109

for the processor. The correct utilization of bursts must be exploited as well as correct
use of the 256 bytes of posted write and 256 bytes read buffers in each direction in the
Intel 21554 PCI-PCI bridge. It is interesting to note that latencies through a PCI-to-
PCI bridge has been reported to be in the order of tens of nanoseconds to
milliseconds [Chamé98].

Figure 56, Impact of writes over the CompactPCI-bus and the bus hierarchy.

4.5.4 Message Passing Utilizing Writes over the PCI-bus

PCICom was modified to support multiple shared memory areas, enabling
message passing with only writes over the bus hierarchy as illustrated in Figure 57
below. The timing and performance to message-passing was greatly improved as can
be seen in the figures shown in Figure 58.

System Board

Shared
Memory

Non-System Board

T1

T2

T3

T4

Notification
Receiver

(ISR)

Notification
Receiver

(ISR)

CompactPCI

1

2

3

6

4

7

Q2

Shared
Memory

5 Q1 8

Figure 57, PCICom modified to support multiple shared memory areas.

The throughput reaches its maximum when 1000 byte large messages are sent. In
that case 14450 messages * 1000 byte ≈ 14,5 MB/s is transmitted in each direction.
The theoretical maximum throughput of the PCI-bus is 32bit * 33MHz ≈ 132MB/s

 110

which is much better that the figure presented by PCICom (14,5MB/s * 2 = 29 MB/s).
PCICom is thus approximately 132/29 ≈ 4,5 times slower than theoretically
achievable. Theoretical throughput is only achievable when achieving long bursts on
the bus. Sustained throughput of PCI-based communication has been reported to be
in the range of 70-80 MB/s [PLXwww] and lower figures are common for most
practical situations, i.e. a system with multiple competing devices. DMA
performance for devices located on the local PCI bus have shown to be able to
achieve 80-90 MB/s or even 130MB/s in some cases and as low as 68 MB/s in other
cases [Moll97].

Message Size Messages per

second and
direction

Processor
Utilization of

individual threads
or modules on
System Board

Processor
Utilization of

individual threads
or modules on
Non-System

Boards
1000 byte 14450 SendReceive 43%

Bkgnd 48%
Kernel 2%
Int 6%

SendReceive 45%
Bkgnd 46%
Kernel 2%
Int 6%

100 byte 36750 SendReceive 31%
Bkgnd 46%
Kernel 5%
Int 16%

SendReceive 26%
Bkgnd 50%
Kernel 5%
Int 16%

10 byte 43150 SendReceive 27%
Bkgnd 47%
Kernel 6%
Int 18%

SendReceive 23%
Bkgnd 53%
Kernel 6%
Int 17%

0 byte 45400 SendReceive 25%
Bkgnd 48%
Kernel 7%
Int 19%

SendReceive 23%
Bkgnd 50%
Kernel 7%
Int 19%

Figure 58, PCICom issuing only writes over the PCI-bus.

Based on the measurements described above the conclusion when implementing a
communication mechanism where the processor is responsible for the data exchange
is:

 111

In order to avoid costly request-reply data exchange in a PCI-bus
hierarchy, issue processor writes from the sender processor instead of
reads issued from the receiving processor.

4.5.5 PCI-bus as the Communication Mechanism in the Case-Study System

The figures presented in Figure 58 above can give us indications on latencies for
the round-trip times for request-reply protocols, e.g. RPC calls. Based on the amount
of messages sent in each direction each second (from column 2 in Figure 58) we can
calculate approximate timing for round-trip times (the uni-directional latency times
two):

Message size
(bytes)

Estimated
Round-Trip
Latency (µs)

0 (nullRPC) 44
10 46
100 54
1000 138

Figure 59, Round-Trip latency.

In section 4.4.5, synchronous RPC, we measured round-trip latency for function
calls over the 100VG network. It is interesting to compare the difference between the
round-trip latencies for the distributed approach and the CompactPCI bus-based
approach. They are both executing on Pentium 3 architectures, but the processor
boards were clocked approximately 3 times faster (850MHz vs. 266 MHz). In the
distributed system using IOMP, the round-trip latency was 360µs. Compare this to
44µs for the estimated round-trip latencies for nullRPC over the CompactPCI
hierarchy we get a 360µs/44µs ˜ 8 times ratio. Assuming a performance ratio of 3
between the two architectures we may estimate a lower limit of the ratio to 8/3 ˜ 2,7.
These figures are approximate but can indicate if synchronous RPC is feasible for a
PCI bus based approach. 44µs corresponds to 4,4% of the sample period, TSample,
which is a substantial amount of time. The conclusion is that RPC is still inefficient as
a programming model when using a Compact PCI bus-based architecture and where
system periodicity is high.

In our case-study system the transmission of data structures (DS) during the DDP
and AADP phases for the distributed system accounts for approximately 18%
communication overhead on the receiving side (as discussed in section 4.4.3.3) and
12% communication overhead on the sending side. With a properly tuned PCI
communication mechanism, the load of transmitting 1000 bytes at 1000Hz will yield
a 2% system load (according to Figure 53) and transmitting 100bytes in 1000Hz will
yield a system load of 1%. The overhead of delivering Data Structures (DS) between
processor boards in such a system is minimal.

 112

 113

5 Conclusion and Future Work

Industrial systems designed for execution in a single processor environment are
not necessarily able to scale on multiple processors effortlessly. Scalability is
dependent on parameters such as the available hardware architecture alternatives,
the available operating systems for those architectures, the available communication
system as well as the ability of middleware and application level functionality to
scale. Given an industrial system with an intelligent I/O system, it is possible to
improve performance by executing the I/O system and application components in
parallel.

5.1 Research Questions Revisited
This section summarizes our conclusions and the answers found to the research

questions stated in section 1.2. The first question was formulated as:

1. “Which time-critical software system components utilize the most processor
resources and do they show a large amount of mutual concurrency?”

The answer to this question was found by studying source code as well as

executing systems, monitoring the operating system, platform and applications. The
system consists of the major components illustrated in Figure 19, each with its own
software structure and run-time properties. Each component exhibits a certain
execution pattern depending on how it is triggered by the arrival of data (the I/O
system and protection system of applications) and other external events (such as the
synchronization mechanism that is triggered by synchronization pulses). Other
system components are triggered by internal events such as periodic triggers (the
watchdog task) or data delivered by other system components (such as system event
functionality and logging activity). The results of system analysis showed a system
execution pattern that periodically begins with data acquisition followed by
application protection functionality. In order to describe and reason about system
performance we developed the model described in section 4.1 and performed the
execution analysis in section 4.2 (also described in [Enblom2003]).

Why did we choose to study the separation of I/O system and application
components? Firstly, because the two components showed a large amount of mutual
concurrency (in a pipelined producer-consumer fashion) and secondly, because of
the combination of the time-critical and resource-demanding parameters. Data
arrives periodically and must be handled by the system immediately. Applications
must be adapted to finish before the next data arrival, i.e. be tuned to fit in the time-
slot available. Other system functionality such as flash disk recovery tasks or logging
tasks execute in the remaining slack available in the system (the system is tuned to
show an average processor utilization rate not exceeding a certain amount less than
100%). Leaving the uniprocessor system intact and executing logging functionality

 114

on a different processor is an alternative to the parallel execution approach. This
functionality is however subordinated to (given lower priority than) the time-critical
data acquisition and application functionality and this approach cannot help in
freeing more processing resources, for neither the I/O system nor the application.
The approach could on the other hand free more processing resources for the logging
task, but this was not of great interest in our system. Thus, the choice of separating
I/O system and application components was a combination of the time-critical and
resource- demanding nature of the system architecture. Components that exhibit a
large amount of mutual concurrency and a relatively small amount of data exchange
are suitable candidates for parallel execution. The I/O system and application have
both of these properties.

In addition to the mutual concurrency that exists among I/O system and
application components, we utilized the correlation functionality of the existing I/O
system to offload the application node. The correlation functionality can be used with
the following effects on a separation of I/O system and application components:

• The I/O node running the I/O system shields the disturbances of interrupts,

communication protocol processing, as well as correlation functionality from
the execution of application functionality on the application node.

• The concept of data structure delivery upon completion gives rise to only one
notification event, we shield the application node from a varying load of data
producers.

• Correlation is necessary in shielding application nodes from the varying
amount of I/O deliveries. If the correlation functionality was not present a
separation of I/O system and application components would yield as many
notifications to the application node as to the I/O system node. Much of the
benefit of separation would then be lost.

2. “Given the existing software architecture, can the components requiring the

utilization of a considerable proportion of available processor resources scale on
a distributed or bus-based multiprocessor architecture and how does the
suggested parallel execution of the concurrent system components affect
performance?”

Our studies have shown that, given a sampling frequency of 1000Hz and off-the-

shelf hardware components, the system can scale on a two-processor distributed-
system architecture by introducing an I/O system node. The inter-node
communication overhead however is quite processor demanding. Yet, the approach
can free computing resources for system configurations that need data from multiple
remote data producers. The case study showed approximately 30% processor
utilization on each processor for the communication between the processor boards.
In cases in which the I/O system utilizes the processor less than the processor
utilization overhead of inter-processor communication with the distributed solution,

 115

no processor resources are freed for the application. If, on the other hand, the I/O
system processor utilization becomes greater than the distributed overhead, the
available processing resources have increased for the application (as discussed in
4.4.3.2). Performance measurements with a message-based communication
mechanism on a CompactPCI system indicate that overhead for the communication
between the processors can decrease significantly for such architectures. When the
interaction pattern between I/O system node/board and the application node/board
is retained, CompactPCI architecture can lower the communication overhead to the
range of a few percent (see section 4.5).

The results have been obtained from a distributed test platform based on
communication over an AnyLAN network, but conceptually the results should be
similar for non cache-coherent non-uniform memory access (NCC-NUMA) hardware
architectures based on message-passing. Such a solution has been proposed in
[Enblom2001]. An example of NCC-NUMA architecture would be, for example, a
Compact PCI (CPCI) backplane bus-based system equipped with multiple slots, each
possibly holding a processor board. The processor boards inserted into the slots are
able to access shared memory over the bus-hierarchy, but no memory-coherency
support is provided by hardware. Issues regarding functional partitioning are much
the same as in the distributed system. On the other hand, round-trip latency timing
for RPC calls would be much lower due to lower bus latencies and the less processor-
demanding message-passing communication mechanism. In this context it is relevant
to identify the similarities between the distributed and a backplane bus-based
architecture. They include:

• All resources in both architectures, such as interrupt controllers, local memory

and peripheral buses are local to each processor node/board. The only means
of communicating between processors is over the interconnect (backplane bus
or network).

• Moving tasks/threads from one processor environment to another is
performance-demanding and employed seldom in real-time systems. In the
backplane bus-based architecture however, the system can access data in a
global memory area. Therefore the same task, if the code is located on multiple
boards, can potentially execute on multiple processor boards. Yet, we have seen
(in section 4.5.5) that accessing memory on another processor board can be a
threat to performance due to latencies. A task/thread usually obtains resources
such as file-pointers, memory allocated from the heap as well as the stack, from
its local processor. Migrating from one processor to another in a backplane bus-
based architecture includes moving the complete state of the task/thread from
one processor to another. An approach in which the stack and the heap are
placed completely in a global shared memory will suffer from the same
performance limitations as the study in 4.5.5 suggests. Thus, efficient
partitioning of system components, such as locating I/O system and application

 116

components on separate boards/nodes will be the most fundamental factor in
both the distributed architecture and backplane bus-based architecture.

Differences do however exist between the distributed architecture and the
backplane bus-based architecture:
• The inter-node bandwidth differs by a factor of approximately 10 (~132MS/s

compared to ~12,5MB/s)
• In the distributed architecture, inter-processor communication is limited to the

sending of packets over the network. In the backplane bus-based architecture
processor load/stores can access remote memory. Sending and receiving data
packets over the network involves a respectable amount of code to execute on
both the sender and receiver side. The startup time of sending and receiving
packets is high compared with the amount of data sent. In the backplane bus-
based architecture, the ratio between startup time and the time per sent packet
is smaller.

Conclusions and results regarding processor utilization include:

• Given the interconnects available in this study (100VG-AnyLAN and a
backplane PCI-bus) the fine-granular execution of data acquisition and
application execution give rise to relatively high communication/computation
ratios. The communication mechanism used between the boards should require
the least possible resources in terms of processor utilization. The
communication mechanism used for inter-processor communication should
ideally be less demanding of processor resources than the communication
mechanism used to receive data from remote I/O boards during DAP.

• Parallel execution of I/O system and application components has a number of
positive and negative effects on the system. The main positive effect is that
more processing resources are released for application components for systems
that subscribe to data from many remote nodes.

• Due to less contention with the I/O system activities, application functionality
gives a stable amount of processing resources with the approach using multiple
processors.

• Powerful hardware architectures are more suitable for use in the distributed
architecture approach because they demand less processor resources for
communicating between the nodes (we compared the PowerPC 603 and the
Intel Pentium3 architectures). Even more powerful future architectures will
improve this further.

• The amount of data delivered between the I/O node and application node has
little effect on processor utilization. The application node shows the same
processor utilization figures (between 31,0% and 31,4% when using
configuration I/O1 to I/O4).

 117

• Instruction level parallelism (ILP) is exploited by the processor architecture. We
have exploited existing thread level parallelism (TLP) in the form of pipelining
(producer/consumer parallelism).

• We have shown that, provided that the interaction between system components
on the different processors is kept to a minimum, the distributed system can
reach 27,2% less total processor utilization for the application node (with the
RPC approach). This represents 66% more processor resources available for
application components. The estimated increase in performance (with respect to
reduced total processor utilization) reaches 46% when using configuration I/O4
(adhering to the subscribe approach in section 4.4.3.3). This represents
approximately 111% more processor resources available for application
components. For the substation automation system which has been the target of
this work, a distributed multiprocessor system solution can therefore increase
the performance capability of the application components.

• Other system functionality, such as system threads with high priority suffer loss
of performance in terms of increased response-times.

• The semantics and communication pattern at the interface between the I/O
system and application components can affect performance significantly. We
identified three interaction patterns; the RPC, the PreWait and the Subscribe
patterns (called approaches in chapter 4.4.3). The only practically feasible
patterns are the PreWait and the Subscribe patterns where the Subscribe pattern
will introduce the least communication overhead.

• The latency-hiding technique of precommunication used in the PreWait
approach enables the system to tolerate the high round-trip latencies of a
request-reply protocol. The RPC approach cannot exploit any latency-hiding
techniques unless the system is able to find concurrent work when waiting for
the reply. If multiple threads are available for execution, the application node
could exploit this available thread level parallelism (TLP), but unfortunately the
critical path within applications is contained within the context of one thread.

• With both the RPC approach and the PreWait approach, the communication is
receiver-initiated, with the inherent round-trip latency as a result. The subscribe
approach on the other hand is sender-initiated, inherently eliminating the need
for a two-way protocol.

• In both the RPC and the Prewait approach, issuing a complete two-way
request-reply cycle for each function call is a waste of processing resources.
Merging multiple independent function calls into a single call can therefore be
advantageous. We did this with the waitForDataStructureAndAck() function
call, thereby eliminating one RPC round-trip.

Conclusions and results regarding data latencies, response time to important system
events as well as inter-processor round-trip latencies include:

 118

• Inter-processor synchronous RPC, i.e. client/server semantics between
processor boards, is performance-costly semantics and should be avoided.

• By exploiting the inherent correlating functionality of the I/O system we are
able to shield the numerous interrupts and data receptions occurring on the I/O
node from the components of the application. For example, configuring the
system with four remote data producers (I/O4) leads to four interrupts from
the AnyLAN NIC each TSample period. Correspondingly, only one interrupt
originating from the AnyLAN NIC occurs each TSample period on the application
node.

• By communicating between two nodes in a network we have introduced
another source of latency in comparison with the single processor system. In
section 4.4.4.2 we describe the issues of lost packets in the network and
contention between I/O system communication traffic and inter-node
communication traffic. For most systems, lost packets introduced an acceptable
delay while contention was the origin of a minimal delay.

5.2 A Condensed Summary
The most important conclusions from this work are:

• By introducing an I/O Node as shown in Figure 60 below can shield the
application from the disturbing communication activities, thus enabling a
more predictable execution of application components.

• Utilizing two nodes has been measured to give up to 66% more processing
resources for the application components.

• The interaction pattern between the I/O node and the application node is of
significance. An analysis showed that relying on a subscribe approach
between the nodes is appropriate.

Data
Producer

Data
Producer

Data
Producer

Data
Producer

I/O Node
Correlation Activities

App. Node

Figure 60, Conceptual view of the I/O Node approach.

 119

5.3 General Applicability
The focal point of this work was the case-study system and the problems of

parallel execution for that particular system. It is therefore hazardous to draw any
conclusions general applicable to all industrial automation systems. However,
systems with the same general design and structure as the case study in this thesis
are potential candidates for the improvement of performance by parallel execution.
System properties such as periodic data arrival, data acquisition from remote nodes
via a network, concurrent data acquisition and application phases, data driven
application execution and limitations on power dissipation from processor boards
are important system characteristics. In brief, we have exploited pipelined
concurrency already present in a real-time industrial automation system by
introducing an I/O system proxy node in order to improve the system performance.
Performance was possible through the use of the correlation functionality of the
existing I/O system. This enables applications to specify the data that is it interested
in to the I/O system. Systems that have correlation functionality (on for example
timestamps) and have the same execution patterns as the model in this thesis
describes, can potentially improve performance for application functionality by
parallel execution of I/O system and application components. There are many issues
of interest for further study in this field and a number of such issues will be outlined
in the next section.

5.4 Future Work
Many parameters are involved during the execution of a real-time control system,

and the system designer needs to have a broad holistic system view and to
understand how parameters and properties cooperate. The demand for more
performance for new functionality is continuously increasing as is the demand for
supporting high rates of I/O sensor sampling. Multiprocessor solutions need to be
considered even in systems which have been designed solely for a single processor
environment. We outline below two areas and some other general directions for
future study we consider to be of interest:

1. Hardware architectures and hardware accelerators. We have in chapter 3 already

discussed possible hardware architecture alternatives intended to improve the
performance of the system. We now briefly discuss investigations in other
directions which could be undertaken.

1.1. The parallel system explored in this thesis statically partitions components

onto different processor boards and into different processing environments.
Alternative multiprocessor hardware architectures would be, for example,
Symmetric Multiprocessors (SMP). The main benefit of such hardware
architectures is that they provide a shared view of memory for all the
processors and achieve coherency among processors by means of hardware.

 120

Since all the processors have the same access to hardware components and
memory, it should be possible to move a multithreaded application,
originally designed for a single processor system, into such an environment.
The need for an operating system with SMP support arises in this context as
do the price/performance ratio and power dissipation issues. Are SMP
systems a credible alternative and are they feasible in real-time and
embedded control environments? These are questions that need to be
answered.

1.2. The test system presented in this thesis has been configured working with
only one sampling frequency. Interesting measures with such systems would
be to decrease the sample period time, thus achieving a more frequent data
delivery. Questions then arising would be how well modern processor
architectures would behave with this increase in both the amount of arriving
data as well as the increased notification overhead in the form of an increased
volume of interrupts and network traffic.

1.3. Mixed configurations of cheaper/less powerful processor boards and more
expensive/more powerful processor boards can lead to a more balanced
workload for different I/O configurations. This is one parameter in a future
price/performance study that could also include the study of different
processor architectures, performance issues regarding cache sizes and
different system memory footprints.

1.4. Operating system accelerators. Research in this field needs to advance into
accelerating more functionality, traditionally implemented in operating
systems. If the operating system functionality such as clock tick
administration, scheduling and IPC is a major bottleneck in the specific
system, an existing operating system accelerator might improve performance.
Areas of study which would be of interest include memory allocation
accelerators and hardware support for accessing performance-demanding
devices such as network adapters. But, we are certain that the sequence of
system design and development should focus on system components scaling
on multiple processing elements before identifying the magnitude of the
operating system overhead.

1.5. Hardware acceleration of specific application algorithms and logic may
benefit from hardware acceleration. We determined that concurrency of
application protection functionality was inadequate for exploitation within
the architectures we studied, but the use of a dedicated hardware accelerator
for FFT algorithms could still be a performance-improving approach.

2. Communication and I/O system middleware for industrial automation systems.

2.1. Data flow patterns in industrial automation systems and distributed real-time
systems are a challenging topic. We have investigated the separation of
application components from a communication middleware with specific
publish/subscribe characteristics. Such characteristics of the flow of data are

 121

common in sampling systems, but companies usually develop their own
methodology for handling such systems. The Data Distribution Service (DDS)
for distributed real-time systems [DDSRTS2003] has been issued recently by
the OMG group (see section 2.4.4.6). This shows how immature the interfaces
for such systems have been and that the specific needs of various target
systems should be compared with what such a standard offers.

2.2. The need for an increased sample rate is not acute but could give more
precision in applications and thus an advantage over competitors. If we
should increase the sample rate to 2000Hz, how does this affect the system?
Will application components be able to execute once every sample period or
must other approaches be exploited? Which I/O system characteristics are
then needed to fulfill system requirements?

2.3. Further study of the need to utilize correlation as a means to offload the
clients/applications from I/O system activity would give valuable insight
into predictability, efficiency and performance characteristics.

3. Other directions.
3.1. With the introduction of multiple processors, the software developer is facing

more system complexity. Attention needs to be focused on the design of
multiprocessor software which achieves adequate performance and scales
well. Identifying and designing clean interfaces between I/O middleware
and applications for existing products can pave the way for parallel execution
and improved performance. Component based design that avoids request-
reply semantics would be an interesting subject for study for maintainability,
reuse and performance reasons.

3.2. In this work we have only examined the performance of a system with one
application node. Having multiple application nodes with a single I/O node
could yield interesting new insights into both the advantages and
disadvantages of a separation of the I/O system and the applications.

3.3. Future work could also include a study of the parallelization of other system
components such as parallel databases. Even though our impression is that
the granularity of this functionality is too fine to scale well in a bus-based and
distributed processing environment.

The future work topics above have not been listed by priority. We think that the

topics regarding middleware for industrial systems are the most important to study,
especially the use of correlation functionality to enable the execution of an I/O node.
The TAO [Schmidt98] project team has incorporated correlation functionality in their
framework but do not seem to evaluate the possibilities of correlation to introduce an
I/O node or proxy.

 122

 123

6 References

We have chosen to split references into three categories; published, unpublished
and other material. Published material includes papers, journal papers as well as
books. Unpublished material includes references to material available on the web.
Other references include research material not published at a conference, e.g.
technical reports, as well as articles published in newspapers or journals without
peer reviewing.

6.1 Published References
[Adams96] Jay K. Adams, Donald E. Thomas, “The Design of Mixed Hardware/Software

Systems”, 33rd Design Automation Conference, p 515-520, 1996.
[Adve96] Sarita V. Adve, Kourosh Gharachorloo, “Shared Memory Consistency Models: A

Tutorial”, IEEE Computer, Vol. 29, No. 12, pp. 66-76, 1996.
[Albertsson2000] Lars Albertsson, Peter S. Magnusson, “ Using Complete System Simulation

for Temporal Debugging of General Purpose Operating Systems and Workloads”,
International workshop on modeling, analysis and simulation of computer and
telecommunication systems, 2000.

[Alverson90] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan
Porterfield, Burton Smith, “The Tera Computer System", Proceedings of the1990
International Conference on Supercomputing, pp 1-6, 1990.

[Amdahl67] Gene M. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities”, AFIPS conference proceedings / American federation of
information processing societies, pp. 483-485, 1967.

[Anderson95] T.E Anderson, D.E Culler, D. Patterson, “A case for NOW (Networks of
Workstations)”, IEEE Micro, Vol 15 Issue 1, pp 54 – 64, February 1995.

[Anderson97] Don Anderson, “USB system architecture”, MindShare Inc., ISBN 0-201-
46137-4, 1997.

[Andrews2000] Gregory R. Andrews, “Foundations of Multithreaded, Parallell and
Distributed Programming”, Addison Wesley Longman Inc., ISBN 0-201-35752-6, 2000.

[Banerjea96] Anindo Banerjea, Domenico Ferrari, Bruce A. Mah, Mark Moran, Dinesh C.
Verma, Hui Zhang, “The Tenet Real-Time Protocol Suite: Design Implementation, and
Experiences”, ACM Transactions on Networking, 1996.

[Banks2001] Jerry Banks, John S. Carson II, Barry L. Nelson, David M. Nicol, “Discrete-
Event System Simulation”, Prentice-Hall Inc., ISBN 0-13-088702-1, 2001.

[Bershad90] Brian N. Bershad, Thomas E. Andersson, Edward D. Lazowska, Henry M. Levy,
“Lightweight Remote Procedure Call”, ACM Transactions on Computer Systems (TOCS),
Vol. 8, Issue 1, pp 37-55, February 1990.

[Björkman93] Mats Björkman, “Architectures for High Perfromance Computing”,
Dissertation at the Department of Computer Systems, Uppsala University, ISSN 0283-
0574, September 1993.

[Bloomer92] John Bloomer, “Power Programming with RPC”, O’Reilly & Associates Inc.,
ISBN 0-937175-77-3, 1992.

[Boasson93] Maarten Boasson, “Control Systems Software”, IEEE Transactions on
Automatic Control, Vol. 38, No. 7, July 1993.

 124

[Boasson96] Maarten Boasson, “Subscription as a Model for the Architecture of Embedded
Systems”, Proceedings of Engineering of Complex Computer Systems, 1996.

[Bovet2003] Daniel P. Bovet, Marco Cesati, “Understanding the Linux Kernel”, Second
Edition, O´Reilly & Associates, Inc., ISBN 0-596-00213-0, 2003.

[Boxer94] Aaron Boxer, Dan Malek, “UltraSMART: A Scalable Multiprocessor Architecture
for Real-Time”, Proceedings of the Sixth Euromicro Workshop on Real-Time Systems, p.
118 –123, 1994.

[Byrd98] Gregory Thurman Byrd, “Communication Mechanisms in Shared Memory
Multiprocessors”, A Dissertation of Stanford University, August 1998.

[Chamé98] Al Chamé, “PCI Bus In High Speed I/O Systems Applications”, Proceedings of
the IEEE Aerospace Conference, Vol. 4, p. 505-514, 1998.

[Chatterjee97] Saurav Chatterjee, Kevin Bradley, Jose Madriz, James A. Colquist, Jay
Strosnider, “SEW: A Toolset For Design and Analysis of Distributed Real-Time
Systems”, Proceedings of the third IEEE Real-Time Technology and Applications
Symposium, pp 72-77, 1997.

[Chong98] Frederic T. Chong, Rajeev Barua, Fredrik Dahlgren, Johan D. Kubiatowicz, Anant
Agarval, “The Sensitivity of Communication Mechanisms to Bandwidth and Latency”,
Proceedings of the 4th Internationsl Symposium on High Performance Computer
Architecture, 1998.

[Coulouris94] George Coulouris, Jean Dollimore, Tim Kindberg, “Distributed Systems
Concepts and Design”, Addison-Wesley Longman Inc., ISBN 0-201-62433-8, 1994.

[Coulouris01] George Coulouris, Jean Dollimore, Tim Kindberg, “Distributed Systems
Concepts and Design”, Addison-Wesley Longman Inc., ISBN 0-201-61918-0, 2001.

[Culler99] David E. Culler and Jaswinder Pal Singh, “Parallel Computer Architecture, a
hardware/software approach”, Morgan Kaufmann Publishers Inc, ISBN 1-55860-343-3,
1999.

[Dasdan99] Ali Dasdan, “Timing Analysis of Embedded Real-Time Systems”, Dissertation at
University of Illinois at Urbana-Champaign, 1999.

[Davies96] T. Davies, “Protection of industrial power systems”, 2nd edition, Newnes, Reed
Educational and professional publishing Ltd., ISBN 0-7506-2662-3, 1996.

[Dawson99] W.K. Dawson and R.W. Dobinson, “Buses and bus standards”, Computer
Standards & Interfaces 20, 201-224, Elsevier Science B.V., 1999.

[Dijkstra65] E.W. Dijkstra, “Solution of a Problem in Concurrent Programming Control”,
Communications of the ACM, Vol.8, No.9, 1965.

[Enblom2001] Leif Enblom, Lennart Lindh, “Adding Flexibility and Real-Time Performance
by Adapting a Single Processor Industrial Application to a Multiprocessor Platform”,
Proceedings of the ninth Euromicro Workshop on Parallel and Distributed Processing,
February 2001.

[Enblom2003] Leif Enblom, “Parallel Execution of I/O System and Application
Functionality”, International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA2003), CSREA Press, Las Vegas, USA, June 2003.

[Flynn96] Michael J. Flynn, “Parallel Architectures”, ACM Computing Surveys, No.1 March
1996.

[Furunäs2000] Johan Furunäs, "Benchmarking of a Real-Time System that utilizes a
Booster", International Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA2000), Las Vegas, USA, June 2000.

 125

[Furunäs2001] Johan Furunäs, “Interprocess Communication Utilising Special Purpose
Hardware”, Licentiate thesis 01/42, Mälardalen University Press and Department of
Information Technology, Uppsala University, December 2001.

[Gait86] Jason Gait, “A Probe Effect in Concurrent Programs”, Software-Practice and
Experience, Vol. 16(3), pp 225-233, March 1986.

[Grama2003] Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar, “Introduction to
Parallel Computing”, Pearson Education Limited, ISBN 0-201-64865-2, 2003.

[Gupta91] Anoop Gupta, John Hennessy, Kourosh Gharachorloo, Todd Mowry, Wolf-
Dietrich Weber, “Comparative Evaluation of Latency Reducing and Tolerating
Techniques”, ACM Computer Architecture News, SIGARCH, vol. 19, nr. 3, p. 254-265,
1991.

[Gustafson88] John L. Gustafson , “Reevaluating Amdahl's law”, Communications of the
ACM, Vol. 31, Issue 5, p 532-533, May 1988.

[Hammond2000] Hammond, L., Hubbert, B.A., Siu, M., Prabhu, M.K., Chen, M., Olukolun,
K., “The Stanford Hydra CMP” IEEE Micro, Vol. 20 Issue 2, pp 71 – 84, March-April
2000.

[Heuring97] Vincent P. Heuring, Harry F. Jordan, “Computer Systems Design And
Architecture”, Addison Wesley Longman Inc, ISBN 0-8053-4330-X, 1997.

[Hwang98] Kai Hwang, Xu Zhiwei, „Scalable Parallel Computing“, WCB/McGraw-Hill,
ISBN 0-07-031798-4, 1998.

[Häggander2001] Daniel Häggander, “Software Design Conflicts, Maintainability versus
Performance and Availability”, Doctorial Dissertation, Blekinge Institute of Technology,
ISBN 91-7295-004-8, 2001.

[Johnson92] Kirk L. Johnson, “The Impact of Communication Locality on Large-Scale
Multiprocessor Performance”, Proceedings of the 19th Annual International Symposium
on Computer Architecture, May 1992.

[Jordan2003] Harry F. Jordan, Gita Alaghband, “Fundamentals of Parallel Processing”,
Pearson Education, Inc., Prentice Hall, ISBN 0-13-901158-7, 2003.

[Kaiserswerth93] Matthias Kaiserswerth, "The Parallel Protocol Engine", IEEE/ACM
Transactions on Networking, Vol. 1, Nr. 6, p. 650-663, 1993.

[Kakulavarapu99] P. Kakulavarapu, J. Amaral, ”A survey of load balancers in modern multi-
threading systems", In Proc. of the 11th Symp. on Computer Architecture and High
Performance Computing, pp 10 - 16, 1999.

[Lam92] M. S. Lam, R. P. Wilson, "Limits of control flow on parallelism", Nineteenth
International Symposium on Computer Architecture", ACM and IEEE Computer Society,
p. 46-57, 1992.

[Law2000] Averill M. Law, David W. Kelton, “Simulation modeling and analysis”, 3rd
edition, McGraw-Hill Book co., ISBN 0-07-116537-1, 2000.

[Lawson92] Harold W. Lawson, “Parallel Processing in Industrial Real-Time Applications”,
Prentice-Hall, Inc., ISBN 0-13-654518-1, 1992.

[Lewis98] R.W. Lewis, “Programming industrial control systems using IEC 1131-3”, Revised
edition, The Institution of Electrical Engineers, ISBN 0-85296-950-3, 1998.

[Lilja2000] David J. Lilja, “Measuring Computer Performance, A practitioners guide”,
Cambridge University Press, ISBN 0-521-64105-5, 2000.

[Lindh98] Lennart Lindh, Johan Stärner, Johan Furunäs, Joakim Adomat, Mohammed El
Shobaki, “Hardware Accelerator for Single and Multiprocessor Real-Time Operating

 126

Systems”, Seventh Swedish Workshop on Computer Systems Architecture, Göteborg,
Sweden, June 1998.

[Liu97] Liu Guangtian, Aloysius K. Mok, “An Event Service Framework for Distributed
Real-Time Systems”, IEEE Workshop on Middleware for Distributed Real-Time Systems
and Services, December 1997.

[Lo97] Jack L. Lo, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Rebecca L. Stamm, Dean
M. Tullsen, “Converting Thread-Level Parallelism to Instruction-Level Parallelism via
Simultaneous Multithreading”, ACM Transactions on Computer Systems, Vol. 15, No.3,
p. 322-354, August 1997.

[Loosley98] Chris Loosley, Frank Douglas, “ High-Performance Client/Server, A Guide to
Building and Managing Robust Distributed Systems”, Wiley Computer Publishing, John
Wiley & Sons, inc., ISBN 0-471-16269-8, 1998.

[Mauro2001] Jim Mauro, Richard McDougall, “Solaris Internals, Core Kernel Components”,
Sun Microsystems Press, Prentice Hall, ISBN 0-13-022496-0, 2001.

[Maxwell99] Scott Maxwell, “Linux Core Kernel Commentary”, The Coriolis Group, ISBN
1-57610-469-9, 1999.

[May2001] John M. May, “Parallel I/O for High-Performance Computing”, Morgan
Kaufmann Publishers, ISBN 1-55860-664-5, 2001.

[Molesky90] L. Molesky, K. Ramamritham, C. Shen, J. Stankovic, G. Zlokapa,
“Implementing a predictable real-time multiprocessor kernel - the Spring kernel",
Proceedings of the 7th IEEE Workshop on Real-Time Operating Systems and Software,
1990.

[Moll97] Laurent Moll, Mark Shand, “Systems Performance Measurement on PCI Pamette”,
IEEE Symposium on FPGAs for Custom Computing Machines, 1997.

[Molle96] Molle M, Watson G, “100Base-T/IEEE 802.12/packet switching”, IEEE
Communications Magazine, p 64-73, Volume 34, Issue 8, Aug 1996.

[Mowry98] Todd C. Mowry, Charles Q. Chan, Adley K. W. Lo, “Comparative Evaluation of
Latency Tolerance Techniques for Software Distributed Shared Memory”, Proceedings of
the 4th IEEE symposium on high-perfromance computer architectures, p. 300-311, 1998.

[Mullender90] Sape J. Mullender, Guido van Rossum, Andrew S. Tanenbaum, Robbert van
Renesse, Hans van Staveren, “Amoeba, A Distributed Operating System for the 1990s”,
Computer Volume: 23 Issue: 5, May 1990.

[Narayanan93] P. J. Narayanan, “Processor autonomy on SIMD architectures”, Proceedings
of the 1993 international conference on Supercomputing, ACM Press, ISBN 0-89791-600-
X, p 127-136, 1993.

[Nichols96] Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrel, “Pthreads
Programming”, O’Reilly & Associates, Inc., 1996.

[Pancake96] Cherri M. Pancake, “Is parallelism for You?”, IEEE Computational Science &
Engineering, pp 18-37, Summer 1996.

[Patterson80] David. A. Patterson, David R. Ditzel, “The case for the reduced instruction set
computer”, Computer Architecture News, Vol. 8, No. 6, p. 25-33, October 1980.

[Patterson98] David A. Patterson, John L. Hennessy, ”Computer Organization & Design The
Hardware/Software Interface”, Second Edition, Morgan Kaufmann Publishers Inc., ISBN
1-55860-491-X, 1998.

[Perkovic99] Dejan Perkovic, Peter J. Keleher, ”Responsiveness without Interrupts”,
Proceedings of the 1999 international conference on Supercomputing, pp 101 – 108,
1999.

 127

[Quarterman93] John S. Quarterman, Susanne Wilhelm, “UNIX, POSIX, and Open Systems.
The Open Standards Puzzle”, Addison-Wesley Publishing Company Inc., ISBN 0-201-
52772-3, 1993.

[Quinn94] Michael J. Quinn, “Parallel Computing Theory and Practice”, McGraw-Hill Inc,
ISBN 0-07-113800-5, 1994.

[Rajkumar95] Ragunathan Rajkumar, Mike Gagliardi, Lui Sha, “The Real-Time
Publisher/Subscriber Inter-Process Communication Model for Distributed Real-Time
Systems: Design and Implementation”, IEEE, Proceedings of the Real-Time Technology
and Applications Symposium, 1995.

[Rosenblum97] Mendel Rosenblum, Edouard Bugnion, Scott Devine, Sephen A. Herrod,
“Using the SimOS Machine Simulator to Study Complex Computer Systems”, ACM
Transactions on Modeling and Computer Simulation, Vol. 7, No. 1. p 78-103, January
1997.

[Sha90] Lui Sha, Ragunathan Rajkumar, John P. Lehoczky, “Priority Inheritance Protocols:
An approach to Real-Time Synchronisation”, IEEE Transactions on Computers, Volume
39 Issue 9, pp 1175 –1185, 1990.

[Shah2001] Hemal V. Shah, Dave B. Minturn, Annie Foong, Gary L. McAlpine, Rajesh S.
Madukkarumukumana, Greg J. Regnier, “CSP: A Novel System Architecture for Scalable
Internet and Communication Services", 3rd USENIX Symposium on Internet Technologies
and Systems (USITS’01), p.61 - 72, 2001.

[Shanley99] Tom Shanley, Don Andersson, “PCI System Architecture”, Third Edition,
Mindshare, Addison Wesley Longman Inc., ISBN 0-201-30974-2, 1999.

[Shin91] K.G. Shin, “HARTS: a distributed real-time architecture”, IEEE Computer, Vol. 24,
Issue 5, May 1991.

[Shobaki2002] Mohammed El Shobaki, “On-Chip Monitoring of Single- and Multiprocessor
Hardware Real-Time Operating Systems”, In Proceedings of the 8th International
Conference on Real-Time Computing Systems and Applications (RTCSA), March 2002.

[Smith85] James E. Smith, Andrew R. Pleszkun, “Implementation of precise Interrupts in
Pipelined Processors”, Proceedings of the 12th Annual International Symposium on
Computer Architecture, pp 291-299, 1985.

[Solomon98] David A. Solomon, “Inside Windows NT Second Edition”, Microsoft Press,
ISBN 1-57231-677-2, 1998.

[Spatscheck98] Oliver Spatscheck, Jorgen S. Hansen, Johan H. Harman, Larry L. Peterson,
“Optimizing TCP Forwarder Performance”, IEEE/ACM Transactions on Networking”,
Vol. 8, Nr. 2, p.146-157, 1998.

[Stallings2000] William Stallings, “Computer Organization and Architecture”, Prentice Hall
Inc, ISBN 0-13-081294-3, 2000.

[Stone90] Harold S. Stone, “High-Performance Computer Architecture, Second Edition”,
Addison Wesley, ISBN 0-201-51377-3, 1990.

[Storey96] Neil Storey, “Safety Critical Computer Systems”, 2nd Ed, Prentice Hall, ISBN 0-
201-42787-7, 1996.

[Suzuki2003] M. Suzuki, H. Kobayashi, N. Yamasaki, Y. Anzai, “A Task Migration Scheme
for High Performance Real-Time Cluster System”, Proceedings of 18th International
Conference on Computers and Their Applications, pp. 228-231, March 2003.

[Takagi88] Hideaki Takagi, “Queuing Analysis of Polling Models”, ACM Computing
Surveys 20, pp 5-281, March 1988.

 128

[Tanenbaum92] Andrew S. Tanenbaum, “Modern Operating Systems”, Prentice Hall
International Inc., ISBN 0-13-595752-4, 1992.

[Tanenbaum96] Andrew S. Tanenbaum, “Computer Networks”, Third Edition, Prentice Hall
International Inc., ISBN 0-13-394248-1, 1992.

[Tokhi2003] M.O. Tokhi, M.A. Hossain, M.H. Shaheed, “Parallel Computing for Real-Time
Signal Processing and Control”, Springer-Verlag London, ISBN 1-85233-599-8, 2003.

[Tullsen96] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, and
Rebecca L. Stamm, “Exploiting choice: Instruction fetch and issue on an implementable
simultaneous multithreading processor”, Proceedings of the 23rd Annual International
Symposium on Computer Architecture, pp 191-202, May 22-24, 1996.

[Vassiliadis2001] Stamatis Vassiliadis, Stephan Wong, Sorin Cotofana, “Network Processors:
Issues and Prospectives”, Proceedings of the 2001 International Conference on parallel
and Distributed Processing Techniques and Applications (PDPTA’01), Las Vegas, 2001.

[Walker95] Wade Walker, Harvey G. Cragon, “Interrupt Processing in Concurrent
Processors”, IEEE Computer, pp 36-46, June 1995.

[Wilkinson99] Barry Wilkinson, Michael Allen, “Parallel Programming, Techniques and
Applications Using Networked Workstations and Parallel Computers”, Prentice Hall Inc.,
ISBN 0-13-671710-1, 1999.

[Wolf2001] Wayne Wolf, “Computers as components: principles of embedded computing
system design”, Academic Press, ISBN 1-55860-693-9, 2001.

[Wu2001] Youfeng Wu, Dong-Yuan Chen, Jesse Fang, “Better Exploration of Region-Level
Locality with Integrated Computation Reuse and Value Prediction”, International
Symposium on Computer Architecture (ISCA-28), 2001.

[Yates97] David J. Yates, “Connection-level parallelism for network protocols on shared-
memory multiprocessor servers”, Dissertation at the Department of Computer Science,
University of Massachusetts Amherst, July 1997.

6.2 Unpublished References, Mainly WWW Material
[100VGwww] Unofficial 100VG AnyLAN FAQ, http://www.io.com/~richardr/vg/vgfaq.htm.
[10GEAwww] Introduction to TCP/IP Offload Engine (TOE),

http://www.10gea.org/SP0502IntroToTOE_F.pdf.
[21554www] Intel(R) 21554 Non-transparent PCI-to-PCI Bridge Documentation,

http://www.intel.com/design/bridge/docs/21554_documentation.htm
[Altivecwww] AltiVec.org, http://www.altivec.org
[Analogwww] Analog Devices, http://www.analog.com/
[Annapmicrowww] WildcardTM http://www.annapmicro.com/wildcard2.html
[Arshamwww] Systems Simulation, http://ubmail.ubalt.edu/~harsham/simulation/sim.htm
[Beowulfwww] Beowulf Project Homepage, http://www.beowulf.org
[Beowulfwww2] Beowulf mailing list FAQ, http://www.canonical.org/~kragen/beowulf-

faq.txt
[BVMwww] Programmable Data Concentrator/Protocol Converter, BVM Limited,

http://www.bvmltd.co.uk/system3500pr.html
[Concurrentwww] Concurrent Computer Corporation, http://www.ccur.com/realtime/
[EETimeswww] “Throughput fuels data revolution”, eetimes.com 2001-04-20,

http://www.eetimes.com/story/OEG20010420S0061

 129

[EETimeswww2] Emerging Standards enable distributed real-time systems”,
http://www.eetimes.com/in_focus/embedded_systems/OEG20020307S0074

[FreeBSDwww] FreeBSD, http://www.freebsd.org.
[FreeBSDSMPwww] The FreeBSD SMP Project,

http://people.freebsd.org/~fsmp/SMP/SMP.html
[GMSwww] “Embedded Applications Benefit from Mainstream SMP Computing

Architectures”, http://www.gms4vme.com/gmshome/products/vxworks.html
[IPCASwww] IPCAS ipDaco Datat Concentrator,

http://www.ipcas.de/english/download/ipdaco.pdf
[Intelwww] Intel Outlines Future Technology Directions Press Release,

http://www.intel.com/pressroom/archive/releases/20010828corp_a.htm
[Intelwww2] IA-32 Intel Architecture Software Developer’s Manual, Volume 3: System

Programming Guide. Can be found at http://www.intel.com
[Intelwww3] Intel Network Processors,

http://developer.intel.com/design/network/products/npfamily/
[Intelwww4] MultiProcessor Specification Version 1.4, May 1997, http://developer.intel.com
[Kontronwww] Kontron Webpage, http://www.kontron.se/
[Linuxhqwww] The Official Linux Kernel Homepage, www.linuxhq.com
[LinuxSMPwww] Linux SMP HOWTO, http://www.linuxdoc.org/HOWTO/SMP-
HOWTO.html
[Motorolawww] Motorola Website, www.motorola.com
[MPIwww] http://www.mpi-forum.org
[QNXwww] QNX Whitepaper, http://www.qnx.com
[Pardo-Castellote2001], Gerardo Pardo-Castellote, Stefaan Sonck Thiebaut, Mark Hamilton,

Henry Choi, “ Real-Time Publish-Subscribe Protocol for Distributed Real-Time
Applications”, Instrument Society of America, http://www.rti.com, 2001.

[PCIwww] PCI-SIG Homepage, http://www.pcisig.com/home
[PCIwww2] http://www.yourvote.com/pci/
[PLXwww] „PCI to Local Bridge Performance Study“,

http://openarm.linuxforum.net/doc/nanoPCI/docs/bus21bridge.pdf
[Profibuswww] Profibus International, http://www.profibus.com/
[RapidIOwww] RapidIO Trade Association, http://www.rapidio.org/home
[SBSwww] SBS Technologies Inc., http://www.sbs.com/
[SUNwww] SUN Documentation, http://docs.sun.com
[Synergywww] Synergy Microsystems, http://www.synergymicro.com/
[Tensilicawww] NEC’s TCP/IP Offload Engine,

http://www.tensilica.com/html/pr_2003_05_12.html
[Virtutecwww] Virtutec Simics, http://www.simics.com/
[Vitessewww] Samuel J. Barnett, Mark R. Fauber, “Network Processors, Uncovering

Architectureal Approaches for High-Speed Packet Processing”, www.vitesse.com
[VMETROwww] VMETRO Webpage, http://www.vmetro.com
[Windriverwww] Windriver Webpage, http://www.windriver.com

6.3 Other References
[Elektronik] “Listig arkitektur ger falska processorer”, in Elektroniktidningen nr 13, page 22,

14 September 2001.

 130

[Elson98] Jeremy Elson, “A Survey of Process Migration Schemes”,
http://citeseer.nj.nec.com/elson98survey.html, 1998.

[Enblom2001_02] Leif Enblom, “Performance of a Communication Mechanism over the PCI-
bus”, Mälardalen University Technical Report Id 0346, November 2001.

[Enblom2003_02] Leif Enblom, “Parallel Computer System Components”, MRTC Report
ISSN 1404-3041 ISRN MDH-MRTC-89/2003-1-SE, November 2003.

[Eugster2001] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, ”The Many Faces
Publish/Subscribe", Technical Report DSC ID: citeseer.nj.nec.com/442483.html, 2001.

[Ghosh94] Kaushik Ghosh, Bodhisattwa Mukherjee, Karsten Schwan, "A Survey of Real-
Time Operating Systems -- Draft", Technical Report,
http://citeseer.nj.nec.com/35747.html

[Harrison97] Timothy H. Harrison, Carlos O´Ryan, David L. Levine, Douglas C. Schmidt,
“The Design and Performance of a Real-Time CORBA Event Service”, IEEE Journal on
Selected Areas in Communications special issue on Service Enabling Platforms for
Networked Multimedia Systems, 1997.

[Hill2002] Jonathan C. Hill, John C. Knight, Aaron M. Crickenberger, Richard Honhart,
“Publish and Subscribe with Reply”, Technical Report CS-2002-32, Department of
Computer Science, University of Virginia, 2002.

[HP95] “100VG-AnyLAN Technology Guide”, Hewlett-Packard Company, Publication
Number 5963-6588, August 1995.

[Hu97] Lei Hu, Ian Gorton, “Performance Evaluation for Parallel Systems: A Survey”,
Technical Report UNSW-CSE-TR-9707, Department of Computer Systems, University of
NSW, Sydney, Australia, October 1997.

[Intel8237A] “8237A High Performance Programmable DMA Controller (8237A-5)”, Order
Number: 231466-005, September 1993.

[Kandlur91] D. Kandlur, K. G. Shin, ”Design of a communication subsystem for HARTS”,
Technical Report, CSE-TR-109-91, U. of Michigan, 1991.

[Motorola94] Motorola, IBM Microelectronics, “PowerPC Microprocessor Family: The
Programming Environments”, MPRPPCFPE-01, 1994.

[OMG97] Object Management Group. Event Service Specification, Framingham, Mass. 1997.

 131

7 Appendix A, PCICom

This section encapsulates implementation specific parts of PCICom.

7.1 Message Queues
Each queue is represented by a data structure and the memory layout of PCICom

is illustrated in Figure 61 below.

Queue 0

Queue 1

Queue N

Uint 32 boards[PCICOM_NUMBER_OF_NONSYSTEM_BOARDS]

Figure 61, PCICom memory layout.

Each message queue consists of the data illustrated in Figure 62. A top and bottom
pointer will govern the message queue in order to make it function as a ring-buffer.
Since only one writer and only one receiver is active at every instant, there will be no
requirement on mutual exclusion. A flow control field has been added for future use.
Each message entry is limited to PCICOM_ENTRY_SIZE and is accompanied by
information of the size of the message and the id of the sender.

top bottom

message 0 [PCICOM_ENTRY_SIZE]

flow
Cont. index not allocated

sendersize

message 1 [PCICOM_ENTRY_SIZE]sendersize

message 2 [PCICOM_ENTRY_SIZE]sendersize

message PCICOM_NUMBER_OF_ENTRIES
[PCICOM_ENTRY_SIZE]sendersize

Figure 62, Data structure of each queue.

This version supports only one reader and one writer per message queue, in order
to avoid synchronization among multiple writers/senders. If there is a need for
multiple writers this functionality can be added in the future by introducing a
mutual exclusion mechanism among writers or by letting every sender have a unique
message queue. It is important to understand that if the senders are located on

 132

multiple processors, mutual exclusion has to be achieved between them. It is possible
to use the LOCK# functional signal to achieve atomic read/modify/write
transactions on the PCI-bus and thus being able to create shared semaphores among
nodes. At present PCICom is capable of these features and limitations listed below:

• One reader per message queue.
• The system board is responsible for initialize the message queues at startup.
• Senders cannot synchronize. If multiple senders/writers want to send a

message to the same queue in the future, they must synchronize. With the
current implementation it is possible that an interrupt is issued from multiple
boards to the receiving boards before a previous interrupt has been
acknowledged. If used together with the IOMP mechanism, where only one
application thread interacts with exactly one peer, this limitation is acceptable.

The PCICom class acts directly upon the peripheral registers and data structures,
which makes PCICom feasible to use in operating system environments where user
threads are allowed to act upon hardware directly. In this work VxWorks has been
used as the operating system. When using PCICom in an operating system
environment supporting kernel and user space, some redesign is necessary
(introducing system calls, copying between user and kernel space as well as adapting
the code to a specific device driver methodology).

7.2 Interface
Every sender and receiver has to instantiate the PCICom class, and has to provide

parameters that will point out a specific index, setting the type of the queue and
determine if it is a sender or a receiver .

PCICom(Uint32 in_index, Uint32 in_senderReceiver, Uint32 in_queueType)
The constructor that will enable the user to access the queue through the
instantiated object. If the user instantiated the object as a receiver, a semaphore
will be created that afterwards will be used by the receive method to wait for
messages.

Uint32 PCICom::send(const void *data, Uint32 length, Uint32 timeout, Uint32
priority)

Sends a message of size length to the receiver (receiving queue was declared at
instantiation.

Uint32 PCICom::receive(void *data, Uint32 *length, Uint32 timeToWait)
Through this method a thread can wait a period of time defined by
timeToWait for a message to arrive to the queue. The user is responsible for
having allocated at least the size of an entry at the memory area where the
data pointer points to.

void PCICom::notify(void)
This method is used by the send method and notifies the receiver about a sent
message. It is not intended to be used by the user and is therefore declared to
be private to the class.

Uint32 PCICom::init(Uint32 in_boardNumber, Uint32 in_numberOfBoards)

 133

This method should be used at initialization of the application before any
objects are created. It configures the board according to if it is a system or a
non-system board. The 21554 bridge and the queues are configured according
to the definitions in PCIComDefines.h.

void PCICom::boardInitialized(Uint32 boardNumber)
This method should be used by the non-system boards to notify the master
that they are configured and executing.

void PCICom::synchronize(Uint32 nice)
A method that enables the master to wait for all other boards to come up
before it continues. The user can through the nice parameter calibrate the
polling period of the status of the non-system boards.

void PCICom::ISRNonSystemBoard(int parameter)
void PCICom::ISRSystemBoard(int parameter)
The Interrupt Service Routines that are responsible for acknowledge issued

interrupts and awakening the receiving thread.

