
 i

Mälardalen University Licentiate Thesis  

No. 19 

 

UTILIZING CONCURRENCY TO GAIN 

PERFORMANCE IN AN INDUSTRIAL 

AUTOMATION SYSTEM 

Leif Enblom 

November 2003 

 

 

 

 
 

Department of Computer Science and Engineering 

Mälardalen University 

Västerås, Sweden 



 ii

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Copyright © Leif Enblom, 2003 
ISBN 91-88834-21-2 
ISSN 1651-9256 
Printed by Arkitektkopia, Västerås, Sweden 
Distribution: Mälardalen University Press 



 iii

Abstract 

This work presents and discusses the results from a study, focused on achieving 
more performance for an industrial real-time control system. The real-time control 
system is used to protect electrical power stations from being destroyed by strokes of 
lightning. Sensors in the system continuously collect information on currents and 
voltages from the electrical power station which the control system protects. The 
sensors deliver the collected data to a computer system that bases its decisions on the 
arriving data. When a dangerous situation is detected circuit breakers decouple the 
hazardous power line. 

Today, the computer system is based on a single processor architecture. The  
problem is that this architecture does not provide enough performance to  
support demanding system configurations such as more advanced application  
algorithms and increased amount of data collected from the sensors. In order to 
obtain correct, timely execution of the protection applications, designers may need to 
optimize application code aggressively. Unwanted simplifications of algorithms or 
low sampling frequencies of sensor data may be the result. 

The motivation of this work is to study how the real-time control system is affected 
by being adapted to a multiprocessor or distributed architecture in order to increase 
the available computing resources. The objective is to improve the performance of 
system components in general and application components in particular. By 
identifying components in the existing control system that exhibit a large amount of 
concurrency and a relatively small amount of data exchange the study found a 
performance improving solution. The I/O system that is responsible for collecting 
sensor data and the application functionality both exhibit a large amount of mutual 
concurrency and may therefore scale on a system with multiple processors. In 
experimental configurations the I/O system components and an application model 
were arranged to execute in parallel on two processors. This approach exploits the 
concurrency available at the interface between the I/O system and application 
components. Results from measurements show that processing resources (up to 66% 
when compared with a single processor system configuration) can be freed for 
application components by utilizing this concurrency in a two processor 
configuration. The advantage gained is an increase in flexibility for application 
designers to select a multiprocessor system configuration for demanding 
applications. 

While parallel architectures are used in some industrial systems, not much has 
been written about the possibilities and threats when legacy systems are adapted to 
such architectures. By describing a model of an industrial real-time control system 
and extending that model with a mechanism that enables multiprocessor execution, 
we contribute to the understanding of both the functional composition and 
performance issues concerning parallel execution in such industrial systems. 
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1 Introduction and Background 

The number of applications of electronic systems to the control of industrial 
processes has increased rapidly during recent decades. Microcontrollers and 
processors have found their way into processes that were formerly controlled solely 
by analog or mechanical components. Examples of applications in which mechanical 
or analog components have been in part or completely replaced by electronic 
components include vehicles, substation protection equipment and other industrial 
systems. The benefits of this evolution include increased flexibility for users in 
configuring functionality, improved possibilities of controlling the process and 
system under control and reduced costs. 

This development has given rise to a growing volume of software executing on 
microcontrollers/processors embedded in devices located adjacent to the process. 
Software involved in controlling the system must often satisfy real-time 
requirements. Depending on the seriousness of the consequences of the system 
failing to react correctly to the system under control, timing issues become more or 
less important. The correct and continuous response of a real-time system to stimuli 
from the environment is of the greatest importance. Figure 1 illustrates the 
continuous interaction of a real-time control system with the system under control. 
The real-time control system studied within the scope of this thesis (illustrated in 
Figure 4) is used to protect electrical power stations from being destroyed by strokes 
of lightning. Sensors in the system continuously collect information on currents and 
voltages from the electrical power station (the system under control) which the 
control system protects. The sensors sample the system under control and deliver the 
collected data to a computer system that bases its decisions on the arriving data. 
When a dangerous situation is detected circuit breakers decouple the hazardous 
power line by issuing an actuation event to a circuit breaker. 

 

 

Real-Time Control System 

System under Control 

Environment 

Sampling Actuation 

 
Figure 1, A Real-Time System controlling an industrial process, the System under 

Control. 

Systems in industry often reside in demanding and harsh environments which has 
called for computer systems with durable mechanical and electrical properties. A 
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number of bus-architectures and form factors, i.e. the size of the physical boards, 
have been defined for processor boards and rack-mounts. One architecture designed 
to reside in such harsh environments is the CompactPCI passive backplane bus-
architecture which can be equipped with 6U (Unit) processor boards. In such a 
system, I/O boards for sampling and actuation purposes reside in the same rack-
mount as the processor board executing the application. Figure 2 illustrates such a 
configuration in which I/O boards produce data for the application to consume. 

 

Real-Time 
Control  System 

Sensor / 
Sampling 

Device 
 

I/O 
Board 

Sensor / 
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Device 
 

I/O 
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Control 
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Processor 

Board 

Interconnect 

Actuator 
 
 

I/O 
Board 

 

System under Control 

Environment 

Sampling Actuation 

 
Figure 2, A typical Real-Time Control System and its interaction with an industrial 

process, the System under Control 

This thesis studies a system resembling that illustrated in Figure 2. One or multiple 
I/O boards provide sampling respective actuation services for the application. The 
application executes on a single general processor board in the same physical chassis. 
Figure 2 illustrates a general view of the system that distinguishes between the 
environment and the system under control. The system under control includes 
actuators as well as the power grid itself and the environment includes the world 
surrounding the system under control. The majority of the sampling consists of the 
sampling of voltages and currents from the system under control (the power grid). 
We have focused on performance and constraint parameters internal to the real-time 
control system [Dasdan99 p. 5]. We have therefore not considered the time it takes 
for data to arrive at the nodes (chassis) but only how the system behaves internally, 
i.e. the events on the processor boards. 

The thesis focuses on a study of parallel execution issues in real-time software 
system components and how they may scale on a system with multiple processors. 
The means of achieving scalability is to arrange for the I/O system and the 
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application components to execute in parallel. This approach allows for exploitation 
of available concurrency at the interface between the I/O system and application 
components. Figure 3 illustrates a system configuration where the I/O system 
components have been partitioned on one processor board and the application 
component on another processor board. 
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Figure 3, A hardware architecture with multiple processors and the location of the I/O 

system and application components on two separate processor boards. 

The real-time control system is used to protect electrical power systems and 
especially substations where power distribution lines merge (an example of such 
systems is illustrated in Figure 4). The protection devices are designated protection 
relays and are designed to respond to abnormal conditions in the electrical power 
system [Davies96]. These protection relays operate a circuit-breaker and disconnect a 
faulty section of the power system when an abnormality occurs. One abnormal 
condition is a lightning strike on a power line, the excessive current propagating into 
the substation and threatening to destroy the equipment. In such a situation the 
circuit breaker must disconnect the power line from the rest of the power grid in as 
short a time as possible, usually within at the most 20 milliseconds. The system is 
designed to continuously sample data from the power system grid, delivering this 
data to interested subscribers. Subscribers to the data are the protection application 
threads, but other system components, such as event loggers, may also be interested 
in the data. The protection algorithm needs an amount of historic data (a backlog) to 
be able to identify the anomaly, which means that the sampling frequency of the 
system must be high. In our case, the sampling frequency is 1000Hz which means 
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that the application receives a snapshot of the system every millisecond. This means 
that the protection application executes once every millisecond, a rather demanding 
real-time application. If we can find a way of increasing the amount of work 
performed every millisecond we can increase the volume of sampled data and/or the 
amount of work which can be performed by the protection application. 
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Figure 4, the Real-Time Control System protecting a Power System from abnormal 

conditions. 

1.1 Objective 
Large industrial systems are often complex because of the amount of source code 

and the inherent complexity of the application domain. The history of the design of 
systems for the specific application domain has led to a complex architecture 
consisting of different hardware configurations as well as a special software 
architecture. Application developers base their design on a software platform 
consisting of components with special functionality tailored for the specific 
application domain. The objective is to develop a standard way of designing 
applications without the necessity to “reinvent the wheel” each time. Today 
application development on the target platform is in part governed by the available 
performance of the architecture. The accuracy of the application calculations and 
application components is limited by the available execution capabilities of the 
architecture, which results in applications having to be optimized and simplified in 
order to be able to perform their work. This problem can be exemplified by an event 
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at the beginning of the project. The director of the Platform and Development 
Department was inspecting the performance of an application prototype running 
new application code. Performance was poor; the application could not keep up with 
the amount of data arriving at the node. The director exclaimed: “This is not 
acceptable. We really need more performance and I hope that the multiprocessor 
project will be successful soon”. How the problem regarding performance was 
solved is unknown to the author but illustrates the constant demand for system 
performance. The obvious way to improve performance is to use higher performance 
processors but for these, we must wait for the next generation processors to arrive in 
the market. In the scenario described above, however, such an alternative was not 
available. Perhaps there is a way to improve performance with the architecture 
available today? Obviously, the use of multiple processors cooperating in solving the 
same tasks as before comes to mind. Increased computing resources can help 
application designers in implementing better systems and thus achieving an 
advantage over competitors. By introducing multiprocessor or distributed computer 
architecture we may be able to improve the performance of the system as a whole 
and especially of application components. 

A fundamental issue that arises when introducing a system with multiple 
processors is the ability for each system component to scale. The operating system 
must be able to scale on the hardware architecture. Software system components 
such as application and software platform components must be able to scale on the 
operating system. The central part of the software platform in this case-study is the 
I/O system, which enables applications to receive data from I/O boards. The I/O 
boards can be located in the same chassis as the application, but the I/O system can 
also establish network connections to I/O boards located remotely (in other chassis). 
Even though it is possible to connect nodes with the help of a special purpose I/O 
system, the use of multiple processors to execute the same application has not been 
discussed widely. These premises were the starting point of the project, leading to 
the study reported in this thesis. 

The overall purpose and motivation of this work is to study how an industrial real-
time system designed for a single processor environment is affected by being 
adapted to a multiprocessor or distributed architecture in order to increase the 
available computing resources. We therefore need to study how the software system 
should be designed for execution in such architectures, and we need indications on 
how performance would be affected by implementing the proposed design. Expected 
benefits include increased computing resources for the system in general and for 
application components in particular. Enabling scalability may make increased 
design space available, giving the designers of applications the freedom to select a 
more powerful multiprocessor or distributed architecture for demanding 
applications, and thereby increasing flexibility. 
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1.2 Research Questions 
Given the existing data-driven industrial control system designed for single 

processor computer architecture, two research questions were asked. These were: 
 

1. “Which time-critical software system components utilize the most processor 
resources and do they show a large amount of mutual concurrency?” 

 
2. “Given the existing software architecture, can the components requiring the 

utilization of a considerable proportion of available processor resources scale on 
a distributed or bus-based multiprocessor architecture and how does the 
suggested parallel execution of the concurrent system components affect 
performance?” 

 
When we write “scale on a distributed or bus-based multiprocessor architecture” 

we mean the ability of the software components to execute on the available multiple 
processors in the respective architectures. The research questions reflect the iterative 
process in the search for improved performance and flexibility in the original system. 
Question 2 is thus a question resulting from question 1.  Question 2 targets how 
performance is affected by parallel execution in the system and we have focused on 
performance from two points of view (sub-questions of question 2): 

 
2.1. The first point of view relates to available processing resources for application and 

system components in the single and multiprocessor system configurations. 
 
2.2. The second point of view relates to timing properties that are important in the 

real-time system. These timing properties include; latencies on data, response 
time on important system events as well as inter-processor round-trip latencies. 

 
We conclude the discussion with the answers to these questions, given in Chapter 

5, “Conclusion and Future Work”. 

1.3 Methodology 
The starting point of the study was an investigation of the existing system, its 

components and its behavior. Parallel to that investigation we assembled information 
on the state-of-the-art as well as the state-of-practice for relevant system components 
and similar systems. This phase of information collection indicated that a large 
number of evaluation and design paths were available. At the lowest level, different 
hardware architectures were available and the choices made at that level affected the 
possible choices at the higher levels (such as available operating systems). The 
existing system is designed for a single processor environment which led to different 
scalability issues depending on the choice of hardware architecture. 



 7 

The case-study system provided a platform for studying performance and 
scalability issues for systems with relatively stringent timing requirements. The 
software and system architecture required us to study different issues related to 
performance and scalability in parallel systems. Chapter 4 presents the findings of 
the state-of-the art study. We focused on a bottom-up approach, beginning with 
parallel hardware architectures and concluding with parallel programming models. 
Where possible, we have focused on other industrially-related research projects and 
systems but results from other areas are also included wherever they give relevant 
insight into the subject. 

We have focused on two ways of evaluating the system. The first is how the I/O 
system can be used in order to scale on a distributed architecture or backplane bus-
based multiprocessor architecture. The second is how performance is affected by 
varying I/O configurations of the system in both the single and multiprocessor 
architectures. 

1.3.1 Limitations 

Many parameters, such as price/performance ratio, reliability and fault tolerance 
are limiting factors that must be considered before a product can be released and 
sold, but we have limited our study to pure performance and scalability issues. It 
should be possible, from the results of this study, to obtain information on the 
available choices and how scalability can be achieved. These performance and 
scalability results can then be combined with the current prices of processor boards 
and system components to be able to estimate a price/performance ratio. For 
example, the cost function of utilizing two chassis (as in the distributed approach) 
and employing a multiprocessor system in the same chassis can be established. The 
study has shown how to reduce the processor utilization by approximately 27% at 
the application node. This represents a 66% increase in computing resources for the 
application components. It would be possible to obtain a price/performance ratio by 
calculating the total cost of the hardware used in the distributed architecture 
configuration as compared with the hardware used in the single processor system 
configuration. Although we present no price/performance ratio, we are aware of this 
important factor. 

The case-study system is rather limiting because of its design and structure. 
Periodical sampling of data, the use of a predictable network and fine granular time-
synchronization of processor nodes as well as sampling nodes are parameters that 
contribute to the predictable system behavior. Our results apply to other systems 
with a similar structure. 

1.4 Contribution 
This work includes an analysis and model description of a specific real-time 

industrial system as well as the design and implementation of a mechanism (IOMP) 
that enables the existing system to scale on a distributed or backplane bus-based 
multiprocessor architecture. IOMP is an extension of the existing I/O system that 
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enables applications to utilize I/O system functionality in another execution 
environment, i.e. address space. IOMP has similarities with a remote procedure call 
(RPC) mechanism, but it has been tailored and optimized for the existing platform. 
The new mechanism has been analyzed with respect to performance in a distributed 
environment and its suitability for use in the existing system. We thereby contribute 
to the understanding of both the composition and the performance issues of such 
systems and their use in environments with multiple processors. The work and ideas 
have been presented in the following published papers and technical reports: 
§ The paper entitled “Adding Flexibility and Real-Time Performance by 

Adapting a Single Processor Industrial Application to a Multiprocessor 
Platform” [Enblom2001],  published in the Proceedings of the ninth Euromicro 
Workshop on Parallel and Distributed Processing, issued in conjunction with 
the workshop with the same name held in Mantova, Italy in February 2001. It 
presents a design solution for an industrial system multiprocessor rack-mount 
CompactPCI NUMA architecture in which the operating system is 
implemented in hardware. The paper was written mainly by the author under 
the supervision of Professor Lennart Lindh of Mälardalen University and the 
approach was a legacy of a master’s thesis developed at the university. In 
addition to the concept of accelerating the operating system with custom 
hardware, the paper includes the first thoughts on the partitioning issues of 
existing software. 

§ The paper entitled “Parallel Execution of I/O System and Application 
Functionality” [Enblom2003], presented at the International Conference on 
Parallel and Distributed Processing Techniques and Applications (PDPTA2003) 
held in Las Vegas, USA, June 2003. It presents the model of the case-study 
system and introduces measurements and results from an evaluation in a 
distributed system environment. The paper was written entirely by the author 
and the work was performed in an industry environment by the author. Three 
performance metrics are studied in the comparison between the single 
processor system and the distributed system; processor utilization, latencies on 
data and inter-processor latencies. The results of the paper are the basis of the 
discussion in chapter four. 

§ The technical report entitled “PCI-Bus Communication Performance” 
[Enblom2001_2], filed as a technical report at Mälardalen University. It presents 
the design and performance results from an implementation of a message-based 
communication mechanism that enables communication between processor 
boards located on a CompactPCI-bus. Section 4.5 bases its discussion on the 
results from this technical report. 

§ The state-of-the-art technical report entitled “Parallel Computer System 
Components” [Enblom2003_02], presented as a Mälardalen Real-Time Research 
Center Technical Report at Mälardalen University. It describes multiprocessor 
hardware architectures, operating systems for multiprocessor architectures, as 
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well as communication mechanisms relevant to the work performed in this 
dissertation. It is included as chapter 2 in this thesis. 

1.5 Related Work 
The problem of scaling the software platform for systems which resemble that 

described in this thesis involves multiple disciplines. It is related to hardware 
architectures suitable for such systems, the predictability and bandwidth of the 
available interconnects as well as operating system support for this architecture. It is 
also related to offloading I/O system and communication functionality by using 
dedicated hardware, such as the hardware communication assists described in 
chapter 3.2.1. The work, however, is conceptually related to the benefits of utilizing 
proxy servers for offloading application nodes. Conceptually, there are resemblances 
between the approach of separating the I/O system and the application components 
on different nodes and the use of proxy nodes in networked environments. We have 
mentioned a proxy server architecture (CSP) in section 2.4.5 and we identify 
similarities and differences with our approach with respect to that architecture. 
Similarities include: 

 
• The offloading and decoupling of communication processing from servers (the 

application node in our case). 
• The data is forwarded to the application nodes with the help of lightweight 

transport protocol, which applies for our bus-based approach that utilizes a 
message queue for communication between the I/O system node and the 
application node. 

 
Differences include: 

• The proxy server (CSP) approach is based on the concept of decoupling TCP/IP 
processing from application nodes. We, on the other hand, decouple a 
publish/subscribe I/O system from application nodes.  The inherent difference is 
that the CSP approach is connection-oriented from end-point to end-point. The 
I/O system used in the case-study is not connection-oriented but rather data-
oriented. 

 
In summary, mechanisms that dedicate computational resources for the purpose of 
offloading application components are related to the work performed in the scope of 
this thesis. The difference and originality of this work lie in the special limitations 
and properties that were available to us in the case-study system and the semantics 
of data delivery (correlation and delivery on complete arrival of data) that enabled us 
to exploit the existing concurrency between I/O system and application components. 
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1.6 Outline of the Thesis 
The thesis consists of four main chapters describing the work performed within the 

scope of this project. It begins with a state-of-the art report (chapter 2) which gives 
insight into techniques and concepts that have been of importance for the 
understanding of the underlying set of problems with systems using multiple 
processors. In chapter 3 we discuss alternatives for improving performance in the 
case-study system, and discuss the design alternatives that were available to us, i.e. 
the design space. Chapter 4 describes the work performed in executing the I/O 
system and application/client components in a distributed network; creating a 
model and synthetic execution analysis as well as presenting relevant measurements 
of important metrics of execution in the distributed system. Section 4.5 presents an 
implementation and performance measurement of a message-based communication 
mechanism used for communication over a PCI bus-hierarchy. The objective of that 
is to determine how communication performance of a more tightly coupled system 
(as compared with the distributed architecture) would affect parallel execution of 
I/O system and application/client components. Finally, in chapter 5, we sum up 
with our conclusions and experiences from studying multiple processor systems 
available for use in industrial automation systems, and present possible future work 
on the subject. 
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2 Parallel Computer System Components 

Many issues need to be considered when migrating from a single processor system 
to an architecture that uses multiple processors. System designers are facing a 
plethora of design choices and need to understand state-of-the art technologies from 
many domains including hardware architecture, software architecture and 
programming techniques. This chapter intends to describe both state-of-the art and 
state-of-practice of technology domains we have identified and used during the 
work. We will start by establishing properties and terminology of parallel systems 
that is needed in the rest of the discussion. Thereafter we start a bottom-up 
discussion that begins with a chapter on parallel hardware architectures. Next 
chapter crosses into the domain of software and discusses the lowest level of 
software, which is the operating system. We focus on operating systems for 
multiprocessor and distributed system. Important software components include the 
communication mechanisms, especially for parallel and real-time systems. The 
chapter labeled “Parallel and Real-Time Communication Mechanisms” discusses 
such mechanisms. Finally, we bring up and discuss relevant programming models 
that are used in parallel systems. Focus has been on industrial applications where 
possible. 

2.1 Properties and Terminology of Parallel Systems 
Issues regarding parallelism cut through all levels of technology, regardless of 

whether the technology is targeted at Systems on Chip (SoC) or software executing 
on commercial off-the-shelf (COTS) architectures. The system designer will have to 
handle issues such as synchronization, communication and shared resources. This 
chapter will discuss properties concerning parallel systems as well as introduce 
terminology that will be used throughout the rest of this text. 

2.1.1 Speedup 

The term speedup is related to parallel computer system performance and is widely 
used as a metric to quantify the benefit of executing programs on a parallel 
architecture compared to executing the same program on single processor 
architecture. Speedup can be defined [Wilkinson99 p. 26] as: 

 

units processing Non  P execute  toTime
unit processing 1on  P execute  toTime

)()( == NSNSpeedup  

 
where P is the program that is being run and N quantifies the number of 

processing units in the parallel architecture. The definition of speedup is thus the 
time it takes for a program to execute on 1 processing unit divided by the time it 
takes to execute on N processing units. A speedup of more than 1, S(N)>1, represents 
a speedup, while a speedup of less than 1, S(N)<1, will in effect be a slowdown. A 



 12 

speedup where S(N)=N illustrates a situation with a linear speedup and a speedup 
where S(N)>N depicts a super-linear speedup. This definition of speedup applies to a 
program that is fixed in problem size (problem-constrained scaling). 

2.1.2 Amdahl’s Law 

In a pioneering article published in 1967 [Amdahl67], Gene Amdahl described the 
problems of achieving speedup of programs on a parallel architectures. The 
maximum amount of speedup that a program can achieve is limited to how large 
proportion of it can execute concurrently and how large proportion must execute 
sequentially. Amdahl’s law is expressed as: 

S(N) = 

N
f

f
−

+
1
1  

 
S(N) defines the speedup, f is the fraction of sequential work and N quantifies the 

number of processors. Now, as the number of processors approaches infinity (N→∞) 
we get this relation: 

 

S(∞ )→
f
1  

 
This shows that the maximum amount of speedup possible for the program is 

dependent on how much of the program that is inherently sequential. 

 
Figure 5, Speedup under Amdahl's law. 

Let for example the fraction of sequential work for a certain program be 2%. This 
will give an upper limit of speedup that approaches 50 (1 / 0.02). The maximum 
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speedup according to Amdahl’s law, as a function of the serial fraction in the 
program, follows the curve in Figure 5 above. 

2.1.3 Gustafson’s Law 

Amdahl’s law portrays a pessimistic picture for parallel computer architects, but 
despite of this parallel systems are sold and employed successfully. Gustafson 
[Gustafson88] have tried to explain why the implicated performance problem 
portrayed by Amdahl does not explain the whole picture of parallel system speedup. 
Gustafson argues that by changing the problem size, such amount of data used, it is 
possible to achieve a super-linear speedup. The reason for this is that in practice the 
problem size is not independent of the number of processors. Amdahl’s law will hold 
true for a system where the problem size does not change. Gustafson argues that this 
is not the situation for many problems and that it is more realistic to assume a 
constant run-time in contrast to a constant problem size. 

2.1.4 Concurrency and Parallelism 

Concurrency is a term that quantifies the amount of operations that can execute 
independent of each other. If a system component does not interact with or depend 
on any other component we can say that the components are isolated. The 
component has its own state and does not change its behavior based on events from 
other components. A system or program with totally independent and isolated parts 
is sometimes labeled embarrassingly parallel [Wilkinson99 p.82], but not all 
problems are this appropriate for parallel execution. 

There is a distinction between the definition of parallel execution and concurrent 
execution [Lawson92 p. 35]. For example, two processes in a uniprocessor system are 
said to execute concurrently but they never execute in parallel. They execute in what 
can be called a pseudo-parallel manner (interleaved), scheduled by the operating 
system. Two processes executing on separate processors on the other hand are said to 
execute in parallel. 

Two or more system components, such as processes, can exploit parallelism in a 
variety of ways. Andrews [Andrews2000 p. 11-26] identifies five concurrent 
programming paradigms that exploit parallelism differently. These are: 

1. Iterative Parallelism. An application utilizing iterative parallelism usually 
consists of a pool of identical processes that cooperate in solving a problem. 
Each process is parameterized and consists of one ore more loops, each 
performing a part of the job. 

2. Recursive Parallelism. In this form of parallelism recursive properties are 
exploited to utilize multiple processing elements. In each recursive step 
processes are spawned and execute concurrently. This may lead to a vast 
amount of processes, which poses a performance threat. Therefore parallel 
recursive algorithms often prune into sequential recursive calls (without 
spawning new processes) at a certain level (for example when the number of 
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processes exceeds a certain number). Sorting algorithms and chess games are 
problem domains that usually use this kind of concurrency. 

3. Producers and Consumers. Processes that communicate utilize this form of 
concurrency, usually in the form of pipelining. Each process performs its 
calculations and forwards its results to its collaborators and each process is a 
part of the pipeline. 

4. Client and Servers. In this is a form of parallelism processes communicate and 
exchange data, but now in a two-way manner. The client sends requests to the 
server, which responds with an answer. This form of concurrency has an 
analogy in procedure calls, invoked either locally or remotely (RPC). 

5. Peers. This form of parallelism utilizes peer processes that interact and 
communicate with the help of messages. No global variables are used and 
usually a coordinator distributes tasks to the waiting processes. This form of 
parallelism is common in distributed programming. 

2.1.5 Shared Resources 

There are several resources in a computer that can be shared. The most obvious are 
the processor, the memory and the interconnects. Sections of a program that act on 
shared resources are said to execute in a critical section [Dijkstra65]. If two or more 
processors contend for the same resource they are in a so-called race condition 
[Tanenbaum92 p. 34]. Deadlock occurs when a system cannot progress due to a 
situation where processes wait indefinitely for a resource. A formal definition of a 
deadlock situation is [Tanenbaum92 p. 242]: 

A set of processes is deadlocked if each process in the set is waiting for 
an event that only another process in the set can cause. 

If this is the case, all processes will wait forever to acquire the resource. Another 
form of unwanted lock is the so-called livelock. Livelock [Culler99, p. 379] is a 
complex form of deadlock, where subsystems interact and transactions are being 
performed, but where no progress towards the final result is made. The execution is 
going to continue forever, without the final result ever being presented. When 
designing system components such as for example message queues for inter-
processor communication mechanisms contention and race conditions for shared 
resources are an important issue. 

2.1.6 Three levels of Parallelism 

The first computers executed one instruction each cycle, starting the next only after 
the first had finished completely. These computers utilized bit-level parallelism; 
instructions operated on more than one bit at a time. Over time, the processors 
incorporated more and more of this parallelism, increasing the width of the data path 
from 8 bits up to the 64-bit processors that are available today [Culler99 p. 15]. Next 
level of utilizing parallelism was to exploit Instruction Level Parallelism, ILP. The RISC 
processors developed during the 1990’s have improved ILP substantially, but 
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aggressive machine design studies (with perfect branch prediction and unlimited 
processing resources) show that the amount of issued instructions per cycle does not 
increase performance infinitely. A study has shown that ILP has been exploited to 
what the limit for many applications [Lam92]. Other studies have shown that 
instruction throughput does not increase significantly, even with a four-way 
superscalar, as shown in Figure 6. 

 

 
Figure 6, a graph showing the estimated processor speedup with ideal superscalar 

resources available [Culler99 p. 18]. 

In many processor architectures where a concurrent flow of instructions is 
executing, relaxed memory consistency models [Adve96] are used in order to promote 
high ILP. Relaxed memory consistency models let memory operations compete out 
of order. A processor that completes memory operations in order is said to support 
serial consistency. In some processor architectures, which utilize relaxed memory 
consistency models, special memory barriers instructions can be inserted into the 
sequential instruction flow. This can be a nuisance for the programmer of the 
operating system, and even for application programmers. For example, the PowerPC 
architecture [Motorola] requires a program wanting to access a peripheral register to 
issue a ‘sync’ or ‘eieio’ instruction before continuing using values involved in the 
transaction. As described in [Motorola94]: “The sync instruction ensures that all 
instructions previously initiated appear to have completed before any subsequent 
instructions are initiated”. 

Other ways of increasing processor performance have been studied. 
Multiprocessors that allow for multiple threads executing simultaneously is an 
alternative. The implied limit of ILP pushes the evolution of processors and today 
some processors exploit Thread Level Parallelism, TLP. Future processors may include 
implementations that utilize TLP on chip, such as the Stanford Hydra 
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[Hammond2000]. This chip supports thread-level speculation, which means that all 
threads run in parallel until a dependency is detected. We will discuss this issue 
further in section 2.2.2. 

2.1.7 Locality 

Data (or spatial) locality is an important factor when designing both hardware 
architectures as well as software systems. Good spatial locality of a program depicts 
a situation where memory locations that are addressed close to other addresses have 
a higher chance of being accessed than other addresses. Caches exploit spatial 
locality (the cache lines) available in application programs to reduce memory access 
latencies. The closer the data is to the execution engine of the CPU, the faster the 
memory accesses can be completed. System architects should strive to keep the data 
as close to the CPU as possible, ideally the CPU should be able to access all memory 
within one cycle. 

Temporal locality is the property that expresses the inclination of a program to 
repeatedly access the same memory locations. A program that exhibits good 
temporal locality has a high probability of accessing the same memory locations 
multiple times in the near future. 

2.1.8 Latency and Bandwidth 

The effects of bandwidth and latencies have been studied in multiple papers, 
among them in a paper by Chong [Chong98]. Latency is associated to 
communication and is a problem for modern computer system architects. Memory 
latencies increase every year relative to processor execution engine performance. 
Three approaches to alleviate this have been identified [Johnson92 p. 2]: 

 
1. Avoid long latency operations by introducing a memory hierarchy (caches). 

Data reuse is enhanced through exploitation of temporal and spatial locality in 
the program. 

2. Reduce latencies [Gupta91] by minimizing the physical communication distance 
and thereby exploit physical locality. 

3. Tolerate long latencies [Gupta91] by exploiting multithreading, prefetching and 
relaxed memory consistency techniques. These approaches exploit overlap of 
long latency operations. Latency tolerance aspects for software distributed 
shared memory mechanisms has for example been studied by Mowry 
[Mowry98]. 

 
Bandwidth describes the rate at which data is delivered from one component to 

another. Latency is related to bandwidth in the sense that low bandwidth can incur 
higher latencies in the system, especially for request-reply protocols. 
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2.1.9 Synchronization 

An important mechanism in parallel and concurrent systems is that of 
synchronization. The purpose is to achieve program order among processes and/or 
to achieve mutual exclusion for shared data. These two methods are called 
synchronization for precedence and synchronization for mutual exclusion [Quinn94 
p.91]. Different forms of synchronization include barrier synchronization and point-
to-point synchronization. Barrier synchronization is used whenever multiple processes 
agree to wait for every other peer to advance to a certain point. At that point they all 
synchronize and are thereafter allowed to proceed. Point-to-point synchronization 
depicts two processes and their mutual synchronization. An example of point-to-
point synchronization is when a message based communication mechanism utilizes 
send and receive primitives to synchronize. 

Synchronization relies on indivisible atomic read-modify-write actions. Each 
hardware architecture has its own mechanism to provide for atomic actions. 
Compare&swap and test&set are two examples of processor instructions that are 
indivisible, and on which all other forms of synchronization can be built. In a 
multiprocessor system, atomic actions must be performed by other means. This 
includes mechanisms that lock the local bus in order to achieve exclusive read-
modify-write access to a shared variable. Busy wait/spin-locks can enable mutual 
exclusion, but consume resources since the processor is not doing any useful work at 
all while spinning. Other threads on the same processor should be able to run while 
the first thread is waiting for the lock. A common technique of guaranteeing mutual 
exclusion in a single processor system is by disabling interrupts. 

2.1.10 Granularity 

Granularity is used to describe the number and size of tasks into which a problem 
is decomposed [Grama2003 p. 89]. The spectrum stretches from fine to coarsely grain 
and the granularity of tasks (fine or coarse grain) depicts the possibility to divide a 
task into multiple threads and thus exploit concurrency. The granularity of 
communication depicts for example the amount of data being passed in a memory 
reference [Culler99 p.186-187]. Granularity as a term can be applied to describe the 
characteristics of synchronization as well. 

2.1.11 Scalability 

Scalability is the ability of a computer system component to be partitioned on other 
computer system components in a flexible and efficient way. To be able to fulfill the 
requirements of an application to grow in the future, it is important to decide which 
parts need to scale. Most parts of a computer system are able to scale to a certain 
degree. Interconnects can support a variable number of devices, and processor 
boards and the operating system need to be scalable enough in order to support 
these extra devices. Two approaches concerning scalability have been stated. The 
first approach is scalability over machine size [Culler99 p. 206] which focuses on being 
able to scale the machine hardware and software while still fulfilling the original 
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requirements. The second angle of approach is scalability over problem size, which 
focuses on being able to scale the application and the problem, i.e. being able to run 
new applications and introduce new functionality. 

Scalability as a term is used for describing a system component that can be 
enhanced in some respect. A computer can increase its available amount of memory 
or increase its number of available processors. Culler [Culler99 p. 456] identifies three 
domains of interest regarding scaling at the architecture level; bandwidth scaling, 
latency scaling and cost scaling. These three are the main metrics for determining the 
scalability of the hardware architecture, but the system user cannot ignore how well 
the software scales on that particular machine. If the algorithm cannot be partitioned 
on the underlying hardware architecture in an efficient way, there is a minimal 
incentive of introducing a scalable multiprocessor architecture. 

Culler [Culler99] illustrates the fundamentals of hardware architecture scalability 
with an abstract view of how the essential components of a system, the processing 
unit (processor), the memory and interconnects (links and switches), are organized. 
In a parallel system that scales well, a large number of processing units should be 
able to interconnect with a sufficient large amount of memory modules. How 
successful the assembly and design of the system is, depends mainly on the three 
architecture scaling parameters mentioned earlier; bandwidth, latency and price. 
Building efficient and high-performance parallel systems leads to many common 
factors in design, regardless whether the design is for large distributed database 
systems, industrial automation systems or multiprocessors on chip. Factors such as 
locality in all levels of design (memory system, location of software modules based 
on their usage, as well as the physical distance between processors), minimizing the 
workload on each node by for example creating more efficient algorithms or 
optimizing code or logic, minimizing overhead in relationship to useful work, as well 
as partitioning tasks among multiple processing units are important in every 
multiprocessor system. Loosley and Douglas [Loosley98] discuss these issues in 
respect to database systems and distributed systems. 

An important metric in this context is the computation-to-communication ratio 
[Culler99 p.132]. This ratio is relevant for scientific applications and industrial 
systems alike, but the term is mostly used as a metric for large scalable systems. The 
larger the computation-to-communication ratio is the more important the ability to 
achieve overlap of communication and computation becomes. 

2.2 Parallel Hardware Architecture 
This chapter discusses parallel hardware architecture in general, but directs the 

discussion to systems implemented for industry environments where possible. The 
discussion strives to present the state-of-the-art designs but also define terms and 
techniques that are fundamental for the discussion. The text intends to give a walk-
through view of the architectural components of multiprocessor architectures, issues 
that have been relevant for understanding the architectural alternatives that were 
available in this project. 
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2.2.1 Single Processor Architecture 

In order to describe multiprocessor architectures we will first briefly discuss the 
basic parts of a common single-processor machine. A computer does essentially 
consist of five components; input, output, memory, datapath and control 
[Patterson98 p.16]. Datapath and control are usually combined to what is commonly 
called the processor. The processor fetches instructions as well as reads and writes 
data to the first level of memory, the level 1 (L1) cache. If data or instructions are not 
available to the processor in the first level cache, the memory subsystem will have to 
fetch the instructions or data from the lower levels of the memory hierarchy. The 
final instance of random access memory is the primary memory (in this context we 
overlook facilities such as disks which are seldom used in real-time industrial 
systems). 

Basically, two historical hardware architectures exist; the Von Neumann 
architecture and the Harvard architecture. The Von Neumann architecture 
[Heuring97 p. 24] architecture (processor) has a unified view of memory, which is in 
contrast to the Harvard architecture that has separated instruction and data memory 
areas. The processor fetches instructions from the memory hierarchy thereby 
controlling the datapath and manipulating data in memory. Input and output is 
commonly performed by peripheral devices, which are initialized and controlled by 
the processor. Modern peripheral devices can usually access memory directly (DMA) 
and notify the processor by interrupting it. A single processor system has, per 
definition, only one processor and the system does not need to incorporate facilities 
that enable multiple processors to work consistently. In a single processor system 
only one processor accesses memory at every instant even though multitasking 
operating systems may schedule multiple processes onto one processor in an 
interleaved fashion. 

Processor performance has been increasing according to Moore’s law over the past 
decades, which means that on average performance of a modern processor has 
doubled every 18 months. The development of memory-technologies has not been 
able to keep up to this enormous increase in speed. The solution to this problem has 
been to create a hierarchic memory system, in which smaller but faster memories are 
high up in the hierarchy (close to the processor) and slow but larger primary 
memory are at the bottom. Memory hierarchies have been the commonly used 
mechanism to bridge the gap between processor and memory performance. Memory 
is also a very important component in multiprocessor systems, and computer 
architectures can be categorized according to their memory system design, as 
discussed in section 2.2.3. 

2.2.2 Processors from a Parallel Perspective 

Modern processors increase performance by employing non-predictive methods or 
components. Branch prediction, superscalar pipelining, out of order execution and 
memory hierarchies cause the system to be difficult of predicting in terms of 
execution time of programs, yet these techniques are a necessary component in 
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achieving high performance. Even though such processors are less predictable, they 
are used in many real-time systems since they yield higher performance than simpler 
architectures. 

These modern processors try to exploit parallelism among individual instructions 
within a sequential flow of instructions. The amount of parallelism available within a 
block of sequential code is commonly labeled Instruction Level Parallelism (ILP) as 
mentioned in section 2.1.6. Data dependencies limit the ability of the processor to 
execute and retire more than a few instructions concurrently each cycle. An example 
of how limiting to performance data dependencies can be, and how important it is to 
break the data dependency limit of processors, is illustrated by two techniques that 
exploit value prediction and computation reuse [Wu2001]. Value prediction is a 
speculative method that uses the values of recent executed regions of code in order to 
predict the results of future calculations of the same region of code. If the result turns 
out to be incorrect the predicted values must be discarded. Computation reuse is a 
non-speculative technique that caches inputs and outputs of previous computations 
to be used in later computations. Results from integrating the two techniques shows 
a speedup of up to 1.4 compared to using one of the techniques alone. 

Thread Level Parallelism (TLP) is being exploited in MIMD architectures (see section 
2.2.3 for multiprocessor categorization), as for example in symmetric multiprocessors 
(SMP). The development of processors has been dramatic from the dawn of the 
microprocessor in the early 1970’s. During these years bit-level parallelism and 
instruction level parallelism, have been exploited extensively. Multithreading 
architectures and multithreaded processors such as the Stanford Hydra 
[Hammond2000] or the Tera MTA [Alverson90] have been created but have had 
limited commercial success. 

A multithreading technique that has been studied recently is the so-called 
Simultaneous Multi Threading (SMT) processors [Tullsen96], where instructions 
from multiple threads compete for the available execution resources. Unlike other 
multithreaded architectures, SMT-processors let multiple thread contexts issue 
instructions simultaneously. A commercial product that employs SMT, i.e. exploits 
thread level parallelism on chip, is the so-called Hyper-Threading technique 
[Elektronik] [Intelwww] from Intel. Each logical processor is equipped with two L1 
caches and two register sets but only one L2 cache. This allows for two threads to 
execute simultaneously, which improves latency hiding. With this technique the two 
threads compete for the same execution resources, such as the ALU. The main 
purpose of this technique is to “use thread-level parallelism and instruction-level 
parallelism interchangeably” [Lo97]. The Hyper-Threading technique has been 
released as an implementation in the Pentium 4 processor. 

A way of handing over responsibility of guaranteeing independence between 
instructions to the compiler is to implement Very Long Instruction Word (VLIW) 
architectures [Patterson98 p. 528]. The compiler analyses the code to find data 
dependencies and thereafter creates VLIW instructions that enables independent 
execution at the greatest possible extent. Advantages include simplified instruction 
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decoding and reduced need for hardware resources. The disadvantage is the need for 
frequent recompilation of executables, due to the binary incompatibility of different 
generations of processors. The new 64-bit generation processors from Intel, the IA64 
architecture, will incorporate VLIW instructions [Stallings2000]. This technique is 
named Explicitly Parallel Instruction Computing (EPIC). 

Reduced Instruction Set Computers (RISC) [Patterson80] have increased processor 
performance during the 1990’s and almost all processor architectures have 
introduced pipelined execution of instructions and many high-performance 
processors are superscalar, i.e. have more than one parallel instruction pipeline. The 
purpose of the RISC is to achieve effective execution by letting all instructions have 
the same size, allowing only load and store instructions access memory and execute 
one instruction per cycle (single pipelined). Example RISC architectures are the MIPS 
and the PowerPC. Complex Instruction Set Computers (CISC) do not share these 
properties but can have variable length instruction formats and usually incorporate 
more functionality per instruction. The common objection to implementing such 
architectures is that it is more difficult to exploit ILP. Traditional CISC architectures 
include DEC PDP-11 and the VAX11, and Intel’s IA-32 architecture is usually 
depicted as a CISC as well (even though it is implemented as a RISC architecture 
internally). 

In industrial and embedded systems, Digital Signal Processors (DSP) such as the 
floating point capable DSP SHARC from Analog Devices [Analogwww] provides 
floating-point and signal analysis capabilities for real-time control applications 
(especially for frequency analysis). The system we have studied does not incorporate 
DSPs at the numerical module level (processor boards) but in the sampling 
peripherals. Since the trend has been to move functionality from DSPs to general 
purpose processor boards, we have not considered the use of such components in 
our study. 

Some modern processors utilize instructions that act upon multiple data locations 
at the same time such as the MMX instruction set and the streaming SIMD extensions 
(SSE) [Intelwww2] for Intel’s Pentium processors. These architectures will be 
discussed further in section 2.2.3.1. 

2.2.2.1 Interrupts and External Events 

Interrupts is the means by which devices notify the processor of events, as for 
example when it has completed a memory transfer. Interrupts are in effect the 
technique for peripherals and the processor to synchronize their actions. In the 
system we have studied interrupts are an important issue due to the many 
peripherals that are present. 

Modern implementations of interrupt handling have evolved into including 
handling traps, i.e. internal or program interrupts. Manufacturers use terms such as 
exceptions, traps, and faults differently but all describe a reaction to an event, 
collectively known as interrupts. Interrupts occur either synchronously or 
asynchronously. Synchronous interrupts occur due to events that originate from the 
instruction flow, such as floating-point imprecise exceptions or division by zero 
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exceptions. Asynchronous interrupts on the other hand occur due to external events 
such as system reset or external interrupts from peripheral devices. Asynchronous 
interrupts are important from the parallel point of view as well, in that they are the 
notification mechanism not only for peripheral devices and processors, but between 
processors and processors as well (as in SMP architectures). 

Walker [Walker95] has classified interrupt implementation choices. When an 
interrupt occurs the state information of the running process/thread has to be saved. 
This saved information is used to restore the processor to the same state as it was in 
before the interrupt occurred. This includes at least saving the program counter but 
usually it also incorporates saving vital registers and switching to another stack. 
Interrupts can be either precise [Smith85] or imprecise. Imprecise interrupts allow for 
instructions executing out-of-order to complete without serial correctness, meaning 
that the user is responsible for guaranteeing serial correctness. The Alpha processor 
enables the user to issue special instructions, i.e. memory barriers, to prohibit any 
instructions from issuing until a following arithmetic instruction has completed. 
Precise interrupts on the other hand guarantee serial correctness, and the user 
(usually the compiler) does not need to use memory barrier instructions. Processors 
utilize precise interrupts when a page fault interrupt occurs. The processor saves the 
processor state at the time of an interrupt, which enables the system to have another 
process run while the correct page is collected from the hard drive or another media. 

An important issue in real-time and industrial systems is interrupt service time 
latencies. Modern operating systems such as Linux [Bovet2003] and Windows 
[Solomon98] have a two layered handling of interrupts, where a minimal interrupt 
handler acknowledges the interrupt and then schedules a routine to be executed later 
(Deferred Procedure Call in Windows, and so called tasklets in Linux). Solaris also 
minimizes long-latency interrupt response by allowing interrupts to be scheduled as 
threads [Mauro2001]. Real-time operating systems such as VxWorks let all Interrupt 
Service Routines (ISR) share the same stack and are not allowed to block. This means 
that ISR are not allowed to take synchronization objects such as semaphores. 

2.2.2.2 The Alternative to Interrupts: Polling 

The alternative to interrupt handling is polling, in which software or possibly 
another hardware device periodically examines whether a certain event has 
occurred. Polling may be useful in systems with fast network interfaces, such as 
Gigabit Ethernet. Receiving an interrupt for each frame received would not be 
feasible for a processor to handle, and many fast network interfaces do not even 
provide the possibility to issue interrupts. In this case polling is an alternative as 
described by Perkovic [Perkovic99]. The paper discusses both how multithreading 
and automatic insertion of polls can increase average performance and interrupt 
latency can be minimized using a watchdog at millisecond intervals. Polling as term 
can be used in other research areas. Takagi [Takagi88] describe polling models where 
a single server accesses multiple queues in cyclic order and no asynchronous 
notification mechanism exists. 
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In the case-study system an example of a component utilizing polling techniques is 
the watchdog. It periodically polls devices and their status in order to detect system 
faults. 

2.2.3 Categorization of Parallel Architectures 

It is useful to categorize multiprocessor hardware architectures into groups where 
each category represents hardware architectures with certain common properties. 
Such attempts exist, where a famous categorization based on the instruction and data 
streams (control flow) was created by Flynn [Flynn96]. According to the taxonomy 
created by Flynn four combinations of single or multiple instruction and data 
streams exist: 

 
§ The Single Instruction stream, Single Data stream (SISD) computer represents a 

traditional uniprocessor. 
§ Single Instruction stream, Multiple Data Stream (SIMD) computers work with 

data parallel constructs on vectors of data. In short, this is an architecture where 
“a single instruction specifies operations on several data items” [Jordan2003 
p.7]. 

§ Multiple Instruction streams, Single Data stream (MISD) computers constitute 
one of the four variations of computers described by Flynn. Pipelined 
processors that cooperate in performing a part of the computation on the same 
data stream [Narayanan93] constitute an example MISD architecture. 

§ Multiple Instruction streams, Multiple Data streams (MIMD) computers are the 
most commonly used architectures today. SMP, CC-NUMA and clusters all 
belong to this category of computers, and these architectures are described in 
section 2.2.3.2 below. 

2.2.3.1 SIMD Architecture 

SIMD computers consist of Processing Elements (PE) that synchronously execute a 
single instruction from a single program counter [Patterson98 p.749]. Every PE 
executes synchronously and is controlled by a central control unit (usually a general-
purpose processor). Many modern general-purpose processors implement SIMD 
instruction sets. Example instruction sets include the MultiMedia eXtensions (MMX) 
from Intel and the AltiVec [AltiVecwww] for the PowerPC architecture from 
Motorola and IBM. These instruction sets are designed to increase performance for 
operations that are common in audio and video applications. Algorithms using these 
instruction sets can issue one instruction and have the processor acting on a vector of 
data in parallel. The data is contained in special data registers, in the case of MMX 
they are represented by 64-bit internal registers. The evolution of MMX and AltiVec 
instructions illustrates the need for specialized instructions that internally utilize 
parallelism. 

Traditionally large SIMD architectures that focus on data parallelism are labeled 
Massively Parallel Computers. Two such architectures are the MasPar MP-1 



 24 

[Nickolls90] from MasPar Computer Corporation and The Connection Machine 2 
[Tucker88] by Thinking Machines Corporation. SIMD architectures exist for 
industrial applications as well. The special-purpose Linear Picture Processor (LAPP) 
[Lawson92 p.431] is a SIMD architecture capable of scanning silicon strings used in 
the manufacturing process of motor blocks. The massively parallel architecture is 
capable of performing a visual examination of the silicon strings in real-time. 

2.2.3.2 MIMD Architecture 

The MIMD architecture is by far the most used computer systems architecture and 
a plethora of possible MIMD architectures are possible. Hwang [Hwang98] has 
presented a categorization of MIMD architectures that decomposes into the 
subcategories shown in Figure 7 below. The first division is between the Uniform 
Memory Access (UMA, Central Memory) architecture, the Non-Uniform Memory 
Access (NUMA, Distributed Memory) architecture and the No-Remote Memory 
Access (NORMA) architecture. Hwang divides the MIMD architecture into sub-
categories that describe the access to memory in the parallel system. 
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Figure 7, a categorization of multiprocessor architectures [Hwang98 p. 238]. 

2.2.3.3 Shared-Memory Multiprocessor Systems 

Two of the sub-classes in Hwang’s categorization allow the processors to share 
memory (UMA and NUMA). A categorization that divides shared memory 
architectures according to different memory layouts has been defined by Culler 
[Culler99 p. 271]: 

 
• The shared cache architecture is symmetric, meaning that all processors have 

equal length to access memory. Since all processors share all cache memory, no 
cache-coherence problems arise. This approach has only been shown to scale up 
to eight processors, but may become interesting again for system-on-chip (SoC) 
architectures. Interconnects are obviously the limiting factor since all processors 
share the same interconnect to the caches. 
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• The bus-based shared memory architecture is popular in for example server 
systems due to its good price/performance ratio. Efficient use of shared 
resources, such as I/O buses and printed circuit boards, contributes to that. The 
architecture has shown to be scalable up to over 30 processors. The most 
common bus-based shared memory architecture is the symmetric 
multiprocessor (SMP). SMP architectures are being used to a greater extent in 
industrial systems today, and companies such as Concurrent Computer 
Corporation [Concurrentwww] are designing complete systems for use in real-
time industrial applications. 

• The dancehall architecture exchanges the bus in the bus-based shared memory 
architecture with a scalable point-to-point interconnect network. All memory 
modules are still uniformly far away from the processors; therefore the 
architecture can be described as a symmetric architecture. This memory 
architecture is not widely used today. 

• The distributed-memory architecture (DSM) lets all nodes in the system have a 
share of global memory resulting in that memory accesses are not uniform. This 
architecture promotes scalability and can be efficient if data locality can be 
exploited in the local node. 

2.2.3.4 Cluster Architectures 

Clusters or NOW (Network of Workstations) provide a way of using personal 
computers and/or workstations to achieve a high price/performance ratio. Personal 
computers improve their price/performance ratio by approximately 80% per year, 
while supercomputers only increase the same ratio at a rate of 20-30% per year 
[Anderson95]. NOW can provide a cheap and highly available (it is possible to 
compensate for nodes going down) network of computers, using multiple CPUs for 
parallel computing. The system does usually scale well and every node executes its 
own operating system (suitable for heterogeneous environments). 

Berkeley NOW [Anderson95] and Beowulf [Beowulfwww] are two well known 
cluster systems that have been developed. Berkeley NOW uses switch-based 
networks (ATM or the Myrinet) and the original NOW system had a hardware 
configuration of 105 SUN Ultra 170 workstations. Beowulf clusters have become 
popular mainly due to the fact that they can be implemented using free operating 
systems as Linux and FreeBSD. Beowulf clusters reside on a dedicated network and 
nodes can communicate with processes on other nodes through the use of global PID 
(Process Identification). There is no software package that is called “the Beowulf 
cluster system” [Beowulfwww2]. Rather, a Beowulf cluster consists of different 
software packages such as PVM, and a special Linux kernel (supporting global PIDs 
etc.). 

Cluster architecture is being used increasingly in industry, scientific computing 
and biochemistry. In industry the main use is for simulation purposes, but real-time 
properties of clusters are being investigated as well [Suzuki2003]. We have seen no 
obvious use for cluster architecture in the case-study system. 
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2.2.4 Examples of Multiprocessor and Distributed Real-Time Systems 

This section describes three systems that have contributed to the understanding of 
distributed multiprocessor real-time systems. We have focused on describing aspects 
of those systems that are relevant for our project, such as for example network nodes 
and the utilization of functional parallelism. 

2.2.4.1 HARTS 

HARTS [Shin91], Hexagonal Architecture for Real-Time Systems, is a distributed 
real-time architecture developed at University of Michigan in the early nineties. The 
project focused on supporting time-constrained and fault-tolerant communications. 
The architecture consists of clusters of nodes interconnected by a hexagonal mesh. A 
HARTS node consists of application processors (AP), a network processor (NP) and 
an Ethernet Processor interconnected by a VME-bus [Kandlur91] (Figure 8). Every 
node is synchronized with the help of specialized hardware which provides a global 
time base which is used by the HARTOS operating system to allocate shared 
resources [Ghosh94 p.38]. 
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Figure 8, a HARTS Node [Kandlur91]. 

The purpose of incorporating the network processor was to offload the application 
processors and implement communication functionality from the physical layer up 
to the transport layer. Communication between the application processors and the 
network processor is implemented by using a DMA interface on the VME-bus. 
Achieving low communication latency was one of the goals when designing the 
network processor and it is also capable of monitoring the load on the network as 
well marking messages with time-stamps. 

The impact of the HARTS project was not as profound as compared with the 
Spring system, but network and I/O Nodes in real-time systems have parts in 
common with the approach in our study. The most important similarity is the 
functional separation of communication and application components. 
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2.2.4.2 Spring 

The Spring system and kernel was an academic project developed by, among 
others, John A. Stankovic and Krithi Ramamritham [Stankovic91] [Stankovic92] 
[Stankovic99] [Molesky90]. The motivation for the project was to provide basic 
support required for large and complex real-time systems, and special focus was on 
fulfilling timing constraints. Current real-time operating systems, in their view, use 
the wrong paradigm for enabling predictable execution. These real-time systems are 
in fact only stripped-down and optimized versions of time-sharing operating 
systems, stressing fast context switching as well as ability to respond to external 
interrupt quickly. The main critique brought up against these current real-time 
systems include the lack of explicit consideration of timing constraints, the difficulty 
to predict task executions and the lack of explicit handling of tasks with complex 
characteristics. 

With this critique in mind the creators of the Spring kernel tried to create a system 
that uses the information known beforehand about the tasks in the application. This 
information is then used during runtime and the result is a system where flexibility 
and predictability is ensured. The system uses a value system on tasks that values the 
tasks ability to meet their timing requirements. 

 

 

Figure 9, The Springnet distributed system [Stankovic91]. 

Tasks are classified according to two main criteria: importance and timing. There 
exist critical tasks, essential tasks and unessential tasks where the critical tasks 
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include tasks that must meet their requirements (a task deadline miss will result in a 
negative infinite value to the system). Essential tasks include those that do not cause 
catastrophic events in the system if their requirements are not met but will degrade 
performance in the case that the requirements are not met. Unessential tasks on the 
other hand are usually background tasks that perform maintenance functions and 
long-range planning. Springnet is the distributed system that utilizes the spring 
kernel and it consists of spring nodes as can be seen in Figure 9 below. A spring node 
is a multiprocessor that consists of application processors, system processors and an 
I/O subsystem. 

Three important components of a real-time kernel are highlighted in the Spring 
kernel, the task management, the scheduling policies and the memory management. 
A fourth important component, the inter-task communication is omitted in the 
discussion in [Stankovic91]. 

The Spring kernel presupposes that the application designer has a priori 
knowledge about the characteristics of tasks. This includes knowledge about WCET 
(Worst-Case Execution Time), deadlines, periods, the maximum number and type of 
resources needed, its type (critical, essential and unessential tasks), and its 
importance level. Knowledge about precedence graphs and communication graphs is 
also needed. All this information is maintained by the task descriptor. 

The architecture consists of application nodes, system processors and an I/O 
subsystem and an advantage of the architecture is [Burleson99]: 

 

System processors offload the scheduling algorithm and other OS 
overhead from the application tasks both for speed and so that external 
interrupts and OS overhead does not cause uncertainty in the 
execution of guaranteed tasks. 

The Spring Kernel has been used in different environments, such as for example 
manufacturing industry [Stankovic94] and a co-processor [Burleson99] has been 
developed to accelerate scheduling in the Spring kernel. The paper [Burleson99] 
claims a threefold speedup compared to software scheduling. The coprocessor is 
designed as a memory module and processors communicates with the accelerator by 
means of memory accesses. 

2.2.4.3 UltraSmart 

UltraSMART [Boxer94] is a parallel real-time architecture that was developed by a 
company called Concurrent Computer Corporation [Concurrentwww]. The 
UltraSMART architecture was at that time (1994) developed for the widely used 
industry standard VME bus but today the company supplies a more modern 
symmetric multiprocessor architecture for industry and military under the name of 
PowerMAXION. UltraSMART provides a directory based cache-coherent mechanism 
that lets the code executing on the processing modules (XPU) access a coherent 
memory space. An ASIC, the so called Crosspoint Processing Module (XPU), handles 



 29 

memory accesses to local and remote memory. The UltraSMART architecture is 
accompanied by a UNIX operating system with a kernel that is preemptive and that 
is specially developed to handle disk system I/O. Features, aside from common 
features such as an optimized interrupt system and priority real-time scheduling 
policies, is its capability to dedicate a processor to specific tasks. The company’s 
motivation for this mechanism is that “reserving processors guarantees optimum 
response for the dedicated tasks”. As with the systems described above, this allows 
for functional partitioning. It would be possible to statically pin communication tasks 
to a dedicated processor, thereby offloading the other functionality (applications). 

2.2.5 Interconnects 

Together with processor performance and memory access latencies, interconnects 
have historically been a major bottleneck in computer systems. Insufficient 
bandwidth and high latencies of interconnects have rendered distributed and parallel 
computing difficult. The maximum possible length of interconnects has affected the 
physical topology of systems. Interconnects enable communication between nodes 
and components, and a broad range of commercial products are available, spanning 
from on-chip buses to local area networks and wireless data links. Parameters that 
affect which interconnect to use include; physical extent, fault tolerance 
requirements, how easily links are affected by electro-magnetic interference (EMI) 
and price. The goal of this section is to introduce interconnects that are used in 
industry environments and will include some new and emerging interconnects 
(RapidIO and PCI-Express). 

2.2.5.1 Bus Functionality 

A bus provides paths between various parts of a computer system and implies the 
possibility of communication between more than two devices [Gustavson84]. Devices 
on a bus request access grant to the bus by communicating with the arbitrator. The 
arbitrator is usually a centralized component that resolves the contention between 
transaction initiators [Dawson99]. The time that it takes for a bus master, i.e. a device 
that initiates a transfer of information, to gain bus mastership, is labeled access 
latency. Each current bus-master, only one at a time, is labeled the commander. The 
time that the bus is held by a commander is called bus tenure. Multiple masters on 
the bus may contend for initiating a transfer, which leads to contention for the bus. 
Masters and slaves exchange information by using different address ranges. Masters 
can therefore select the slaves which it wants to communicate with. When connected, 
the master and the slave can exchange information. The devices that participate in 
the transfers are called the listener and the talker. After data has been exchanged, the 
commander can chose to break the connection, i.e. disconnect. This sequence of 
actions – setting up a connection, transferring data and breaking the connection - is 
defined as a transaction. The set of rules that governs the use of the bus by masters 
and slaves is called the bus protocol. A bus can be either parallel or serial.  A 
completely parallel bus dedicates each bit of the bus protocol to a dedicated signal 
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line. In a serial bus all information is multiplexed over a dedicated signal line. 
Multiplexing is a time sharing technique that reduces the number of bus-lines by 
enabling both address and data phases on the same set of signal lines. 

DMA (Direct Memory Access) provides a way for peripheral devices to directly 
access memory. The main advantage of using DMA is that the processor does not 
spend cycles [Heuring97] by moving data from peripheral devices to primary 
memory. An example of an integrated circuit that provides DMA functionality 
(channels) in the PC architecture is the 8237A [Intel8237A]. It is a remnant from the 
PC-AT architecture and is used mostly to transfer data from slow devices such as 
floppy disk drives [Bovet2003 p. 436] to main memory. The setup time for the DMA 
channels is usually high which makes it more efficient to let the CPU perform small 
data transactions. 

The next sections will describe I/O buses and relevant network based 
interconnects. We have decided to separate interconnects into two categories; I/O 
buses and local area interconnects. The categorization divides according to the 
physical extent of the interconnects, where I/O Buses have the least physical extent 
and local area network interconnects have the largest physical extent. More 
categories of interconnects, such as processor buses and field buses (for example 
ProfiBus [Profibuswww]), could have been added to the discussion, but we have 
limited our overview to interconnects that are most relevant for the case-study 
system. 

2.2.5.2 I/O Buses 

This section describes some well known I/O buses used in industrial systems 
today and that are used for connecting both peripherals and processor boards. 

The PCI-bus is together with the VME-bus the most common bus for industrial 
automation applications. A large amount of devices and appliances have been 
constructed for the PCI-bus, and a wide range of tools are available to the users of the 
bus. The first version of the PCI-bus appeared 1992 (v1.0) while version 2 was 
released in 1995 [Shanley99]. The latest version is v2.2, which dates to back to 1999. 
The bus is processor independent and supports up to ten electrical loads. Logically 
the PCI-bus consists of buses (up to 256 buses), devices and functions within devices. 
A function is a form of logical device in a physical device and each function contains 
its own individually addressable configuration space. The bus hierarchy can be 
scanned by software in order to find available devices and functions. Each device has 
a unique vendor and device identifier and each PCI-device is assigned those unique 
identifiers when manufactured [PCIwww2]. The purpose is to have a configurable 
bus hierarchy where peripherals may physically occupy different slots. Physically the 
PCI-bus is a reflected-wave switched bus [Shanley99], meaning that a wavefront 
reflection of the signal issued needs to be propagated back across the bus to be able 
to drive the signal lines to the desired logic state. The PCI specification states that the 
devices must only sample their inputs on the rising edge of the PCI-clock signal. 

Important performance related techniques of the PCI-bus includes the possibility 
of performing burst read- and write- transfers, i.e. a transfer consisting of one 
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address phase and multiple data phases. Burst functionality eliminates the need of 
constantly regaining mastership of the bus. Theoretically, optimal use of bursts gives 
rise to a maximum transfer rate of 132MB/s for the 33MHz 32-bit specification (v1.0). 
In practice, the sustained bandwidth may be much lower. 

The PCI specification allows for arbitration requests to be issued while another 
bus-master is performing a transfer. Overlapping arbitration and data transfers are 
thereby enabled, thus promoting performance. The arbitration scheme is required to 
be fair by the PCI-bus specification, meaning that all devices must be allowed to 
eventually perform a transaction on the bus. The specification defines the arbitration 
implementation very loosely, but most implementations are reported to adhere to 
round-robin arbitration [Wolf2001 p.455]. 

PCI-to-PCI bridges glue together multiple PCI-buses in a hierarchy, and the bridge 
forwards data from one side to the other (upstream and downstream). A PCI-to-PCI 
bridge acts as a target on one side and master on the other when forwarding data. 
Latencies through PCI-to-PCI bridges have been reported to be in the order of tens of 
nanoseconds up to milliseconds [Chamé98]. 

PCI-Express [PCIwww] is a serial backward compatible extension of the PCI Bus. 
Backward compatibility is assured on the software level in that devices are 
enumerated as on a conventional PCI-bus and that devices are accessed in the same 
manner. Therefore device drivers need not to be altered when migrating to PCI-
Express. Instead of defining a parallel bus, PCI-Express provides a serial point-to-
point I/O interconnect that can scale better than the conventional PCI-bus. The 
number of physical pins as well as the frequency used is configurable, which 
promotes bandwidth scalability. The serial interconnect does not have as stringent 
synchronization restrictions as the conventional PCI-bus. Data throughput 
performance has a maximum of 250MB/s per lane (PCI-SIG terminology for a link) 
resulting in a total available bandwidth of 16 GB/s for a 32 lane configuration. 

RapidIO [RapidIOwww] is a packet-switched, point-to-point interconnect that is 
designed for a memory mapped programming model. Peer-to-peer communication 
is possible and the interconnect provides for a globally shared distributed memory 
[EETimeswww]. Furthermore, the hierarchy is not strictly fixed, and up to 64,000 
devices can be addressed on the bus. Each device can be targeted through memory 
accesses depending on an offset. The I/O system is packet oriented; each node is 
either rejecting or forwarding packets from one side to the other, assuming the 
packet is not bound for the node itself. Up to 256 outstanding transactions between 
each sender and receiver pair can be active. 

While not designed for process control or for real-time industrial use, we mention 
the Universal Serial Bus (USB) [Anderson97] here due to its increased popularity. The 
maximum bandwidth of the first USB version is 12 Mb/s, while USB v2.0 enables a 
data rate of up to 480 Mb/s. USB devices connect to the host system via a USB host 
controller and the host controller driver software defines the transactions that are to 
be scheduled during the next timeframe. This timeframe is usually 1 ms in which all 
pending transactions are broadcasted on the serial bus. While many devices can be 
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attached to the USB-bus, each device does not occupy system resources such as IO or 
memory address space, IRQ lines or DMA channels, which is beneficial compared to 
for example conventional serial devices (UART). 

2.2.5.3 Local Area Network Interconnects 

Networks are usually packet-based, where a packet is the segment of information 
that is transported over the channels and that is unpacked at the receiver [Culler99]. 
A switch is a device that acts as a ”man in the middle” on the physical link. It can 
interpret the information contained in the packets and forward them to the correct 
destination. The wires or fibers that carry the analog signal constitute the link to 
which the transmitter, a physical device that converts digital information from the 
system to analog signals on the link, is connected. The receiver, the physical device 
that converts analog signals on the link to digital signals is also connected to the link. 
The physical protocol converts the stream of digital symbols into an analog signal. The 
amount of data transmitted across a link in one cycle is called a physical unit, or a 
phit. Now, a channel for digital information consists of the transmitter, the link and 
the receiver. The channel has a width w, which denotes the number of signal lines, 
and a signaling rate of f=1/τ, where τ denotes the cycle time. Therefore the channel 
bandwidth can be defined as b=wf [Culler99]. The link-level protocol segments the 
stream of symbols crossing a channel into larger logical units, such as the packets or 
messages. 

Ethernet (IEEE 802.3) [Molle96] [Tanenbaum96] is the most commonly used 
network technology used today, and it is even used in real-time systems. The IEEE 
802.3 protocol is a Carrier Sense Multiple Access / Collision Detect (CSMA/CD) 
protocol where transmissions are scheduled by each node independently. The nodes 
transmit as soon as the link is quiet and if a collision occurs, each node backs off a 
random amount of time until it tries again. The most prominent performance effect is 
that a highly loaded network will show poor channel utilization. Furthermore, delay 
guarantees cannot mathematically be proven on the Ethernet datalink layer 
[Banerjea96 p.5], which is of high importance in real-time systems. 

The 100VG-AnyLAN [HP95] [Molle96] [100VGwww] network is a shared-medium 
LAN protocol that has been ratified by IEEE as the 802.12 standard. It is a protocol 
that was released in 1995 and originates from the IEEE 802 project. The minimum 
data rate is 100Mbits per second and the standard is capable of transmitting both 
IEEE 802.3 (Ethernet) and IEEE 802.5 (Token Ring) frames on the link, and it is 
available both for twisted-pair cable and fiber-optic cable. It differs from the IEEE 
802.3 standard in that it does not define a CSMA/CD medium access control (MAC) 
algorithm. Instead it defines a so called Demand Priority MAC protocol that uses a 
switch repeater as a node in the network topology. The repeater continuously polls 
the connected nodes according to a round-robin policy to determine which node is 
allowed to send. Two priorities are allowed, normal and high, and high priority 
frame requests will immediately have priority over normal frames. The protocol was 
created so that the LAN would provide deterministic access and priorities 
[Martini95]. Therefore the protocol is able to provide guaranteed-performance 
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services [Banerjea96 p.5]. The technology was used by industry after the introduction 
in 1995, and components for 100VG AnyLAN were sold a couple of years after the 
protocol introduction. Despite the deterministic advantages over Ethernet, the 
market for 100VG-AnyLAN has vanished, and virtually no manufacturers produce 
100VG-AnyLAN related devices today. 

2.3 Multiprocessor Operating Systems 
The purpose of an operating system is to control the computer resources and 

provide the base upon which application programs can be written [Tanenbaum92 p. 
1]. An operating system has essentially two interfaces, one towards the hardware and 
one towards the application. This chapter focuses on operating systems that are able 
to operate in multiprocessor environments. Even though main focus is on embedded 
and real-time operating systems we also describe some operating systems that are 
not usually described as “real-time”. There is a difference between how academia 
and industry defines a real-time system. Our discussion is more inclined to follow 
the industry “definition”. Industry tends to define a real-time system as a stripped-
down and optimized version of a general time-sharing (often pre-emptive) operating 
system. 

2.3.1 Fundamentals of Operating Systems 

Before discussing the peculiarities of each selected operating system some 
fundamental issues of operating systems are discussed. The first concept is that of 
processes and threads. Processes and threads consist of a code segment (that may be 
shared among other threads and/or processes) as well as memory regions (a stack, 
static data and memory allocated from the heap) and a process/thread descriptor in 
the kernel. The process descriptor is commonly denoted Process Control Block (PCB) 
and the thread descriptor is commonly denoted Thread Control Block (TCB). The 
layout of the contents of a thread or process is illustrated in Figure 10. 
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Figure 10, Address space layout of a process or thread [Hwang98 p. 65]. 

A thread is more “lightweight”, sharing memory together with other threads of the 
same process. Threads are the contexts of a process, acting upon the shared resources 
held by the process. An opened file can for example be written to by multiple threads 
in the same process. Threads must therefore use operating system mutual exclusion 
mechanisms to be able to correctly access these shared resources. Due to the more 
lightweight characteristics of the threads, they are usually not as time consuming to 
context switch as processes. 
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Most modern operating systems introduce at least two processor execution modes, 
privileged and non-privileged modes. These modes are sometimes called kernel mode 
and user mode. The use of these different modes depends on the processor’s ability to 
automatically switch mode whenever an event such as a system calls, traps and 
interrupts occur. Code running in user mode can thereby be prevented from 
manipulating data structures that are internal to the kernel, such as the page-tables. 

The scheduler is the operating system entity responsible for controlling context 
switching of processes and threads.  Employing correct scheduling algorithms is 
important in real-time systems. Some systems have stringent requirements on 
timing, as for example operating systems used in airplanes and cars. These systems 
are used in products where human lives are in danger, and are labeled safety-critical 
systems [Storey96]. In order to verify these systems, all parts of the system have to be 
predictable, from the hardware architecture to the software application. This does 
also include the scheduling policies, and many different scheduling algorithms and 
methods have been proposed over the last decades. 

The seriousness of improper execution of the system leads to a distinction of real-
time systems. Hard real-time systems are located in safety critical environments where 
a need of temporal verification is of importance. Timing constraints are set on 
threads in order to guarantee temporal correctness. A system designer associates a 
number of parameters to a thread or process that must be fulfilled during run-time. 
The thread may not start executing before a specified start time, called the release 
time. After the start the thread or process must complete within the specified deadline 
interval. To be able to predict the deadline it may be necessary to try to determine the 
worst-case execution time (WCET, or sometimes called Maximum Execution Time, 
MAXT [Puschner89]) of the code that represents the threads. In a periodic system it is 
also meaningful to talk about the period of a thread, the known interval between 
release-time. Events occur in the system, and their arrival times may be either 
aperiodic (events occur irregularly), sporadic (the maximum frequency of the arrivals 
of the events is known) or they may be periodic (The events occur at known regular 
intervals). The designer has the possibility of either allowing scheduling to occur 
before run-time (pre run-time / static scheduling) or dynamically at run-time. 
Dynamic run-time scheduling algorithms include rate-monotonic [Liu73], Earliest 
Deadline First (EDF) or the Priority Inheritance Protocol [Sha90]. Soft real-time systems 
have less safety critical requirements. A definition of a soft real-time system is where 
the “consequences of failures are of similar magnitude as the system benefit”. 

Every thread in the system is at any instant in a special state. These states decide 
when threads are to be scheduled. Only one thread per processor can at any instant 
be in a ready state. Whenever a thread is not able to gain access to a resource the 
thread enters a blocked state. As the resource is freed, the thread leaves the blocked 
state and is linked to the ready queue. When the priority of the thread is high enough 
it is made running again. Another thread may sometimes suspend another thread by 
putting into a suspended state. 
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Schedulers may use different methods to schedule threads in the system, basically 
using one of three methods [Hwang98 p. 67]. The first is the use of batch-queues where 
jobs are executed one after another until they are finished. The second is a method 
where threads execute in short interleaved time-slices (quantum). These schedulers 
are labeled time-sharing. The third a pre-emptive event-driven scheduler where threads 
can be interrupted by a higher prioritized thread or interrupt. 

In multiprocessor and distributed systems, a non-uniform distribution of work on 
individual processor can yield less than optimal system performance. The general 
technique of distributing work evenly on processors is called load balancing 
[Kakulavarapu99] [Culler99 p. 123-131] [Wilkinson99 p. 198-207]. In large 
multiprocessor systems, fine-grained tasks are easier to load balance due to the large 
amount of processes that can be spread out on multiple processors [Culler99 p.129] (a 
higher degree of concurrency is utilized). Counteracting parameters to that are the 
implied increase in task management overhead and the increase in contention. In 
distributed systems, migrating processes [Elson98] from one node to another can help 
in achieving efficient load balancing. It is expensive and difficult to move the state of 
a process to another node. Pending requests to services, open files and bindings to 
other services must be modified to reply and point to the new node. In the case-study 
system, dynamic process or thread movement has not been of immediate interest. 

Inter-Process Communication (IPC) defines data exchange and synchronization 
events among processes in different execution environments. It is therefore, per 
definition, erroneous to use the term IPC to describe data exchange between threads 
in the same execution environment. IPC mechanisms used in modern operating 
system include sockets, POSIX signals, semaphores, message queues, monitors and 
shared memory between processes. In the scope of this work we have implemented 
an inter-processor FIFO message queue for a bus-based multiprocessor system. 

2.3.2 A Small Survey of Multiprocessor Operating Systems 

This section describes operating systems that were interesting for the work 
performed within the scope of this project. One of the first questions encountered at 
the start of the project was of which importance the operating system had for 
enhanced system scalability. Therefore the functionality of selected well known 
operating systems was studied. Focus has been on the operating system’s suitability 
in multiprocessor systems, SMP-support, scheduling, as well as fundamental kernel 
characteristics. 

2.3.2.1 Operating Systems for Bus-Based Cache-Coherent Multiprocessors 

Symmetric Multiprocessing is a hardware architecture where all processors have 
symmetric access to system components. Operating systems for SMP architecture 
reside in a memory area shared by all processors and where threads are scheduled 
on all available processors. True SMP is often referred to as “shared everything”, 
since threads can be scheduled on any processor at any time. In a SMP 
multiprocessor system every processor can potentially access every region in the 
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entire memory space. This means that two or more processors can execute kernel 
code at the same instance, and may thereby act on shared resources in the kernel 
simultaneously. Reading data from a resource may be allowed, but writing to a 
shared resource must always be protected from parallel intervention. In an SMP 
operating system every shared data structure must be identified and protected. 
Kernel synchronization becomes an issue since both other processors and external 
interrupts can intervene when a processor is executing a critical section. Single 
processor operating systems usually protects the resources by disabling interrupts. 
Symmetric multiprocessor operating system kernels rely on spin locks [Solomon98 p. 
125] to protect the same resources. Kernel components that need to protect critical 
resources include the scheduler, the memory management facilities and device 
drivers. 

SMP operating systems performance is dependent on how fine-granular the critical 
sections are. Spin locks deny all other processors access to the shared resource and 
minimizing the time a processor execute while holding a spin lock is important. 
Generally, operating system developers try to make the kernel critical sections as 
fine-granular as possible. The developers of QNX [QNXwww] argue that there are 
less shared resources that have to be protected in a micro kernel compared to a 
monolithic kernel such as Linux. QNX is a micro-kernel with very little kernel code 
compared to for example Linux. The Linux kernel has on the other hand been 
equipped with more fine-granular kernel locks with each release. First versions used 
a single lock on the whole kernel, while the in the latest releases employ fine-
granular kernel locks. 

2.3.2.2 Amoeba 

The Amoeba project [Mullender90] was started at Vrije University in Amsterdam, 
as early as 1981. We include this operating system in this survey since it is a historical 
example of a microkernel. The main goal was to create a transparent distributed 
operating system where a user is not aware of exactly where the program he or she 
started is executing. It may execute on any node in the system depending on where 
the load is low at the moment. 

Amoeba is not limited to certain hardware architecture but can run on 
heterogeneous systems. The memory system architecture supports both shared 
memory programming and message-passing programming. Figure 11 illustrates the 
architecture consisting of simple workstations (running for example a shell or X-
Windows), a processor pool (abstracted into one box, but they can be geographically 
widespread) as well as dedicated servers. 
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Figure 11, The Amoeba architecture 

The kernel is a microkernel, i.e. a small kernel where only the basic functionality of 
processes and threads, memory management, IPC and low level I/O is provided. All 
other functionality is handled in the servers that execute as processes. The servers are 
abstracted into so called objects, which is an encapsulated piece of data upon which 
operations may be performed. The objects return a so-called capability, a long binary 
number, to the client that is used in the future correspondence. All communication is 
performed with the help of point-to-point RPC (Remote Procedure Calls) or group 
communication over RPC. The RPC layer uses a protocol called FLIP (Fast Local 
Internet Protocol) that provides network layer functionality. 

The pool of servers is available to the users (workstations). The user can utilize a 
file system based on a file storage server (bullet server) a directory server (handles 
naming and directory management) and a replication server. A boot server manages 
fault tolerance aspects, such as continuous polling of servers in order to determine if 
they are still alive. Other servers include a TCP/IP stack, a disk server, an I/O server, 
a time-of-day server, a random number server as well as a mail server. The Amoeba 
kernel is not an SMP operating system in that sense that it runs in the same address 
space on a SMP system. There is no discussion about real-time properties in 
[Mullender90] or [Tanenbaum92 p. 588-636] and the operating system is categorized 
as a distributed time-sharing microkernel. 

2.3.2.3 QNX 

QNX [QNXwww] is a microkernel (Neutrino) based real-time operating system 
implementing minimal functionality in the microkernel (synchronization, IPC, 
signals, mutual exclusion and POSIX message queues). Every other service execute as 
optional processes. Neutrino supports POSIX processes, threads as well as virtual 
memory. A Neutrino thread can be in 14 different states, depending on what action 
or event it is currently waiting on. Neutrino supports FIFO and round robin 
scheduling, as well as priority inheritance based scheduling (64 priorities). QNX can 
execute on SMP architectures, which makes it unique among the large real-time 
operating systems (for example VxWorks). SMP scheduling support was simple to 
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implement according to the company since Neutrino is a microkernel. Only a small 
amount of code had to be adapted in order to protect critical sections. Today, SMP 
support is only provided for the Intel platform and up to eight processors are 
supported. It is possible for the user to control processor affinity of individual 
threads, i.e. it is possible to tie (or pin) a thread to a specific processor (by 
manipulating a bit-field). By default scheduling of threads is allowed on all available 
processors. Only one thread can access the kernel at any instant, but the developers 
of QNX argue that time spent in the kernel is only a small fraction of the other work 
performed. No published material has been found that confirms that assertion. 

2.3.2.4 RTU 

The RTU [Lindh98] is a hardware accelerator for operating systems. The concept is 
applicable to many operating systems but research has mainly been performed in a 
real-time architecture. The main goals have been to increase performance and 
predictability in the system with the help of the accelerator. The benefits are achieved 
mainly due to the use of parallelism in the hardware. The parallel nature of the RTU 
can increase scheduling performance substantially. The RTU has not been tested on 
SMP hardware, but has successfully scheduled tasks in a CompactPCI backplane 
multiprocessor architecture. In section 3.2.2.2 we discuss the use of such architecture 
in the case-study system. 

2.3.2.5 UNIXes 

FreeBSD is a UNIX-like operating system [FreeBSDwww] that is free for use and 
modification. The operating system is ported to many hardware platforms including 
Alpha processors, PowerPC, Intel x86 and Sparc64. The FreeBSD project has a SMP 
branch [FreeBSDSMPwww] and many open-source programs and applications can 
run under FreeBSD. 

The Linux kernel [Linuxhqwww] (from version 2.0 and upwards) supports SMP 
[LinuxSMPwww] for the Intel x86, UltraSparc, SparcServer, Alpha and PowerPC 
architectures. As mentioned earlier the kernel lock granularity is becoming finer for 
each new kernel release. Version 2.0 of the kernel locked the whole kernel during the 
execution of a service call. The next version (2.2) improved kernel locks on signal 
handling, interrupts and I/O handling. The most recent version (2.4) has added fine-
grained locks in the VFS (Virtual File System), the VM (Virtual Memory) component 
as well as the scheduling and I/O kernel components. 

The most recent stable kernel (x86), version 2.4, conforms to Multiprocessor 
Specification from Intel [Intelwww4] [Maxwell99], and therefore supports up to 16 
processors in a symmetric multiprocessor system. The official kernel release has three 
scheduling policies; real-time non-preemptive scheduling, real-time preemptive 
scheduling and time-sharing scheduling. Preemptive scheduling in Linux refers to 
user processes; the kernel is still not preemptive.  

Solaris is a mature UNIX implementation from Sun [SUNwww]. The operating 
system [Mauro2001 p.10] has real-time capabilities in the sense that it implements a 
pre-emptive kernel and supports kernel threads (which means that kernel 
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functionality can block). High-resolution timers and fixed priority scheduling along 
with fine-grained processor control are other real-time implemented properties. The 
kernel supports dynamic loading of modules (at run time), such as schedulers, file 
systems, system calls and device drivers. This is a useful addition to an otherwise 
monolithic kernel. The dispatcher (scheduler) selects which kernel threads are to be 
run, and there are scheduling classes involving 170 priorities. There are four 
scheduling classes for kernel threads as well as a special scheduling class for 
interrupt threads as can be seen in Figure 12 below. TS (Time Sharing, default thread 
class) and IA (Interactive, for faster windowing) share the same priority range. 
Threads assigned with system class priorities (SYS) run until they are blocked. The 
highest priority level of thread priorities is the RT (Real-time) scheduling class where 
threads are assigned a fixed priority. 

 

 
Figure 12, Solaris thread priorities [Mauro2001]. 

As in most UNIXes there exists a distinction between user level threads and kernel 
level threads. Figure 13 illustrates the relationship among threads, processes and 
LWPs (Light Weight Processes). The black boxes at the bottom depict the available 
processors and the dotted lines illustrate the mapping of threads onto those. In the 
multithreaded process (with its own virtual memory range) the user is aware of at 
least one LWP or kernel thread at a time. Additional libraries are available that allow 
for the use of user threads that the kernel is not aware of. Multiple user level threads 
are thus able to be executed in the context of one LWP. In Figure 13 this is illustrated 
as multiple threads above to the leftmost LWP in the process. 
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Figure 13, Solaris Threads, Processes and Lightweight Processes [Mauro2001]. 

Interrupt threads have the highest priority in the whole system. At the time of an 
asynchronous interrupt (external interrupt), all lower priority interrupts are masked 
and the interrupt handler executes in the context of a partially initialized interrupt 
thread. Only if this interrupt thread is being blocked at synchronization object is the 
thread completely initialized. This decreases the necessary time needed for handling 
the interrupt. The thread that was interrupted by the interrupt is pinned, meaning 
that the interrupt thread borrows the LWP (Light Weight Process) from it. This 
eliminates the need of a complete context-switch. Lower level interrupts are disabled 
while handling the interrupt, even when the interrupt thread is being blocked.  

Solaris is a capable of executing on SMP architectures and is employed in many 
server systems. It supports up to 64-way symmetric multiprocessors and the SMP 
scheduling module supports processor affinity (binding), i.e. supports a process to be 
fixed at a certain processor. Solaris has for example been employed in a billing 
gateway system, which collects billing information about calls from mobile phones 
[Häggander2001]. Originally the system ran on in single processor architecture but 
tests were made on running the application on an 8-way Sun Enterprise 4000. The 
application suffered from a slowdown when using multiple processors. One of the 
reasons for the performance loss was that multiple threads needed dynamic memory 
allocation. The C-library functions used were not re-entrant and the interface to the 
malloc() and free() functions was protected by a global mutex [Häggander2001 p. 37]. 
Exchanging the lock with parallel heaps, enabling threads to allocate memory in 
parallel, gave a near linear speedup. This illustrates the need of creating fine-
granular locks in SMP operating systems. 
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2.3.2.6 VxWorks 

VxWorks [Windriverwww] is one of the mostly employed real-time and 
embedded operating systems in the world. Distinguishing characteristics include a 
memory footprint that scales down to less than 100 KB and support for a large 
variety of hardware architectures. The kernel (Wind) is a priority based preemptive 
microkernel that provides scheduling with the priority inheritance algorithm. The 
kernel implements a subset of the POSIX standard including POSIX semaphores and 
message queues. Wind is a kernel that does not provide memory protection or virtual 
memory support by default (can be added through the VxVMI module) and the 
kernel is constructed to handle resources in single processor environments. A user 
that wants to communicate between two or more processors in an architecture that 
provides for shared memory can add the VxMP [Windriverwww] module. This is an 
add-on to the Wind kernel that provides access to shared memory objects through 
the use of global memory areas (to be used in for example CompactPCI based 
architectures). Additional libraries have been added to support this: smObjLib, 
smObjShow, semSmLib, msgQSmLib, smMemLib, smNameLib. These libraries 
provide the support for shared semaphores, shared message queues and shared 
message partitions. Every participant (as for example tasks on different processor 
boards) has to know where to access each shared object, and this is implemented 
with the help of a shared name database. The id and the name of the object can be 
stored together and resolved by the participants. VxMP provides a transparent 
interface for the use of the above features, only the create routines are different. The 
shared memory objects can be used in a single processor system as well and it is 
possible to run VxMP in heterogeneous environments, executing on both the Intel 
architecture and the PowerPC architecture. 

While VxMP enables programs to communicate and synchronize their activities, no 
support for executing VxWorks as a single kernel image on a SMP multiprocessor 
system does exist. Board Support Packages (BSP) from SMP processor board 
manufacturers enables users to start multiple kernel images on SMP architectures. 
But with such a solution each processor executes one kernel image. The kernel does 
not contain kernel locks that are necessary for true SMP execution. A dual processor 
board from Synergy [Synergywww] (SBC-KGM5) is an example where two kernel 
images are booted. The implementation relies on the VxMP module for 
synchronizing and communicating between processors. The implication is that two 
threads cannot invoke the same kernel functionality, and the kernel cannot load 
balance between the processors. 

An alternative approach to the above is called Real-Time Asymmetrical Multi-
Processing (R.A.M.P.) from General Micro Systems [GMSwww]. R.A.M.P. does not 
implement a pure SMP kernel but lets slave processors (application processors) load 
a microkernel (RAMP/MK) that is able to communicate with the VxWorks kernel 
image executing on the master (bootstrap processor) with the help of mailboxes and 
semaphores. This communication is provided by a module contained in the VxWorks 
BSP. Consequently, only one VxWorks kernel image is needed (one license). 
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2.3.3 Monitoring and Measurement Techniques 

Monitoring and measuring techniques are used to estimate system performance 
and run-time behavior. Information that can be observed includes data flow 
information, e.g. input and output, or control flow observations that include task 
switches, interrupts, kernel execution overhead as well as clock tick rate and resources 
in the system, such as memory, CPU utilization and network utilization and 
contention. 

The probe-effect in concurrent systems has been described in a paper by Gait 
[Gait86]. The definition of the probe-effect is “an alternation in the frequency of run-
time computational errors observed when delays are introduced into concurrent 
programs”. The delays that a software debugger introduces in a system can either 
mask errors in such a way that a non-functional concurrent program works or make 
a functional concurrent program stop working. 

Software monitor tools install a software component that enables the debugger or 
monitor device to continuously extract information. This includes collecting 
information about the average amount of IPC-messages or the number of cache 
misses during execution. The main disadvantage of software monitors and other 
software debug facilities is the probe-effect that is the result of the debug mechanism 
using the CPU, memory and other resources in the system. The main advantage is 
flexibility and the ease of configuration. Most commercial tools available are 
intrusive, usually buffering information on a fast medium (i.e. memory) or 
continuously streaming the data to a host system. One such tool is WindView from 
Windriver [Windriverwww] that is bundled with development tool Tornado. 

Collecting information from a running system will almost always be intrusive. 
Some attempts have been made to minimize the probe effect, and a project called 
MAMon [Shobaki2002] has successfully shown that it is possible to monitor system 
level events without interference. This approach is dependent on special customized 
hardware that includes an operating system hardware accelerator. 

Probing the system and saving the data in memory can be one way to extract data 
from the system, but it is also intrusive (memory overhead and memory-bus 
congestion). It might be more attractive to use an external peripheral device attached 
to the target that continuously snoops and saves data on an external medium. This is 
an example of a hybrid monitoring tool consisting of a minimal software probe that 
sends collected data to the external device. 

2.4 Parallel and Real-Time Communication Mechanisms 
The purpose of this section is to define general communication terminology and 

properties as well as providing a survey of modern communication mechanisms. We 
will start with a general monologue on the anatomy of communication in computer 
systems since many of the techniques discussed have been encountered in the scope 
of this work. 
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2.4.1 The Anatomy of Communication in Computer Systems 

Communication involves at least two participants that exchanges information with 
each other. The information needs to be delivered through some medium (does not 
apply to light) and participants (peers) involved in communication need to agree on 
a common protocol for data exchange. The protocol defines both the sequence of the 
messages between the peers as well as the format of the data [Coulouris94 p.69]. Peer-
to-peer communication occurs between two participants and information can flow in 
either one direction (simplex) or in both directions (duplex). It is also possible for one 
participant to communicate with multiple peers in so-called multicast or broadcast 
communication. Multicast communication is targeted to a selected group of receivers, 
while broadcast communication is targeted to everyone who is listening. Broadcasts 
can be targeted at all possible receivers in the network, while multicasts are targeted 
at a selected group of receivers within the network, as for example a set of nodes. 
Both multicast and broadcast communication is categorized as one-to-many 
communication. 

Communication can be initiated either by the sender or by the receiver, called 
sender-initiated or receiver-initiated communication. In the first case, the sender is the 
initiator and in the second case, the receiver is the initiator. Message passing is 
categorized as sender-initiated communication, while shared memory communication 
between processing elements is categorized as receiver initiated communication 
(every read to a shared memory location is initiated by the receiver). Senders are 
labeled producers or suppliers of information. Receivers are labeled consumers of 
information. Message passing can combine synchronization with data exchange 
while shared memory communication requires the use of some explicit 
synchronization mechanism, as for example semaphores, in order to combine data 
exchange with synchronization. 

Communication can be asynchronous or synchronous. Asynchronous (non-
blocking) communication allows the sender to continue execution directly after the 
sending phase. Synchronous (blocking) communication implies that the sender blocks 
until the receiver has entirely received the message. Rendezvous is a special case of 
synchronous communication where both the sender and the receiver agree to 
synchronize before continuing. 

The medium over which the communicating peers are sending information can be 
either reliable or unreliable. If the protocol that utilizes an unreliable medium requires 
reliable delivery of data, the protocol implements a feedback technique such as 
acknowledgement of data exchange. Acknowledgements give information to the 
sender that the data has arrived at the receiver, the end-point. The time for data to 
arrive at the receiver from the time it was sent is called the latency. Multiple 
parameters are the cause of latencies or delays. The medium or communication 
channel can experience traffic congestion which can cause delays in the 
communication and the bandwidth of the medium also limits the amount of data that 
can be exchanged per time unit. 
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During the communication phase, both explicit and implicit data can be 
exchanged. Explicit communication is for example performed when data is sent over a 
reliable communication channel. Implicit communication is for example performed 
when a reliable communication protocol transmits acknowledgement packets. The 
protocol does also introduce artifactual communication, i.e. data that is not explicitly 
attached by the user. 

Multiplexing occurs when a data exchange is split up over multiple channels 
(logical or physical). A data stream may for example be fragmented into multiple 
packets and sent over a network to a receiving node. At the end-point, the receiving 
node, the stream of fragmented packets can be de-multiplexed into the original order. 
Both the sending and the receiving node can buffer data. Output buffering (sender 
buffering) includes temporal storage of data that is to be dispatched onto the 
communication channel. Input buffering (receiver buffering) includes the buffering 
of incoming data in a node before delivering it to the receiving processing element or 
process. 

In order for peers to notify each other of events, two basic approaches can be 
employed. The first one is for the peer to interrupt the other and the other is for the 
receiver to continuously poll a shared synchronization object (such as for example a 
shared memory location). Some communication protocols allow receivers to subscribe 
to events. In distributed computer environments it is common for peers to interact as 
clients and servers. Clients send requests to servers that execute the requested services. 
Servers do reply with the result to the clients. 

2.4.2 Parallel Communication Protocols and Architecture 

Heddes [Heddes94] has completed survey of parallelism in communication 
subsystems that describes the levels of parallelism that can be targeted in a parallel 
protocol implementation. These levels include stack level, layer level, entity level, 
function level and operation level parallelism. Parallel protocol stacks on shared 
memory multiprocessors have been investigated by, among others, Yates [Yates97] 
and Björkman [Björkman93]. Communication systems can internally exploit 
parallelism in different forms, such as layer-level parallelism or connection-level 
parallelism. Erich M. Nahum [Nahum97] as well as Björkman [Björkman93] has 
presented a taxonomy of protocol stack parallelism: 

  
• Layer parallelism is a coarse grained level of parallelism according to Nahum. 

Each distinct layer of the protocol stack is the unit of concurrency and the 
approach exploits clean interfaces between layers. Drawbacks include increased 
amount of context switching and synchronization as well as concurrency being 
limited to the number of layers in the protocol. 

• Connection-level parallelism exploits concurrency among processing elements that 
are associated with different connections. Multiple connections can be 
processed independently and this level of parallelism exploits the natural 



 45 

concurrency among connections and keeps locking to a minimum. A drawback 
is that it is difficult to achieve speedup within individual connections. 

• Packet-level parallelism dedicates a processing element to the processing of 
individual packets. With this approach it is possible to achieve parallel 
execution both with multiple and single connections. A drawback is that each 
layer usually needs locking of the shared states (as for example sequence 
numbers in the TCP/IP stack). 

• Functional parallelism exploits parallelism in a single protocol layer, such as for 
example checksum and acknowledgement generation. Parallelism within the 
layer can be exploited, but synchronization among the functional entities can 
become a problem. 

• Data-level parallelism lets separate pieces of data (from the same message) be 
processed by multiple processing elements. 

 
The appropriateness of deciding whether to use one or multiple levels of 

parallelism of those presented above depends on the available concurrency within a 
protocol stack. Kaiserswerth [Kaiserswerth93] identified three forms of parallelism 
that can be exploited within a protocol stack: 

 
• Pipelining among protocol layers represents an approach where parallelism is 

exploited between layers. An example is for example network interface cards 
that implement the medium access control layer and the host processor 
executes the higher layer functionality of the OSI reference model. 

• Parallelism and Pipelining within a protocol layer represents a parallelism that 
for example exploits independency among connections to handle data from 
separate connections independently. Another example is the parallel execution 
of checksum and routing decisions within a layer. 

• Parallelism among shared components represents a form of parallelism that 
exploits parallelism of components that are used by multiple layers. An 
example is buffer managers or timers. 

2.4.3 Hardware Communication Assists 

One way of increasing performance for communication mechanisms is to dedicate 
special purpose hardware, or a dedicated processor, for the task of assisting the 
processors with communication. Network processors are used to relieve the 
processor/s in the system from handling communication. Most commercial network 
processors are suitable for use together with Internet protocols, e.g. IP and TCP. 
Network processors are configurable, but usually a special development 
environment targeted at a special operating system will be needed. For example, the 
Intel IXP series of network processors [Intelwww3] are programmed with the help of 
a software developer kit (SDK) tailored for certain operating systems such as Linux 
and VxWorks. The IXP 1200 is equipped with a StrongARM processor and six 



 46 

programmable micro-engines that operate on the incoming IP packets 
[Vassiliadis2001]. 

Another architecture providing communication assistance is the QUICC 
[Motorolawww] architecture developed by Motorola. It has an integrated network 
processor with dedicated memory that is able to operate in parallel with the main 
processor. The architecture is described as an “Integrated Multiprotocol Processor 
(IMP)” where both the general purpose processor and the communication processor 
reside in the same die. The main MC68000 processor is offloaded by a RISC processor 
that can be programmed operate on incoming data from the I/O ports. Compared to 
the network processors described above, the QUICC architecture is more simple, yet 
useful for many embedded applications. Other products and techniques for 
accelerating communication exist and we discuss some of them in section 3.2.1. 

2.4.4 Parallel and Distributed Communication Mechanisms and Frameworks 

Data originating from data producers (e.g. I/O boards) needs to be transmitted to 
consumers (e.g. applications) efficiently. In order for an application to connect and 
receive data from the data producers, an I/O systems service is needed. In its 
simplest form, an I/O board may be located on an I/O bus in the system, notifying 
the processor of a data delivery by issuing interrupts. In such a system, the 
application designer is forced to explicitly program Interrupt Service Routines (ISR) 
and to read and handle incoming data, as well as synchronize with the receiving 
application thread or threads. Therefore, it is desirable to let a system component 
provide an abstraction toward the underlying hardware, operating system and 
communication mechanisms. Such a system component is commonly termed a 
middleware software layer [Andrews2000 p. 32]. The benefits of middleware are: 

 
• To provide a standardized interface for users of the middleware. This promotes 

execution in heterogeneous architectures by hiding the underlying hardware 
architecture, communication mechanism and operating system. The 
middleware hides the distributed system components so that local and remote 
functions can be accessed uniformly and that their location does not have to be 
known. The middleware is said to be transparent. 

• It provides a programming model for the user that unifies the components 
using the middleware. For example, middleware relying on remote method 
invocation steer the users of the middleware to design with request-reply 
semantics. 

• The middleware should promote scalability in the sense that multiple nodes can 
access the available distributed resources efficiently. 

2.4.4.1 RPC and RMI 

In heterogeneous systems the need of creating an abstract data representation 
becomes important. Nodes in such systems must be able to exchange data structures 
regardless of hardware architecture. The process of mapping data structures into 
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forms suitable for transmission over the communication medium is called marshalling 
[Coulouris94 p. 103]. The reverse process is called unmarshalling. RPC and RMI 
mechanisms provide for a standardized way of data representation. XDR is an 
example of such a data representation language and is used in the Remote Procedure 
Call (RPC) component developed by SUN. Other remote invocation techniques 
include JavaRMI and XML-RPC [Allman2003]. 

Remote Procedure Call (RPC) and Remote Method Invocation (RMI) are related in 
terms of the interaction model. Both allow clients to remotely invoke procedures or 
methods at the server side. The major difference between RPC and RMI is that RMI 
adheres to an object oriented design where methods of remote objects are invoked 
while RPC mechanisms are useful in non-object oriented mechanisms. Remote 
Procedure Calling (RPC) [Bloomer92] is an important concept in a client/server 
environment. By utilizing RPC the process can access and receive references to 
procedures and data that are not accessible in its local memory space. ONC RPC by 
SUN and NCS by HP [Bloomer92] are examples of two RPC mechanisms that are 
commercially available. Many UNIX services are built on RPC mechanism, but 
remote invocation is much slower than invocations in the same address space. Null 
RPC-calls, i.e. remote invocations carrying no parameters and no data in response to 
the requester, have shown to take hundreds of microseconds to complete in a 
100Mbit LAN environment. Bandwidth is not the limiting factor in this case but 
rather delays that originates from operating system operations such as network 
driver execution and context switches as well as RPC-mechanism code [Coulouris01 
p. 234]. 

Many RPC calls actually occur between processes on the same local machine. In 
these cases it is inefficient (due to overheads originating from marshalling and data 
copying) to execute a complete RPC-mechanism designed for remote invocations 
between nodes. Therefore, RPC optimizations such as Lightweight RPC (LRPC) 
[Bershad90] have been proposed. Since local RPC-calls can use local memory to pass 
parameters, they do not need to copy data. A node-to-node RPC call can have up to 
four copying phases. 

2.4.4.2 CORBA 

CORBA, the Common Object Request Broker Architecture [OMG2002], is a 
specification of a middleware platform that enables objects to be distributed on 
multiple nodes in the system. Its main use is in client/server environments, where 
method invocation can be performed on remote objects as well as local objects. The 
purpose is to decouple communication between objects, thus increasing scalability 
and reusability of the distributed applications. Since the CORBA middleware 
platform is capable of running on various operating systems and architectures, 
heterogeneous computing is made possible. 

The reference model consists of clients making requests to objects via the ORB core. 
While remote invocations of methods promote scalability and reusability, the 
mechanism relies on a request/response communication paradigm (server method 



 48 

invocation). Request/Reply design uses a two-way communication pattern which 
may be ineffective in real-time systems. 

OMG has defined a real-time extension to CORBA. The extension targets real-time 
related issues such as priority queuing, priority inheritance and ORB guarantees on 
execution [Wolfe97]. A CORBA implementation that targets real-time system design 
is the TAO (The Ace ORB) architecture [Harrison97] [Schmidt98] [Kuhns99]. It is 
operating on many real-time operating systems including VxWorks. TAO enables the 
user to specify Quality of Service requirements, requirements that then affect the way 
TAO schedules messages and resources. TAO has been used in many real-life 
applications, spanning from avionics systems to telecom systems [Schmidt98].  

The CORBA model is object oriented while the publish/subscribe mechanisms 
described in the next section are data centric. Some, among them the creators of 
NDDS (described below), therefore claim that publish-subscribe mechanisms are 
more suitable for distributed real-time systems. 

2.4.4.3 Publish/Subscribe Mechanisms 

RPC mechanisms are widely used today in distributed applications. Internet 
services use RPC, but embedded and real-time systems [Windriverwww] can also 
utilize RPC. However, there are limitations and difficulties with this communication 
paradigm. The most notable is the inherently synchronous exchange where the 
requester needs to wait for the reply, which leads to static applications and possible 
performance degradation due to busy wait. Publish/Subscribe mechanisms 
[Rajkumar95] on the other hand decouple the producer of events and data from the 
consumer of events and data. Subscribers inform the publish/subscribe mechanism, 
i.e. the middleware, of its interest in certain events or data. Publishers then publish 
data to the middleware, which asynchronously sends the data to the subscribers. 
Some interesting properties apply for such mechanisms [Eugster2001]. First, 
subscribers need not need to know of the producers, not their exact numbers nor 
their locality. The same applies for publishers; the number or locality of the 
subscribers need not be known. Secondly, the interaction between the subscribers 
and the publishers does not necessarily need to occur at the same time, publishers 
may even unregister before all events have arrived at the subscribers. Finally, 
subscribers can be notified asynchronously thus enabling the subscriber to perform 
concurrent work. A positive aspect of publish/subscribe mechanisms is that 
scalability is promoted. This is mainly because publishers can dynamically connect to 
subscribers without explicitly stating dependencies [Hill2002]. This promotes 
flexibility; the whole system does not have to be reconstructed because of adding a 
new application or new functionality in an existing application. In recent years both 
academic and commercial publish/subscribe mechanisms and real-time object 
brokers have been released. As we shall see in the following sections, the need for 
publish/subscribe mechanisms is growing and a new standard has been released 
from OMG. 

The publish/subscribe paradigm is implemented in distributed event and 
notification servers where objects of interest change their states and deliver the 
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notification of that event to interested subscribers [Coulouris2001 p.190]. Objects of 
interest, i.e. the event publishers, connect to an event server that forwards the event 
notification to the subscriber. In such an approach the event service has the 
opportunity to filter and correlate the events. This can for example include 
publishing a notification whenever a defined number of events have arrived. This is 
similar to the semantics of the case-study I/O system. Another mechanism that 
enables subscribers to receive notifications from publishers is the CORBA Event 
Service [OMG97] and its real-time enhancement. The real-time event service enables 
the user to filter events and select to correlate events either by conjunction (AND) or 
disjunction (OR). Thereby the application can for example request the event service 
to wait for events from supplier objects A and B to arrive before pushing the 
notification. The CORBA Event Service provides three main features that enhance the 
original CORBA specification [Harrison97]: 

 
1. Asynchronous message delivery. 
2. Allows one or many suppliers to send messages to one or more consumers. 
3. Suppliers and consumers are decoupled in the sense that they do not know 

about each other explicitly.  
2.4.4.4 SPLICE 

SPLICE (Subscription Paradigm for the Logical Interconnection of Concurrent 
Engines) is an early work implementing the subscription paradigm for embedded 
systems [Boasson93] [Boasson96]. The work was performed for the military and the 
experiences from the project are now used by the company THALES. THALES has 
been a contributor to the OMG Data Distribution Service Specification described 
below. The basic functionality of SPLICE is that it provides a shared data model 
based on the two primitives read and write. A receiver performing a read on a set of 
data will block until it arrives. The architecture consists of applications, agents and 
the network. Agents handle all communication needs on behalf of the application, 
and provide the necessary functions for maintaining the shared data space. 

The designers of SPLICE criticize the CSP (Communicating Sequential Processes) 
model as well as the client/server paradigm for connecting the senders and receivers 
tightly, thus leading to complex designs. They argue that the subscribe paradigm, by 
providing a loosely coupled connection between data producers and data consumers, 
will provide a more flexible system design. 

2.4.4.5 NDDS 

NDDS (Network Data Delivery Service) [Pardo-Castellote1997] [Pardo-
Castellote2001] is a publish/subscribe mechanism available as a middleware for 
many platforms and operating systems. The company that has developed this 
product is Real-Time Innovations (RTI), which is one of the contributors of the Data 
Distribution Service Specification described in the next section. 

NDDS consists of a run-time library, a database and tasks (threads) that perform 
all the necessary marshalling, addressing and transporting services. The creators of 
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NDDS claim to provide symmetric design and real-time performance [NDDS]. By 
symmetric design they mean that all nodes in the distributed system are equal, no 
specific node is for example responsible for address lookup, thus avoiding a single 
point of failure. NDDS is built on top of the unreliable connectionless transport 
protocol UDP. All semantics provided by NDDS, such as reliability, quality of service 
(QoS), and data representation (CDR) is implemented on top of UDP. NDDS has 
been used in multiple commercial and real-time systems and the mechanism has its 
heritage from the robotics industry. 

2.4.4.6 The Data Distribution Service for Real-Time Systems Specification 

A consortium of companies including THALES, RTI and Objective Interface 
Systems have submitted a specification for a Data Distribution Service (DDS) for 
distributed real-time systems [DDSRTS2003] [EETimeswww2] to the OMG group. 
The model is called as a data-centric publish-subscribe mechanism (DCPS) and the 
application domain is expected to be high-performance and predictable real-time 
systems, found in industrial automation, distributed control, telecom equipment and 
sensor networks. The previous work of SPLICE and NDDS has been the driving 
technique for this specification and the goal is that the mechanisms should scale to 
hundreds and even thousands of publishers and subscribers. The data model consists 
of unrelated data-structures that are identified by topic and type. The topic uniquely 
identifies data items in the global data space, while the type gives information to the 
middleware about how to handle items (resembles marshalling functionality of RPC 
mechanisms). The Data Distribution Service for Real-Time Systems Specification has 
been issued as a mechanism that can be used together with the CORBA standard. 
Even though object models and the design can be mapped to CORBA platforms, the 
standard is largely platform independent, i.e. it can be used on other platforms as 
well. 

2.4.4.7 Functional Parallelism, Parallel I/O and Data Concentrators 

Depending on area of subject, I/O denotes different aspects of architecture. In 
industrial systems, I/O usually depicts data transfers related to sensors and 
actuators, or the signals connecting an Integrated Circuit (IC) to other IC. In the high 
performance computing (HPC) community, the term parallel I/O is commonly used to 
describe the system exchanging data with the file system [May2001]. I/O system can 
therefore come to mean different mechanisms depending on context. We mention 
parallel I/O in order to clarify the difference between the use of the term in industry 
and in the high-performance community. 

Parallel I/O can be defined as providing a form of functional parallelism. Functional 
parallelism was exploited in early parallel systems that utilized special-purpose file 
processors and dedicated programmable peripheral processors [Lawson92 p.252]. 
The approach of separating I/O system and application functionality on separate 
nodes can be described as exploiting functional parallelism. 

The term Data Concentrator is used in different contexts ranging from devices that 
provide monitoring and protocol conversion [BVMwww] (for example transmitting 
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serial data over Ethernet) to devices providing data collection functionality in 
SCADA systems [IPCASwww]. The IPCAS system is called ipDaco and one of its 
purposes is to increase performance by limiting communication with the data 
concentrator. It lets a communication server handle communication with the SCADA 
system. In that sense the ipDaco acts as a proxy server for the data acquisition 
devices. 

2.4.5 Scalable Network Architectures and Parallel Communication Services 

In applications that are larger than targeted in the scope of this work, scalability for 
nodes in a network and especially the Internet has been examined. This section gives 
an introduction to those issues since some of the concepts are related to the parallel 
execution of I/O System and application components examined within the scope of 
this work. 

Shah [Shah2001] has presented a scalable system architecture called Comm Services 
Platform (CSP) that offloads and decouples the TCP/IP processing from servers. The 
purpose is to improve the performance of services built on top of TCP/IP and the 
architecture is illustrated in Figure 14 below. Network nodes accelerated by network 
processors perform the first level of packet forwarding to the proxy nodes, mainly for 
load balancing purposes. The proxy nodes decouple network transport protocol 
processing cycles from application node compute cycles. The proxy node is the 
terminating end-point for TCP connections, and the data contained in the connection 
is forwarded to the application nodes with the help of a lightweight transport 
protocol. 

 
Figure 14, the CSP architecture [Shah2001]. 

The creators of the CSP architecture identified these main benefits of using their 
system platform: 
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• The decomposition of the system into a functional pipeline allows scaling of 
each pipeline stage independently. Therefore proxy nodes can be scaled 
independently from application nodes. 

• Proxy nodes can also execute higher level functionality (above the transport 
layer) and thereby offload protocol processing in the application nodes. 

The platform is based on the idea of functional pipelining and independent scaling 
of application and communication. The use of proxies is a technique related to 
building secure and scalable networks. A proxy is a communication mediator that 
allows for two nodes to communicate indirectly. A proxy usually maintains two data 
connections, one to each node, and the proxy (“in the middle”) can thereby govern 
the data flow as well as the content of the data. This technique is discussed in a paper 
written by Spatscheck [Spatscheck98] et. al., who have defined TCP Forwarding as: 
”…communication relayed over two TCP connections via a proxy”. 

2.5 Programming Models 
A parallel programming model specifies what data can be named by the threads, 

what operations can be performed on the data, and what ordering exists among these 
operations [Culler99 p. 53]. A parallel programming model is the data parallel 
processing [Culler99 p. 44] model. The data parallel processing model enables 
operations to be performed on each individual element in a data structure (SIMD 
architecture according to Flynn [Flynn96]). This model has evolved into the SPMD 
(Single Program Multiple Data) model thus converging with message passing and 
shared memory. 

The two most commonly used parallel programming models are the message 
passing model and the shared memory model. The message passing programming 
model has become popular and widely used with the advent of MPI (Message 
Passing Interface) [MPIwww]. MPI is based on the use of send and receive 
primitives. While MPI has been used in clusters and in the HPC (High Performance 
Computing) world, the deployment of MPI in the embedded and real-time system 
domain has not been common. In real-time and embedded systems message passing 
is commonly implemented as an IPC mechanism. 

The shared memory programming model needs an underlying hardware or 
software mechanism that provides access to shared memory. When such 
mechanisms are available, the application designer may use multithreading to 
support parallel execution. PThreads [Nichols96], i.e. POSIX Threads, and OpenMP 
[Chandra2001] are widely used mechanisms for parallel programming on a shared 
address space. 

In industrial automation and control systems the factor governing the 
programming model are standards. IEC 1131-3 [Lewis98] is for example a standard 
that governs the programming of programmable logic controllers (PLC), devices 
common in industrial control systems. The most important feature in the IEC 1131-3 
standard is the function block. A function block defines input and output data 
parameters that interconnects with other function blocks, and also defines an 
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algorithm that executes every time the function block is invoked. In today’s modern 
industrial systems it is getting more common to execute logic and algorithms on 
general purpose processors, but the programming models and techniques remain. 
This means that functional blocks resembling IEC 1131-3 functional blocks are 
executed as a part of the application on the general purpose processor. 

2.5.1 Message Passing versus Shared Memory 

There has been much debate regarding which communication model is preferred 
by parallel application designers. In our case-study we had the choice of adhering to 
message passing or shared memory (the bus-based architecture provides for non-
cache coherent shared memory) and we therefore studied the pros and cons of the 
two communication models. An important remark is that this summary concerns 
cache coherent shared memory architectures. Not all attributes of the cache coherent 
shared memory column are therefore applicable to a non-cache coherent shared 
memory architecture. For example, a bus-based backplane architecture utilizing a 
shared memory area does not reuse remote data; every access is to its primary 
storage. 

The advantages and disadvantages of message passing mechanisms and shared 
memory mechanisms are summarized below in Figure 15. The information originates 
from multiple papers, which are referenced below. 

 
 Message Passing Cache Coherent Shared Memory 

+ 

Offers efficient bulk-transfer of data 
[Culler99 p. 187] if DMA transfers cover 
for the gathering overhead [Chong98 p. 
5]. 

Fine-grained data transfers (cache-
lined) are efficient. 

+ 

Offers good performance with known 
communication patterns [Chong98 p. 1]. 
Data can be communicated when 
produced which enables overlapping of 
the transfer with computation [Woo94 p. 
219]. 

Global naming and coherent 
replication of data eases programming 
[Shan2001 p. 1], especially for 
irregular, dynamically changing 
communication patterns [Woo94 p. 
219]. 

+ Combines synchronization with data 
transfer [Chong98 p. 1]. 

Reuse of remote data. 

+ Robust to relative changes in processor 
to network latencies and bandwidth 
[Chong98 p. 2]. 

The user accesses the hardware 
directly with loads and stores, which 
eliminates a need for an extra software 
layer [Culler p. 269]. 

+ Messages are usually unacknowledged 
[Chong98 p. 2]. 

 

+ Only a single pass through the network.  
+ Data is replicated in local main memory 

[Woo94]. 
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+ Easier to scale to large numbers of 
processors compared to shared memory 
architecture [Byrd98 p. 1]. 

 

+ No cache or memory consistency 
problems [Andrews2000 p. 9] 

 

- Higher overhead for fine-grained data 
transfers [Chong98 p. 1]. 

Overhead increases when shared data 
is frequently modified on different 
processors [Chong98 p. 1]. 

- Extra copying to and from buffers is 
needed when data is not consecutive 
[Chong98 p. 1]. 

Adds round-trips latencies in the 
network. This can be facilitated by 
implementing prefetching [Kranz93] 
or using a more relaxed memory 
consistency model. 

- Higher communication overhead since 
messages (headers) must be constructed. 

Generally requires more network 
bandwidth. 

- Message Passing can be extremely 
difficult to program, especially for 
irregular structured computations 
[Shan2001 p. 1]. 

 

- Low computation to communication 
ratio yields many messages and thus 
much overhead [Chong98 p. 6]. Interrupt 
synchronization may be a major 
overhead. 

 

 Messages are sender-initiated and thus 
asynchronous for the receiver. 

Shared memory communication is 
receiver-initiated [Byrd94]. 

 Messages are value oriented; all data must 
be contained in the message to make 
computation progress at the receiver 
[Byrd98 p. 1]. 

Shared memory communication is 
reference oriented. References to 
memory locations can be passed to the 
receiver for further computation 
[Byrd98 p. 2]. 

 Pre-communication may avoid round-
trips needed for a read-on-request model 
[Chong98 p. 5] 

Shared memory programmers should 
be aware of locality. 

  Shared Memory Prefetching depends 
heavily on a low computation to 
communication ratio [Chong98 p. 4] 

Figure 15, Advantages and disadvantages of message passing mechanisms versus cache 
coherent shared memory mechanisms. 

Frederic Chong [Chong98] has addressed the subject by performing a series of 
experiments on the MIT Alewife system. The goal was to “gain insight into the 
relative performance of communication mechanisms as bisection bandwidth and 
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network latency wary” and the study compares message-passing mechanisms to 
cache-coherent shared memory. Chong used the bisection bandwidth as a measure 
on the bandwidth of the system as a whole. The bisection bandwidth is the “sum of the 
bandwidth of the minimum set of channels that, if removed, partition the network 
into two equal unconnected sets of nodes” [Culler99 p. 761]. This metric is rather 
useful if the communication pattern is completely uniform in the whole system. If 
this is not the case, the metric is pessimistic. The access latencies to memory are 
variable in the MIT Alewife (NUMA), in converse to a SMP system (UMA) in which 
all processing elements have equal latencies to primary memory. Figure 16 shows the 
expected performance scaling of the two communication mechanisms when the 
bisection bandwidth varies. 

 
Figure 16, Regions of performance in processor cycles as bisection bandwidth varies 

[Chong 98]. 

Three regions are identified; the congestion dominated region, the latency 
dominated region and the latency-hiding region. In the congestion-dominated region 
the effects of congestion are bigger than the decrease in bisection bandwidth. Shared 
memory mechanisms require much communication and suffer from congestion 
problems earlier than the message passing mechanisms. In the latency dominated 
region message-passing communication suffers because of lack of parallel work 
compared to latency, while in the shared memory (sequential consistency) case the 
processors are stalled when data is not in the cache. In the latency hiding region 
latencies in the network are hidden by low communication volume compared to the 
amount of work being performed. Network latencies can also be varied as illustrated 
in Figure 17. Here it is worth mentioning that message passing tolerates network 
latencies better due to one-way nature of the mechanism. Noteworthy is also that 
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shared memory architectures need to use prefetching techniques in order to hide 
network latencies. Other studies such as the one performed by Chandra [Chandra94] 
et al. suggest that the differences between message passing mechanisms and shared 
memory mechanisms are not big (no prefetching or DMA transfers were used). In 
one case where computation was dominant, the shared memory’s higher cost was 
offset by the higher latency of handling messages in software. The higher overhead 
from handling buffers for message passing was visible. In another test case the 
shared memory mechanism required a noticeable amount of explicit 
synchronization. 

 

 
Figure 17, Regions of performance in processor cycles as network latency varies  

[Chong 98]. 

2.6 Definitions 
We adhere to the definitions below. 
§ Concurrency. The degree of concurrency is defined as by [Grama2003 p. 89]: “The 

… number of tasks that can be executed simultaneously in a parallel program”. 
§ Correlation. Actions that relate individual items into a group according to a 

specification. Simple correlation specifications include AND and OR logic 
operators on item characteristics. Item characteristics include topic, time and type. 
Correlation actions are common in event services and notification services 
[Liu97]. 

§ Distributed System. Coulouris [Coulouris01 p. 2] defines a distributed system to be 
a system where: “Hardware and software components located at networked 
computers communicate and coordinate their actions only by passing messages”. 
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§ Execution Environment. An execution environment consists of an address space, 
thread resources such as semaphores and higher level resources such as open files 
[Coulouris01]. 

§ Independence of Parallel processes. Let the read set of a part of a program be the 
variables it reads but do not alter. Let the write set of a part be the variables it 
writes into (and possibly also reads). Two parts of a program are independent if 
the intersection of their write sets is empty. This definition is taken from 
[Andrews2000]. 

§ Multiprocessor system. We adhere to the definition of a multiprocessor by Stone 
[Stone90 p.452]: “A parallel computer composed of multiple independent 
processors and facilities for controlling their interaction and cooperation”. 
According to the definition of a multiprocessor by Enslow [Enslow77] only a 
system that can be controlled by a single operating system can be depicted as a 
multiprocessor. 

§ Parallel System. Almasi and Gottlieb, cited from [Culler99 p.1] define a parallel 
computer to be: “A collection of processing elements that communicate and 
cooperate to solve large problems fast”. 

§ Process. A process consists of an execution environment and one or many threads 
of control. 

§ Task. There is much confusion concerning where to use the term thread and task. 
Usually the terms represent the same entity, a context of a program, where 
memory may be shared among other tasks. Stankovic [Stankovic91] defines a task 
to be a schedulable entity that consists of reentrant code, local and global data, a 
stack, a task descriptor and a task-control block. See also Thread. 

§ Thread. A context of a program, which may run concurrently with other threads 
or processes, and may share memory with other threads. 
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3 Performance Improving Alternatives for an 

Industrial System 

In the search for more computing performance, system designers face a plethora of 
possibilities. Choices regarding the platform and components need to be made in at 
least four main areas of the system, each level asserting certain requirements on the 
others. A layered model, as illustrated in Figure 18 below, illustrates how the system 
components depend on each other (the grey area depicts the definition of the whole 
platform). Requirements flow from the hardware and upwards, as well as from the 
application and downwards. Each layer enhances and hides the functionality of the 
layer immediately below it [Kaiserswerth93]. 
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Figure 18, a layered view of the system. 

The design decisions are governed by the needs and requirements of the 
application, and in a broader sense the requirements and needs of the system under 
control. The application asserts requirements on the platform and operating system 
layers. Operating systems expose interfaces to its users and where its main purpose 
is to abstract away the hardware architecture from the design of the application and 
the platform. The application should for example not be responsible for managing a 
file system. Conversely, the operating system interface asserts requirements on how 
the higher levels of the system are designed, including the application.  In order to 
promote easy porting to different hardware architectures, operating interface 
standards such as for example POSIX [Quarterman93] have been defined. The POSIX 
standard is an example of the need for standardized interfaces among system 
components as well as the need for platforms and applications to be easily ported to 
multiple hardware architectures. 

This chapter will discuss architectural design decisions encountered within the 
scope of this work and during the study of the case-study system. The discussion is 
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based on the precondition that we have an existing system platform that has been 
designed for single processor architecture and where instructions of any thread are 
allowed to access any memory position. 

3.1 The Case-Study System 
The target of this study is an industrial system that is used to control and protect 

power system equipment such as for example transformers. Papers that describe the 
research with this system include [Enblom2001][Enblom2003][Enblom2001_02]. 
Applications are of a large variety and therefore the company has created a platform 
consisting of useful and necessary services to be used in application design in order 
to promote reusability. The platform has been tailored for the need of applications 
and has four major characteristics: 

• Hardware architecture dependencies have been hidden in the sense that 
devices, such as I/O boards, are handled and configured by the platform. 

• I/O boards and the flow of data to and from these is governed by a 
publish/subscribe middleware; the I/O System. The I/O System is capable of 
subscribing to data from remote nodes as well as devices located in the local 
chassis. 

• The platform is modular in terms of file-structure and interfaces to components. 
Yet, the platform has been designed for a single execution environment in the 
respect that every platform and application compiles to a single executable 
image presently executable only in a single processor environment. 

• The platform has been designed for a multi-threading environment, where 
services are executing in the context of threads with various priorities. These 
threads are at present scheduled by the priority-based real-time operating 
system VxWorks [Windriverwww]. 
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Figure 19, System Overview. 

Figure 19 above presents an overview of the system and its most important 
components. The software platform components are abstracted away from the 
operating system by means of an operating system abstraction layer that is to be used 
by the components of the software platform and the application alike. Choosing to 
use such an abstraction promotes portability, enabling developers to move existing 
applications and framework from one operating system platform to another without 
having to explicitly adopt the code to a new operating system. Operating systems 
providing the services required by the abstraction layer can be used in the system. 

The real-time requirements of the system-under-control are challenging, delays in 
the removal of the anomaly may increase the damage to the faulty equipment or 
damage healthy equipment [Davies96]. Therefore the maximum end-to-end response 
time for the system to respond to a critical event in the environment is less than 20 
milliseconds. Within this timeframe parameters of the environment and the system 
under control must be sampled and the data must be transmitted to the receiving 
application node. The operating system and I/O System on the node must receive 
the data in a timely fashion and the application must have enough history of the data 
in order to take the correct action. The decisions taken by the application must 
thereafter propagate to the actuator via the I/O System and the operating system, 
and finally over the interconnect to reach the actuator (circuit breaker). This implies a 
maximum allowed response time of the computer system of less than 10 
milliseconds. Our case-study system relies on a periodic sampling of the 
environment and system under control that currently has a period of 1ms (1000Hz). 
This means that 20 sets of sampled data are produced before a fault in the 
environment (the power grid) must have been isolated. Ideally the application 
completes executing its protection algorithm each period, a pattern applications are 
designed according to. This periodic execution of the application is defined to be 
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data-driven since the application execution is dependent on the arrival of data from 
data producers. 

The hardware architecture is based on a rack-mount Compact PCI system 
consisting of I/O boards and a processor board. The existing software system is 
divided into different modules where the time-critical components are the I/O 
system and the execution of the application protection and control functionality. The 
time-critical part of the application is written in such a way that it blocks for data to 
be delivered from the I/O System. The most common approach is to wait for a 
complete set of sensor data has arrived in a data structure (DS). The common 
structure this part of the application is illustrated with C-like semantics in Figure 20 
below. The sequence of events is such that the application waits for data to arrive, 
executes the application semantics and thereafter acknowledges the data structure so 
that it can be reused by the I/O System. The application performs the same task 
every cycle of execution (sample period). 

 
 
Identifier dataStructureId; 
DataStructure *dataPointer; 
while( running == true ) { 
 dataPointer = waitForDataStructure( dataStructureId ); 
 executeApplicationCode( dataPointer ); 
 acknowledgeDataStructure( dataPointer ); 
} 
 

Figure 20. Application structure example. 

The system is based on the periodic collection of data from the environment and 
the last functional component executing before delivery of data structures to the 
receiving application is the I/O System thread. Function calls to components that 
return references to data structures that have been allocated internally by the I/O 
System may be invoked. It is expected that the caller should read and write to those 
data structures with ordinary processor loads and stores (using RISC architecture 
terminology). 

Figure 21 below illustrates a function call to a software module that returns a 
reference to a data structure allocated within it. First, as illustrated by arrow 1, the 
receiver invokes a wait function that blocks at a synchronization point, awaiting 
notification from the producer (I/O System thread). Thereafter, illustrated by arrow 
2, data is collected, correlated (defined later) and prepared for delivery. Arrow 3 
represents the notification of new data to the receiving thread, in turn enabling the 
application thread to progress (arrow 4). A reference to the delivered data is passed 
back (arrow 5) along with other parameters. At some point later in time, the 
application thread may act upon the data as illustrated by arrow 6. 
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Figure 21, Component interaction in the system. 

When separating the application and the I/O System into separate execution 
environments (such as in a distributed system), reading the data in the data structure 
may not be possible. In such as system the data structure must be copied to the 
execution environment of the application which can be achieved with the help of 
IOMP described in section 4.3. 

3.2 Hardware Architecture Alternatives 
For a system designer that wants to increase performance by migrating a product 

and platform that is designed for a single processor environment to a distributed or 
multiprocessor architecture, a number of issues arise. The main purpose for 
considering such a migration is usually to increase performance, e.g. increasing the 
number of operations that the application and the system as a whole can handle. 
Other reasons may be to provide redundancy and fault-tolerance [Storey96], but we 
have not analyzed any explicit fault-tolerance aspects, even though that would be of 
interest for the application domain. Three approaches that are potential ways of 
increasing performance in the system have been identified during the analysis of the 
case-study system: 

 
1. Accelerate a system component with the help of dedicated hardware. 
2. Introduce a multiprocessor architecture. 
3. Upgrade the existing system with faster single processor architecture. 

 
Figure 22 below illustrates these approaches and we have also identified three 

hardware architectures with multiple processors.  
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Figure 22, Hardware Design Alternatives. 

The symmetric multiprocessor (SMP) is a Uniform Memory Access (UMA) 
architecture according to the classification of Hwang (see section 2.2.3.3). The 
backplane bus-based multiprocessor can be classified as a Non Cache-Coherent Non-
Uniform Memory Access (NCC-NUMA) architecture. The distributed system 
alternative can, when only considering the ability to access memory, be classified as a 
NORMA architecture. 

3.2.1 Hardware Accelerators and Assists 

Increasing performance with the help of hardware assists and accelerators is 
possible for many systems. An obvious component that may be accelerated is the 
communication system. But, the communication system of industrial automation 
systems is usually developed by the manufacturing company itself, and is therefore 
unique. The system may execute on off-the-shelf processor boards while peripheral 
sampling and actuation devices are special purpose custom designs. This is the case 
with the case-study system. Therefore it can be hard to find third party components 
that can easily increase performance in the system by offloading the communication 
system. For systems relying on standardized communication protocols, such as for 
example TCP/IP, there exist products such as protocol processors, network 
processors [Vassiliadis2001] [Vitessewww] and TCP/IP Offload Engines (TOE) 
[Tensilicawww]  [10GEAwww] that can offload the system in order to gain 
performance. These solutions are usually deployed for use in gigabit networks where 
the network speed is more demanding compared to the data rate at which the host 
can process, i.e. the host processing capability is the bottleneck. Three factors that are 
processing intensive for such protocol stacks are reassembling packets, copying of 
memory and interrupts [10GEAwww]. 

Another approach is to use an operating system hardware accelerator in order to 
increase performance. Research on hardware accelerated operating systems has been 
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performed at Mälardalen University [Lindh98] and a similar approach has been 
proposed for the Spring [Burleson99] system. A hardware accelerator for the 
operating system can offload time-critical components in the operating system, as for 
example interrupt handling, scheduling and synchronization. An approach with a 
hardware accelerator for the case-study target system has been proposed in 
[Enblom2001], and this approach is discussed in more detail in section 3.2.2.2. One 
possible hardware architectures for accelerating functionality in the case-study 
architecture includes reconfigurable boards such as Wildcard [Annapmicrowww] 
from Annapolis Micro Systems, but these products are still quite expensive. 

We have analytically identified three main subsystems that could benefit from 
being hardware accelerated by hardware: 

 
1. Application functionality such as algorithms, filter (FFT) and/or logic are 

candidates for hardware acceleration. In our case-study system application 
functionality is mainly generated from graphical tools, that automatically 
generate software. After a brief review and analysis of the design flow using 
those tools we (together with an application designer) concluded that the 
amount of concurrent tasks in the application is to low to be considered 
within the scope of this study. 

2. A second approach would be to accelerate subsystems of the I/O system. 
This could include accelerating the in-house real-time protocol stack or the 
dispatch engine of the I/O System. After a brief review and analysis of the 
I/O System together with a designer we found no obvious ways for 
parallelizing and/or accelerating the I/O System. 

3. Platform functionality, such as for example the database engine and the 
time synchronization facilities are also candidates for hardware acceleration. 
No comprehensive review or analysis has been performed on the 
possibilities of accelerating these components, so the possible impact is 
unknown at present. 

3.2.2 Hardware Architectures with Multiple Processors 

The second approach is to introduce a multiprocessor architecture for parallel 
execution of system components. We have identified three parallel architectures that 
are possible to utilize with the current case-study system; a distributed architecture 
utilizing the existing network topology, a bus-based (CompactPCI) multiprocessor 
architecture and a symmetric multiprocessor architecture. The next sections will 
discuss these architectures as well as the approach of hardware accelerating the 
operating system on a bus-based architecture. 

3.2.2.1 Distributed Architecture 

Today nodes in the system can communicate over a network (AnyLAN-100VG) in 
order to exchange data. It is possible to connect processor boards using this network, 
and in chapter 4 we analyze the approach of executing I/O system and application 
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functionality separately in such architecture. The following applies for the 
distributed architecture approach: 

• The nodes do not share the same execution environment. 
• Communication is limited to the passing of messages between the nodes. 
• Bandwidth is limited to approximately 12,5 MB/s. 
• The processor clock of each node must be synchronized independently. 
• Each node consists of a chassis containing processor boards as well as 

peripheral boards. Therefore the distributed approach will require more 
hardware and will thus be more costly than the backplane bus-based 
architecture approach. 

3.2.2.2 Backplane Bus-Based Multiprocessor Architecture 

A passive backplane is a printed circuit board with connectors placed at regular 
intervals to allow connection between printed circuit boards. Processor and 
peripheral boards are inserted into slots that enable boards to connect to the 
backplane bus, and an example is the CompactPCI-bus. It is possible to connect 
multiple processor boards in the same chassis (rack-mount). An approach of utilizing 
a centralized operating system accelerator in hardware for such a system has been 
discussed in [Enblom2001] and the proposed hardware architecture is illustrated in 
Figure 23 below. In such an architecture context switches are triggered by the 
hardware operating system (RTU), and the remaining software RTOS on each board 
saves current context and makes next task running. The RTOS does also provide an 
interface for accessing the features of the hardware operating system such as 
changing priority of the tasks, setting periodic timers as well as synchronization and 
inter-process communication functionality. 

While an operating system accelerator certainly can increase performance for 
functionality such as IPC in a system [Furunäs2000], the main part determining 
whether the system will scale on a multiprocessor is how well the software system 
scales on the particular hardware architecture. An efficient synchronization 
mechanism does for example not provide that enough concurrent tasks are found in 
the system in order to enable parallel execution. Figure 23 below illustrates an 
approach where a hardware operating system (from now on abbreviated RTU, i.e. 
Real-Time Unit) controls operating system related functionality. The RTU 
implements the following operating system functionality in hardware; task/thread 
handling, timers, interrupt handling, shared resource handling (semaphores) as well 
as message passing functionality [Furunäs2001]. The remaining software of the 
operating system (RTU Software OS) provides for functionality that cannot be 
performed by the hardware accelerator, such as for example saving and restoring the 
context of a thread. An inherent benefit of utilizing an external operating system is a 
performance increase due to the lack of timer-interrupts on processor boards. The 
tasks do not require rescheduling or corresponding actions until the RTU issues a 
taskswitch command. This gain can be as large as 32% [Furunäs2001], compared to a 
system with a conventional scheduler in software having to administer clock ticks. 
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Yet, in the system we have studied, the processor administrative load for each clock 
tick was 16µs (the Intel Pentium 3 hardware platform). The period time for the clock 
tick was 1ms which means that the clock tick administration overhead for our case-
study system is 1,6%. Clock tick administration is not judged to be a serious 
overhead in the case-study system. 
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Figure 23, Proposed Hardware Architecture with an operating system accelerator 
[Enblom2001]. 

As described in section 2.3.2.5, VxMP enhances VxWorks with the ability to share 
semaphores, provide mutual exclusion to shared data structures, shared message 
queues and shared memory management. A possible system configuration using 
these components is illustrated in Figure 24 below. A comparison between the RTU 
and the functionality provided by VxMP showed that the same operating system 
functionality necessary for functional separation of the existing platform is provided 
by both approaches. Functional differences between a VxWorks+VxMP system and 
the RTU includes that the RTU provides a centralized system clock, provides 
scheduling of external interrupts and provides a global scheduling policy for tasks on 
multiple boards. The conclusion is that it is not necessary to utilize a centralized 
hardware operating system accelerator in order to achieve functional scalability for a 
backplane bus-based multiprocessor system. Therefore, in order to understand how 
scalability could be achieved in the target system we decided to study how system 
components could be partitioned on multiple processors in the system in order to 
achieve both functional scalability and increase performance. This approach led to 
the study of the separation of I/O System and application level functionality in a 
distributed system, as described in chapter 4. 

 



 68 

Application Board I/O System

Peripheral
Board

Peripheral
Board

Compact PCI-bus

Input
Device

A
ct

ua
to

r

System Under
Control

CPU CPU

System MemorySystem Memory

Application

Platform

VxWorks +
VxMP

Platform
including

IOSys

VxWorks+
VxMP

 
Figure 24, a possible alternative approach using VxWorks + VxMP. 

3.2.2.3 Symmetric Multiprocessor (SMP) Architecture 

A third architecture alternative is Symmetric multiprocessors (SMP) that represent 
a hardware architecture where all system components such as primary memory, 
peripherals and buses are equally distant to each processor. The most important 
difference between this architecture and the two described above is that it can 
execute the same system image, meaning that both processors have access to the 
same primary memory for fetching instructions and data. This in turn means that 
two processors can issue the same operating system call simultaneously thus 
executing operating system code in parallel. Possible dual processor SMP system 
architecture is illustrated in Figure 25 below and the SMP System board could for 
example be the cPCI-DT64 equipped with dual Pentium III processors 
[Kontronwww].  
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Figure 25, possible dual processor SMP system architecture. 
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The following applies for the SMP system architecture approach: 
 

• The nodes share the same execution environment. 
• Communication between processors is performed by accessing shared memory, 

equally distant from each processor and where cache coherence is enforced by 
hardware. 

• Bandwidth to memory is high, over 1GB/s for most contemporary 
architectures. 

• All processors share the same clock. 
• The SMP system board can fit into one chassis. Therefore such an approach will 

require less hardware than the distributed approach and will thus be less costly. 
• It is necessary to utilize a SMP-capable operating system. 

 
SMP architecture may be interesting for future consideration for the following 

reasons: 
 
• No functional partitioning is necessary in order to scale on the multiple 

processors of the SMP. 
• Individual dynamic load balancing of threads and processes governed by the 

operating system is possible. 
• Minimal or no software differences are needed for execution on a single 

processor and the multiprocessor. 
 
Obstacles to introducing SMP architecture include: 
 

• The power dissipation of each processor board is larger than for a single 
processor board. Since the systems studied in this work cannot have any 
moving parts such as for example fans, power dissipation for each board is 
limited. 

• The cost for SMP architecture boards have generally been high, but lately the 
prices have dropped compared to single processor boards. 

3.2.3 Faster Single Processor Architecture 

Waiting for faster single processor architecture is presently the way of increasing 
performance in the target system. Today the target system has supports two 
generations of hardware architectures, a 100MHz PowerPC based architecture and a 
Pentium III 266 MHz based architecture. While the next generation system, as for 
example a faster clocked Pentium 3 architecture, can increase performance 
dramatically, an architecture with multiple processors can potentially enable 
execution of demanding applications and configurations that cannot execute in the 
most powerful single processor architecture available. This is what is defined as 
flexibility; the possibility of introducing a multiprocessor system and thereby having 
the ability to scale beyond the performance of the most powerful single processor 
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architecture. It is not necessary to run the new system on a multiprocessor 
architecture, so for the cases where extra performance is not needed a single 
processor solution is sufficient [Enblom2001]. At the same time as we have 
introduced flexibility with the multiprocessor solution we have also introduced 
complexity [Pancake96] in terms of increased difficulty debugging the application 
and more parameters to remember when writing applications. 

3.3 Software Architecture Considerations 
When functionally partitioning existing system components onto multiple 

processors, load balancing issues become important. The challenging part is the 
adaptation of the application and software platform, which has been written for a 
single-processor system environment and a single processor RTOS. Partitioning of 
threads on separate processor boards therefore becomes an important question. 
There is a need to differentiate between the real-time parts of the system (I/O System 
and real-time tasks having stringent timing constraints) from less timing constrained 
tasks such as logging functions and HMI (Human Machine Interface) functionality. 
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Figure 26, example of tasks in the original system as well as the new multiprocessor 

system and a possible configuration [Enblom2001]. 

In the beginning of the project we reasoned about how functionality should be 
partitioned among the processors in order to achieve the goals of increased 
performance. The initial ideas are illustrated in Figure 26 above where the original 
application and platform has been created and partitioned into many tasks as (the 
tasks merely illustrate how the application can be configured). One initial conclusion 
was that communication between the boards has to be minimized to gain 
performance in the multiprocessor system. Different groups of tasks that share 
common assignment and cooperate intensely can be identified in the original system. 
Tasks that communicate intensely are from the communication point of view 
appropriate to let execute on the same processor. A counteracting factor is the 
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amount of concurrency available between two or more tasks in the system. 
Concurrency can be exploited by partitioning tasks on separate processors in order to 
set free more computing resources. The I/O System and the application were 
identified of showing a high degree of mutual concurrency and were therefore 
candidates for parallel execution. The counteracting factor of communication 
between those components must thereafter be taken into consideration. Fortunately, 
the communication between I/O System and application has some favorable 
properties: 

 
• The delivery of sensor data is periodic, meaning that the application will not be 

temporarily be overloaded by communication data. 
• When configured, the same amount of data is delivered from the I/O system to 

the application each data delivery period. Between applications configurations, 
the amount of data varies from a few tens of bytes up to hundreds of bytes (the 
data delivered during the DDP as described in section 4.1.). 

• Protection applications deliver a small amount of out-data, actuation actions are 
only necessary when an anomaly occurs. For those applications it is not 
necessary to continuously deliver actuation events during the AADP phase 
(actuation events delivered during the AADP is described in section 4.1.). 
Control applications on the other hand may yield a higher amount of out-data, 
where continuous delivery of data during AADP is necessary. We have focused 
mainly on protection applications within the scope of this work. 

 
At the beginning of the project we considered separating application code from the 
complete software platform (called the base system) onto multiple processors. This 
would mean that all functionality available in the software platform would execute 
in one execution environment and the application code in another execution 
environment leading to that all interfaces between application and base-system 
components would be mapped to RPC-calls. The round-trip latencies of RPC makes 
such an approach unfeasible. We therefore turned from the approach of separating 
the application from the software platform (base-system) to the approach of 
separating the I/O system from the rest of the system (including the application and 
its use of the software platform). 

3.4 Identifying Concurrency 
In the system that has been studied within the extent of this project an architecture 

with multiple processors requiring different execution environments was chosen for 
evaluation. Partitioning of existing components is an important task in order for the 
system to be efficient. Since we are investigating an existing system, the functionality 
and semantics of the system must be preserved. The main task will therefore be to 
identify existing concurrency in the system. If components in the existing product 
have a large amount of concurrency, the potential of speeding up the total execution 
of the product is also large. The software system executes as a number of tasks (i.e. 
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threads) in the VxWorks [WindRiverwww] priority based real-time operating 
system. These threads express an amount of thread level parallelism, TLP, which can 
be utilized in a parallel system. We have identified parallelism among threads in 
order to find the best option for parallel execution. Parallel execution of components 
within each existing thread is certainly possible, as for example hardware 
acceleration of mathematical functions. But that would require new analysis of 
existing functionality and how acceleration would be implemented. The designers of 
the system have already identified parallelism in the form of the existing threads. An 
easy and natural way of scaling on multiple processors is to rely on this existing 
concurrency. 

The system that has been studied in the case-study consists of a platform which is 
used for application designers to connect to I/O boards, synchronize the system 
boards to a high precision to an external clock, data base components as well as 
logging and monitoring of system events. Concurrency can be exploited either within 
existing multithreaded components or between components. The two approaches 
have different characteristics that may enable more or less parallel execution, and 
some of these aspects will be discussed below. 

3.4.1 Concurrency within Components 

• Concurrency within applications. Existing concurrency within or between 
application threads may enable parallel execution and thus an performance 
increase. Overlapping independent activities within or between threads is 
usually depicted as slackness in literature. Finding slackness between 
application threads can indicate that they can scale on multiple processors, i.e. 
be configured to execute in parallel on multiple processors. An analysis of the 
execution of a an existing application and an analysis of the code structure of 
applications have showed little opportunity of parallel execution among 
application threads. Existing applications must complete their job within a 
fraction of a millisecond, typically less than 0,5 milliseconds and the real-time 
critical parts are contained within one thread of execution. Partitioning 
application threads onto processors in a network will yield a very high 
communication overhead, latencies for nullRPC calls have been measured to 
0,36 milliseconds [Enblom2003]. Even with a PCI communication mechanism, 
round-trip latencies for messages consisting of 100 bytes are in the domain of 50 
microseconds [Enblom2002], even for contemporary processor architectures. It 
will be very hard to find enough concurrency within application threads so that 
a feasible communication /computation ratio can be achieved. This is true for 
both the distributed and board based architecture. 

• Parallelism within the I/O System. A system component that consumes a large 
amount of computing resources is the I/O System. Depending on how many 
input and output devices are connected to the application via the I/O system, a 
processor utilization of approximately 10% up to 100% derives from I/O system 
activity. This includes interrupt handling, interrupt service routine (ISR) 
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execution, as well as data correlation and dispatching of data to receivers 
(usually applications). Parallelism within the I/O system component for data 
originating from local peripherals (on the PCI-bus) is hard to achieve mainly 
due to the intricate software structure. Memory references between modules 
and functions are common and only one thread context exists in the I/O 
System. Remote data reception (via the network) utilizes a real-time transport 
mechanism which could be separated from the dispatcher functionality. No 
obvious way of exploiting parallelism within the I/O System was found. 

• Parallelism within other components. Other components such as time 
synchronization and data-base components are other candidates for exploiting 
concurrency. Many of those components are designed for existing in the same 
execution environment as the callers, which makes redesign necessary. The 
components would need to rely on copying of data instead of returning 
references to memory locations in the same address space. We have not seen 
any straightforward way to achieve speedup of those components. 

3.4.2 Parallelism between Components 

• Parallelism between I/O System and Applications. Parallel execution of I/O 
system and application components is the approach that has the best chances of 
increasing performance for system configurations subscribing to data from 
many remote nodes. Both components, the I/O system and the applications, 
execute in a way that enables parallel execution. The I/O System receives data 
and dispatches it to the receiving application threads. Parallel execution of this 
approach in a distributed configuration shows up to 27% less total processor 
utilization on the application node [Enblom2003] (66% more computing 
resources available for application functionality). With a PCI board based 
solution, even more computing resources are expected to be available for 
applications, see section 4.5. 

• Parallelism between other system components. Other components may also 
show the possibility of parallel execution. No measurements have been 
performed to prove the possibility of parallel execution between other 
components. 
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4 Parallel Execution of I/O System and Application 

Components 

This chapter consists of five sections describing and analyzing issues regarding 
parallel execution of the existing I/O System and application/client components. In 
section 4.1 we introduce a model of the existing industrial I/O System that has been 
studied, and we then extend the model to enable parallel execution on multiple 
processors. Thereafter, in section 4.2, we present a synthetic execution analysis of the 
system in both a single and multiprocessor configuration consisting of two processor 
nodes. In section 4.3 we describe how we designed and implemented a software 
component called Input Output for a Multi Processor (IOMP) in order to exploit the 
concurrency between the I/O system and application/client components. Section 4.4 
then presents the results from execution in both single and multiprocessor 
configurations and we discuss possibilities, threats and suggest improvements to the 
approach. Finally, in section 4.5, we present results from inter-processor 
communication between two processor boards in a CompactPCI bus-based 
architecture. 

4.1 A Model of a Data-Driven Real-Time System 
Before describing the system and introducing the system model we discuss the 

concept of modeling. A model consists of a set of assumptions about how a system, 
i.e. real-world facilities and processes, works [Law2000 p.1]. The purpose is to gain 
understanding of how the corresponding real system behaves in situations where it 
is impossible to experiment with it or where the system has not yet been built. 
Furthermore, a system designer may want to change system parameters that cannot 
be modified in the real system, such as for example the memory hierarchy, the 
bandwidth of the interconnect or the clock-speed of the CPU. The assumptions of the 
model lead to simplifications, i.e. the impact of some parameters is simplified or 
totally removed in the model compared to the real system. This does in turn lead to 
that an amount of error is introduced in the model compared to how a real system 
may behave. The simplifications do by necessity introduce errors in the model 
compared to the real system. Absolute model validity is impossible to achieve, but it 
is desirable to achieve as much model credibility as possible compared to the 
invested effort. It is on the other hand desirable to simplify the model description if 
we want to achieve an analytical solution [Law2000 p.5], e.g. providing a solution 
with the help of a mathematical model. A good model should in that case describe 
the behavior of the system as accurately as possible as well as be simple enough to 
solve [Hu97]. Law et. al. have categorized ways to study the behavior and 
parameters of a system, a categorization that is illustrated in Figure 27 below. 

In this work we have emphasized on experimenting with an actual system, but we 
have also described and presented an execution model of the system. Generally, if it 



 76 

is possible and cost-effective, experimenting with the actual system increases validity 
of the results. In our case we had an existing system available, enabling us to alter 
and add functionality in order to examine the impact of parallel execution. 
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Figure 27, possible ways to study a system [Law2000] and the emphasis in this work. 

The execution model is not based on assumptions about how the system is 
behaving, but rather on the actual system. Execution traces from the system as well 
as a functional study of program code has been the source of information for the 
system model. The model, including its simplifications, has been the foundation for 
identifying concurrency in the system. 

The alternative to experimenting with an actual system is to experiment with a 
model of the system. One of the ways of experimenting is by physical modeling, such 
as for example models of cars in wind tunnel experiments. This method can be 
excluded for our purposes. The alternative to physical modeling is mathematical 
modeling which, if it is simple enough can be solved analytically or analyzed by 
means of simulation. Simulation may be performed in various forms and at various 
levels of abstraction. Simulation is the task of imitating a system together with a 
model of the surrounding system under control, in order to evaluate, understand and 
identify characteristics of the system. A definition stated by Shannon [Paul93 p.1] is: 
“Simulation is the process of designing a model of a real system and performing 
experiments with this model for the purpose of either understanding the behavior of 
the system or of evaluating various strategies for the operation of the system”. 

The purpose may be to increase performance by understanding the execution 
behavior of the system as a whole. The model of the system and the environment 
may be simple or complex. For example, in order to understand how the queuing of 
sensor data arriving to a computer system affects the response time of tasks it may be 
interesting to model the inter-arrival time of sensor data and the associated 
notification (i.e. interrupt) together with a software model. Simulation of a system 
can also be a way of decreasing the volume of faults of a design in the early phases of 



 77 

construction. This can save time and money in a project as well as helping in the 
verification of the design. 

Different levels of abstraction can be chosen in order to study a computer system 
[Banks2001 p. 529]: 

 
1. Gate Level (Lowest abstraction level). 
2. CPU Level, including models of microcode, ALUs, memory interfaces etc. 
3. Processor Level, including models of caches, memory and disks. 
4. Computer System Level (Highest abstraction level). 

 
Choosing abstraction level affects parameters such as the speed of the simulation, 

the complexity of the hardware and software model, the accuracy of the simulation 
results as well as the ability to model in-house peripherals. Generally, low 
abstraction levels of simulation result in high accuracy, slow simulation and high 
complexity of the models. The converse applies for high abstraction levels. 

A number of simulation techniques are available for the system evaluator. A subset 
of potential simulation techniques available are listed below (beginning with the 
lowest abstraction level): 

 
• Co-simulation [Adams96], or co-design, is a technique using the same 

methodology when designing digital systems including both hardware and 
software systems. Since our case-study system consists of standard hardware 
components co-simulation is not very useful for our purposes. 

• Complete system simulation is a technique where the complete target 
architecture is modeled. Peripherals and system components such as network 
interface controllers, interrupt controllers and the processor instruction set as 
well as address space are accurately modeled at the functional level. 
Unmodified software may run on such simulators. Available simulators are 
SimOS [Rosenblum97] and Simics [Albertsson2000] [Virtutecwww]. We have in 
our work chosen not to create such a simulation environment due to factors 
such as complexity of the tools, complexity of modeling in-house peripherals 
(the data producers) and the initial lack of interest in studying factors such as 
cache hit ratio and memory footprint. If factors such as cache behavior, memory 
footprint and interaction with peripheral devices is assumed to play a 
significant role in performance in future systems, complete system simulators 
may become interesting tools for system analysis. 

• Discrete-event system simulation [Banks2001] [Arshamwww] is a technique 
where a model of a system is run and where state variables change at discrete 
points in time. It would be possible to implement a discrete-event system 
simulator for the system model and vary parameters such as task execution 
times, network latencies and input data distributions. But when examining the 
existing system, very little variation in for example input data arrival was 
detected due to the predictable dispatching of messages on the AnyLAN 
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network and the system-wide fine-granular time synchronization. In order for 
us to perform sensible experiments we had to invent input data distributions 
that were not in accordance with the real system. In the future, if it is interesting 
to study the effects of varying input data frequency, discrete-event simulation 
may be an alternative. Discrete-event simulation packages have been criticized 
of showing poor scalability and that “the complexity of the simulation model 
approaches the complexity of the system under development” [Chatterjee97]. 

 
As described in the next couple of sections, we have created a model of the system. 

We had three main reasons for creating and describing this model: 
 

1. To gain a comprehensive understanding of how the system is designed and 
enable us to disseminate results without exposing proprietary information. 

2. To enable us to reason about system properties at a high abstraction level 
and identify relations between system parameters and system performance. 

3. To enable us to describe and present metrics from the performance 
experiments, e.g. processor utilization, response time, latencies and 
communication/computation ratio. 

 
Having discussed modeling in general, we now progress by describing a model of 

a data-driven real-time control system, as used in the case study and in part 
described in [Enblom2003]. 

4.1.1 System Architecture 

The modules of a processor node in the system are illustrated in Figure 28 below. 
Components which communicate with peripheral devices such as data producers, 
network peripherals and actuators are illustrated at the bottom of the figure. Three 
types of peripheral devices are represented in the system: 

 
1. An output peripheral device which performs actuations toward the 

environment according to requests from the IOSys via software component 
A. 

2. An input peripheral device which produces data to corresponding system 
software component B. 

3. A combined input/output device (for example the AnyLAN network interface) 
handled by software component C. 

 
These three types of peripheral components can be added to the IOSys by the 
application designer, and the application can define which data is to be received 
from and/or sent to these. Data is delivered through the Application Program 
Interface (API) to the application, and actuation data is delivered to the IOSys 
through the same API. 
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Figure 28, a single processor data-driven node. 

A data-driven system is in this context defined as a system in which the execution of 
the application is dependent on the reception of data from data producers, such as 
I/O nodes or peripheral devices. Each time data arrives at the node, the application 
begins executing on the basis of new data and makes decisions based on the history 
of the collected data. The core component of the system is the I/O system (from now 
on abbreviated as the IOSys), which provides access to peripheral boards, actuators, 
remote nodes and possibly other system components. 

4.1.2 System Semantics and Functionality 

The IOSys provides functionality which can be categorized as being a middleware, 
serving as a layer of software between the I/O devices and the application. The 
purpose is to hide heterogeneity of the I/O devices and enable portability to many 
hardware architectures. Data arriving from I/O producers is delivered to the 
application thread or threads according to the semantics of the IOSys. The API 
provided to the application developers enables them to control the run-time 
functionality of the IOSys. The application can for example be configured towards a 
certain set of data producers by using this API. 

In this data-driven system model, it is possible to combine the delivery of 
correlated and correlated data (see the discussion regarding correlation of data 
below) from the producers. The application can define data structures (DS) 
containing data from possibly multiple sources. Thus the application can wait for 
data items destined for a DS to arrive at the IOSys before the receiving application 
thread is ready to run. The I/O producers can be said to “publish” data to the IOSys 
and the application can be said to “subscribe to” data from the I/O producers via the 
IOSys.  
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Figure 29, Illustration of data exchange between the data producers/consumers, the I/O 

system and the application. 

The IOSys is in effect executing concurrently with the application, buffering and 
correlating data to be delivered later. Figure 29 above illustrates a buffer of three data 
structures, each data set containing a number of data items (possibly from multiple 
data sources). The IOSys will independently from the application correlate/group 
incoming data. Data item correlation is based upon timestamps related to each data 
item in order to achieve a correct snapshot of the environment. Each data producer 
must therefore be synchronized to a high degree of precision in order to correlate 
data into the data structures. Data being delivered from remote nodes (items are time 
stamped) to the local node may be delayed, but the IOSys can still correlate the data 
into the corresponding DS correctly. The main functionality of the IOSys can be 
summarized as: 

 
1. Applications can select to receive data items from multiple sources and 

have IOSys correlate them into data structures (DS). 
2. Data is delivered whenever a DS is completely filled with items. 
3. The correlation, i.e. grouping, of data in the data structures is performed 

upon the timestamps of each item, i.e. correlation is performed depending 
on the time at which data items were produced. 

4. All data producers produce data at the same rate in the case-study. 
 

4.1.3 The Data-Driven Real-Time System Model Applied to a System with 
Multiple Processors 

In a single processor system, as illustrated in Figure 28 above, both software and 
hardware system components contend for shared resources, such as the processor, 
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memory and the interconnects. Priority-based operating systems therefore provide 
the assignment of priorities to threads depending on task importance. Threads on a 
single node are scheduled in an interleaved fashion according to “highest priority 
first”. A thread with a lower priority, ready to execute, may therefore have to wait to 
run due to the contention for the processor. Whenever such situations occur, the 
amount of thread level parallelism (TLP) of the software is higher than the 
underlying computer architecture is able to utilize. An execution analysis (section 
4.2) of the system model allows for the parallel execution of the IOSys and the 
application threads. The concurrent execution and buffering that the model provides 
can therefore be exploited by a parallel system at the interface between the 
application and the IOSys. 

In Figure 30 below, we have introduced a delivery mechanism which enables the 
application and the IOSys to exchange information. If, for example, the application 
issues a request to wait for the next data structure, the IOSys will deliver it when it is 
filled with items through the use of the DS delivery mechanism. 
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Figure 30, The multiprocessor system model. 

In comparison with the single processor system, we have introduced an 
application peer thread for each application thread that exists on other boards in the 
system. Calls from the application threads to the IOSys are marshaled by a wrapper 
class on the application board and demarshaled by the application peer at the I/O 
board. This enables the applications to execute Remote Procedure Calls (RPC) across 
the IOSys API, such as “waiting for data” and “acknowledging data”. A problem 
common to every remote procedure call mechanism is references to data in different 
execution environments. References to complex data types owned by the IOSys 
cannot be passed back to the application thread. Therefore such references are 
substituted with opaque references [Coulouris94 p.129] and complex data structures 
are flattened. The effect of this mechanism is that the application can be written with 
the same semantics as in the single processor case. 
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4.2 Execution Analysis of the Model 
In order to understand the behavior of the system we analyze the execution pattern 

of the system for a delivery of a data structure to the application for both the single 
processor case and the multiprocessor case. In Figure 31 we illustrate data delivery 
over two sample periods (TSample). 

 

 

Figure 31. A single processor execution scenario. 

We can identify five major phases in the execution, which also are common in real-
time control systems based on continuous sampling and actuation of I/O 
peripherals. The Data Acquisition Phase (DAP) represents the total execution time for 
all data collection functions. The Data Delivery Phase (DDP) represents the time for 
delivery of the collected data during the DAP phase to the receiver. The receiver is 
usually an application thread, and the execution of the application is represented by 
the Application Phase (AP) in the execution model. At the end of the application phase 
the buffer used in delivering the data structure is acknowledged and actuation 
actions that may be due are delivered to the IOSys as well. These actions are 
represented by the Actuation and Ack Delivery Phase (AADP). Finally, during the 
Actuation and Ack Phase (AAP), the buffer of the data structure is released in order to 
be used again by the system and data is sent to respective actuation peripheral board. 

We introduce five timing parameters that are representing the executing time of 
each component during the five phases: 

 
• TDAP represents the execution time of IOSys during DAP. 
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• TDDP represents the communication overhead between the IOSys and 
the application during DDP. 

• TAP represents the execution time for the application during AP. 
• TAADP represents the communication overhead between the application 

and the IOSys during AADP. 
• TAAP represents the execution time in the IOSys during AAP 

(acknowledgement of DS). 
 
When the load on the system increases, i.e. application that subscribes to more I/O 

and, it may not be possible to execute the application on the single processor as 
illustrated in Figure 31 below. The first execution of the application thread has not 
been completed when the data acquisition phase begins. Basically, the rate at which 
data is produced is higher than the rate at which the application can consume data. 
This example illustrates only a small timeframe of execution, but is intended to 
illustrate a transient overload. 

 
Figure 32, A scenario in which the application has insufficient execution resources. 

The execution of the same scenario in a multiprocessor system could yield an 
execution diagram as shown in Figure 33 below. Parallel execution of DAP and AP 
could enable an increase in computing resources for the application. But, the 
increased computing resources provided to the application must be compared with 
how much the communication overhead actually is. As can be seen in Figure 33, 
there is an overhead in communication which must be weighed against the benefit of 
having enabled parallel execution. For the application, the communication overhead 
TDDP plus the communication overhead of TAADP on the application board is pure 
overhead. Note that compared to the single processor system, this overhead is 
divided into three phases from a system-wide perspective. The first is the execution 
time of the communication mechanism on the I/O board. The second is the 
communication latency of the channel (illustrated by the dotted arrows) and the 
third phase is the execution time of the communication mechanism on the 
application board. 

A relevant question is how we view and detect deadline misses in the system. Data 
structures (DS) are produced periodically by the stream of data items which originate 
from the data producers. At every instant when a data structure (DS) is ready to be 
delivered to the application, we can study how many previous DS’s have not yet 
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been acknowledged by the application. In short, this property of the system provides 
the age of buffered data. This view is due to the data-driven structure of the system 
and deadlines are thus not associated with the execution times of threads, but rather 
with the delivery and consumption of incoming data. 

 

 
 

Figure 33, example execution of the application in Figure 32 in the multiprocessor 
system. 

4.2.1 Performance Metrics 

Performance metrics [Lilja2000], i.e. quantitative values that are used to describe 
performance of the system, are introduced in this section. We discuss the relevance of 
each of the chosen parameters and how they are calculated. 

• Processor Utilization is a metric that represents the amount of work (in percent) 
performed each measured time interval compared to the amount of processor 
idle time. The granularity of the metric can vary, ranging from fine-grained 
processor utilization measured each sample period (millisecond granularity) up 
to coarsely grained processor utilization measured over the whole 
measurement period (second granularity). In our measurements we have 
measured processor utilization over the whole measurement interval 
(400TSample). This is due to that processor utilization has traditionally been 
measured at a coarse granularity by system developers. We have concluded 
that processor utilization is an important metric to use for two main reasons; 
firstly it is the number one metric used by system developers to measure 
performance, and secondly it is a metric describing performance of the most 
central resource of the system; the processor. 

• In a system where the execution of main application functionality is dependent 
on delivery of sampled data, the age of buffered data is important. A commonly 
used term for describing unimplemented work or unhandled data is the 
backlog. Its importance is due to its ability to indicate a temporary overload of 
the system, as well as indicate response times on for example actuation events 
that are causally related to input data. 
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• Communication-to-computation ratio is a metric that is commonly used to 
indicate the impact of communication in parallel systems. In the high 
performance computing subject area the ratio is usually calculated as the ratio 
between the amount of bytes sent and the computation time, i.e. amount of 
bytes over time [Culler99 p.132]. In our case we are more interested in a metric 
that indicates the performance as communication time over the time available 
for useful work. The definition of communication-to-computation ratio (CCR) is 
thus: 

nComputatio

ionCommunicat

T
T

CCR =
          (1.1)

This definition of communication-to-computation ratio resembles the 
performance definition of parallel architectures introduced by Tokhi et. al. 
[Tokhi2003 p.15]. The difference is that they introduce a ratio that is the inverse 
of our definition, i.e. time of computation over communication. Since we 
compare an architecture consisting of multiple processors with a single 
processor architecture with no communication overhead we would get an 
undefined ratio (division by zero) for the single processor system with this 
definition. Therefore we chose to use our definition. 

• Speedup is a metric that describes the ratio between execution time for one 
system configuration over another system configuration. Usually it is measured 
as the execution time of the task on one processor over the execution time of the 
same task on multiple processors. In our approach of parallel execution of I/O 
system and application components speedup has not been a useful metric. We 
have not intended to speed up the execution of neither the I/O system, nor the 
application, but have had the goal to free more computing resources for the 
system as a whole. In that sense, we adhere more to the scalability over problem 
size definition, see section 2.1.11 and 2.1.3. In a system where each execution of 
application functionality needs to finish each sample period, i.e. application 
with real-time properties, it is more interesting to assume a constant run-time in 
contrast to a constant problem size. Therefore measuring speedup as defined by 
Amdahl was not relevant for our measurements. 

• The round-trip time of nullRPC calls is a metric that measures the time it takes to 
execute a procedure call in a remote execution environment, and where the 
procedure does not perform any actual work. The metric is good as it quantifies 
the minimum communication latency for request-reply protocols, and therefore 
latencies that are a consequence of such requests can be given a minimum 
value. 

4.2.2 Extensions to the Model 

It is possible to extend the model to be more accurate with respect to the actual 
system. These extensions include: 
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• The Data Acquisition Phase (DAP) can be extended to include timing for 
tasks executing within the phase. This would include: 

o Interrupt handling routines during data reception, including 
operating system interrupt dispatchers (ISR) and interrupt service 
routines for the network interface card (NIC). 

o Timing of the protocol stack during reception of data from remote 
data producers. 

Figure 34 below illustrates a scenario where the DAP has been extended to 
show the interrupts from the devices delivering data and the execution of 
IOSys for each interrupt. 
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Figure 34, Extended model of DAP including interrupts and execution time per data 
reception. 

• Execution time induced by correlation dependent on number of items, i.e. 
the work performed in context of the I/O System thread, in order to group 
(correlate) incoming data into respective data structure (DS). 

• Amount of data in every delivery from remote producers. We performed a 
test to see the impact of this in the actual system and found that a variation 
from the minimal amount of data to maximum amount of data yielded a 
processor utilization increase of 3% (20% increase compared to the 
minimum). Most of this overhead is due to correlation activity in the I/O 
System. 

4.3 Implementation and Design of IOMP 
This section describes the design of a software component called Input Output for 

a Multi Processor (IOMP) designed in order to exploit the concurrency between I/O 
system and application/client components. 

4.3.1 Design 

We introduce a mechanism that allows for an application remotely use the I/O 
System and describe the implementation of it and how it can be used together with 
the existing control system. The system has been called IOMP, Input Output for a 
MultiProcessor, and consists of the following components: 
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• An application side wrapper (IOMP Wrapper) for the I/O System API. 
• Application Peers (IOMPPeer) on the I/O System side, one thread servicing 

each application thread. 
• A server (IOMPServer) for servicing application thread in the creation of 

peers. 
• A protocol (IOMPProtocol) utilizing a reliable communication protocol (an 

existing mechanism), enabling communication between IOMPWrapper and 
IOMPPeer. 

 
 

Figure 35, Overview of IOMP. 

Figure 35 above illustrates the IOMP mechanism and its interaction with the I/O 
System. The following sections will describe the internals of each component. 

4.3.2 IOMPWrapper 

IOMPWrapper was designed in order for I/O System API calls to be executed in 
other execution environments. This includes the mapping of the interface for 
creating, reception and acknowledgement of data structures. The purpose is to 
enable easy porting of the original application code towards the IOMP system. As an 
example we illustrate in Figure 36 below how the application code presented in 
Figure 20 should be changed to enable execution in the IOMP framework. A goal 
with the design is to minimize the changes of the application when used in a 
multiprocessor environment. The user (application designer) only has to instantiate a 
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IOMPWrapper object in order for a peer-thread to be created on the I/O System side. 
The wrapper object does, in the context of the application thread, send a request to 
the IOMPServer on the I/O System side, which in turn creates the specified 
IOMPPeer. The design could be described as a tailored RPC mechanism for the 
specific I/O System API. We will see in Section 4.4.3 below that different 
optimizations need to be implemented in order to achieve optimal or near optimal 
performance. 

IOMPWrapper wrapperObj; 
Identifier dataStructureId; 
DataStructure *dataPointer; 
while( running == true ) { 
 dataPointer = wrapperObj.waitForDataStructure( dataStructureId ); 
 executeApplicationCode( dataPointer ); 
 wrapperObj.acknowledgeDataStructure( dataPointer ); 
} 

Figure 36, Application code for execution in IOMP. 

4.3.3 IOMPPeer 

The IOMPPeer thread is created when an IOMPWrapper object is instantiated and 
a connection between those two (the context the IOMPWrapper is executing in and 
the IOMPPeer) is established. If a reliable interconnect is used, it would not be 
necessary to establish a connection, only a uniquely addressable endpoint would be 
needed. The basic design of the IOMPPeer thread is that of a non-terminating loop 
waiting in a blocked state for requests from the IOMPWrapper. Say for example that 
the application invokes the waitForDataStructure() method in the wrapperObj object 
as illustrated in Figure 36. This call will trigger a request to be sent from the wrapper 
object to the peer, which in turn will invoke the waitForDataStructure() function in 
the I/O System. 

4.3.4 IOMPProtocol 

IOMPProtocol is a component that defines how requests and replies between 
wrappers and peers are constituted. The protocol is used by the wrapper objects and 
the peers in order to transparently, from the applications point of view, execute I/O 
System services in the other execution environment. 

The protocol includes the data structures that are being sent between peers and 
wrapper objects, including their sizes and content. Memory references cannot be 
passed back to the caller (in this case the wrapper and application) by the I/O 
System. Such references must be converted to remote object references [Coulouris2001 
p.144] (opaque references). An object does not exclusively represent objects in an 
object-oriented sense. It could also include identifiers and references to data 
structures located in another execution environment. For example, the I/O System 
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does return identifiers and memory references embedded into data structures. These 
references must not be accessed in the other execution environment, but they will be 
used by the peer when a method is invoked. 

4.3.5 IOMPServer 

The IOMPServer is not a necessary part for the execution of IOMP, but provides a 
dynamic way of binding application threads and peers together. An application can 
request for a peer to be created by IOMPServer via the instantiated IOMPWrapper. In 
the case that the user does not want to use IOMPServer, it is possible to explicitly 
define the number of peers and their interaction with each application thread. The 
communication between the application threads and the server is initiated through a 
predefined port. 

4.4 Measurements and Results 
The measurement platform that has been used resembles the model architecture 

illustrated in Figure 30. In order to investigate the effects of a separation of the I/O 
system and application components, we have created a number of system 
configurations which match the behavior of a data-driven periodic system. The 
configurations we are interested in investigating are single/multiprocessor 
configurations with varying I/O data loads. 

4.4.1 Experimental Setup 

We have experimented with actual hardware in the industrial environment, 
building on existing components. Two processor architectures were available and we 
have experimented with both, but focus has been on the more powerful Intel P3 
based architecture. We wanted to vary hardware configuration where possible, 
compare single and multiprocessor configurations as well as vary the input stream of 
data into the system. The single processor setup is illustrated in Figure 37 below. 
Every node, including the remote data producers, is synchronized to a station clock. 
The station clock is connected to the nodes by optical fiber, periodically transmitting 
a synchronization pulse. In the extension, the station clock is usually synchronized to 
some other external clock, e.g. the GPS satellite system. The effect is that every node 
is synchronized at a high precision, a necessary condition for the publish/subscribe 
I/O system to operate correctly (in the cases we need to correlate or group data that 
have been sampled at the same instant). 
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Figure 37, Single Processor Experimental Setup 

Figure 38 below illustrates the two processor based experimental setup. We have 
named the two nodes differently based on their intended operation. The I/O node 
operates the I/O system including the peer part of IOMP. The application node 
operates the application thread. 
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Figure 38, Two Processor Experimental Setup 

All measurements were performed using the VxWorks [Windriverwww] operating 
system. In order to collect data and monitor the system under runtime we used 
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Windview [Windriverwww], a software monitoring tool provided in the Tornado 
IDE environment. Windview is integrated with the kernel, and we used the tool 
exclusively in post-mortem mode. In this mode the monitoring tool continuously 
collects data in a buffer without transmitting any data to the monitoring host. By 
using this mode we minimized the interference and the probe effect compared to 
using a mode where data is periodically sent to the host during runtime. Every 
measurement was performed similarly in order to minimize measurement errors. We 
used a cold start period of 400 TSample, thus allowing for the system to stabilize in 
terms of data deliveries and threads executing during startup. All measurement 
periods were thereafter 400 TSample long during which performance parameters such 
as processor utilization were collected. Since we were experimenting with a complete 
system platform we inspected every trace to ensure that no other system services, e.g. 
the flash control thread, were executing. The flash control thread executes 
periodically on low priority, but since our processor utilization measurement figures 
are based on the fraction of background thread execution, we had to ensure that no 
such threads executed during our measurement interval.  

In order to more easily understand how the system is constituted we have 
included a picture showing the experimental setup of the P3 architecture. The I/O 
node is located to the left and the application node to the right. Optical fibers 
originating from the AnyLAN switch are connected to the NIC located on a CPCI 
carrier board, i.e. the time synchronization hardware board. The nodes used for 
experimenting with the PowerPC based architecture appears in the background. 

 

 
Figure 39, Picture of the system setup, I/O node to the left and application node to the 

right. 

Different configurations are obtained through the variation of three components. 
These components are the hardware configurations, I/O configurations and other 
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system workloads. The purpose of varying hardware configurations is to permit 
reasoning about the feasibility of a separation of the IOSys and applications for the 
respective hardware architectures. The hardware configurations are: 

 
• Single_HW1. Single processor system based on an Intel P3 architecture in a 

configuration as illustrated in Figure 37. 
• Multi_HW2. Multiprocessor system with two Intel P3 processor 

nodes/boards in a configuration as illustrated in Figure 38. 
 
Single_HW1 represents a computer architecture based on an Intel P3 clocked at a 

frequency of 266MHz and with a L2 cache. Multi_HW2 represents a hardware 
configuration in which two Intel P3 based processor boards (same as in Single_HW1) 
are connected a fiber optical 100VG AnyLAN switched network. The 100VG network 
technology [Molle96] has been ratified by IEEE as standard 802.12 and achieves a 
minimum data rate of 100Mb/s. 

We also vary the origin of produced data, and four configurations have been set 
up, please refer to Figure 37 and Table 1. As Table 1 lists, data originates from remote 
nodes through communication over a connection-oriented protocol developed in-
house. Data is periodically produced at a rate of TSample and as data items arrive at the 
node, the IOSys groups (correlates) them into data structures (DS). 

 
I/O Configuration Characteristics 

I/O1 I/O originating from one remote peripheral data 
producer. Remote peripherals communicate with 
the processor board through an in-house 
communication protocol over the 100VG 
network. 

I/O2 I/O originating from two remote peripheral data 
producers. 

I/O3 I/O originating from three remote peripheral 
data producers. 

I/O4 I/O originating from four remote peripheral data 
producers. 

Table 1, I/O Configurations. 

4.4.2 Processor Utilization 

A measure of available system performance is the amount of processor utilization 
over time. The measurements are based on a data collection interval 400 TSample 
periods long and in which TSample is one millisecond in duration. The processor 
utilization metric gives no actual information regarding for example real-time 
responsiveness, but indicates the amount of available processing power. The test 
includes one client thread which waits for an incoming data structure (DS) and 
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immediately acknowledges it. No other work is performed. All four hardware 
configurations have been tested together with the four I/O loads, and the results are 
presented in Table 2 and Figure 40 below. 

 
 I/O1 I/O2 I/O3 I/O4 
Single_HW1 20,5 31,7 46,2 58,6 

I/O App I/O App I/O App I/O App Multi_HW2 
50,6 31,2 60,0 31,0 69,3 31,2 82,3 31,4 

Table 2, Processor utilization over the measurement interval. 

We see that the communication mechanism used between the nodes does affect 
performance significantly, i.e. the overhead of DDP and AADP, but that this 
overhead is rather constant. For example, running Single_HW1 (single Intel P3 
board/node) with the I/O1 configuration leads to a processor utilization of 20,5%. 
The Multi_HW2 multiprocessor configuration indicates that the overhead for the 
communication between the nodes increases the load on each processor by 
approximately 30%. The actual figures for I/O1 indicate a 30,1% (50,6%-20,5%) and 
31,2% overhead for the communication on the I/O node and the application node 
respectively. All I/O from the data producers are handled by the I/O node, hence 
the higher load on that board (50,6% processor utilization with the I/O1 
configuration). 
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Figure 40, A plot of mean processor utilization based on the figures in Table 2. 

The application thread has, in the multiprocessor case Multi_HW2, an almost 
constant amount of processing power available, regardless of the increased amount 
of I/O in the I/O1 and I/O2 case. This is due to the effect of only one data structure 
(DS) delivery across the boards being necessary, irrespective of how many origins the 
individual items in that DS have. In the I/O1 configuration only one data producer 
delivers data items, while in configuration I/O2 two data producers deliver data 
items to the I/O board. This form of de-multiplexing of incoming data into data 
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structures (DS) is the foundation of the benefits of such a separation of I/O system 
and application components. The I/O4 multiprocessor configuration showed the 
largest performance gain for the application functionality configuration. In that case, 
the gain was 27,2% (58,6%-31,4%) less processor utilization (in absolute processor 
utilization terms). The relative improvement for application components is thus 66% 
more available processing resources. 

We observe that the crossover point, where the parallel execution of IOSys and 
application components is beneficial, occurs when loading IOSys with configuration 
I/O2. Loading the system with configuration I/O1 gives a system where available 
processing resources for the application is less when utilizing the multiprocessor 
system compared to the utilizing the single processor system. At the crossover point 
the processing resources available in the single and multiprocessor systems is 
approximately equal. Not until we load the system with the I/O3 and I/O4 
configurations we increase the computing resources for application functionality 
when utilizing the multiprocessor system. 

Measurements on hardware configurations equipped with PowerPC 603 
processors have been performed as well. The multiprocessor configuration of the 
PowerPC processor boards does not manage to consume as many data structures 
(DS) as are produced, even when loading the system with configuration I/O1. 

4.4.3 Optimizing for Performance 

We have identified three interaction approaches that between I/O System and 
application components. They are called the RPC approach, the PreWait Approach 
and the Subscribe Approach respectively. 

4.4.3.1 The RPC Approach 

A RPC mapping of each function call of the I/O System interface is functionally 
feasible for a multiprocessor system, but the approach does not perform well. As an 
example, please refer to Figure 36. Both the waitForData and acknowledgeData 
function calls are request-reply oriented. This implies that the application thread is 
busy waiting for the reply for each of the function calls, thus decreasing performance 
drastically. 
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IOMPWrapper wrapperObj; 
Identifier dataStructureId; 
DataStructure *dataPointer; 
while( running == true ) { 
 dataPointer = wrapperObj.waitForDataStructureAndAck( dataStructureId ); 
 executeApplicationCode( dataPointer ); 
} 

Figure 41, the RPC approach with merged dataWait and ack. 

We (refer to section 4.4.5) have measured nullRPC calls to have a latency of 0.36 ms 
in the system, which implies that approximately one third of the processing 
resources are used busy waiting (with a TSample period of 1ms) when this approach is 
used. The RPC approach illustrated in Figure 36 leads to two request-reply round-
trip communication cycles. This would lead to a approximate total of 0,36 * 2 = 0,72 
ms (based on nullRPC measurements in section 4.4.5) of busy wait at the application 
board. This would in effect nullify the benefits of parallel execution of application 
and IOSys components. As a first step in alleviating the negative effects of two RPC 
calls we merged the two waitForDataStructure and acknowledgeDataStructure 
function calls into the single waitForDataStructureAndAck function call. The effect of 
one RPC call still persists, and the disadvantage of this request-response based 
approach is illustrated in Figure 42 below. Data delivery is triggered by the 
waitForData call issued during the AADP phase. 

 
Figure 42, the disadvantage of a pure request-response based approach. 

Of importance is the high negative impact of inter-processor latencies when using 
the consumer-initiated (receiver-initiated) communication of RPC. The goal is to 
utilize the application board with useful work. Therefore we needed to change the 
interaction between the application and the I/O System. 
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4.4.3.2 The PreWait Approach 

An improvement over the RPC approach is to create a new interface where 
waitForData is issued before the AP is finished calculating on previous data 
structures. In that way the I/O System can operate concurrently with the application, 
and sending the next data structure as soon as all items are received. The buffering of 
data structures is handled by the communication mechanism, i.e. the receive buffers 
of the connection endpoint. This optimization is possible if the application is aware 
of that it will need next data structure at some point of time in the future and where 
the communication mechanism between the peers and the application or 
communication mechanism does support buffering of at least one message. The 
structure of an application we have studied does not prevent this optimization and it 
would have to be rewritten accordingly in order to function without the performance 
decrease incurred by the RPC approach: 

 

IOMPWrapper wrapperObj; 
Identifier dataStructureId; 
DataStructure *dataPointer; 
 
while( running == true ) { 
  dataPointer = wrapperObj.acknowledgeDataAndPreWait( dataStructureId ); 
  executeApplicationCode( dataPointer ); 
  dataPointer = wrapperObj.waitForDataStructure( dataStructureId ); 
} 

Figure 43, the PreWait approach. 

The acknowledgeDataAndPreWait is called at once at data reception at the 
application board. Next function call, waitForDataStructure, is local and progresses 
whenever the next data structure has arrived. The PreWait approach can be 
compared to what is called precommunication for shared memory architectures 
[Culler99 p.838]. With precommunication the receiver/consumer issues a request for 
data before it is needed, in hope that whenever it is needed data has arrived at the 
receiver/consumer. The purpose is to allow the sender, in our case the IOSys board, 
to deliver the data structure when it becomes ready. The effect is that we hide the 
latency of the request-reply approach. The approach was used during measurements 
and the execution diagram for two TSample periods would be as shown in Figure 44 
below. 
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Figure 44, Execution diagram with the acknowledgeDataAndPreWait approach. 

When we compare the PreWait approach to the RPC approach we see that the 
amount of communication overhead is the same with both approaches. Still the 
communication overhead is approximately 30% at each board and can be expressed 
as (on each board): 

AADPDDPdionOverheaCommunicat TTT +=        (1.2) 
The relation determining whether a separation of I/O System and application 

components is profitable compared to the single processor system can be expressed 
as (execution time on the I/O Node): 

 

dionOverheaCommunicatDAP TT >          (1.3) 
and thus: 

AADPDDPDAP TTT +>           (1.4) 
 

In short; this relationship states that the amount of work performed within the 
DAP phase must be greater than the overhead of communicating the data structures 
to the other node. The Communication-to-Computation (CCR) ratio as defined in 
section 4.2.1 is an indicator of the same relationship, i.e. the relationship between 
inter-processor communication overhead and the amount of useful work. A CCR of 1 
indicates an equal amount of communication overhead and useful work performed 
during the measurement period (indicated by the crossover point). A smaller ratio 
indicates a system where a separation of the I/O system and application components 
is beneficial. Figure 45, presents the CCR ratio for the measurements performed. The 
single processor configuration is defined of having a CCR of zero; the time of 
parameter passing of the API function call is neglected. The CCR of the I/O node 
crosses 1 (from 1,47 to 0,89) when introducing a second I/O producer (I/O2), thus 
indicating that we have crossed the crossover point. We have also introduced the 
system wide CCR for the multiprocessor configuration indicating how much total 
communication overhead there exist in the system. 
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 I/O1 I/O2 I/O3 I/O4 
Single_HW1 0 0 0 0 

I/O App Sys I/O App Sys I/O App Sys I/O App Sys Multi_HW2 
1,47 0,31 0,31 0,89 0,31 0,30 0,5 0,31 0,27 0,40 0,31 0,28 

Figure 45, the calculated Communication-to-Computation Ratio (CCR) on each node. 

The relationship that indicates at which point the IOSys board becomes overloaded 
is (as measured during one TSample): 

 

SampleAADPDDPDAP TTTT >++        (1.5) 
 

In the Intel Pentium system configuration a system overload would occur if 
another I/O producer is added, i.e. when subscribing to data from five data 
producing nodes. The conclusion is that the PreWait approach is not suitable for 
system configurations subscribing to data from one or five (or more) remote data 
producers. The PreWait approach gives approximately the same available processing 
resources for the application when subscribing to data from two remote data 
producers and shows an increase in processing resources for configurations with 
three and four remote data producers. 

4.4.3.3 The Subscribe Approach 

The overhead of the RPC and PreWait approach leads us to continue looking for 
more efficient approaches. The IOSys is developed with a publish/subscribe 
methodology in mind. Therefore it would be natural to adopt a system executing on 
a multiprocessor towards this methodology as well. The acknowledgement 
semantics of AADP of the model presented above could be removed since its 
purpose is to free a buffer in IOSys (in a separate execution environment). The data 
structure is already copied into the receiving execution environment. If the 
continuous actuation of peripherals is not needed, which is true for protection 
applications, and calculated values of the application is not remotely exported via the 
IOSys, we may remove the AADP phase during execution (until an event that needs 
actuation occurs). The execution diagram for this approach would then look like 
illustrated in Figure 46 below. 
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Figure 46, Execution diagram without the AADP phase. 

In order to be able to estimate the effects on processor utilization for such an 
approach we measured the difference of receiving and sending data, i.e. the 
processor utilization of DDP and AADP at the IOSys and application board 
respectively. The result was that receiving data is approximately 50% more processor 
demanding compared to sending data. According to this line of reasoning we have 
reduced the communication overhead with 60% on the IOSys board by removing the 
receiving part of the AADP. We also reduced the communication overhead with 40% 
on the application board by removing the sending part of AADP. Figure 47 below 
illustrates the estimated processor utilization when removing AADP, based on the 
figures of Figure 40. Now, the crossover point we observed in Figure 40 has been 
removed, meaning that we release more processing resources for application 
functionality in all I/O configurations. Please observe that Figure 47 does not contain 
measured values, only estimated values when removing the communication 
overhead of AADP. 
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Figure 47, Estimated processor utilization with the subscribe approach. 

According to the model we achieve an increase in available processing resources 
for application functionality when: 
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dionOverheaCommunicatDAP TT <  where DDPdionOverheaCommunicat TT =    (1.6) 
 

which results in: 
 

DDPDAP TT <            (1.7) 
 
The estimated maximum performance improvement (with I/O4) in terms of less 

total processor utilization is approximately 47% (58,6%-12%) and the relative 
improvement for application components is thus 111% more available processing 
resources. 

4.4.4 Latencies 

We have already been reasoning about latencies that deprecate performance for the 
RPC approach in section 4.4.3, Optimizing for Performance. Now, we extend our 
study to include what effects on responsiveness various configurations of the system 
give rise to. Data responsiveness is defined as the response time of the system on 
sampled data. From a system-wide perspective it is defined to be the time from 
sampling the environment to the actuating the system under control. In our model 
and measurements responsiveness on data it is defined to be the time from the 
arrival of data to the processor board until the application is finished using the data. 
It is measured as the number of buffered data structures to be delivered to the 
application. 

4.4.4.1 High Priority System Threads 

In order to estimate how high priority threads affect the execution of application 
threads we introduce a system thread with various workloads. The priority of the 
system thread in the single processor configuration was higher than that of the 
application threads, but lower than that of the communication threads. The thread 
was to represent functionality that need to be handled instantly. 
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Figure 48, Introduction of a high priority system thread. 

Different threads representing different workloads were created, the characteristics 
of these being the time it took to run them without disturbance on a single board.  
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Figure 49, Response time of system thread vs. its undisturbed workload. 

One-millisecond workloads up to 10-millisecond workloads were created and run 
on both hardware configurations Single_HW1 and Multi_HW2. In the single 
processor configuration (Single_HW1) we see that we have a continuously increasing 
execution time for the system thread compared with the ideal undisturbed execution. 
The disturbance, from the system thread’s point of view that leads to its execution 
time increase, is the data stream arriving continuously from the data producers at a 
rate of TSample. In the multiprocessor configuration (Multi_HW2), the system thread 
kept the same priority but in this case, the application thread and the system thread 
did not compete for the same processor. The extra communication overhead between 
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the nodes, which is higher prioritized than the system thread, leads however, to an 
even longer execution time for the system thread (see Figure 49). 

For the same measurement, we also kept a log of how many outstanding data 
structures (DS) not yet acknowledged were queued on the delivery of a new DS, i.e. 
at each sample period. The result is presented in Figure 50 below. 
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Figure 50, Maximum data structure buffer utilization. 

We see that the multiprocessor configuration (Multi_HW2) never has the queue to 
grow. This is due to the parallel execution of the application and the system thread. 
The single processor configuration on the other hand has a continuously growing 
queue due to the fact that the application thread never has the time to consume data 
on the incoming queue. A queue with, for example, six queued data structures (DS) 
will lead to a system that has not reacted on incoming sampled data for at least six 
TSample periods. While this synthetic test is somewhat unfair in since it introduces 
starvation, it can be concluded that for a multiprocessor design (such as Multi_HW2) 
a tradeoff can be made between the responsiveness of the application vs. the 
responsiveness of other system threads. The test also shows that unexpected delays 
not accounted for during design and erroneous behavior of system threads in the 
I/O node does not affect the execution of the application. Thus the robustness of the 
system has been improved. 

4.4.4.2 Network Related Latencies and Contention 

Of importance is the timely delivery of data over the interconnect. The case-study 
system uses an AnyLAN network and while the AnyLAN network is predictable 
regarding traffic scheduling the links are not secure. This meaning that packets 
transmitted over the network can be lost. It is up to the transport protocol to secure 
the delivery of data, detecting a situation where packets are lost and retransmitting 
them. During a measurement period we detected an incurred latency of 1293µs from 
the time the data structure was delivered until the response from the application 
arrived. 
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During measurements we found another source of latency originating from 
contention between the AADP and the DAP. Figure 44 does actually illustrate such a 
situation where AADP (on the IOSys board) delays the DAP and ultimately the AP. 
This situation occurs whenever the application board wants to execute AADP 
concurrently with the DAP on the IOSys board. For most applications this incurred 
latency (in the range of 150-200µs) is not a serious problem, but an effect the 
application designer should be aware of. 

Actuation events should in most cases be higher prioritized than DAP 
transmissions on the link. In the current implementation only normal prioritized 
AnyLAN [HP95] frame transmissions are used. Therefore AADP could use frame 
transmission with high priority in situations where critical actuations need to have 
precedence over data acquisition. 

4.4.5 Synchronous RPC 

The multiprocessor design of Multi_HW2 assumes a clean interface between the 
application and the IOSys. In the multiprocessor case, all function calls in the single 
processor architecture design must be mapped to inter-processor synchronous 
remote procedure calls (RPC). If the function call expects a result of any kind from 
the I/O board/node, execution of that application thread is stalled. Function calls 
that do not need a result could be exchanged with asynchronous RPC calls. RPC calls 
can be resource demanding and can have large round-trip times. In our system, in 
which   application threads are executed every millisecond (TSample is 1 millisecond) a 
high round-trip time can have very degrading effects on performance. We therefore 
measured the round-trip time of null RPC calls utilizing our inter-board mechanism. 
The result was a round-trip time of approximately 0.36 milliseconds, which in our 
system means about a third of a sample period TSample. A conclusion is that RPC calls 
between the nodes must be minimized to the greatest possible extent since even a 
single RPC call would cause a very high performance degradation of the application. 
If the semantics of the application permit, all data needed by the application thread 
should be delivered together with the data structures at the beginning of each sample 
period. 

4.5 PCI-Bus Communication Performance 
In order to estimate performance when utilizing a PCI-bus based multiprocessor 

system, we implemented a communication mechanism that enables tasks to 
exchange messages over the Compact PCI bus. The motivation for this work was to 
analyze and identify threats to efficient communication in backplane bus-based 
computer architecture that is suitable as the multiprocessor platform in a separated 
I/O System and application approach. This section and Appendix A describe the 
implementation of the communication mechanism, called PCICom, and presents 
measurement results as well as a discussion regarding the potential use of it together 
with the IOMP approach. 
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4.5.1 Overview 

The software implementation of PCICom consists of a C++ class that utilizes a 
shared memory area. It is possible to use PCICom in shared memory architectures 
where it is possible to issue processor loads and stores to memory located externally 
to the processors own execution environment. A passive CompactPCI-backplane bus 
architecture, with a system and a non-system board connected to the bus is an 
example of such an architecture. 
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Figure 51, Overview of PCICom. 

The difference between a system board and a non-system board is that the system 
board has a transparent PCI-PCI bridge and the arbiter for the CompactPCI bus (PCI-
PCI bridges not shown for simplicity in Figure 51). A non-system board does have a 
PCI-PCI bridge with configurable address translating windows, enabling filtering of 
CompactPCI memory transactions not intended for the non-system board. In our 
tests, both the System and the Non-System boards were Pentium III boards running 
at 850MHz (CT7 single processor boards produced by SBS Technologies [SBSwww]). 

Each processor board has a notification receiver, responding to interrupt events 
from other boards and the notification receiver is represented by an Interrupt Service 
Routine (ISR). The ISR will be run by an interrupt triggered by transactions to the 
doorbell register in the Intel 21554 PCI-PCI bridge [21554www] residing on the non-
system board. Figure 51 also illustrates how two pairs of threads exchange messages 
over the PCI-bus. A receiving thread, for example T2, will take a semaphore and 
block forever until the release of the semaphore. The sending thread, T4, writes (1) a 
message into next available message entry in queue number two, Q2. Thereafter a 
write to the doorbell register (2) on the Intel 21554 bridge invokes the notification 
receiver ISR on the system board. The ISR will in turn release the semaphore (3) that 
has been taken by T2 and T2 can thereafter read (4) the message in Q2. The same 
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procedure is repeated whenever T1 wants to send messages to T3, but in this case the 
receiver (T3) reads (8) data from shared memory located on the system board. 

4.5.2 Memory Layout 

The first test with PCICom were using a shared memory area on the CompactPCI 
system slot board. VxWorks by default takes control all of the available primary 
memory, which cannot be allowed when defining a shared memory area such as the 
one needed by PCICom. 

System Board

Memory

Controlled by VxWorks
up to sysMemTop()

PCICOM_SHARED_MEMORY (from
system board) and
PCICOM_UPSTREAM_BASEADDRESS
(from non-system board)

sysMemTop()

PCICom

0x00000000

0x10000000

0x08000000

 
Figure 52, Memory Layout on the System Board 

A definition (USER_RESERVED_MEM) in the Board Support Package (BSP) for 
VxWorks was altered so that VxWorks would not use memory allocated by PCICom 
(this limit can be read with the sysMemTop() function). This definition changes the 
amount of memory that will be controlled by VxWorks from the top of the address 
space and downward. The only information that has to be provided by the user to 
find the shared memory area on either processor board (system and non-system) are 
the respective base addresses. On the system board the base address is provided with 
the PCICOM_SHARED_MEMORY definition and on the non-system board it is 
defined by  PCICOM_UPSTREAM_BASEADDRESS. Figure 52 illustrates how the 
memory of the message queues are placed in memory with respect to the operating 
system. From PCICOM_SHARED_MEMORY and towards higher addresses, 
message queues with index 0, 1, 2 up to N are located.  

4.5.3 Performance Measurements 

A number of measurements have been performed to study the behavior of 
communication using the PCI-bus. Each test was made on two SBS CT7 [SBSwww] 
CompactPCI boards running at 850MHz. The first test performed was a uni-
directional communication from the system to non-system board. With the help of 
the spy tool available in VxWorks, the average execution percentage of the 
background task could be observed. A clear tendency could be seen at once; the non-
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system board was being heavily loaded and the processor utilization figures are 
presented in Figure 53 below. 

 
Message Size Frequency System Board 

Processor 
Utilization 

Non-System 
Board 

Processor 
Utilization 

10 byte 1000Hz 1% 3% 
100 byte 1000Hz 1% 7% 
1000 byte 1000Hz 2% 59% 

Figure 53, Processor Utilization with uni-directional communication from system to non-
system board. 

It is clear that performance is suffering from reads from the non-system board over 
the PCI-hierarchy. Even at moderate 1000 bytes sent at a frequency of 1000Hz 
(˜ 1MB/s) the non-system board was suffering under heavy load. 

In a second test two message queues were created and we stressed the system with 
a ping-pong test. One thread on each board exchanges messages in an interleaved 
fashion, without any delay. Complete copying from the memory area of each thread 
to the other is performed in the process. This test yielded results that are presented in 
Figure 54 below. The SendReceive threads represent user threads performing ping-
pong message passing. Bkgnd is a thread running at a low priority, i.e. the idle 
thread. Kernel is the fraction of time spent in the kernel, e.g. scheduling, and Int 
represents the fraction of time spent at interrupt level. 
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Message Size Messages per 
second and 

direction 

Load on 
individual threads 

or modules on 
System Board 

Load on 
individual threads 

or modules on 
Non-System 

Boards 
1000 byte 2200 SendReceive 1% 

Bkgnd 96% 
Kernel 0% 
Int 1% 
 

SendReceive 95% 
Bkgnd 2% 
Kernel 0% 
Int 1% 
 

100 byte 15200 SendReceive 4% 
Bkgnd 87% 
Kernel 2% 
Int 5% 
 

SendReceive 75% 
Bkgnd 13% 
Kernel 2% 
Int 7% 
 

10 byte 34000 SendReceive 9% 
Bkgnd 70% 
Kernel 6% 
Int 14% 
 

SendReceive 51% 
Bkgnd 28% 
Kernel 5% 
Int 14% 
 

0 byte 45400 SendReceive 11% 
Bkgnd 60% 
Kernel 6% 
Int 20% 
 

SendReceive 38% 
Bkgnd 35% 
Kernel 6% 
Int 20% 
 

Figure 54, Performance of Ping-Pong test between system and non-system boards. 

Two conclusions can be drawn from these figures. Firstly, as has been noted 
earlier, the reads from the non-system slot are disastrous for performance and is 
reflected in the load on the SendReceive thread on the non-system board. The 
SendReceive thread is responsible for reading the message, and in the case of large 
messages the execution of this thread is occupying the whole processor. As the 
messages become smaller and smaller, the significance of the reads become lesser, 
while the significance of context switches and interrupt handling becomes more 
significant. The Kernel module and interrupt module figures in Figure 54 are good 
indicators on context switch overhead and interrupt overhead. The performance of 
pure notification, where the message size is zero, is quite impressive. The boards are 
able to handle 45400 interrupts, including one semaphore release and one context 
switch to the receiving thread per second. 

Another interesting figure to note is the load on SendReceive on the system board 
in the case of large messages of 1000 bytes where the CPU load is as low as 1%. This 
is due good memory locality, i.e. PCICom copies to a memory with primary memory 
on the board itself. 
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The significance and latency of bus transactions on the PCI-bus was analyzed with 
a bus-analyzer from VMETRO [VMETROwww], and a timing sample is presented in 
Figure 55 below. The figures are taken from a test with a message size of 100 bytes 
and the analyzer was placed on the CompactPCI-bus. Bus access latencies, the 
amount of time that expires from the moment a bus master requests the use of the 
PCI-bus until it completes the first data transfer of the transaction, consist of three 
components; arbitration latency, bus acquisition latency and target latency 
[Shanley99]. In a bus-hierarchy as in the case of a local PCI-bus and a CompactPCI-
bus, these latencies will accumulate. 

 

 
Figure 55, Timing on reads from the non-system board to the system board. 

Each address that will result in a 4 byte transfer from system memory on the 
system board to the non-system boards, will also take a long time to complete. The 
first transfer shown in Figure 55 takes as much as 956,8ns + 149,5ns + 149,5ns + 
149,5ns + 149,5ns 179,4 = 1734,2ns. This represents 1743,2ns / 29,9ns = 58 PCI clock 
cycles. During this time the processor on the non-system board is busy waiting for 
the result of the transaction. A large amount of processing power is thus wasted. 

 Figure 56 below shows the figures from our test where the non-system board 
issues writes over the CompactPCI-bus to the shared memory area on the system 
board. Timing is much better compared to issuing reads from the non-system board, 
but not optimal. The first write marked in the figure takes 149,5ns (five PCI-clock 
cycles) and the next, due to burst effects, allocates only one PCI-bus cycle (29,9ns). 

The positive effects of using write-buffers is a well-known fact [Patterson98 p.554], 
but the tests also show the necessity of know the limitations of PCI-bus transactions 
in a bus-hierarchy. Memory references issued transparently transferred over the PCI-
bus hierarchy to memory locations with bad locality can sacrifice many clock cycles 



 109 

for the processor. The correct utilization of bursts must be exploited as well as correct 
use of the 256 bytes of posted write and 256 bytes read buffers in each direction in the 
Intel 21554 PCI-PCI bridge. It is interesting to note that latencies through a PCI-to-
PCI bridge has been reported to be in the order of tens of nanoseconds to 
milliseconds [Chamé98]. 

 
Figure 56, Impact of writes over the CompactPCI-bus and the bus hierarchy. 

4.5.4 Message Passing Utilizing Writes over the PCI-bus 

PCICom was modified to support multiple shared memory areas, enabling 
message passing with only writes over the bus hierarchy as illustrated in Figure 57 
below. The timing and performance to message-passing was greatly improved as can 
be seen in the figures shown in Figure 58.  
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Figure 57, PCICom modified to support multiple shared memory areas. 

The throughput reaches its maximum when 1000 byte large messages are sent. In 
that case 14450 messages * 1000 byte ≈ 14,5 MB/s is transmitted in each direction. 
The theoretical maximum throughput of the PCI-bus is 32bit * 33MHz ≈ 132MB/s 
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which is much better that the figure presented by PCICom (14,5MB/s * 2 = 29 MB/s). 
PCICom is thus approximately 132/29 ≈ 4,5 times slower than theoretically 
achievable. Theoretical throughput is only achievable when achieving long bursts on 
the bus. Sustained throughput of PCI-based communication has been reported to be 
in the range of 70-80 MB/s [PLXwww] and lower figures are common for most 
practical situations, i.e. a system with multiple competing devices. DMA 
performance for devices located on the local PCI bus have shown to be able to 
achieve 80-90 MB/s or even 130MB/s in some cases and as low as 68 MB/s in other 
cases [Moll97]. 

 
Message Size Messages per 

second and 
direction 

Processor 
Utilization of 

individual threads 
or modules on 
System Board 

Processor 
Utilization of 

individual threads 
or modules on 
Non-System 

Boards 
1000 byte 14450 SendReceive 43% 

Bkgnd 48% 
Kernel 2% 
Int 6% 
 

SendReceive 45% 
Bkgnd 46% 
Kernel 2% 
Int 6% 
 

100 byte 36750 SendReceive 31% 
Bkgnd 46% 
Kernel 5% 
Int 16% 
 

SendReceive 26% 
Bkgnd 50% 
Kernel 5% 
Int 16% 
 

10 byte 43150 SendReceive 27% 
Bkgnd 47% 
Kernel 6% 
Int 18% 
 

SendReceive 23% 
Bkgnd 53% 
Kernel 6% 
Int 17% 
 

0 byte 45400 SendReceive 25% 
Bkgnd 48% 
Kernel 7% 
Int 19% 
 

SendReceive 23% 
Bkgnd 50% 
Kernel 7% 
Int 19% 
 

Figure 58, PCICom issuing only writes over the PCI-bus. 

Based on the measurements described above the conclusion when implementing a 
communication mechanism where the processor is responsible for the data exchange 
is: 
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In order to avoid costly request-reply data exchange in a PCI-bus 
hierarchy, issue processor writes from the sender processor instead of 
reads issued from the receiving processor. 

4.5.5 PCI-bus as the Communication Mechanism in the Case-Study System 

The figures presented in Figure 58 above can give us indications on latencies for 
the round-trip times for request-reply protocols, e.g. RPC calls. Based on the amount 
of messages sent in each direction each second (from column 2 in Figure 58) we can 
calculate approximate timing for round-trip times (the uni-directional latency times 
two): 

 
Message size 
(bytes) 

Estimated 
Round-Trip 
Latency (µs) 

0 (nullRPC) 44 
10 46 
100 54 
1000 138 

Figure 59, Round-Trip latency. 

In section 4.4.5, synchronous RPC, we measured round-trip latency for function 
calls over the 100VG network. It is interesting to compare the difference between the 
round-trip latencies for the distributed approach and the CompactPCI bus-based 
approach. They are both executing on Pentium 3 architectures, but the processor 
boards were clocked approximately 3 times faster (850MHz vs. 266 MHz). In the 
distributed system using IOMP, the round-trip latency was 360µs. Compare this to 
44µs for the estimated round-trip latencies for nullRPC over the CompactPCI 
hierarchy we get a 360µs/44µs ˜  8 times ratio. Assuming a performance ratio of 3 
between the two architectures we may estimate a lower limit of the ratio to 8/3 ˜  2,7. 
These figures are approximate but can indicate if synchronous RPC is feasible for a 
PCI bus based approach. 44µs corresponds to 4,4% of the sample period, TSample, 
which is a substantial amount of time. The conclusion is that RPC is still inefficient as 
a programming model when using a Compact PCI bus-based architecture and where 
system periodicity is high. 

In our case-study system the transmission of data structures (DS) during the DDP 
and AADP phases for the distributed system accounts for approximately 18% 
communication overhead on the receiving side (as discussed in section 4.4.3.3) and 
12% communication overhead on the sending side. With a properly tuned PCI 
communication mechanism, the load of transmitting 1000 bytes at 1000Hz will yield 
a 2% system load (according to Figure 53) and transmitting 100bytes in 1000Hz will 
yield a system load of 1%. The overhead of delivering Data Structures (DS) between 
processor boards in such a system is minimal. 
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5 Conclusion and Future Work 

Industrial systems designed for execution in a single processor environment are 
not necessarily able to scale on multiple processors effortlessly. Scalability is 
dependent on parameters such as the available hardware architecture alternatives, 
the available operating systems for those architectures, the available communication 
system as well as the ability of middleware and application level functionality to 
scale. Given an industrial system with an intelligent I/O system, it is possible to 
improve performance by executing the I/O system and application components in 
parallel. 

5.1 Research Questions Revisited 
This section summarizes our conclusions and the answers found to the research 

questions stated in section 1.2. The first question was formulated as: 
 

1. “Which time-critical software system components utilize the most processor 
resources and do they show a large amount of mutual concurrency?” 

 
The answer to this question was found by studying source code as well as 

executing systems, monitoring the operating system, platform and applications. The 
system consists of the major components illustrated in Figure 19, each with its own 
software structure and run-time properties. Each component exhibits a certain 
execution pattern depending on how it is triggered by the arrival of data (the I/O 
system and protection system of applications) and other external events (such as the 
synchronization mechanism that is triggered by synchronization pulses). Other 
system components are triggered by internal events such as periodic triggers (the 
watchdog task) or data delivered by other system components (such as system event 
functionality and logging activity). The results of system analysis showed a system 
execution pattern that periodically begins with data acquisition followed by 
application protection functionality. In order to describe and reason about system 
performance we developed the model described in section 4.1 and performed the 
execution analysis in section 4.2 (also described in [Enblom2003]). 

Why did we choose to study the separation of I/O system and application 
components? Firstly, because the two components showed a large amount of mutual 
concurrency (in a pipelined producer-consumer fashion) and secondly, because of 
the combination of the time-critical and resource-demanding parameters. Data 
arrives periodically and must be handled by the system immediately. Applications 
must be adapted to finish before the next data arrival, i.e. be tuned to fit in the time-
slot available. Other system functionality such as flash disk recovery tasks or logging 
tasks execute in the remaining slack available in the system (the system is tuned to 
show an average processor utilization rate not exceeding a certain amount less than 
100%). Leaving the uniprocessor system intact and executing logging functionality 
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on a different processor is an alternative to the parallel execution approach. This 
functionality is however subordinated to (given lower priority than) the time-critical 
data acquisition and application functionality and this approach cannot help in 
freeing more processing resources, for neither the I/O system nor the application. 
The approach could on the other hand free more processing resources for the logging 
task, but this was not of great interest in our system. Thus, the choice of separating 
I/O system and application components was a combination of the time-critical and 
resource- demanding nature of the system architecture. Components that exhibit a 
large amount of mutual concurrency and a relatively small amount of data exchange 
are suitable candidates for parallel execution. The I/O system and application have 
both of these properties. 

In addition to the mutual concurrency that exists among I/O system and 
application components, we utilized the correlation functionality of the existing I/O 
system to offload the application node. The correlation functionality can be used with 
the following effects on a separation of I/O system and application components: 

 
• The I/O node running the I/O system shields the disturbances of interrupts, 

communication protocol processing, as well as correlation functionality from 
the execution of application functionality on the application node. 

• The concept of data structure delivery upon completion gives rise to only one 
notification event, we shield the application node from a varying load of data 
producers. 

• Correlation is necessary in shielding application nodes from the varying 
amount of I/O deliveries. If the correlation functionality was not present a 
separation of I/O system and application components would yield as many 
notifications to the application node as to the I/O system node. Much of the 
benefit of separation would then be lost. 

 
2. “Given the existing software architecture, can the components requiring the 

utilization of a considerable proportion of available processor resources scale on 
a distributed or bus-based multiprocessor architecture and how does the 
suggested parallel execution of the concurrent system components affect 
performance?” 

 
Our studies have shown that, given a sampling frequency of 1000Hz and off-the-

shelf hardware components, the system can scale on a two-processor distributed- 
system architecture by introducing an I/O system node. The inter-node 
communication overhead however is quite processor demanding. Yet, the approach 
can free computing resources for system configurations that need data from multiple 
remote data producers. The case study showed approximately 30% processor 
utilization on each processor for the communication between the processor boards. 
In cases in which the I/O system utilizes the processor less than the processor 
utilization overhead of inter-processor communication with the distributed solution, 
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no processor resources are freed for the application. If, on the other hand, the I/O 
system processor utilization becomes greater than the distributed overhead, the 
available processing resources have increased for the application (as discussed in 
4.4.3.2). Performance measurements with a message-based communication 
mechanism on a CompactPCI system indicate that overhead for the communication 
between the processors can decrease significantly for such architectures. When the 
interaction pattern between I/O system node/board and the application node/board 
is retained, CompactPCI architecture can lower the communication overhead to the 
range of a few percent (see section 4.5). 

The results have been obtained from a distributed test platform based on 
communication over an AnyLAN network, but conceptually the results should be 
similar for non cache-coherent non-uniform memory access (NCC-NUMA) hardware 
architectures based on message-passing. Such a solution has been proposed in 
[Enblom2001]. An example of NCC-NUMA architecture would be, for example, a 
Compact PCI (CPCI) backplane bus-based system equipped with multiple slots, each 
possibly holding a processor board. The processor boards inserted into the slots are 
able to access shared memory over the bus-hierarchy, but no memory-coherency 
support is provided by hardware. Issues regarding functional partitioning are much 
the same as in the distributed system. On the other hand, round-trip latency timing 
for RPC calls would be much lower due to lower bus latencies and the less processor-
demanding message-passing communication mechanism. In this context it is relevant 
to identify the similarities between the distributed and a backplane bus-based 
architecture. They include: 

 
• All resources in both architectures, such as interrupt controllers, local memory 

and peripheral buses are local to each processor node/board. The only means 
of communicating between processors is over the interconnect (backplane bus 
or network). 

• Moving tasks/threads from one processor environment to another is 
performance-demanding and employed seldom in real-time systems. In the 
backplane bus-based architecture however, the system can access data in a 
global memory area. Therefore the same task, if the code is located on multiple 
boards, can potentially execute on multiple processor boards. Yet, we have seen 
(in section 4.5.5) that accessing memory on another processor board can be a 
threat to performance due to latencies. A task/thread usually obtains resources 
such as file-pointers, memory allocated from the heap as well as the stack, from 
its local processor. Migrating from one processor to another in a backplane bus-
based architecture includes moving the complete state of the task/thread from 
one processor to another. An approach in which the stack and the heap are 
placed completely in a global shared memory will suffer from the same 
performance limitations as the study in 4.5.5 suggests. Thus, efficient 
partitioning of system components, such as locating I/O system and application 
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components on separate boards/nodes will be the most fundamental factor in 
both the distributed architecture and backplane bus-based architecture. 

Differences do however exist between the distributed architecture and the 
backplane bus-based architecture: 
• The inter-node bandwidth differs by a factor of approximately 10 (~132MS/s 

compared to ~12,5MB/s) 
• In the distributed architecture, inter-processor communication is limited to the 

sending of packets over the network. In the backplane bus-based architecture 
processor load/stores can access remote memory. Sending and receiving data 
packets over the network involves a respectable amount of code to execute on 
both the sender and receiver side. The startup time of sending and receiving 
packets is high compared with the amount of data sent. In the backplane bus-
based architecture, the ratio between startup time and the time per sent packet 
is smaller. 

 
Conclusions and results regarding processor utilization include: 
 

• Given the interconnects available in this study (100VG-AnyLAN and a 
backplane PCI-bus) the fine-granular execution of data acquisition and 
application execution give rise to relatively high communication/computation 
ratios. The communication mechanism used between the boards should require 
the least possible resources in terms of processor utilization. The 
communication mechanism used for inter-processor communication should 
ideally be less demanding of processor resources than the communication 
mechanism used to receive data from remote I/O boards during DAP. 

• Parallel execution of I/O system and application components has a number of 
positive and negative effects on the system. The main positive effect is that 
more processing resources are released for application components for systems 
that subscribe to data from many remote nodes. 

• Due to less contention with the I/O system activities, application functionality 
gives a stable amount of processing resources with the approach using multiple 
processors. 

• Powerful hardware architectures are more suitable for use in the distributed 
architecture approach because they demand less processor resources for 
communicating between the nodes (we compared the PowerPC 603 and the 
Intel Pentium3 architectures). Even more powerful future architectures will 
improve this further. 

• The amount of data delivered between the I/O node and application node has 
little effect on processor utilization. The application node shows the same 
processor utilization figures (between 31,0% and 31,4% when using 
configuration I/O1 to I/O4). 
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• Instruction level parallelism (ILP) is exploited by the processor architecture. We 
have exploited existing thread level parallelism (TLP) in the form of pipelining 
(producer/consumer parallelism). 

• We have shown that, provided that the interaction between system components 
on the different processors is kept to a minimum, the distributed system can 
reach 27,2% less total processor utilization for the application node (with the 
RPC approach). This represents 66% more processor resources available for 
application components. The estimated increase in performance (with respect to 
reduced total processor utilization) reaches 46% when using configuration I/O4 
(adhering to the subscribe approach in section 4.4.3.3). This represents 
approximately 111% more processor resources available for application 
components. For the substation automation system which has been the target of 
this work, a distributed multiprocessor system solution can therefore increase 
the performance capability of the application components. 

• Other system functionality, such as system threads with high priority suffer loss 
of performance in terms of increased response-times. 

• The semantics and communication pattern at the interface between the I/O 
system and application components can affect performance significantly. We 
identified three interaction patterns; the RPC, the PreWait and the Subscribe 
patterns (called approaches in chapter 4.4.3). The only practically feasible 
patterns are the PreWait and the Subscribe patterns where the Subscribe pattern 
will introduce the least communication overhead. 

• The latency-hiding technique of precommunication used in the PreWait 
approach enables the system to tolerate the high round-trip latencies of a 
request-reply protocol. The RPC approach cannot exploit any latency-hiding 
techniques unless the system is able to find concurrent work when waiting for 
the reply. If multiple threads are available for execution, the application node 
could exploit this available thread level parallelism (TLP), but unfortunately the 
critical path within applications is contained within the context of one thread. 

• With both the RPC approach and the PreWait approach, the communication is 
receiver-initiated, with the inherent round-trip latency as a result. The subscribe 
approach on the other hand is sender-initiated, inherently eliminating the need 
for a two-way protocol. 

• In both the RPC and the Prewait approach, issuing a complete two-way 
request-reply cycle for each function call is a waste of processing resources.  
Merging multiple independent function calls into a single call can therefore be 
advantageous. We did this with the waitForDataStructureAndAck() function 
call, thereby eliminating one RPC round-trip. 

 
Conclusions and results regarding data latencies, response time to important system 
events as well as inter-processor round-trip latencies include: 
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• Inter-processor synchronous RPC, i.e. client/server semantics between 
processor boards, is performance-costly semantics and should be avoided. 

• By exploiting the inherent correlating functionality of the I/O system we are 
able to shield the numerous interrupts and data receptions occurring on the I/O 
node from the components of the application. For example, configuring the 
system with four remote data producers (I/O4) leads to four interrupts from 
the AnyLAN NIC each TSample period. Correspondingly, only one interrupt 
originating from the AnyLAN NIC occurs each TSample period on the application 
node. 

• By communicating between two nodes in a network we have introduced 
another source of latency in comparison with the single processor system. In 
section 4.4.4.2 we describe the issues of lost packets in the network and 
contention between I/O system communication traffic and inter-node 
communication traffic. For most systems, lost packets introduced an acceptable 
delay while contention was the origin of a minimal delay. 

5.2 A Condensed Summary 
The most important conclusions from this work are: 

• By introducing an I/O Node as shown in Figure 60 below can shield the 
application from the disturbing communication activities, thus enabling a 
more predictable execution of application components. 

• Utilizing two nodes has been measured to give up to 66% more processing 
resources for the application components. 

• The interaction pattern between the I/O node and the application node is of 
significance. An analysis showed that relying on a subscribe approach 
between the nodes is appropriate. 

Data
Producer

Data
Producer

Data
Producer

Data
Producer

I/O Node
Correlation Activities

App. Node

 
Figure 60, Conceptual view of the I/O Node approach. 
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5.3 General Applicability 
The focal point of this work was the case-study system and the problems of 

parallel execution for that particular system. It is therefore hazardous to draw any 
conclusions general applicable to all industrial automation systems. However, 
systems with the same general design and structure as the case study in this thesis 
are potential candidates for the improvement of performance by parallel execution. 
System properties such as periodic data arrival, data acquisition from remote nodes 
via a network, concurrent data acquisition and application phases, data driven 
application execution and limitations on power dissipation from processor boards 
are important system characteristics. In brief, we have exploited pipelined 
concurrency already present in a real-time industrial automation system by 
introducing an I/O system proxy node in order to improve the system performance. 
Performance was possible through the use of the correlation functionality of the 
existing I/O system. This enables applications to specify the data that is it interested 
in to the I/O system. Systems that have correlation functionality (on for example 
timestamps) and have the same execution patterns as the model in this thesis 
describes, can potentially improve performance for application functionality by 
parallel execution of I/O system and application components. There are many issues 
of interest for further study in this field and a number of such issues will be outlined 
in the next section. 

5.4 Future Work 
Many parameters are involved during the execution of a real-time control system, 

and the system designer needs to have a broad holistic system view and to 
understand how parameters and properties cooperate. The demand for more 
performance for new functionality is continuously increasing as is the demand for 
supporting high rates of I/O sensor sampling. Multiprocessor solutions need to be 
considered even in systems which have been designed solely for a single processor 
environment. We outline below two areas and some other general directions for 
future study we consider to be of interest: 

 
1. Hardware architectures and hardware accelerators. We have in chapter 3 already 

discussed possible hardware architecture alternatives intended to improve the 
performance of the system. We now briefly discuss investigations in other 
directions which could be undertaken. 

 
1.1. The parallel system explored in this thesis statically partitions components 

onto different processor boards and into different processing environments. 
Alternative multiprocessor hardware architectures would be, for example, 
Symmetric Multiprocessors (SMP). The main benefit of such hardware 
architectures is that they provide a shared view of memory for all the 
processors and achieve coherency among processors by means of hardware. 
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Since all the processors have the same access to hardware components and 
memory, it should be possible to move a multithreaded application, 
originally designed for a single processor system, into such an environment. 
The need for an operating system with SMP support arises in this context as 
do the price/performance ratio and power dissipation issues. Are SMP 
systems a credible alternative and are they feasible in real-time and 
embedded control environments? These are questions that need to be 
answered. 

1.2. The test system presented in this thesis has been configured working with 
only one sampling frequency. Interesting measures with such systems would 
be to decrease the sample period time, thus achieving a more frequent data 
delivery. Questions then arising would be how well modern processor 
architectures would behave with this increase in both the amount of arriving 
data as well as the increased notification overhead in the form of an increased 
volume of interrupts and network traffic. 

1.3. Mixed configurations of cheaper/less powerful processor boards and more 
expensive/more powerful processor boards can lead to a more balanced 
workload for different I/O configurations. This is one parameter in a future 
price/performance study that could also include the study of different 
processor architectures, performance issues regarding cache sizes and 
different system memory footprints. 

1.4. Operating system accelerators. Research in this field needs to advance into 
accelerating more functionality, traditionally implemented in operating 
systems. If the operating system functionality such as clock tick 
administration, scheduling and IPC is a major bottleneck in the specific 
system, an existing operating system accelerator might improve performance. 
Areas of study which would be of interest include memory allocation 
accelerators and hardware support for accessing performance-demanding 
devices such as network adapters. But, we are certain that the sequence of 
system design and development should focus on system components scaling 
on multiple processing elements before identifying the magnitude of the 
operating system overhead. 

1.5. Hardware acceleration of specific application algorithms and logic may 
benefit from hardware acceleration. We determined that concurrency of 
application protection functionality was inadequate for exploitation within 
the architectures we studied, but the use of a dedicated hardware accelerator 
for FFT algorithms could still be a performance-improving approach. 

 
2. Communication and I/O system middleware for industrial automation systems. 

2.1. Data flow patterns in industrial automation systems and distributed real-time 
systems are a challenging topic. We have investigated the separation of 
application components from a communication middleware with specific 
publish/subscribe characteristics. Such characteristics of the flow of data are 
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common in sampling systems, but companies usually develop their own 
methodology for handling such systems. The Data Distribution Service (DDS) 
for distributed real-time systems [DDSRTS2003] has been issued recently by 
the OMG group (see section 2.4.4.6). This shows how immature the interfaces 
for such systems have been and that the specific needs of various target 
systems should be compared with what such a standard offers. 

2.2. The need for an increased sample rate is not acute but could give more 
precision in applications and thus an advantage over competitors. If we 
should increase the sample rate to 2000Hz, how does this affect the system? 
Will application components be able to execute once every sample period or 
must other approaches be exploited? Which I/O system characteristics are 
then needed to fulfill system requirements? 

2.3. Further study of the need to utilize correlation as a means to offload the 
clients/applications from I/O system activity would give valuable insight 
into predictability, efficiency and performance characteristics. 

3. Other directions. 
3.1. With the introduction of multiple processors, the software developer is facing 

more system complexity. Attention needs to be focused on the design of   
multiprocessor software which achieves adequate performance and scales 
well.  Identifying and designing clean interfaces between I/O middleware 
and applications for existing products can pave the way for parallel execution 
and improved performance. Component based design that avoids request-
reply semantics would be an interesting subject for study for maintainability, 
reuse and performance reasons. 

3.2. In this work we have only examined the performance of a system with one 
application node. Having multiple application nodes with a single I/O node 
could yield interesting new insights into both the advantages and 
disadvantages of a separation of the I/O system and the applications. 

3.3. Future work could also include a study of the parallelization of other system 
components such as parallel databases. Even though our impression is that 
the granularity of this functionality is too fine to scale well in a bus-based and 
distributed processing environment. 

 
The future work topics above have not been listed by priority. We think that the 

topics regarding middleware for industrial systems are the most important to study, 
especially the use of correlation functionality to enable the execution of an I/O node. 
The TAO [Schmidt98] project team has incorporated correlation functionality in their 
framework but do not seem to evaluate the possibilities of correlation to introduce an 
I/O node or proxy. 
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7 Appendix A, PCICom 

This section encapsulates implementation specific parts of PCICom. 

7.1 Message Queues 
Each queue is represented by a data structure and the memory layout of PCICom 

is illustrated in Figure 61 below. 
 

Queue 0

Queue 1

Queue N

Uint 32 boards[ PCICOM_NUMBER_OF_NONSYSTEM_BOARDS]
 

Figure 61, PCICom memory layout. 

Each message queue consists of the data illustrated in Figure 62. A top and bottom 
pointer will govern the message queue in order to make it function as a ring-buffer. 
Since only one writer and only one receiver is active at every instant, there will be no 
requirement on mutual exclusion. A flow control field has been added for future use. 
Each message entry is limited to PCICOM_ENTRY_SIZE and is accompanied by 
information of the size of the message and the id of the sender. 

top bottom

message 0 [PCICOM_ENTRY_SIZE]

flow
Cont. index not allocated

sendersize

message 1 [PCICOM_ENTRY_SIZE]sendersize

message 2 [PCICOM_ENTRY_SIZE]sendersize

message PCICOM_NUMBER_OF_ENTRIES
[PCICOM_ENTRY_SIZE]sendersize

 
Figure 62, Data structure of each queue. 

This version supports only one reader and one writer per message queue, in order 
to avoid synchronization among multiple writers/senders. If there is a need for 
multiple writers this functionality can be added in the future by introducing a 
mutual exclusion mechanism among writers or by letting every sender have a unique 
message queue. It is important to understand that if the senders are located on 
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multiple processors, mutual exclusion has to be achieved between them. It is possible 
to use the LOCK# functional signal to achieve atomic read/modify/write 
transactions on the PCI-bus and thus being able to create shared semaphores among 
nodes. At present PCICom is capable of these features and limitations listed below: 

• One reader per message queue. 
• The system board is responsible for initialize the message queues at startup. 
• Senders cannot synchronize. If multiple senders/writers want to send a 

message to the same queue in the future, they must synchronize. With the 
current implementation it is possible that an interrupt is issued from multiple 
boards to the receiving boards before a previous interrupt has been 
acknowledged. If used together with the IOMP mechanism, where only one 
application thread interacts with exactly one peer, this limitation is acceptable. 

The PCICom class acts directly upon the peripheral registers and data structures, 
which makes PCICom feasible to use in operating system environments where user 
threads are allowed to act upon hardware directly. In this work VxWorks has been 
used as the operating system. When using PCICom in an operating system 
environment supporting kernel and user space, some redesign is necessary 
(introducing system calls, copying between user and kernel space as well as adapting 
the code to a specific device driver methodology). 

7.2 Interface 
Every sender and receiver has to instantiate the PCICom class, and has to provide 

parameters that will point out a specific index, setting the type of the queue and 
determine if it is a sender or a receiver . 

PCICom( Uint32 in_index, Uint32 in_senderReceiver, Uint32 in_queueType ) 
The constructor that will enable the user to access the queue through the 
instantiated object. If the user instantiated the object as a receiver, a semaphore 
will be created that afterwards will be used by the receive method to wait for 
messages. 

Uint32 PCICom::send( const void *data, Uint32 length, Uint32 timeout, Uint32 
priority ) 

Sends a message of size length to the receiver (receiving queue was declared at 
instantiation. 

Uint32 PCICom::receive( void *data, Uint32 *length, Uint32 timeToWait ) 
Through this method a thread can wait a period of time defined by 
timeToWait for a message to arrive to the queue. The user is responsible for 
having allocated at least the size of an entry at the memory area where the 
data pointer points to. 

void PCICom::notify( void ) 
This method is used by the send method and notifies the receiver about a sent 
message. It is not intended to be used by the user and is therefore declared  to 
be private to the class. 

Uint32 PCICom::init( Uint32 in_boardNumber, Uint32 in_numberOfBoards ) 
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This method should be used at initialization of the application before any 
objects are created. It configures the board according to if it is a system or a 
non-system board. The 21554 bridge and the queues are configured according 
to the definitions in  PCIComDefines.h. 

void PCICom::boardInitialized( Uint32 boardNumber ) 
This method should be used by the non-system boards to notify the master 
that they are configured and executing. 

void PCICom::synchronize( Uint32 nice ) 
A method that enables the master to wait for all other boards to come up 
before it continues. The user can through the nice parameter calibrate the 
polling period of the status of the non-system boards. 

void PCICom::ISRNonSystemBoard( int parameter ) 
void PCICom::ISRSystemBoard( int parameter ) 
The Interrupt Service Routines that are responsible for acknowledge issued 

interrupts and awakening the receiving thread. 


