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Assessing the impacts of a mobility initiative prior to deployment is a complex task for 
both urban planners and transport companies. Computational models like Tangramob 
offer an agent-based framework for simulating the evolution of urban traffic after the 
introduction of new mobility services. However, simulations can be computationally 
expensive to perform due to their iterative nature and the microscopic representation of 
traffic. To address this issue, we designed a simplified model architecture of Tangramob 
in Timed Rebeca (TRebeca) and we developed a tool-chain for the generation runnable 
instances of this model starting from the same input files of Tangramob. Running TRebeca 
models allows users to get an idea of how the mobility initiatives under study affect 
the traveling experience of commuters, in a short time and without the need to use the 
simulator during this first experimental step. Then, once a subset of these initiatives is 
identified according to user’s criteria, it is reasonable to simulate them with Tangramob 
in order to get more detailed results. To validate this approach, we compared the output 
of both the simulator and the TRebeca model on a collection of mobility initiatives. The 
correlation between the results demonstrates the usefulness of using TRebeca models for 
unconventional contexts of application.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Being part of a continuously growing population, which is expected to shift from 7.3 billion to 9.6 billion inhabitants 
by 2050 [1], urges us to re-think urban mobility. Such an unbridled demographic growth is worsened by an increasing 
urbanization trend, as people living in urban areas will rise from 54% to 66% in the next 30 years. If poorly managed, these 
phenomena might jeopardize the quality of life of citizens, accentuating problems like traffic congestion, higher cost of 
mobility, land use inefficiencies and damage to the environment.

Urged by these threats, urban planners are now embracing Smart Mobility, defined as “a complex set of projects and 
actions, different in goals, contents and technology intensity” [2] focused on mobility issues. Smart mobility services range 
from carsharing and bikesharing to more advanced ones like self-driving taxis and dynamic ridesharing systems.
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Nevertheless, given a certain urban context, how can we evaluate the ability of a Smart Mobility Initiative (SMI), i.e. a 
number of smart mobility services, to meet the actual mobility needs of the population prior to its deployment? It turns 
out that estimating the impacts of a mobility initiative is one of the most crucial concerns in urban planning. Indeed, the 
current approach of using heuristics and best-practises might be risky for decision makers, since the new mobility services 
may be unaccepted by the population [3,4]. In this context, the only relevant work we can find in the literature is DTalite 
[5], i.e. an open-source mesoscopic simulator developed to provide transportation planners, engineers, and researchers with 
a theoretically rigorous and computationally efficient traffic network modeling tool. However, this computational model is 
only focused on simulating how urban traffic would change in case the road network is altered by the end user. On the 
other hand, we need a similar easy-to-use tool for the assessment of novel mobility services.

Driven by these motivations, Tangramob [6] offers a simulation environment for mobility assessment. This tool allows 
urban planners and transport companies to check if the effects of the simulated mobility initiatives are expected to be 
in line with their objectives and plans. The peculiarities of this simulator are: the adaptability to different geographical 
contexts; the support of multimodal trips and mobility services; the ability to reproduce real-life scenarios. Tangramob 
relies on an Agent-Based Model (ABM) in which every citizen is given the ability to experience with the newly introduced 
mobility services in order to understand which is the best way to travel daily. Following a Reinforcement Learning (RL) 
strategy, a simulation is organized as a series of iterations, so that a single day is simulated multiple times: this approach 
allows citizens to accumulate experience so as to come up with better mobility decisions. At the end of a simulation, we 
will be able to understand how the smart mobility initiative is accepted by the population and how it affects urban system.

However, the iterative nature of Tangramob simulations makes them computationally expensive in case of complex sce-
narios, i.e. when either or both the population under study is large and the number of new smart mobility services is 
substantial. On the other hand, an urban planner is interested in performing multiple experiments with the simulator, that 
is, evaluating different smart mobility initiatives so as to find out the most promising ones. For instance, a user can change 
the configuration of a mobility service by either increasing or decreasing the number of vehicles. Nonetheless, running as 
many simulations as the number of smart mobility initiatives to investigate might be time-consuming.

To address this obstacle, we reduced the complexity of the Tangramob’s ABM in order to derive a Timed Rebeca (TRebeca) 
[7] model in which the RL-based learning process is replaced with a decision-rule process and the representation of traffic is 
simplified. Together with the ability of modeling persons as packets, made possible by the actor-based modeling paradigm of 
TRebeca, the resulting model allows to run experiments faster with the cost of loosing the microscopic detail of Tangramob 
simulations. In addition, to improve its usability, we developed ToolTRain, i.e. a tool chain that generates an instance of 
the TRebeca reference model from the same input files of a Tangramob scenario; runs the so-obtained model instance; and 
infers the same output variables of the simulator from the run. Despite the several simplifications, comparing the results 
obtained from Tangramob and ToolTRain on different mobility initiatives, for the same scenario, shows that the TRebeca 
model behaves similarly to that of Tangramob. This correlation lets the users exploit the TRebeca model as a tool for getting 
first results of a SMI without simulating it. In particular, the experimenter can use this model to understand which initiatives 
are more in line with his expectations, so as to simulate them later with Tangramob to get more details.

This paper is an extended version of [8]. The main extensions are presenting: the improvements we made to the original 
TRebeca reference model in order to obtain a more realistic representation of urban traffic and a new criterion for the 
selection of mobility services by citizens; a new case study where we investigate the application of the ToolTRain approach 
to the Electric Work Site Project of Volvo. This last contribution is an argumentation of a possible use case in which our 
approach could be applied, and neither the TRebeca model nor the Tangramob simulation is provided. Moreover, all sections 
have been extended and present new material and insights in order to allow the reader to fully understand our approach 
and evaluate its application in new contexts.

The structure of this paper is as follows: Section 2 gives an overview of Tangramob, together with a brief description of 
the Agent-Based Model (ABM) behind its design. In Section 3 we introduce Rebeca and Timed Rebeca (TRebeca) modeling 
languages and we provide a detailed description of the simplified TRebeca model derived from the ABM. Moreover, this 
section details on how we performed the derivation process, focusing on the different assumptions and heuristics adopted 
in order to approximate the learning process of the simulator. In Section 4 we describe how we designed the experiment 
to demonstrate both the correlation among the results given by the two models and the utility of the simplified TRebeca 
model. Section 5 show the experimental results and we discuss about their implications to confirm the former hypothesis. 
In Section 6 we present the Electric Work Site Project of Volvo and we investigate how the ToolTRain approach can be 
adopted in contexts other than mobility. Finally, we conclude with an overview (Section 7) of the related work and our 
research outlook (Section 8) for this project.

2. The Tangramob simulator

Tangramob [6] (formerly SmartHub) is an agent-based simulation framework, supporting urban planners and transport 
companies in shaping Smart Mobility Initiatives (SMIs) within urban areas. Users can assess whether introducing a SMI 
can improve the traveling experience of the citizens, as well as the urban transport system. In order to consider people’s 
acceptance, Tangramob returns an estimation of how a mobility initiative can impact on local communities, so as to figure 
out beforehand if a SMI can potentially succeed or not. Tangramob is built on the top of MATSim [9], a robust and well-
known multi-agent traffic simulator. Both of them are based on Java and are open-source projects, although the core code 
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Fig. 1. Direct path.

Fig. 2. 2-trip path.

Fig. 3. 3-trip path.

of Tangramob has not been released yet. Technically, a Tangramob simulation requires the following inputs specified into 
Extensible Markup Language (xml) format:

• road network of the area under study, represented as a weighted graph with nodes denoting intersections and edges 
standing for streets.

• mobility agendas of a sample population (i.e. people’s mobility habits), each of which summarizes what a person does 
during an ordinary working day (i.e. activities) and how he moves from one place to the next one (i.e. legs).

• smart mobility initiative to be simulated, i.e. a list of geographically located containers of one or more smart mobility 
services, called tangrhubs. Each smart mobility service belongs to a tangrhub and it comes with a number of mobility 
resources (e.g. vehicles), as well as a service charge.

A Tangramob simulation returns several output files so as to provide users with a list of measures concerning how the 
mobility habits of citizens are expected to change after the introduction of the SMI. In particular, the following output 
variables are returned for each person, and then aggregated together: traveled distance, traveled time, CO2 emissions, mobility 
costs and whether he has accepted the mobility initiative or not. Tangramob will also provide a measure of the resulting 
urban traffic levels, as well as a metric on the use of mobility resources. From the analysis of such parameters, a user can 
realize if the simulated initiative is in line with his expectations. If not, he can change the configuration of the SMI (e.g. 
relocate/add/remove tangrhubs, change a mobility service) and run new experiments.

Though we omit the description of Tangramob in this work, we need to introduce the concepts of tangrhub, smart mobility 
service, smart mobility initiative and commuting pattern in order to present the agent-based model and the derivation process 
for the TRebeca model.

A tangrhub is a geo-located entity providing citizens with one or more mobility services.
A smart mobility service is a traveling solution that citizens can choose, if resulting from an interaction with a tangrhub. 

Mobility services supported in the current version of Tangramob are rental solutions (carsharing, bikesharing, scootersharing) 
and ridesharing systems. For future developments, both Tangramob and ToolTRain will support further mobility services, 
e.g. public transport and taxi on-demand. In Tangramob, defining a smart mobility service requires the user to specify the 
service type (e.g. carsharing), the initial number of vehicles and the service charge (i.e. cost per km, per hour and fixed 
cost). Moreover, each mobility service mi provided by a tangrhub th j must belong either to one of these service types:

• intra-hub services, used for moving people to and from th j thereby serving first mile trips, e.g. from a commuter’s 
home-place to th j and viceversa;

• inter-hub services, moving people from th j to another tangrhub thk .

A Smart Mobility Initiative (SMI) is the configuration of the mobility solution to simulate. The SMI specifies the number of 
tangrhubs, their location, their mobility services, and the characterization of each mobility service.

A commuting pattern is the intermodal representation of how a person moves from an origin location to his destination. 
Such a trip can be direct (e.g. traveling by either walking or car); or more complex (e.g. using more than one means of 
transport). A clear example of a commuting pattern is the route provided by the trip planner of Google Maps. In Tangramob, 
the complexity of commuting patterns is limited to three schemes: direct path, 2-trip path and 3-trip path (shown in 
Figs. 1, 2, 3, respectively). In particular, nodes O and D represent the commuter origin and destination respectively; whereas 
nodes T H , T H O and T H D depict respectively a generic tangrhub, and the nearest tangrhubs to O and D . This is possible 
thanks to both the concept of tangrhub and interconnection among tangrhubs via inter-hub mobility services. The resulting 
architecture looks similar to a computer network, in which tangrhubs play the role of routers, mobility services are cables 
and commuters can be seen as packets.
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Fig. 4. Commuter–Tangrhub interaction loop.

2.1. Tangramob Agent-Based Model (ABM): an overview

This section provides an overview of the model of Tangramob, that is needed to understand the translation of the ABM 
into the simplified TRebeca model presented in Section 3.3.

As better detailed in [6], the ABM of Tangramob has the following two agent types: commuter and tangrhub. A commuter 
agent, from now on commuter, is the computational counterpart of a person of the population. Every commuter has his 
own mobility agenda, i.e. a sequence of daily activities (e.g. home, work) interleaved by legs, each of which tells how the 
commuter moves from one activity location to the next one (e.g. car, bike). Instead, a tangrhub agent acts as a local mobility 
service provider.

Both agents live and operate, with different perceptions, in a composite environment made of three different spaces: 
the temporal one, the geographical one and the space described by the current state of each smart mobility service. The 
geographical space is the core of the transport simulation, since the physical limitations of the road network can create 
bottlenecks and delays as people move with a certain pace.

As depicted in Fig. 4, every time a commuter needs to move from one place to another, an interaction with the sur-
rounding tangrhubs takes place as follows: tangrhubs are expected to collaborate with each other in order to provide the 
commuter with a number of traveling alternatives for taking him to destination. Afterwards, the commuter will perform a 
decision-making process to select the traveling alternative that is expected to optimize his performance criteria. Once an 
alternative is chosen, the involved tangrhubs will reserve the required mobility services so that the commuter can start 
his journey. Finally, once the commuter has reached his destination, he will be asked to leave a feedback for each smart 
mobility service involved in the chosen alternative.

Each feedback quantifies the traveling experience of a commuter using a specific mobility service. This value is computed 
by means of a scoring function which takes into account some performance criteria of the commuter, such as travel time 
and traveled distance. The use of a feedback allows a person to progressively make more informed decisions.

To enable this behavior, Tangramob simulations are iterative: each iteration corresponds to a typical day in which com-
muters try new mobility services and record their experience. This online optimization approach, driven by feedback, enables 
commuters to improve their traveling experience iteration by iteration. Thus, the more the users can experience the new 
mobility services the higher is the detail of the output of the simulation.

At the end of a simulation, commuters may change their original mobility habits in favor of those mobility services that 
can better accommodate their needs (we call them subscribers). In case the simulated SMI does not suit some commuters, 
those agents will be restored with the traveling habits owned before the SMI introduction.

3. From Tangramob ABM to TRebeca

In this section, we introduce Rebeca and TimedRebeca modeling languages, showing their features and the motivations 
behind their involvement in our work. Afterwards, we present the TRebeca model, and we argue about its derivation from 
the Tangramob ABM.

3.1. Reactive Object Language: Rebeca

Reactive Object Language (Rebeca) [10] is an actor-based language designed to connect practical software engineering 
domains and formal verification methods. In short, Rebeca is a language for modeling event-based distributed systems. 
Moreover, it represents an interpretation of the actor model adopting a Java-like syntax which is supported by verification 
tools. The semantics of Rebeca is presented by Labeled Transition System (LTS). Systems are modeled by concurrently ex-
ecuting reactive objects called rebecs which can interact with one another by asynchronous message passing. In particular, 
a Rebeca model consists of the definition of reactive classes (i.e. rebecs), each of which corresponds to a specific actor 
type of the system. Technically, a reactive class comprises three parts: known rebecs (i.e. the other rebecs with which it 
can communicate), state variables (like attributes in object-oriented languages) and message server definitions, defining the 
behavior of the actor itself (like methods in object-oriented languages). Each message server has a name, an optional list of 
parameters and its body, which can be described as the actual behavior of the rebec once such kind of message is received; 
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it includes a number of statements, i.e. assignments, sending of messages, and selections. The computation of a Rebeca 
model is event-driven [10], since messages can be seen as events. Each rebec takes a message from its message queue and 
executes the corresponding message server atomically. Communication among rebecs takes place by asynchronous message 
passing as follows: the sender rebec sends a message to the receiver rebec and continues its work; the message is put in 
the message queue of the receiver and it stays there until the receiver serves it. The behavior of a Rebeca model is hence 
defined as the parallel execution of the released messages of the rebecs.

In addition to the modeling features, Rebeca offers a formal verification approach in order to check the model correctness. 
More in detail, the language is supported by the Rebeca Verifier tool, which uses model checking algorithms for verifying 
Rebeca models. For the sake of clarity, despite the potentialities that Rebeca offers, we aim at using it just for performance 
analysis purposes rather than properties verification tool.

3.2. Timed Rebeca: TRebeca

Timed Rebeca (TRebeca) [7,11,12] is a timed extension of Rebeca language with timing primitives. TRebeca supports the 
modeling and verification of distributed systems with timing features, and its semantic is presented in Timed Transition 
System. Time is represented in terms of discrete time steps. The timing primitives provided to the modeler by the TRebeca 
language aim at representing the following functionalities:

• computation time: the amount of time units required for a computation;
• message delivery time: the amount of time units needed for delivering a message;
• message expiration: the amount of time within which a message is still valid;
• periods of occurrences of events: the frequency with which events are repeated.

In a Timed Rebeca model, each rebec has its own time clock which can be seen as a synchronized and distributed clock. 
Methods (i.e. message servers) are still executed non-preemptively as in Rebeca models. The specification of time features 
are made possible by the extension of the Rebeca syntax with the statements: delay, deadline and after.

• Delay: delay(t) statement increases the clock of the rebec of t time units (t is a natural number). Such a delay aims at 
representing the computational time needed for a rebec for executing and finishing a process.

• Deadline: r.m() deadline(t), in which r is a rebec, m is a method and t is a natural number, aims at representing the 
message expiration feature. In this specific case the message m should be processed by rebec r earlier than t time units.

• After: the statement r.m() after(t), in which r is a rebec, m is a method and t is a natural number, represents the 
message delivery time: m is added to the message queue of rebec r, but it cannot be processed before t time units after 
message sending.

As it emerges from its features, the Timed Rebeca modeling language perfectly satisfies our purposes, since it allows to 
capture timing features, as well as to represent the interactions between the ABM’s agents. In fact, timing is needed for 
organizing the actions performed by commuters during the course of a 24-hour day.

3.3. The simplified Tangramob model in TRebeca

Tangramob is a complex and fine-grained framework capable of simulating millions of events and interactions between 
agents and the environment. For this reason, it is prohibitive to reproduce the ABM as it is into a TRebeca model, since its 
executions would result into an unmanageable state space explosion. Thus, the designed TRebeca model is widely simplified 
and abstracted, but still keeping the core features. In detail, the TRebeca model is composed of the two following rebec 
types (i.e. actors): CommuterGenerator and Tangrhub. The following sections describe the actors involved in the model and 
how we abstracted the behavior of the commuter agent.

3.3.1. The commuter as a message
From the ABM of Tangramob outlined so far, the reader can notice that for the Tangrhub agent we defined its rebec 

counterpart, whereas the Commuter actor does not exist. Indeed, in the simplified model we do not consider the commuter 
as an entity capable of reasoning and acting when some event occurs, but it is simply treated as a message to be sent among 
tangrhubs. With this assumption, each Tangrhub plays the role of a delivering system in which packets (i.e. commuters) are 
dispatched. According to the mobility agenda of each commuter, it sends and receives messages to and from each other. 
The specifications regarding the sender (i.e. origin tangrhub), the receiver (i.e. the destination tangrhub) and the time in 
which the message has to be sent, are encapsulated within the message itself, and they reflect the mobility agenda of the 
corresponding commuter (i.e. their daily plan).

This information are represented in TRebeca by means of a two-dimensional array (from now on commuter matrix), in 
which rows represent commuters, whereas columns contain their mobility needs. In detail the columns of the commuter 
matrix represent:
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• id: commuter identifier
• thh: home closest tangrhub
• timehome: time before leaving home
• timefm: walk time from home to thh
• thw: workplace closest tangrhub
• timework: time spent working
• timelm: walk time from thw to work

The commuter matrix is pre-computed and the data are derived from the file which contains the commuters’ mobility 
agenda mentioned in Section 2 (i.e. plans.xml). The derivation process will be detailed in Section 3.4.

More in detail, the closest tangrhubs to home (i.e. thh) and workplace (i.e. thw) are computed by means of the Eu-
clidean distance function. For what concern the elapsing time before leaving home (i.e. timehome) and the working time 
(i.e. timework), they are directly extrapolated from the agenda without any particular treatment. First mile (i.e. timefm) and 
last mile (i.e. timelm) walking times, differently from the model presented in [8], are pre-computed taking into account also 
those personal features which could affect commuters walking speeds, i.e. age and gender. Eq. (1) shows the computation 
of their values.

timefm,lm = distancefm,lm × β/(speedwalk × factorage × factorgender) (1)

In which, distancefm and distancelm represent respectively the Euclidean distance between commuter’s home and his clos-
est tangrhub and between thw and his workplace. β is the beeline factor; speedwalk represents the average walking speed; 
factorage and factorgender are values that characterize the commuter’s speed, either increasing or decreasing it according to 
his age and gender. These values are the same used in Tangramob and are based on results of a comprehensive literature 
review of [13].

Analyzing the structure of the commuter matrix, some abstractions we applied in order to reduce the complexity of the 
ABM of Tangramob, emerge. Indeed, considering the characterization of the first and last mile trip, we assume that each 
commuter will perform intra-hub trips only by walking.

Another strict assumption regards the commuting pattern selection process. Indeed, in the commuter matrix, each com-
muter is provided with two tangrhubs. This implies that all of them are expected to travel by means of inter-hub mobility 
services only. Thus, by adopting always the 3-path commuting pattern (Fig. 3). Indeed, in this model we assume that com-
muters have only two commuting patterns:

home → thh → thw → work and work → thw → thh → home

Such assumptions, as well as treating the commuter as a message and not as an actor, lead the system to be more 
lightweight and computationally faster than Tangramob. Although, this gain implies a loss of detail on that information 
related to the commuters movements.

3.3.2. The Tanrghub rebec
Differently from the commuter, the tangrhub agent has been translated into a rebec named Tangrhub. Its behavior is 

similar to the one designed for the ABM, i.e. managing its mobility services and providing commuters with vehicles. Ad-
ditionally, since commuters are modeled as messages, each Tangrhub has the responsibility of delivering commuters to the 
next Tangrhub. Every time this occurs, an available mobility service resource (i.e. a vehicle) is released to a commuter, which 
will use it for reaching the next Tangrhub. Instead of letting commuters select a mobility service, in the TRebeca model this 
decision-process is emulated by Tangrhubs. Indeed, every time a commuter is scheduled, a Tangrhub releases a vehicle, if 
any, of the selected service (sp) with the best trade-off between its current fleet (fleetsi ) and a priority value (prioritysi ), as 
shown in Eq. (2).

sp = max
si

(fleetsi × prioritysi) i ∈ [0..numOfServices] (2)

In the model presented in [8], prioritysi is associated to each mobility service. This means that the higher is the value, 
the more the service is preferred. However, this approach is not very commuter-centric and in line with Tangramob since 
the priority value related to each mobility service is the same for all the commuters. In order to let commuters decide 
which mobility service is more in line with their travel needs, instead of assigning a priority value to each mobility service, 
we pre-calculate for each person a list of values which aim at representing the personal expectations related to those 
mobility services introduced with the SMI. Thus, commuters have their own priority values associated to each mobility 
service (si). As shown in Eq. (3), these values take into account several personal aspects of the commuter itself, like the age 
(factorage) and the gender (factorgender), as well as some specific mobility service features, like travel times (timesi ) and costs 
(costhr

s , costkm
s , costfixed

s ). Thus, the higher is the value, the more the commuter prefers the corresponding service.

i i i
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prioritysi = 1/(timesi × costsi ); i ∈ [0..numO f Services]
costsi = (timesi × costhr

si
) + (distance(thh, thw) × costkm

si
+ cost f ixed

si
)

timesi = distance(thh, thw)/(avg Speedsi × f actorage × f actorgender)

(3)

The information related to the priority values, similarly to the commuter matrix, are saved in a two dimensional array 
data structure, in which each row represents a commuter and each column corresponds to a mobility service.

Once a mobility service is selected according to the mentioned approach, during the run of the model each Tangrhub 
must memorize how such service is used so as to produce the outputs for evaluating the goodness of the SMI. For this 
reason each Tangrhub comes with two more data structures: the distances matrix between tangrhubs (D) and their velocity 
matrix (V). The first one is a standard distance matrix, in which at each position D(thi,thj) the distance in meters from 
tangrhub i to tangrhub j is pre-computed. Such distance is calculated by means of the Dijkstra Shortest Path Algorithm 
since, as described in Section 2, the topology of the urban network is represented by means of a graph.

The velocity matrix V aims at representing the average speeds between all the tangrhubs by using a specific mobility 
service. In particular, Vsk

(thi,thj)
represents the weighted average of the speeds, traveling from tangrhub thi to tangrhub thj by 

means of the service sk .
Considering that travel times and travel costs are strictly dependent on the selected mobility service, it is not possible to 

pre-compute their values in the pre-processing phase. Thus, since the commuters are no longer actors and the environment 
is just abstracted by means of a distances matrix, we provide the Tangrhub rebec with a data structure named delays matrix 
so as to emulate travel delays. Such bi-dimensional array is randomly pre-computed and each row represents a commuter. 
Columns contain the delay percentage with which the travel for the specific sub-trip is penalized in both ways. In detail:

• delay(home,thh): trip delay home → thh
• delay(thh,thw): trip delay thh → thw

• delay(thw,work): trip delay thw → work
• delay(work,thw): trip delay work → thw

• delay(thw,thh): trip delay thw → thh
• delay(thh,home): trip delay thh → home

The just presented approach represents a strong assumption of the ABM. However, we believe that such a simplification 
allows us to easily abstract from the original design of Tangramob and, as a consequence, reduce the computational burden.

The state variables of the Tangrhub rebec are:

• mobServiceFleet: the amount of available vehicles for each mobility service,
• usedMobServiceFleet: the number of used vehicles for each mobility service,
• unusedMobServiceFleet: the unused vehicles for each mobility service,
• timeUsedMobService: the usage times of a mobility service,
• costUsedMobService: the usage costs of a mobility service.

3.3.3. The CommuterGenerator rebec
The CommuterGenerator rebec is in charge of monitoring the progress of commuters travels and their scheduling. In 

particular, it checks whether commuters are leaving home or they have just performed the last sub-trip, i.e. they are coming 
back from workplace. Moreover, this rebec is notified every time a commuter experienced a service disruption, i.e. it did 
not find any available mobility service. Its state variables are:

• arrivedCommuters: the number of commuters that have finished their day,
• commuterAborts: commuters that experienced a mobility service disruption.

3.3.4. The TRebeca model event graph
In order to describe how actors interact in the TRebeca model, we provide the reader with its event graph (Fig. 5) and 

some relevant parts of the pseudo-code. These give an intuitive and highly abstracted view of events and causality relations. 
The graph has labeled nodes which represent events and their owner rebec. Edges show the causality relations among 
nodes, and can be either conditional (thick edges) or mandatory (thin edges).

As shown in Fig. 5 and Listing 1, the CommuterGenerator, once inizialized its state variables, starts the run by sending 
a message to itself that triggers the fireCommuters event (message server). At this point, the CommuterGenerator evaluates 
the mobility agenda of each commuter (commk) by exploring the commuter matrix. Afterwards, commuter by commuter it 
sends a serveCommuter message to each origin tangrhub, which is the closest tangrhub to home in the first trip (i.e. thh), 
after a specific time unit (Eq. (4)). The Boolean parameter within the message aims at representing which travel it is serving 
(i.e. true: from home to work, false: from work to home).

thArrTimecommk = timecommk + timecommk + (timecommk × delaycommk /100) (4)
home fm fm (home,thh)
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Fig. 5. Event Graph of the TRebeca Model.

reactiveclass CommuterGenerator(numOfCommuter) {
knownrebecs {

/∗ All the configured Tangrhub (n + 1) rebecs ∗/
Tangrhub th_0;
...
Tangrhub th_n; }

CommuterGenerator(...) {
1) init statevars;
2) self . fireCommuters(); }

/∗ Each commuter is delivered to the closest tangrhub ∗/
msgsrv fireCommuters() {

foreach commuter in commuterMatrix:
1) thArrTime: the arrival time to the closest tangrhub (i.e. th_o);
2) serve commuters: th_o.serveCommuter(commuter,true) after(thArrTime); }

Listing 1: CommuterGenerator rebec pseudo-code.

When a Tangrhub receives this message, one of these three actions is possible (Listing 2).

1. in case a mobility service is available and the commuter is reaching his workplace, it sends a message to the next 
Tangrhub (i.e. thw), after travTimes time unit,

2. in case the commuter is coming back home and there is an available mobility service, it sends a message to the 
CommuterGenerator for informing it,

3. if no service is available, it sends a message to the CommuterGenerator, which informs it that the commuter did not 
find any vehicle for traveling (i.e. service disruption).

For the sake of clarity, travTimes is the time in which the commuter k is expected to arrive to the destination Tangrhub 
(thd), starting from the origin Tangrhub tho , by means of the vehicle of the mobility service sp , as shown in Eq. (5):

travT imescommk
(tho,thd)

= (D(tho,thd)/V
sp

(tho,thd)
+

+ D(tho,thd)/V
sp

(tho,thd)
× delaycommk

(tho,thd)
/100)

(5)

The first action triggers a deliverCommuter event, which represents the travel of a commuter by means of a mobility 
service. After that, a message is delivered to the next Tangrhub for informing it about the following commuter trip, triggering 
again a serveCommuter event.

On the other hand, actions 2 and 3 will trigger a commuterEndOfTheDay event (Listing 3). Every time this occurs, 
the CommuterGenerator updates the number of arrived commuters (i.e. those who finished their activities), and a service 
disruption is registered if the commuter did not find a service. In case the number of arrived commuters is equal to the total 
number of commuters, the CommuterGenerator restores the initial state of the system by sending a resetTangrhub message 
to each Tangrhub. The aim of this message is to represent the end of the day, thus to mimic the Tangramob end of an 
iteration. Restoring the initial configuration of the model means for the model checker to reach a state that is equivalent to 
the initial state of the model. Indeed, in this state, the variables of each rebec have the same value, whereas the timestamp 
is obviously different. However, the equivalence criterion between states does not consider the time, thus for the model 
checker, the just restored state and the initial one are equivalents. As a consequence, the run of the model is interrupted 
since all the following states will be equivalent to those that have been already generated in the state space. It is worth 
saying that the resetTangrhub message is not a specific stop message that roughly ends the run of the model, leaving 
unexplored the following states. But, it is just a message that restores the initial condition of the system.



150 J. de Berardinis et al. / Science of Computer Programming 168 (2018) 142–164
reactiveclass Tangrhub(numOfCommuter) {
knownrebecs {

Tangrhub th_0;
...
Tangrhub th_N;
CommuterGenerator controller; }

Tangrhub(...) {
1) init statevars; }

/∗ Each commuter asks for a mobility service for a trip ∗/
msgsrv serveCommuter( commuterId, isFirstTrip){

if ( no mobility service available ):
controller. commuterEndOfTheDay(commuterId, true);

else:
1) select a service according to the current fleet available and the commuter service priority value;
2) update the fleet of the selected mobility service;
3) compute the travel statistics for the selected service (times, distances, costs and emissions);
4) perform the travel by the selected mobility service:

th_d.deliverCommuter(commuterId, selectedService, isFirstTrip) after (travTimes); }

/∗ The commuter performs the travel from a Tangrhub to the next one ∗/
msgsrv deliverCommuter(String commuterId, int selectedService, boolean isFirstTrip){

/∗ The fleet of the destination Tangrhub is updated ∗/
serviceFleet[selectedService]++;
/∗ Check whether the current trip is the last one ∗/
if (isFirstTrip ):

self . serveCommuter(commuterId, false) after(timeToReturnBack);
else:

controller. commuterEndOfTheDay(commuterId, false) after(homeArrivalTime); }

msgsrv resetTangrhub() { /∗ restore the initial configuration of this Tangrhub ∗/ } }

Listing 2: Tangrhub rebec pseudo-code.

/∗ Keep track of all those commuters who terminated their daily travels and encountered a service disruption ∗/
msgsrv commuterEndOfTheDay(commuterID, isAborted) {

/∗ In case all commuters terminated, each Tangrhub is resetted ∗/
if (all commuters came back home):

foreach tangrhub_i in tangrhubs:
tangrhub_i.resetTangrhub(); }

Listing 3: CommuterGenerator commuterEndO f T heDay msgsrv.

3.4. ToolTRain: infer, generate, run, infer and collect

Since we aim at using the TRebeca model as a lightweight simulation tool, we need to generate new instances of the 
model from given scenarios, so as to collect similar output data of Tangramob after the model run. However, this is still not 
enough to get significant results due to the iterative nature of Tangramob and its queue-based traffic simulation.

For this purpose, we implemented ToolTRain: a tool-chain specifically designed for generating a TRebeca model from the 
simulator’s input files according to some abstraction rules; running the resulting model; and inferring the output from the 
model run. Fig. 6 shows the 3 building blocks of ToolTRain which are outlined below.

3.4.1. Model inference and generation
Starting from the input files of Tangramob (Section 2), a TRebeca model is generated according to the following points:

• A subset of the input population is selected as potential users of the new mobility services. The remaining commuters, 
i.e. those who live or work too far or too close from/to tangrhubs, are assumed to travel by car or walk respectively. 
This step is called the commuter filtering process.

• For each potential user, from now on potential subscriber, the tangrhubs closest to his home (thh) and to his workplace 
(thw) are chosen, and the corresponding 3-path commuting pattern (Fig. 3) is fixed for him.

• First mile trips (traveling towards a tangrhub) and last mile trips (traveling from a tangrhub to the destination) are 
performed by walk, thus the travel distance of such trips are computed as Euclidean distance from point to point.
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Fig. 6. The architecture of ToolTRain.

• For each potential subscriber, a priority value for those mobility services introduced with the SMI are calculated by 
means of Eq. (3). This latter takes into consideration both features of the commuter as well as characteristics of the 
service itself.

• Recalling the graph-like nature of the road network input, distances among tangrhubs are computed with the Dijkstra’s 
shortest path algorithm. These values are expected to determine the travel time of inter-hub trips, depending on the 
characteristics of the vehicles provided by the new mobility services.

• Random delays are generated for all trips in order to emulate urban traffic.
• For each inter-hub trip a weighted velocity average is computed. These velocities are specific for each mobility services 

introduced with the SMI.
• A data structure similar to the commuter matrix presented in Section 3.3.1 is generated for post-processing purposes.

3.4.2. Model run
The so-generated TRebeca model is run with Rebeca Model Checker (RMC), a tool for direct model checking of TRebeca 

models. In particular, running a TRebeca model in RMC results in the generation of the whole state space of the model. Next, 
in ToolTRain, the so-generated state space is converted into a tiny representation in which only a list of pre-defined state 
variables are reported for each state for further analysis. This is done by means of the state space transformer tool of the 
Rebeca suite. Therefore, it is worth remarking that we actually use RMC for performance evaluation rather than correctness 
check.

3.4.3. Data inference and aggregation
Since we are interested in the results of a smart mobility initiative, the converted state space is fed into a post-processing 

script to collect the observed variables at the very last reached state, which corresponds to the end of a day. Next, in order 
to emulate people’s acceptance of a mobility initiative, all those commuters who encountered a service disruption (i.e. no 
vehicles available at a tangrhub) during the model run are selected and treated differently. In particular, as similarly done 
in the pre-processing step, those commuters are assumed to travel by car or by walk, and their travel metrics are computed 
accordingly. Finally, once every potential subscriber has been processed, all the progressively-collected travel metrics are 
aggregated in order to generate the same output files of Tangramob.

3.5. Comparing Tangramob and TRebeca models

All the previously outlined abstraction rules are meant to simplify the original ABM, thereby removing its computational-
ly-expensive features at the cost of loosing the microscopic detail of Tangramob simulations. Thus, traffic is emulated with 
random delays, whereas the online (and iterative) optimization process, used for modeling people’s acceptance, is replaced 
by decision-rules, as well as all the abstractions and simplifications made to the original ABM. These rules are both encoded 
in the TRebeca model and achieved by the commuter filtering process of ToolTRain. An example of decision rule is the 
one used for emulating the selection process of mobility services: a commuter does not use past experience anymore, but 
he/she chooses a service according to Eq. (2). Nevertheless, even though we pay in model expressiveness, a complete pass 
of ToolTRain is much faster than a Tangramob simulation. Indeed, as shown in Section 5.3, it turns out that running the 
TRebeca model can drastically reduce the computational burden of Tangramob, and this is a considerable gain if one needs 
to try many SMIs. Moreover, it is worth remarking that once a TRebeca model is generated, there is no need to repeat this 
step in case other mobility initiatives differ just in the number of vehicles per service.

Concerning the modeling techniques, Tangramob lies on an agent-based model which is conceptually similar to the 
actor-based one of the TRebeca counterpart. Indeed, agent’s perceptions can be thought of as triggering message forwarding 
in actor-based models: an actor receiving a message can be seen as an agent perceiving a change in the environment. This 
similarity makes it possible to translate the agent-based model into an actor-based one, keeping its conceptual integrity 
with no particular compromises.
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For what concerns the analysis capabilities, both models allow to observe the same information, with an exception made 
for traffic levels. In particular, as previously mentioned, we did not model traffic dynamics in the TRebeca model, thus it is 
not possible to have a measure of the road occupancy during the day.

Finally, if we look at the usability of the models, we can notice that both require the same input files to perform a model 
run/simulation. Moreover, thanks to ToolTRain, even the output data is presented in the same way (graphs and tables) of 
the simulator, thus we can conclude that using the TRebeca model is as intuitive as using Tangramob.

4. Experimental design and setup

So far, we outlined the ABM of Tangramob and the derivation process of the corresponding TRebeca reference model. We 
also argued how this last model can be useful for users to get an idea of a smart mobility initiative without the need to 
simulate it. However, using ToolTRain as lightweight preprocessing for Tangramob requires us to prove this hypothesis:

H (Relational equivalence). Given a network, a population and a SMI, ToolTRain can approximate Tangramob, i.e. there is a positive 
correlation between their outputs.

In other words, we seek to evaluate the alignment of the two computational models under the same inputs. Alignment 
was introduced by Axtell et al. [14] in order to establish a framework of concepts and methods to determine whether 
two models can produce the same results, which in turn is the basis for critical experiments and for testing whether one 
model can subsume another. The proposed framework allows to determine whether two models claiming to deal with the 
same phenomena can, or cannot, produce the same results. More precisely, Axtell et al. [14] identify two categories of 
equivalence, i.e.

• distributional equivalence if the two models produce distributions of results that cannot be distinguished statistically;
• relational equivalence, if the two models can be shown to produce the same internal relationship among their results.

Therefore, considering the introduction of assumptions and simplifications in the TRebeca reference model, we are interested 
in demonstrating the relational equivalence between Tangramob and ToolTRain. More in detail, since Tangramob returns 
several output files, testing H1 is equivalent to testing different sub-hypothesis, one per output variable of the simulator. 
With the exception of urban traffic, which is not represented in the TRebeca model, we need to demonstrate that ToolTRain 
return, similarly to Tangramob, the following outputs:

• travel times;
• travel distances;
• CO2 emissions;
• mobility costs;
• number of subscribers;
• mobility fleet usage.

To test the positive correlation between the output variables of both these approaches, we propose a comparative experi-
ment which also allows us to appreciate the usefulness of ToolTRain. First, we choose 9 smart mobility initiatives to evaluate 
and we partition them into 3 groups, according to the number of Vehicles Per-Capita (VPC) of each one. In particular, we 
define the following partitions: light-SMIs (VPC ≤ 0.05); medium-SMIs (0.05 ≤ VPC ≤ 0.10); massive-SMIs (VPC ≥ 0.10). Each 
group thus represents a kind of intervention that the urban planner can evaluate on the basis of his/her goals.

Then, we feed each SMI into ToolTRain, together with a fixed set of input variables described later. Once the computation 
is over, we can observe how the output variables mentioned above differ for each SMI. Such analysis allows us to get a 
coarse-grained idea of the impacts of a mobility initiative on the urban system. Therefore, for each group we select the most 
promising SMI, i.e. the one that minimizes travel times, traveled distances, mobility costs, CO2 emissions and the number 
of unused vehicles while maximizing the number of subscribers. The selected SMIs are then simulated with Tangramob and 
their results are compared with the ones returned by ToolTRain. This allows to test H1.

For the sake of a fair comparison, the 9 Smart Mobility Initiatives (SMIs) proposed in this experiment all share the same 
scenario, i.e. the urban road network of the chosen geographical area together with its population. Since the purpose of 
this experiment is to test the positive correlation between the output variables of Tangramob and ToolTRain, the number 
and location of tangrhubs is fixed for all the SMIs, as well as the types and charge of the mobility services provided by 
each tangrhub. This allows for greater control of the variables involved in the experiment, thus giving more emphasis to the 
contribution of the actual distribution of mobility resources among tangrhubs.

The following subsections are meant to provide more insights on both the chosen urban area; its population; and the 
configuration of the smart mobility initiatives investigated in this paper in terms of mobility resource distribution and 
service charges.
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Fig. 7. Urban road network of Ascoli Piceno with tangrhubs.

Table 1
Cost and priority values per mobility service.

Cost per hour Cost per km Fixed cost

Bikesharing 0.5 e 0 e 0.01 e
Carsharing 13 e 0.1 e 0.01 e
Scootersharing 2.5 e 0.1 e 0.01 e

4.1. The scenario of Ascoli Piceno: urban road network, tangrhubs and sample population

As a common testbed for all the SMIs we choose the city of Ascoli Piceno (Italy), a mid-sized town of 50K inhabitants. 
There are no particular reasons behind this choice apart from the fact that the authors are more familiar with this urban 
environment.

Fig. 7 shows the portion of urban road network used for this experiment: it covers an area of about 15 km2 and includes 
both the main residential and commercial areas of the city. Moreover, the city center is located westward and it is worth 
mentioning that the consistent and numerous traffic limitations imposed within this area have a tremendous effect on those 
citizens who cross it. Besides the urban road network, Fig. 7 also reports the location of the tangrhubs as triangles. Both the 
number and the actual location of the tangrhubs considered for this experiment were obtained from a cluster analysis tool 
provided by Tangramob and better detailed in [6]. In short, this tool tries to push a variable number of tangrhubs towards 
the activities of commuters (e.g. home, work, shopping), thereby minimizing the mobility to and from tangrhubs (first and 
last mile trips).

Considering the scarce availability of fine-grained data on the mobility behavior of Italian commuters, the population 
used for this experiment was synthesized from a set of local statistical indicators. In particular, the generation process of 
the synthetic population is detailed in [6] and it is based on statistical data as follows: 57% are male and 43% female; the 
minimum and maximum daily working hours are 5 and 9 respectively. Finally, 15% of commuters leave home at 7 AM, 65% 
at 8 AM, 15% at 9 AM and 5% at 10 AM. Only commuters who can generate traffic are considered for this experiment.

As similarly done in traffic simulations, the sample population is just a small yet representative portion of the whole 
population. This is done for speeding up the computation of the model. In our case, we found that a sample of 2068 
commuters is still enough to capture the ordinary mobility patterns of the inhabitants of this part of Ascoli Piceno.

4.2. Configuration of the investigated SMIs

As can be seen in Table 1, each type of mobility service comes with a personal charge that is computed as the sum 
of 2 travel-dependent factors, i.e. travel time and travel distance, plus a fixed contribution (e.g. cost of subscription or 
membership). These values are set according to the actual average service charges in Europe and are considered fixed for 
this experiment. The user is however free to investigate how different policies or pricing schemes can impact the adoption 
of services by commuters.
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Table 2
The investigated Smart Mobility Initiatives (SMIs).

Tangrhub Service type Light-SMIs Medium-SMIs Massive-SMIs

SMI-1 SMI-2 SMI-3 SMI-4 SMI-5 SMI-6 SMI-7 SMI-8 SMI-9

TH 0
bikesharing 0 2 2 2 2 4 5 10 25
carsharing 2 2 6 2 4 4 5 5 25
scootersharing 0 0 1 2 2 2 5 5 25

TH 1
bikesharing 0 2 2 2 4 4 5 5 25
carsharing 2 2 5 2 2 2 5 10 25
scootersharing 0 0 1 2 2 4 5 5 25

TH 2
bikesharing 0 3 3 10 10 10 35 35 25
carsharing 3 3 4 5 5 7 30 20 25
scootersharing 3 3 3 5 7 7 30 20 25

TH 3
bikesharing 0 3 3 5 5 5 10 10 25
carsharing 2 2 3 3 3 5 10 15 25
scootersharing 0 2 2 3 5 5 8 8 25

TH 4
bikesharing 0 0 2 5 5 5 10 20 25
carsharing 0 2 3 3 3 5 15 15 25
scootersharing 2 2 2 3 5 5 15 15 25

TH 5
bikesharing 0 2 2 3 5 5 5 5 25
carsharing 2 2 3 2 2 2 5 10 25
scootersharing 0 0 1 2 2 7 5 5 25

TH 6
bikesharing 0 0 1 7 7 7 20 10 25
carsharing 2 2 3 4 4 6 15 15 25
scootersharing 0 2 2 4 6 6 20 15 25

TH 7
bikesharing 0 2 2 5 5 5 15 15 25
carsharing 2 2 3 4 6 6 15 10 25
scootersharing 0 0 2 5 5 7 15 15 25

TH 8
bikesharing 0 0 2 5 5 5 10 10 25
carsharing 2 2 3 3 3 5 10 15 25
scootersharing 0 2 2 3 5 5 10 10 25

total fleet 22 44 68 101 119 140 338 333 675

Finally, Table 2 reports the full configuration of each smart mobility initiative in terms of vehicle distribution per service. 
In particular, SMIs 1, 2, 3 belong to the light group, SMIs 4, 5, 6 are the medium ones and SMIs 7, 8, 9 fall within the massive
cluster.

5. Experimental results: towards a validation

In this section, we show the results of the 9 SMIs runs with ToolTRain, then we select 3 of them according to the 
performance criteria discussed in the previous section. Afterwards, to test H1, we compare the output variables of the 
selected SMIs with the ones returned by Tangramob on the same setup. A comparison of the computational times of the 3 
SMIs is also provided to further support the use of ToolTRain as a lightweight pre-processing tool. Finally, we conclude this 
section with a discussion on the improvements made on the travel times performance measure with respect to the version 
of ToolTRain presented in [8].

5.1. Experimental results of the 9 SMIs

The output variables that we are going to discuss, outlined in Section 4, can be gathered into the following three cate-
gories: (i) number of subscriptions, (ii) commuters’ travel performance measures and (iii) mobility resources usage.

5.1.1. Number of subscriptions
A subscriber is a commuter who, at the end of the simulation, is expected to change his traveling habits in favor of 

the new mobility services. Thus, the number of subscribers is a measure of people acceptance of an SMI. Fig. 8 shows that 
light-SMIs can attract between 20% and 42% of the whole population; the medium-SMIs could involve from 60% up to 72%; 
whereas the massive ones could interest around 85% of the population. These results show that the number of subscribers 
grows with the number of vehicles provided, both in the light and medium SMIs. However, when the number of subscriber 
is close to the total number of citizens, such as in the massive-SMIs, increasing the number of vehicles is not sufficient 
anymore. For instance, SMI-7 is more successful than SMI-9, even though the total amount of vehicles is less than half the 
other.
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Fig. 8. N. of subscribers. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 9. Travel distances.

Fig. 10. Travel times.

5.1.2. Commuters’ performance measures
The performance measures of commuters depend on the number of subscribers. Indeed, concerning travel times and 

travel distances (Figs. 9 and 10), their averages grow as the number of subscribers of the SMI increases. These trends are 
due to the fact that subscribers will extend their usual trips because they now pass through two tangrhubs instead of 
making a direct trip from origin to destination. Moreover, subscribers perform their first-mile and last-mile trips by walk, 
which is considerably time-consuming.

Even mobility costs and CO2 emissions (Figs. 11 and 12) follow the trend of subscribers, but in an inverse relationship: 
the higher the number of subscribers, the lower the average CO2 emissions and mobility costs. Specifically, the CO2 decrease 
is due to the fact that all the tangrhubs are provided with green vehicles. Thus, when the amount of subscribers is around 
85% (smi-7, smi-8 and smi-9), the carbon footprint of a commuter is almost zero. Concerning the mobility costs decrease 
with the subscriptions growth, this is due to the fact that commuters are just paying for the time spent traveling. The fixed 
costs of owning a vehicle are thus shared with the community. Indeed, in smi-1 the average daily cost of traveling is just 
less than e 8 per commuter; in smi-7 it is 4 times less.
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Fig. 11. CO2 emissions.

Fig. 12. Mobility costs.

Fig. 13. Mobility fleet usage.

5.1.3. Mobility resources usage
Fig. 13 shows the proportion of used and unused vehicles for each initiative. Light and medium SMIs are well configured, 

since there are no unused vehicles that would otherwise result in a waste of resources. Conversely, as the number of 
subscribers gets closer to 100%, the distribution of resources becomes tougher (all the massive-SMIs have unused vehicles).

5.2. Validation: comparing ToolTRain with Tangramob

The selection process of a light and a medium SMI is not trivial, since their performance is quite similar in scale. Thus, for 
each of these groups we selected the SMI with the lowest deployment of resources, i.e. smi-1 and smi-4. For what concerns 
the massive-SMIs group, we selected the one with the lowest unused resources, (i.e. smi-7), since it is more efficient.

As shown in Figs. 14, 15, 17 and 19, number of subscribers, travel distances, CO2 emissions and resources usage are 
almost the same between Tangramob and ToolTRain. For the mobility costs parameter, Fig. 18 shows that both smi-1 and 
smi-4 are very similar; whereas for smi-7 the difference is less than one euro, which is acceptable. On the other hand, travel 
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Fig. 14. Subscriptions.

Fig. 15. Travel distances.

Fig. 16. Travel times.

times (Fig. 16) are different, but at least they follow the same upward trend. Nevertheless, even though the TRebeca model 
still lacks a realistic representation of traffic, we can conclude that H1 is verified.

5.3. Computational performance statistics

In order to compare Tangramob and ToolTRain in terms of computational time required for a single experiment, Table 3
reports the CPU time of each selected SMI for both a Tangramob simulation and a ToolTRain run. More precisely, the 
experiments are performed on a Manjaro Linux desktop with an i7-4790S CPU @ 3.20 GHz and 16 GB RAM. Each Tangramob 
simulation is configured for 110 iterations. It is also worth remarking that the time needed for pre-computing the values 
of the model, as well as the model generation itself, explained in section 3.4.1, is negligible since it is very low. Moreover, 
since this operation is done once, such a time is not considered as a relevant factor for the overall time.
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Fig. 17. CO2 emissions.

Fig. 18. Mobility costs.

Fig. 19. Mobility fleet usage.

Table 3
Computational times.

SMI-1 SMI-4 SMI-7 Iterations

Tangramob 693413 ms 841782 ms 947465 ms 110
ToolTRain-old 45641 ms 57882 ms 69242 ms –
ToolTRain-new 71868 ms 104279 ms 126633 ms –

5.4. Comparison of the models’ outcomes

Comparing the results in Figs. 14–19 and the corresponding ones presented in [8], it emerges that the model presented 
in this paper yields more convincing results especially regarding the travel times, which were still not well-aligned to that of 
Tangramob. Concerning the other performance measures, there are no significant changes in the outputs, so we are omitting 
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Fig. 20. Comparison of travel times in ToolTRain versions.

their comparison in this paper. While it is true that such a simplified non-iterative model cannot represent urban traffic as 
accurately as Tangramob, ToolTRain’s travel times are now closer to those of the simulator, as can be seen in Fig. 20. More 
precisely, the travel times of ToolTRain are about 4/5 of those resulting from the simulator.

6. Towards other application contexts

The scope of this section is to show how the approach behind our work, and more technically the one offered by 
ToolTRain, can be applied in contexts other than smart mobility simulation. For this purpose, first we present and describe 
a new case study, highlighting both the objectives and the main difficulties behind the problem, then we suggest a similar 
methodology to address the problem and meet the goals of the project. Moreover, we want to emphasize that specifying 
a model with TRebeca and the ToolTRain approach are enough flexible to be exploited in different contexts, whereas Tan-
gramob is not so adaptable to other scenarios since it has a specific goal and logic. Furthermore, due to its complexity, a 
possible redesign and reimplementation would require very big efforts.

6.1. The Electric Work Site Project

The case study chosen for this section is the Electric Work Site Project by Volvo [15], for which a first study has 
been proposed in [16]. Basically, it involves operating an electrified quarry site and managing a fleet of haulers navigat-
ing autonomously and carrying out predefined tasks. In this problem, haulers are intended to work in a fleet manner for 
performing tasks such as material transport, loading, unloading, charging etc. in a cyclic manner. The whole simplified 
process is depicted in Fig. 21 and can be described as follows:

1. The materials primarily demolished at a quarry site are loaded into a Primary Crusher (PC) where they are crushed and 
remnants are loaded. On a technical viewpoint, haulers are loaded using a wheel loader.

2. The materials are then transported and unloaded to a Secondary Crusher (SC).
3. There is a charge station (i.e. a number of chargers) for the operating vehicles: every hauler returning from the unload-

ing point shall be charged to full battery.

In this scenario, each hauler is assigned unique tasks like getting loaded at PC, unloading at SC, charging at charge 
stations, navigating or waiting.

The main goal of this project is to find an efficient and effective schedule of activities among haulers in such a way to 
optimize the following performance measures:

• amount of material transported;
• idle time of the haulers;
• number of chargers;
• travel times;
• travel distances;
• energy consumed,

while consistently respecting a predefined set of constraints and desired properties like:

• no hauler is allowed to load materials at the loading point while the PC is in operation;
• limitations on the speed of haulers apply in some areas for safety concerns;
• haulers in competition of shared resources do not collide with each other.
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Fig. 21. Representation of the Electric Site Project.

As it emerges from these constraints, the path segment through which transportation takes place is a collision prone 
area, since haulers tends to meet together.

Analogously to the methodology described in Section 3, the approach we propose in this regard consists in capturing, at 
a proper level of detail, all the relevant aspects of problem in a Timed Rebeca model. Once such a model has been properly 
formalized and developed, it can be used as a reference architecture for instantiating executable models starting from a 
set of input files describing the configuration of the quarry site. The role of the reference model is thus similar to a class 
definition in an object-oriented programming language: it serves like a mould for baking cookies, but the whole prepara-
tion process is fully automated. In particular, the second and final step of our approach is to develop a chain of software 
components which together implement the idea of ToolTRain. More precisely, as discussed in Section 3.4, such a tool-chain 
would provide the following components: i) a program for instantiating a Timed Rebeca model from the configuration of the 
quarry site; ii) a routine for running the resulting model instance; iii) a post-processing script for extracting and inferring 
the performance measures discussed above from the resulting state space.

Although it is out of the scope of this paper to provide a formal and detailed description of both model and tool-chain 
of this new problem, the following subsections are intended to provide more information on the approach. The purpose of 
this investigation is to encourage the reader to critically evaluate a similar methodology for other contexts of application.

6.2. From the problem to a reference model: a brief investigation on the actors

Modeling the Electric Work Site problem in an actor-based modeling language, like Timed Rebeca, requires first to iden-
tify the actors involved in order to further describe their behavior by means of message servers and message exchange.

In this problem, we consider the following entities as rebec types: loading points (e.g. primary crushers), unloading 
points (e.g. secondary crushers), charging stations and the network describing the accessible paths of the quarry site. All 
these rebecs share the same goal, i.e. optimizing the performance measures discussed in Section 6.1, and each of them is 
responsible for certain predefined tasks. The key to success is behind the cooperation among rebecs by means of message 
passing. This will guarantee that undesired actions shall not occur during the execution of the model.

Haulers are the actual core of the model: they are responsible for moving materials from loading points to unloading 
points; traveling safely on the accessible areas of the quarry site; and charging their battery once a loading-unloading 
cycle has been completed. Analogously to commuters, haulers can be modeled as messages, and their flow among the 
other rebecs describes both their movement and the execution of their tasks. There is indeed a close similarity with the 
characterization of commuters described in Section 3.3. In fact, while commuters follow a personal plan of daily activities 
and legs (Section 2.1), we can think to organize and assign a schedule (i.e. a sequence of tasks) to each hauler rebec. 
Moreover, it is possible to group these tasks within the same categories of plan elements: activities and legs. More precisely, 
we can think of idle, loading, unloading and charging as activities, whereas a single movement from one activity to the next 
one is still a leg with its own route (i.e. a sequence of path segments to traverse). Therefore, considering schedules as plans 
makes it possible to keep the same characterization of commuters and use similar input files to describe the number and 
the configuration of each hauler (Listings 4 and 5).
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<person id="0" age="30" employed="no">
<plan selected="yes">

<act type="home" x="0.0" y="0.0" link="3466" end_time="08:00:00"/>
<leg mode="car" route="3466 7874 9588 1395"></leg>
<act type="work" x="0.0" y="200.0" link="1395" end_time="17:00:00"/>
<leg mode="car" route="1395 9588 7874 3466"></leg>
<act type="home" x="0.0" y="0.0" link="3466" end_time="24:00:00"/>

</plan>
</person>

Listing 4: Example of commuter’s plan.

<hauler id="HX0" battery−capacity="100Wh" status="operative">
<schedule selected="yes">

<act type="idle" x="0.0" y="0.0" link="150" end_time="06:00:00"/>
<leg route="150 237 656 321"></leg>
<act type="load" x="30.0" y="20.0" link="321" duration="00:20:00"/>
<leg route="321 478 942"></leg>
<act type="unload" x="40.0" y="25.0" link="942" duration="00:10:00"/>
<leg route="942 656 321 276"></leg>
...

</schedule>
</hauler>

Listing 5: Example of hauler’s schedule.

Achieving a collision-free scenario is the reason why the road/path network of the quarry site, from now on just network, 
is modeled as separate rebecs. In particular, the network can be modeled as a collection of rebecs, one for each critical and 
potentially dangerous sections of the quarry site, i.e. road/path intersections. These are indeed the areas where two or more 
paths overlap and collisions are thus more likely to occur. As can be seen in Listing 5, each leg of a hauler’s schedule is 
specifically assigned to a route. Unlike those of commuters, we describe a route as a sequence of intersections that the 
hauler has to traverse in order to reach the location of the next activity. Therefore, intersection rebecs manage the flow of 
haulers (messages) to guarantee mutual exclusion and avoid collisions in critical areas of the quarry site. These rebecs thus 
act as referees, responsible for ensuring a safe and fair allocation of space resources. Traveling among intersections without 
collisions is among the autonomous capabilities of the HX machines used as haulers in this project [15]. Nevertheless, 
splitting the original network of the quarry site in lots of intersections would provide a more granular control on the 
movement of haulers. As a consequence, all the runs of the model would be completely collision-free by design, at the cost 
of overloading communications among rebecs.

Technically, there is no difference between the road network characterization of Tangramob and that of the quarry site, 
and this allows to use the very same representation given in Section 2. The resulting network is thus a weighted multigraph 
with links denoting path segments and nodes representing intersections or, more generally, strategic points in which an 
interaction with the network rebec shall occur for the sake of travel progress.

Loading points, unloading points and charging stations can be considered as the main facilities for the operation of 
haulers and, together with the network, they describe the configuration of a quarry site. Each of them can thus be modeled 
as a rebec type with its own features and behavior, according to the project requirements. For instance, we can imagine 
a loading point rebec as an entity defining the rules and the behavior (i.e. the protocol) that haulers should follow for: 
approaching the crusher; getting filled of materials by a wheel loader; managing the collaboration with other haulers that 
are performing the same operation; handling exceptional situations (e.g. local incidents and malfunctions); and leaving the 
area. Moreover, each loading point has its own features such as the location on the network (i.e. a reference to a link), the 
number of wheel loaders available, the minimum and the maximum amount of materials that should be loaded every day 
and so forth.

6.3. A fully-automated approach for simulation

The previous section provided a few insights on the actors involved in the model we are planning to design and develop. 
Once a clear definition of the model is complete, we will be able to implement the before mentioned tool-chain in order to 
get the most from the model and improve its usability. For this purpose, we use the architecture of ToolTRain.

As outlined in Fig. 22, the first two modules of the pipeline are very similar to those of the ToolTRain architecture 
used for Tangramob. Basically, the first module takes the configuration of the quarry site (i.e. network and facilities) and the 
schedules of the available haulers as input, and generates an instance of the Timed Rebeca reference model as output. More-
over, in order to exploit the pre-processing capabilities of this module, the user can also provide the schedules.xml input 
file with just the declaration of the available haulers, thus giving no detail on the actual schedules (no task is assigned). In 
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Fig. 22. The ToolTRain-like architecture of the new pipeline.

this case, the script will attempt to build a number of schedules by means of heuristics and custom strategies, similarly to 
the approach described in Section 6 (if n schedules emerge from this step, n different models will be generated). Next, the 
second module is responsible to run RMC on the model resulting from the previous step; if more than one model is gener-
ated, the module will run each of them in parallel. Finally, once the computation of the model(s) is over, the last module 
will exploit the resulting state space(s) to collect and infer the output variables (i.e. the performance measures outlined in 
Section 6.1) that summarize the performance of the scenario(s) in light of user’s objectives.

7. Related work

Tangramob is a simulator supporting intermodality and multimodality in a context independent architecture. This section 
provides the reader with an overview of common approaches aimed at handling large-scale scenarios within reasonable 
computational time, a crucial challenge in agent-based traffic simulations. The literature provides different solutions to this 
problem, which can be classified into two groups: technical approaches and model-based ones.

Besides these groups, it is also worth to remark that a mapping from complex multi-agent systems to actor-based models 
was also proposed in [17]. More precisely, their approach is based on actors and asynchronous message passing, and exploits 
the UPPAL statistical model checker (SMC) for the experiments. In their work, the approach was applied to modeling and 
analysis of a large and adaptive version of the Prisoner Dilemma game, where performance issues are limited by UPPAL 
SMC. Even tough we share the same approach, i.e. modelling multi-agent systems via an actor-based language, the purpose 
of our investigation is different: whereas we aim at collecting some performance criteria, Nigro et al. [17] seek to verify 
some properties. Moreover, since we want to represent an ABM with many collaborative entities and we consider time as 
an important aspect of the simulation, we preferred to use TRebeca instead of UPPAL SMC.

7.1. Technical approaches

The first group collects all those alternatives which keep the integrity of the traffic ABM, whereas trying to decrease 
the computational complexity by means of some expedients, such as: reducing the input dimension and optimizing the 
available computational resources. For instance, in [9] the practice is to scale down the model, i.e. instead of modeling 
the 100% of a city’s population, only a representative portion is considered. It is thus possible to get comparable system 
dynamics with a 10% population if the transport system capacities are scaled down proportionally. Another approach is 
to harvest the computational power of Graphical Processing Units (GPU). For instance, [18] achieved a speedup of up to 
67 times by re-implementing MATSim for Compute Unified Device Architecture (CUDA), a framework enabling programs to 
perform calculations using both the CPU and GPU.

7.2. Model-based approaches

On the other hand, the second group comprises alternative approaches to model traffic at a more coarse-grained level, 
often resulting in loss of details. Indeed, microscopic traffic simulations are much computational demanding than other 
models, since they track the movement of each vehicle as well as the interactions among vehicles competing for roads. 
In contrast, macroscopic models aggregate vehicles, and traffic is described as a continuum. For instance, [23] introduces 
MacroSim, a MATSim’s module for macroscopic mobility simulations. In MacroSim, agents are handled sequentially and 
decoupled from each other, as well as from the environment, over the simulation. Their interactions are thus represented 
at a higher abstraction level by means of constraints in capacity and speed on each road of the network, expressed by 
volume-delay functions. With MacroSim, the simulation approach changes from a system-based to an individual-based one, 
allowing a more efficient parallelization of the mobility simulation (7 to 50 times faster).

Another modeling approach is given by [19] in which, instead of performing a microscopic traffic simulation along fixed 
time steps, an event-based model is used, performing only discrete actions which are relevant to the model (i.e. entering 
and leaving roads). This model is called Deterministic Event-Driven Queue-Based Traffic Flow Micro-Simulation (DEQSim). 
Compared to earlier queue-based approaches, DEQSim saves time in areas of the road network where the traffic load is small 
or moderate, leading to a speedup of more than 10 compared to the time-step-based approaches. In addition, [20] presents 
methods to increase the performance of the micro simulation model of MATSim using event-driven concepts as well as a 
parallel implementation. In particular, DEQSim was redesigned, giving birth to JDEQSim. This implementation consists of 
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the following three parts: (i) vehicles and links are the basic units of the simulation; (ii) communication among units takes 
place by exchanging messages via a scheduler, where each message contains a time stamp (e.g. when a vehicle is allowed 
to enter the next link); (iii) the scheduler contains a message priority queue, which is ordered by message time and type.

Thanks to a parallelization of JDEQSim, the authors managed to accelerate MATSim substantially, making it possible to 
simulate bigger runs with much fewer CPUs.

Though scaling the model to a smaller yet representative population helps saving time, this is still not enough to cope 
with both large-scale scenarios and the shared mobility services supported by Tangramob. Concerning the exploitation of 
GPU, it is worth considering that a CUDA implementation requires considerable design efforts since Tangramob is developed 
in Java. Moreover, the dependencies among agents and the environment, typical of macroscopic simulations, make it difficult 
to reach a good parallelization of the model.

For what concerns model-based approaches, shifting from a micro to a macroscopic model by means of abstractions 
is useful in some contexts. However, Tangramob aims at modeling both intermodal trips, which follow different traveling 
patterns than usual ones, and the acceptance of a mobility initiative for every single person of a sample population. This 
last consideration is due to the fact that an urban planner should be able to find a good balance of mobility resources for a 
certain district according to the actual mobility needs of the nearby citizens. Thus, it turns out that a macroscopic modeling 
approach is not suitable for our scopes. The event-based approach suggested in [19] can be even improved by modeling 
other traffic dynamics as messages. In fact, the redesign presented in [20] suggests an interesting approach to follow in 
order to speed the computational burden of Tangramob simulations.

Another work sharing our intent is that of Crociani et al. [21] in the context of crowd management in urban scenarios. 
Similarly to our simulations, given the large size of these environments, as well as the high number of simultaneously 
present pedestrians, the computational costs of a pure microscopic simulation approach can be prohibitive. To address this 
problem, the authors propose a multi-scale approach which combines two simulation models of different granularity, i.e. 
a microscopic cellular automata (CA) based model combined with a fast mesoscopic queue based simulation model. More 
precisely:

1. the CA is applied to complex situations with high pedestrian interactions (e.g. high density counter-flows), and this 
allows the simulation system to provide a very detailed representation of parts of the scenario in which more complex 
behaviors can take place;

2. the queue model is employed to the wider area, where pedestrian densities are rather low. Such a mesoscopic approach 
can thus used to design and simulate large parts of the urban environment that are not affected by such complex 
dynamics but are still fundamental for the analysis of the overall scene.

The combination of these models makes it is possible to simulate large and complex scenarios in reasonable time frames 
[21]. Considering that we also aim at using different model with different level of granularity, we can identify a similarity 
with their approach. However, whereas the proposed models are used jointly to provide a complementary view of the 
different dynamics involved in the simulation, our simplified model aims at replacing Tangramob in the first stages of the 
investigation of several smart mobility initiatives.

8. Conclusions and future work

Measuring the impacts of mobility initiatives prior to their development is a complex and risk-bearing task in urban 
planning. A Decision Support System (DSS) like Tangramob can support both urban planners and transport companies in 
this task, but the computational requirements of the iterative simulations might discourage its application in large scenarios.

In the conference paper [8], we showed how the Agent-Based Model (ABM) of Tangramob can be simplified into a Timed 
Rebeca (TRebeca) model, which allows users to get an idea of a mobility initiative in a shorter time. To make this model 
more usable, we also designed ToolTRain, a tool-chain for generating an instance of the TRebeca model from the same input 
of Tangramob; running the resulting model; and inferring the output from its run.

The comparative experiment designed to validate this approach shows a positive correlation between the output variables 
of both Tangramob and ToolTRain. Also, a comparison of the computational times supports the lighter demands of ToolTRain, 
since a run of the model requires around 12% of the time needed for its corresponding Tangramob simulation.

In this extended paper, we provided a complete and technical description of the TRebeca reference model we used to 
emulate Tangramob, as well as the improvements made to represent urban traffic dynamics (e.g. travel times, preferences 
of commuters) at a more realistic level. Moreover, besides the results obtained from these enhancements, we emphasized 
that the conceptual organization and the architecture of ToolTRain can be reused in other application domains. For this 
purpose, we presented the Electric Work Site Project by Volvo [15], which intends to operate an automated and electrified 
quarry, and we investigated how the approach described in this paper can be used to address the problem and to help the 
user achieve the goals of the project. This investigation is intended to encourage the reader to critically evaluate a similar 
methodology for other contexts of application.

As future work, we are planning to further improve the TRebeca model in order to introduce new mobility services. 
Moreover, we will extend a fully automated tool to provide the modeling and analysis of self-adaptive urban planning 
systems at runtime. The resulting system would allow tangrhubs to adapt their mobility services at runtime, in response to 
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service disruptions, commuters’ traveling experience and changes in the environment (e.g. car accidents, strikes). In this way, 
the urban planner will be able to observe the TRebeca model until a convergence criterion is met (e.g. 70% of subscribers).

Moreover, in order to obtain a closer (yet approximated) representation of urban traffic, we are currently designing a 
simplified and lightweight queue model as the one proposed in [22] that we can further integrate into ToolTRain.
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