
Received October 21, 2018, accepted January 10, 2019, date of publication January 17, 2019, date of current version February 6, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2893209

sOrTES: A Supportive Tool for Stochastic
Scheduling of Manual Integration Test Cases
SAHAR TAHVILI 1, RITA PIMENTEL1, WASIF AFZAL2, MARCUS AHLBERG3,
ERIC FORNANDER3, AND MARKUS BOHLIN1
1RISE SICS Västerås, 722 12 Västerås, Sweden
2School of Innovation, Design and Engineering, Mälardalen University, 722 20 Västerås, Sweden
3KTH Royal Institute of Technology, 114 28 Stockholm, Sweden

Corresponding author: Sahar Tahvili (sahar.tahvili@ri.se)

This work was supported in part by ECSEL & VINNOVA through projects XIVT, TESTOMAT, and MegaM@RT2, in part by the Swedish
Knowledge Foundation through projects TOCSYC and TESTMINE, and in part by ERCIM ‘‘Alain Bensoussan’’ Fellowship Programme.

ABSTRACT The main goal of software testing is to detect as many hidden bugs as possible in the final
software product before release. Generally, a software product is tested by executing a set of test cases, which
can be performed manually or automatically. The number of test cases which are required to test a software
product depends on several parameters such as the product type, size, and complexity. Executing all test
cases with no particular order can lead to waste of time and resources. Test optimization can provide a partial
solution for saving time and resources which can lead to the final software product being released earlier.
In this regard, test case selection, prioritization, and scheduling can be considered as possible solutions for
test optimization. Most of the companies do not provide direct support for ranking test cases on their own
servers. In this paper, we introduce, apply, and evaluate sOrTES as our decision support system for manual
integration of test scheduling. sOrTES is a Python-based supportive tool which schedules manual integration
test cases which are written in a natural language text. The feasibility of sOrTES is studied by an empirical
evaluation which has been performed on a railway use-case at Bombardier Transportation, Sweden. The
empirical evaluation indicates that around 40% of testing failure can be avoided by using the proposed
execution schedules by sOrTES, which leads to an increase in the requirements coverage of up to 9.6%.

INDEX TERMS Software testing, integration testing, test optimization, decision support systems, stochastic
test scheduling, manual testing, scheduler algorithm, dependency.

I. INTRODUCTION
The crucial role of software testing in a sustainable software
development cannot be ignored. Tomake amore effective and
efficient testing process, several factors should be considered.
One of the most important factors is estimating the total
required cost for testing a software product, which can be
a step toward justifying any software testing initiative. The
software testing costs can be classified as fixed costs (includ-
ing test team salaries, tester training, testing environment and
automated testing tools) or variable costs, which deals with
the troubleshooting and re-execution efforts [1].

Reducing the fixed testing cost is more related to the
organization’s policies and procedures, whereas minimizing
the testing variable cost is an optimization problem directly
impacted by the test efficiency. In an inefficient testing pro-
cess, a wide range of redundant test cases is created and
thereby a large number of redundant executions can occur
during the testing phase. In recent years, utilizing different

techniques for test case selection, prioritization and test suit
minimization has received much attention. By using the
above mentioned aspects, we can also address other testing
issues such as earlier fault detection [2] and faster release of
the software products [3].

Sequencing and scheduling are a form of dynamic and
continuous decision making with an industrial applicability.
The dynamic decision-making approach fits the environment
that changes over time and the previous decision might affect
the new decision [4]. The test scheduling problem can be
considered as a dynamic decision-making problem which
can be a practical solution for minimizing the redundant
execution at industry. Monitoring the test records (results)
of the previously executed test cases can affect the results of
the new test cases, especially in the integration testing level,
where test cases are more interdependent. Knowing the test
results (pass or fail) for each test case can help testers to select
a right test candidate for execution. However, monitoring and

12928
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-8724-9049

S. Tahvili et al.: sOrTES: Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases

decision-making process on a large set of test cases is both a
challenging and cost consuming process.

Through analyzing several industrial case studies, seen
in [2], [5], and [6], it has been proven that the problem of
test optimization is a multi-criteria decision making problem,
which can be applied to the dynamic test scheduling problem
as well. Measuring the effect of several criteria on the test
cases and also dynamically scheduling them is a challeng-
ing task which is addressed in this paper. In the present
work, we introduce, apply and evaluate sOrTES (Stochastic
Optimizing TEstcase Scheduling), as an automated decision
support system for test scheduling. sOrTES is a multi-criteria
decision support system with a fast performance, which
makes continuous execution decisions for manual integration
of test cases. Furthermore, the feasibility of sOrTES is evalu-
ated on a railway domain at Bombardier Transportation (BT)
in Sweden.

This paper makes the following contributions: (i) detect-
ing the dependencies between manual integration test cases,
(ii) dynamically scheduling test cases through analyzing their
execution results, (iii) increasing the requirements coverage
up to 9.6% and (iv) decreasing the total required troubleshoot-
ing time to 40%.

The organization of this paper is laid out as follows:
Section II provides a background of the initial problem and
also an overview of research on test optimization, Section III
describes the proposed approach. The structure of sOrTES
is depicted in Section IV. An industrial case study has been
designed in Section V. Section VI compares the performance
between sOrTES, BT and a history-based test case priori-
tization approach. Threats to validity and delimitations are
discussed in Section VII. Section VIII clarifies some points
of future directions of the present work and finally Section IX
concludes the paper.

II. BACKGROUND AND RELATED WORK
The concept of test optimization has received much attention
in the past decade, which can be performed through several
approaches such as test automation, test suite minimization,
test case selection, prioritization and also test scheduling.
However, all mentioned approaches are not applicable on all
testing environments within industry. The tradeoff between
the test optimization effort and the expected gain should
be considered in an early stage of a testing process. For
instance, changing the test procedure from manual to auto-
mated requires a huge effort and sometimes is not a proper
decision in terms of fault detection [7]. Moreover, manual
testing is a popular approach for testing the safety critical
systemswhere the human judgment and supervision are supe-
rior to machines [8]. Among the mentioned test optimization
aspects, test case selection, prioritization and scheduling can
be applied almost in all industries where the testing process
can be optimized through minimizing the required costs and
effort for running the proposed approaches. Selecting a subset
of generated test cases or ranking them for execution can lead
to a more efficient usage of the allocated testing resources.

The generated test cases for testing a software product have
different quality attributes and therefore do not have the same
values for execution. Identifying the properties of the test
cases and measuring their value for execution can be consid-
ered a master key to solving the test optimization problem.

As explained in Section I, the test optimization problem is a
multi-criteria and multi-objective decision making problem,
where the properties of the test cases (e.g. execution time,
requirement coverage) are the criteria and the targeted objec-
tives are to maximize requirement coverage and detect faults
earlier. Determining the critical criteria and the desirable
objectives depends on several factors such as the test cases’s
size, complexity, diversity and also the testing procedure.
For instance, the lines of code (LOC) can be considered as
a metric to measure the size of a test script, which is not
a valid criteria in a manual testing procedure. Furthermore,
test-satisfying objectives can be changed during the testing
process based on different test optimization aspects. In this
section, we briefly discuss three different aspects of test
optimization.

A. TEST CASE SELECTION
Generally, test case selection deals with choosing a sub-
set of designed test cases for execution. Test case selection
techniques can be used in exploratory testing, where the
testers are involved in minimum planning and maximum test
execution [9]. The problem of test case selection is formu-
lated as follow by Yoo and Harman [10]:
Definition 1:
Given: The program, P, the modified version of P, P′, and

a test suite, T .
Problem: To find a subset of T , T ′, with which to test P′.
In other words, not all generated test cases need to be

executed, as they also can be tested in some levels of testing
such as acceptance testing, where all test cases are already
executed at least once and just some test cases need to be
selected (randomly) for execution. Test case selection can
also be utilized for test automation, where a subset of test
cases can be selected as good candidates for automation in
the manual testing approach.

B. TEST CASE PRIORITIZATION
Ranking all designed test cases for execution is called test
case prioritization, which can be applied in all testing levels
such as unit testing, regression and system integration testing.
The main goal of test prioritization is to give a higher priority
to those test cases which have a better-quality attribute for
execution. The following definition of test case prioritization
is proposed by Yoo and Harman [10]:
Definition 2:
Given:A test suite, T , the set of permutations of T , PT and

a function from PT to real numbers, f : PT → R.
Problem: To find a T ′ ∈ PT that maximizes f .
Several objectives such as total testing time minimization

and earlier fault detection can be satisfied through applying
the test case prioritization techniques. Moreover, test cases

VOLUME 7, 2019 12929

S. Tahvili et al.: sOrTES: Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases

can be prioritized for test automation in the manual testing
approach, where the most critical manual test cases can be
top ranked among all manual test cases.

C. TEST CASE STOCHASTIC SCHEDULING
Selecting a subset of test cases or prioritizing test cases for
execution is usually performed offline and it is not a daily
task during a testing process. However, optimizing test cases
for execution without monitoring the test results (after exe-
cution) is not the most efficient approach in terms of test
optimization. The results (pass or fail) of previously executed
test cases can influence on the execution results of the new
test cases. This problem can be seen clearly in the integration
testing level, when the interactions between softwaremodules
are tested. There is a strong interdependency between integra-
tion test cases, which directly impacts the execution results of
each other [6], [11]. This level of interdependency also influ-
ences on the process of the test optimization, where selecting
and prioritizing test cases should satisfy the dependency con-
straints. Considering the above-mentioned issues, we opted to
use a stochastic scheduling model for ranking and sequencing
test cases for execution. The stochastic scheduling is a subset
of an optimization problem, where the processing time of
tasks are modeled as random variables [12], therefore a job’s
processing time is not known until it is completed [13]. In the
test scheduling problem, a new execution decision should be
made based on the results of the previously executed test
cases. We proposed the following definition to the problem
of test case stochastic scheduling:
Definition 3:
Given:A test suite, T . For all subset of T , A ⊆ T , the set of

all permutations A, SPA. For all B ⊆ T , the set of all possible
outputs after execution of the test cases in B, R. For each
r ∈ R, the function fr : SPA→ R.
Problem: To find a prioritized set of T , T ′, considering the

function f∅ : PT → R, where PT is the set of permutations
of T . To execute the test cases in T ′ until the first failure
(if any).

To update the previous procedure for T − Tp, considering
the function fre , until Tp = T , where Tp is the set of passed
test cases and re is the output of the executed test cases,
respectively.

In other words, the executed test cases need to be saved in
re and the prioritizing process should be continued until all
generated test cases are executed at least one time.

Note that the main difference between Definition 2 and
Definition 3 is monitoring the results of the test executions,
which leads to a dynamic test optimization process. If no
failures occur after the first execution then we only need to
prioritize test cases once, according to Definition 2.

D. RELATED WORK
Test prioritization tries to optimally order a set of test cases
for execution, typically by balancing criteria such as detect-
ing faults as early as possible with minimal cost, which is
dependent on execution time. However, in the most cases

a selective subset of possible test cases is utilized for test
prioritization.

Several test optimization techniques have been proposed
in literature [10], while more and more techniques that uti-
lize multi-objective and multi-criteria techniques are being
proposed [14]. Walcott et al. [15], present time-aware test
prioritization that balances execution time and code coverage.
A similar approach is also presented in [16]. Wang et al. [17],
introduce resource-aware multi-objective test prioritization
where one cost measure (total time) and three effectiveness
measures (prioritization density, test resource usage, fault
detection capability) were defined and formulated into a fit-
ness function. Although the Greedy algorithm may produce a
suboptimal result, it has receivedmuch attention to be utilized
for regression test case prioritization. Li et al. [18] are empir-
ically investigated metaheuristic algorithms for the regres-
sion test case prioritization. Strandberg et al. [19] present a
multiple factor automated system level regression test prior-
itization approach that combines multiple properties of tests
such as test duration, previous fault detection success, interval
since last executed and modifications to the code tested.

System-level test case prioritization has also been investi-
gated in [20] where requirements coverage and/or volatility
can be considered as one important prioritization criterion.
It is interesting to note that during integration testing, depen-
dencies between components and functions of the system
under test becomes a critical criterion. Few studies have
investigated test case prioritization based on such depen-
dencies. Caliebe et al. [21] utilized a system graph based
on the component dependency model and on path search-
ing methods through the graph, where test cases were
selected based on dependencies between the components
in the system. Similarly, Haidry and Miller [22] prioritized
functionally-dependent test cases based on different forms
of the graph coverage values. In order to detect functional
dependencies among integration test cases at an early stage,
our earlier work [23] proposed, using natural language pro-
cessing (NLP), to analyze multiple related artefacts (test
specification, software requirement specification and relevant
signaling information between functions under test).

Nahas and Bautista-Quintero [25] introduced Scheduler
Test Case (STC) as a new technique which provides a system-
atic procedure for documenting and testing. STC supplies a
black box tool which predicts the behavior of implementation
sets of the real time scheduling algorithms. The STC uses
several scheduling example tasks and also a subset of test
cases in order to examine the expected behavior output of
time trigged co-operative architectures.

The problem of test case prioritization is identified as a
single objective optimization problem by Wong et al. [28],
where all test cases are ranked based on their increasing
cost per additional coverage. Srivastava and Thiagarajan [24]
measured the changes that had been made to the program
and prioritized test cases based on that. Moreover, the branch
coverage has been identified several times as the most critical
criteria by Do et al. [29], Elbaum et al. [30], [31], and

12930 VOLUME 7, 2019

S. Tahvili et al.: sOrTES: Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases

TABLE 1. Summary of related work.

Rothermel et al. [26] where test cases are ranked based on
a single criteria. History-based test prioritization is another
single objective test optimization problem which is proposed
by Kim and Porter [27].

Table 1 presents a summary of the related work. We pro-
pose a multi-criteria decision approach for scheduling test
cases for execution, where most of the proposed approaches
are a single objective approach. Furthermore, our proposed
approach monitors the execution results of test cases and a
new decision would be made after each failure.

III. PROPOSED APPROACH
In the present work, we introduce sOrTES as a supportive tool
for stochastic test scheduling. sOrTES measures the interde-
pendency between integration test cases and ranks them for
execution based on their requirement coverage and execution
time. A new schedule is proposed after each execution for the
remaining test cases. As outlined earlier, there is a different
number of critical criteria which influences the test cases. The
criteria in the testing concept can be interpreted as a property
for each test case, which creates a difference between test
cases. The following criteria are utilized by sOrTES for the
integration of test case scheduling:
• Functional dependency between test cases: test cases
TC1 and TC2 are functionally dependent if they are
designed to test different parts of function F1 or if they
are testing the interaction between functions F1 and F2.
For instance, given two functions F1 and F2 of the
same system, let the function F2 be allowed to execute
if its required conditions are already enabled by func-
tion F1. Thus, function F2 is dependent on function F1.
Consequently, all test cases which are designed to test
F2 should be executed any time after the assigned test
cases for testing F1. Detecting functional dependencies
between test cases can lead to a more efficient use of
testing resources by means of [1]:
– avoiding redundant execution,
– parallel execution for independent test cases,
– simultaneous execution of test cases that test the

same functionality,

– any combination of the previous options.
• Execution time: is the total required time that each
test case is allowed to take for execution. Test case’s
execution time can differ from one test to another.
Knowing the execution time of test cases before execu-
tion can help test managers to divide test cases between
several testers. Moreover, estimating the required time
for each test case can provide a better overview of the
total required time for testing a software product.

• Requirement coverage: as the title implies, shows the
number of requirements which have been fulfilled by a
test case. The coverage of requirements is a fundamental
need throughout the software life cycle. Sometimes,
a test case can test more than one requirement and
sometimes several test cases are designed to test just one
requirement.

Identifying and measuring the influences of the mentioned
criteria on each test case requires a close collaboration with
the testing experts at industries, which consumes time and
resources. On the other hand, human judgment suffers from
uncertainty but eliminating them from experiments would
impact the results. One of the main objectives of design-
ing sOrTES as a supportive tool is automatic measurement
of the testing critical criteria, where the human judgment
will be reduced and thereby a more trustable result will be
produced. However, in some testing processes, there is no
available information about the dependencies between test
cases. In the case of a lack of a requirement traceability
matrix in a testing level, the requirement coverage cannot be
measured automatically.Moreover, the execution time for test
cases, in most companies is only available after execution.
We need to consider that, to have an efficient testing schedule,
the effect of the mentioned criteria on the test cases should
be measured in an early stage of a testing process and even
before the first execution. The criteria measurement process
can become even more complicated in a manual testing pro-
cedure. Analyzing a wide range of test specifications which
are written by human with a variance in language and testing
skills makes the problem more complex.

VOLUME 7, 2019 12931

S. Tahvili et al.: sOrTES: Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases

FIGURE 1. The input-output and phases of sOrTES.

The problem of dependency detection between manual
integration test cases has previously been solved through
proposing several approaches such as a questionnaire based
study, deep learning, natural language processing (NLP) and
machine learning [6], [23], [32]. We also proposed an aiding
tool called ESPRET1 for estimating the execution time for
manual integration test cases before the first execution [33].
Previously, test cases have been prioritized and ranked by
adapting some ranking algorithms such asAHP2 in [5] and [6]
and TOPSIS3 in [2]. Since test cases need to be scheduled for
execution more than one time (daily scheduling), running the
manual methods is not an optimal approach. The secondmain
goal of designing sOrTES as a supportive tool is the need
of fast and daily scheduling. Note that the test scheduling
problem is a dynamic task, meaning the results of scheduled
test cases in the first cycle (first day) can imply the scheduling
plan for the second day due to the following two reasons:

1) The dependency structure between test cases is chang-
ing after a successful execution. In other words, when
an independent test case is passed, the next dependent
test case (to this independent test case) can be consid-
ered as an independent test case. Since the dependen-
cies between test cases is changing continuously during
a testing process, a new schedule based on the current
dependencies status need to be proposed.

2) The passed test cases need to be removed from the
testing cycle (testing pool) and the failed test cases need
to be re-scheduled for the second-round execution. The
failed test cases must be troubleshooted first and the
time needed to accomplish this needs to be considered
when scheduling the remaining test cases for execution.

IV. SORTES- STOCHASTIC OPTIMIZING
TEST CASE SCHEDULING
sOrTES is a Python-based automated decision support sys-
tem which consists of two separate phases: 1- extractor
and 2-scheduler, that dynamically schedules manual integra-

1EStimation and PRediction of Execution Time
2Analytic Hierarchy Process
3Technique for Order of Preference by Similarity to Ideal Solution

tion test cases for execution based on three main criteria:
(i) dependencies between test cases, (ii) test cases execution
time and (iii) the requirement coverage. sOrTES reads the
requirement and test specifications as inputs and provides a
list of ranked test cases for execution as an output. In the
extraction phase, the functional dependencies and the require-
ment coverage for each test case are computed and in the
scheduler phase, the test cases are sorted for execution. The
execution time for each test case is predicted by ESPRET (our
proposed tool for execution time prediction [33]) which can
be added to the test cases manually, or the same time value
can be assumed for all test cases. Figure 1 shows the required
inputs, expected outputs and also the embedded phases inside
of sOrTES, which is exemplified through analyzing an indus-
trial case study later in this paper. The following paragraphs
describe the mentioned phases.

A. THE EXTRACTION PHASE
To get a clearer picture of the required inputs for running
sOrTES, we provide some examples of software requirement
specification (SRS) and test case specification, extracted
from DOORS4 database at BT. A typical SRS at BT con-
sists of different pieces of information including the signal
information and standards, which are described textually.
The SRSs are written by the requirement engineering teams’
members as early as the needed input is available to the
project. The requirement adjustments are performed contin-
uously during the project life cycle. Each requirement from
the SRS is assigned to a sub-level functional group (SLFG).
The requirement is then implemented as a part of one module
within the SLFG, or as a part of several modules within the
same SLFG. Table 2a and Table 2b represent two requirement
specification examples for the brake system and line voltage
respectively. During the project, some of the SRSs might be
removed, merged or new SRSs might be added to the project.

1) FUNCTIONAL DEPENDENCIES DETECTION
In the extraction phase, the functional dependencies between
test cases are detected through analyzing the internal signal

4Dynamic Object-Oriented Requirements System

12932 VOLUME 7, 2019

S. Tahvili et al.: sOrTES: Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases

TABLE 2. Software requirement specification examples - Bombardier Transportation. (a) Brake system (SLFG). (b) Line voltage (SLFG).

communications between the software modules, which is
described textually in the SRSs. In order to illustrate the sig-
nal communications between the software modules, a trace-
ability graph for the train-borne distributed control system (in
summary TCMS) at BT is provided in Figure 2.

FIGURE 2. The traceability graph for TCMS.

Figure 2 shows how two software modules from two differ-
ent SLFGs (line voltage and brake system) are communicat-
ing by sending and receiving an internal signal to each other.
As depicted in Figure 2, module 1 sends an internal signal to
module 2, which builds a dependency relation between those
software modules. Since module 2 is functionally dependent
on module 1, it should be tested after it. Thereby, all assigned
requirements (e.g. the requirements in Table 2a) and test
cases for module 2 are functionally dependent on the assigned
requirements (e.g. the requirements in Table 2b) and test
cases for module 1. According to Figure 2, requirements
(Req1 and Req2) describe how module 1 should be tested and
four test cases TC1,TC2,TC3 and TC4 are also designed to
test module 1 based on Req1 and Req2. The test cases that
are designed to test module 1 (i.e. TC1, TC2, TC3 and TC4)
should ideally be top ranked for execution. TC3 and TC4 are
designed to test both modules, but they need to be tested
with the assigned test cases for module 1 in the first testing
cycle.

The required information for creating Figure 2 is described
textually in the requirement specification at BT. sOrTES
reads the requirement specifications in the format of an

excel sheet (see Table 2) and finds the matched internal
input-output signals. As we can see in Table 2a, the inter-
nal signal 44-A34.X11.4.D13 is described as an input
for the brake voltage module which is described by the
requirement SRS-BHH-brake system 768 (see column Inter-
face in Table 2a). However, the same signal (Internal sig-
nal 44-A34.X11.4.D13) is described as an output signal
in the interface column for the brake module, assigned to the
requirement SRS-BHH-Line Voltage 243 in Table 2b.

Moreover, Table 3 represents an example of a manual
test case for a safety critical system at BT, which con-
sists of a test case description, an expected test result, test
steps, a test case ID, corresponding requirements, etc. In this
example, two requirements (SRS-BHH-LineVolt1707
and SRS-BHH-Speed2051) are assigned to the test case
example in Table 3. Once the dependencies between require-
ments are detected, sOrTES searches for the dependencies
between test cases through mapping the assigned test cases
to the corresponding requirements. Since both requirement
and test specifications are written in a natural text, several
library packages are used, such as xlrd for reading excel
(.xls) documents (the requirement and test specifications)
and vis.js, which is a dynamic browser based visualiza-
tion library, for visualization of the dependencies. Moreover,
some specific algorithms were implemented in Python to
extract the required information from the requirement and
test specifications. Since the implementation details (pack-
ages, libraries and pseudocodes) are already described in
length in [32], thus the Python implementation details are
omitted from this paper. The extraction phase is currently
embedded in sOrTES. Furthermore, in a large testing project,
with a wide range of requirements and test cases, the depen-
dency between requirements and test cases is very complex.
Figure 3 displays a part of the dependency relations between
the requirements together with the test cases in an industrial
testing project at BT. The blue and red nodes in Figure 3
represent the requirements and the test cases, respectively.
Note that all red nodes are connected to only blue nodes, even
if it might seem otherwise due to dense visualization. Asmen-
tioned earlier, there is a strong and complicated dependency

VOLUME 7, 2019 12933

S. Tahvili et al.: sOrTES: Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases

TABLE 3. A test case specification example from the safety-critical train control management system at bombardier transportation.

FIGURE 3. The dependency between the requirements (blue nodes) and
the test cases (red nodes).

between requirements and test cases in the integration testing
level. As one can see in Figure 3, often more than one test
case (red nodes) is assigned to test a requirement. However,
in some testing scenarios, several requirements (blue nodes)
are meant to be tested by just one test case. Visualizing the
dependency relationships between the requirements together
with test cases, and also showing the test diversity data, can
assist testers and test managers to improve the testing process
in terms of test case selection and prioritization. For exam-
ple, the minimum number of required test cases for testing
a certain set of requirements can easily be extracted from
Figure 3.

2) REQUIREMENT COVERAGE MEASUREMENT
Computing the number of assigned requirements for each test
case provides the requirement coverage information. sOrTES
captures the inserted information in each test specification
(e.g. Table 3) and provides a number acting as the requirement
coverage to each test case. The requirement coverage is equal
to 2 for the provided test specification example in Table 3.
However, Table 4 shows an output example provided by the
extraction phase in sOrTES for dependencies and require-
ment coverage for each test case. In Table 4 we can see how
many test cases need to be executed before testing another
particular test case. The independent test cases have a 0 value
in theDependent on column in Table 4.Moreover, the number
of test cases that can be tested after each test case is inserted
in theOutput column. The requirement coverage (the number
of assigned requirements to a single test case) is calculated
and stored in the Requirement coverage column in Table 4.
For instance, test case number 1 is an independent test case,
which does not require execution of any other test cases
before it. Furthermore, a total of 38 requirements are assigned
to this test case. The testers can plan to prioritize execution
of this test case first given its requirements coverage. In cer-
tain industrial contexts, the requirement coverage is assumed
as the most important criterion for test case selection and

TABLE 4. Independent and dependent test cases and the requirement
coverage for each test case.

12934 VOLUME 7, 2019

S. Tahvili et al.: sOrTES: Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases

prioritization [6]. The tester can also test this test case at
any time due to its independent nature. On the other hand,
test case number 5 is dependent on 13 other test cases with
a requirements coverage equal to 6 and just one test case
being dependent on it. Thus, test case number 5 is not a
good candidate for first cycle execution given its dependency
on 13 other test cases.

However, after a successful execution of test case
number 8, a total of 46 test cases will be available for
execution (as independent test cases) and therefore this test
case can also be considered for early execution in the testing
cycle. As we can see in Table 4, test cases number 9, 10 are
two independent test cases, where a total of 45 and 36 test
cases are dependent on these two test cases, respectively. The
names of some test cases which are dependent on test case
numbers 9 and 10, are shown in Table 4. However, the inserted
information in Table 4 can be used as an input in any other
decision support system for ranking algorithms or can even
be utilized manually for test case selection and prioritization
(one-time ranking).

B. THE SCHEDULING PHASE
The information provided in Table 4 can help us to schedule
test cases for dynamic execution. The test execution results
of dependent test cases directly impact the other test cases.
On the other hand, maximizing the requirement coverage,
or execution of as many test cases as possible in a limited
period of time, is always demanded by industry. The proposed
optimization solution for test scheduling in this work can
be divided into two main parts: (i) finding a feasible set
and (ii) maximizing the requirement coverage for each testing
cycle. Finding a feasible set of test cases for execution deals
directly with interdependence, interaction, and relationships
between test cases. First, a dependency graph (directed graph)
should be built up for the dependent test cases, which shows
our constraints. The objective function is to maximize the
requirement coverage.

Ignoring the dependencies can lead to redundant failures,
thereby increasing the troubleshooting cost and the total test-
ing time [1]. Additionally, maximizing the requirement cov-
erage can help testers to finish the testing process faster which
might lead to earlier release of the final software product.
Hence the main constraint of this optimization problem is
dependency; we are not able to rank test cases just based on
their requirement coverage (or any other criteria) for execu-
tion. For instance, the inserted test case in line 6 in Table 4
has the highest value for the requirement coverage (46), but
this test case is a multi-dependent test case and cannot be
executed as a first test case in a testing cycle because 12 other
test cases should be executed successfully before reaching
this one. Choosing the test candidate for execution from the
feasible set might minimize the risk of unnecessary failure.

Generally, test cases can fail based on the following causes:
(i) there is a mismatch between test case and requirement,
(ii) the testing environment is not ready for testing, (iii) bugs
in the system and (iv) paying no attention to the dependencies

between test cases. A failed test case needs to go through
troubleshooting, which consumes testing resources. Thus,
minimizing the redundant executions and thereby unneces-
sary failures (based on the dependency causes) can lead to
a decrease in troubleshooting efforts. Note that the proposed
approach in this paper just deals with the unnecessary failure
based on the dependent test cases as we are not able to avoid
any other failure causes.

1) MODEL ASSUMPTIONS AND PROBLEM DESCRIPTION
Let us consider a subset of n test cases, designated by TC1,
TC2, ... TCn, that will be tested in a testing cycle, which
are chosen from the testing pool among all test cases. Each
test case, TCi, is characterized by its execution time, ti > 0,
the required time for performing the troubleshooting process
in case of failure, bi > 0, and the requirement coverage,
si ∈ N. After each execution, a testing result such as pass,
fail, not run and partly pass is recorded for the executed
test cases. According to the testing policy at BT, all failed,
partly passed and not run test cases must be executed again.
Following their procedure, we consider all results different
than pass as fail. For test case TCi, we denote its testing result
as ri, which we represent either by 1 for fail or 0 for pass.
In fact, ri is a realization of a random variable Ri, given that
we do not know what the result will be beforehand, i.e.

Ri =

{
1, if test case TCi fails
0, if test case TCi passes.

where, Ri ∼ Bernoulli(pi) with pi = P(TCi fails).
Our main goal is to define an optimal execution order to

test all test cases within each testing cycle. In our study,
we assume that (i) the n test cases are all tested in each
testing cycle only once; (ii) when a failed test case is sent
for troubleshooting, it will be tested again in another testing
cycle (not in the current one). Note that these are acceptable
assumptions by our industrial partner. In general, for n test
cases, there are n! ways of ordering the test cases. How-
ever, the order should be chosen in a way to avoid unnec-
essary failure based on dependency and thereby redundant
troubleshooting. As it was explained before, some of these
failure reasons are unavoidable, due to the failure based on
dependency which is avoidable.

Let us consider that each test case in a testing cycle
is a node (red nods in Figure 3) in a complete directed
graph. Thus, there are bi-directed edges connecting every
pair of nodes (but there are no edges from a node to itself).
In fact, we want to solve a stochastic traveling salesman
problem (TSP) [34] as:
Definition 4:
Given: The n test cases and their troubleshooting times.
Problem: To find the best execution order to test each test

case, minimizing the total troubleshooting time.

VOLUME 7, 2019 12935

S. Tahvili et al.: sOrTES: Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases

To formalize the TSP, we define:

min E

 n∑
i=1

n∑
j=1
j6=i

xij bi Ri

s.t. xij ∈ {0, 1} , ∀ i, j = 1, ..., n

n∑
j=1
j6=i

xij = 1, ∀ i = 1, ..., n

n∑
i=1
i6=j

xij = 1, ∀ j = 1, ..., n

∑
i∈V

∑
j∈V
j6=i

xij≤|V |−1, ∀ V ({1, 2, ..., n} , V 6=∅ (1)

The solution of Equation 1 gives us the best order to
execute the n test cases in such a way that the troubleshooting
time is minimized at each testing cycle, which can be written
as an n-dimension vector:(

TC·,1,TC·,2, · · · ,TC·,n
)
.

In our notation TC·,k represents the k th test case that should
be tested, i.e. the second index stands for the execution
order where the first index indicates the test case number.
For instance, TC5,2 represents that TC5 should be executed
in second place in a testing cycle.

In the present work we are preoccupied with minimizing
the needless troubleshooting time caused by interdependent
integration test cases. In other words, if TCj depends on TCi,
then it is very unlikely that TCj passes if TCi was not tested
before, then we consider that:

P(TCj passes|TCi was not tested) = 0. (2)

Thus, if we choose an order where TCj is tested before TCi
then we will have Rj = 1 almost certainly (and a trou-
bleshooting time will be summed up). On the other hand,
if all tests that TCj is dependent on have already passed, then
TCj will behave as an independent test case. For instance, let
us consider that TCj only depends on TCi and TCk , then we
have:

P(TCj passes|TCi and TCk already passed)=P(TCj passes).

In order to avoid adding unnecessary troubleshooting time
before testing a test case with dependencies, we should first
test all test cases that it is dependent on. However, to accom-
plish this, an embedded digraph of dependencies should be
described first. This is one of the main contributions of
sOrTES in the extraction phase.

To clarify the explanation, let us consider a dummy
example,5 where we only have 5 test cases: TC1, TC2, TC3,
TC4 and TC5. We have 5! = 120 different execution orders

5It is a dummy in the sense that the number of test cases is very small
compared with real industry cases.

of testing the 5 test cases. However, let us assume that
we are able to describe the following embedded digraph of
dependencies:

FIGURE 4. Example of an embedded digraph of dependencies for 5 test
cases.

According to Figure 4, TC1, TC2 and TC4 are independent
test cases, TC3 depends on TC1, TC5 directly depends on
TC2, TC3 and TC4, where we call them as the precedents,
and indirectly depends on TC1. Knowing this grid of depen-
dencies and taking into account Equation (2), we realize that
there are only 12 feasible choices to execute those 5 test cases
(always with TC5 in the last place and TC3 after TC1).
To formalize the set of the feasible choices, for each test

case TCi, we consider the set of all precedents, Pi, i.e. the
set of test cases that TCi directly depends on. For instance,
for the presented example in Figure 4, P1 = P2 = P4 = ∅,
P3 = {TC1} and P5 = {TC2,TC3,TC4}.

In order to avoid unnecessary troubleshooting time, let us
call F the set of all possible ways to test the n test cases,
which takes into account the interdependencies. We call it the
feasible set and it is defined as follows:

F =
{(
TC·,1,TC·,2, · · · ,TC·,n

)
: P·,1 = ∅,

∀ i = 2, · · · , n, P·,i j
{
TC·,1, · · · ,TC·,i−1

}}
.

Considering again the example in Figure 4, if we have(
TC·,1,TC·,2,TC·,3,TC·,4,TC·,5

)
∈ F , the total expected

time for troubleshooting is b1 p1+b2 p2+b3 p3+b4 p4+b5 p5.
On the other hand, if

(
TC·,1,TC·,2,TC·,3,TC·,4,TC·,5

)
6∈F ,

the total expected time for troubleshooting is either b1 p1 +
b2 p2+b3 p3+b4 p4+b5 or b1 p1+b2 p2+b3+b4 p4+b5 p5
or b1 p1 + b2 p2 + b3 + b4 p4 + b5. This means that the total
expected time for troubleshooting for elements in the feasible
set F is always lower than the corresponding expected time
for elements that do not belong to F . In other words, any
solution not included in F is sub–optimal to minimize the
total expected time for troubleshooting. This implies that
from now on we only consider elements in F .
Currently, sOrTES considers all elements in the feasible set

F and orders them by requirement coverage, i.e. it wants to
achieve the highest requirement coverage possible, as early
as possible. We can formalize it in the following way:

12936 VOLUME 7, 2019

S. Tahvili et al.: sOrTES: Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases

We want to choose
(
TC·,1,TC·,2, · · · ,TC·,n

)
∈ F , with

respective requirements coverage s·,1, s·,2, ..., s·,n, such that,
if we consider another order

(
TC′
·,1,TC

′

·,2, · · · ,TC
′
·,n

)
∈ F

with respective requirements coverage s′
·,1, s

′

·,2, ..., s
′
·,n, for all

i = 1, 2, ..., n, the following inequality holds

i∑
j=1

s·,j ≥
i∑

j=1

s′·,j. (3)

V. EMPIRICAL EVALUATION
In order to analyze the feasibility of sOrTES, we designed
an industrial case study at Bombardier Transportation (BT)
in Sweden, by following the proposed guidelines of
Runeson and Höst [35] and also Engström et al. [36]. BT pro-
vides various levels of testing in both manual and auto-
mated approaches, where the integration testing is performed
completely manually. The number of required test cases for
testing a train product at BT is rather large and the testing
process is performed in several testing cycles.

A. UNIT OF ANALYSIS AND PROCEDURE
The units of analysis in the case under study are manual test
cases at the level of integration testing for a safety-critical
train control subsystem at BT. sOrTES is however not
restricted to the testing level or methods and can be applied
to other testing procedures in other levels of testing (e.g. unit,
regression and system level in both manual and automated
procedures) in other domains. The case study is performed in
several steps:
• An Commuter train for Hamburg called BR project6 is
selected as a case under study.

• A total number of 3938 requirements specifica-
tions (SRSs) from 17 different sub-level function groups
are extracted from the DOORS database at BT for the
BR project.

• The dependencies between requirements are detected
for 3201 SRSs while 737 SRSs are detected as being
independent.

• A total number of 1748 test specifications are extracted
from DOORS and analyzed for dependency detection.

• The results of dependency between test cases are pre-
sented to the BR project team members.

• Three different test execution cycles from the beginning,
middle and end of the BR project are selected to be
compared with the proposed execution schedules by
sOrTES.

• The testers’ and engineers’ opinions about the number of
failed test cases based on the dependencies are collected
and analyzed.

6The BR series is an electric rail car specifically for the S-Bahn Hamburg
GmbH network in production at Bombardier Hennigsdorf facility started
in June 2013. Bombardier will deliver 60 new single and dual-voltage
commuter trains with innovative technology, desirable energy consumption
and lowmaintenance costs. The heating system in the BR project is designed
to use waste heat from the traction equipment system to heat the passenger
compartments [37].

B. CASE STUDY REPORT
As mentioned before, the main goal of proposing sOrTES is
dynamic test scheduling. The results of executed test cases
can impact how the dependencies are shaped between test
cases. Therefore making a correct decision for test exe-
cution is directly related to the test cases’ dependencies.
sOrTES first detects the dependencies between the assigned
requirements to the BR project and thereby the dependencies
between corresponding test cases are detected. In the next
level, the requirement coverage is computed for each test case
and thereafter test cases are ranked based on their dependen-
cies and requirement coverage.

TABLE 5. An execution schedule example, proposed by sOrTES for the BR
project at Bombardier, RC stands for the requirement coverage and Time
represents the execution time.

Table 5 represents the user interface of sOrTES with an
execution schedule example, where the dependent test cases
are highlighted in red. Moreover, the execution time and
requirement coverage (RC column in Table 5) are available
for each test case. Since the execution time for test cases is
captured by another tool (ESPRET), we assume the same
time value for all test cases in the present work. Note that
by changing the execution time value in Table 5, another
execution schedule will be proposed which might be different
than the current one. In other words, test cases are ranked for
execution based on their dependencies, requirement cover-
age and the execution time, where the user is able to spec-
ify that a lower or higher execution time per test case is
demanded.

The priority column in Table 5 shows the execution order
for each test case. After each execution, the testers can insert
the test results for those test cases which are passed by click-
ing on the play circle icon in Table 5. Thus, the passed test
cases are removed automatically from the proposed schedule
and a new execution schedule will appear in Table 5. Using
the red color for the dependent test cases can help testers
to have a better overview of the dependencies between test
cases. By clicking on the Toggle Graph button (embedded in
sOrTES user interface seen in Table 5), Figure 5 is shown,
which represents the dependencies between test cases (the
red lines in Table 5) for the BR project. Moreover, a new
graph is created after removing the passed test cases from
Table 5. We need to consider that, Figure 5 shows a part
of the dependencies graph between test cases (the complete
dependency graph contains 1748 test cases).

VOLUME 7, 2019 12937

S. Tahvili et al.: sOrTES: Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases

FIGURE 5. Partial dependency graph between the BR project’s test cases at BT, using sOrTES.

VI. PERFORMANCE EVALUATION
In this section we evaluate the performance of sOrTES
through comparing the proposed execution schedules by
sOrTES with three different execution orders at BT. The pur-
pose of the performance evaluation is to adequately compare
the amount of fulfillment requirements and troubleshooting
efforts in the different testing cycles during the project.

A. PERFORMANCE COMPARISON BETWEEN
SORTES AND BOMBARDIER
For each set of test cases, in each testing cycle, sOrTES
and BT provide an execution schedule, ordering the test
cases based on their own criteria. Following the notation
already introduced, we represent the scheduling order given
by sOrTES and BT, respectively by:

TC·,1S ,TC·,2S , ...,TC·,mS

and

TC·,1B ,TC·,2B , ...,TC·,mB .

where TC·,1S represents the first test case in sOrTES proposed
execution schedule. For instance, TC5,1S means that TC5 is
the first test case that needs to be executed, according to
sOrTES. Suppose that at BT the TC5 is tested in 12nd place,
then we have TC5,12B . From now on, whenever it is necessary,
we use the S to associate with sOrTES and B to associate
with BT. Our goal is to compare the performance of both of
the provided schedules. The presented test cases in Table 4
are arranged in alphabetical order for the 1st testing cycle
in Table 6.
As Table 6 shows, TC1 is scheduled by sOrTES as the

first test candidate for execution, however, the TC1 has been

TABLE 6. Execution order in the 1st testing cycle, for a subset of 10 test
cases (among 1462), according to sOrTES and BT.

executed by BT as the 942th test case in the 1st testing cycle.
To compare the planned schedules, we consider a variable
which represents the sum of the requirements coverage ful-
filled after the execution of the k th test case, namely:

CSS (k) =
k∑
j=1

s·,jS and CSB(k) =
k∑
j=1

s·,jB .

Indeed, CSS (k) and CSB(k) are the cumulative requirements
coverage achieved by sOrTES and BT, respectively.

To compare the schedules after execution, just as before,
we consider a variable that gives us the cumulative require-
ment coverage. However, now we assume a penalty for every
time a test case gets a failed result. We don’t sum the require-
ment coverage from the failed test cases, i.e. we have instead:

CSAS (k) =
k∑
i=1

s·,iS
(
1− r·,iS

)
12938 VOLUME 7, 2019

S. Tahvili et al.: sOrTES: Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases

FIGURE 6. Comparing the scheduling execution results at BT with the proposed execution schedule by sOrTES for the BR project. (a)
Cumulative requirement coverage after the 1st execution cycle. (b) Cumulative requirement coverage after the 2nd execution cycle. (c)
Cumulative requirement coverage after the 3rd execution cycle.

and

CSAB(k) =
k∑
i=1

s·,iB
(
1− r·,iB

)
.

It is also worthy to consider a variable regarding the trou-
bleshooting time. This variable represents the sum of the
number of labor hours, regarding to troubleshooting, after the
execution of the k th test case. In fact, when a test case gets a
fail result, we add its troubleshooting time, i.e.

CTAS (k) =
k∑
i=1

[
b·,iS r·,iS

]
and

CTAB(k) =
k∑
i=1

[
b·,iB r·,iB

]
.

In other words, CSA is the cumulative requirement coverage
after execution for the passed test cases and CTA represents
troubleshooting time for the failed test cases.

Figure 6 illustrates the gained cumulative requirements
coverage (CSA) for three different execution cycles at BT,

where sOrTES maximizes the number of requirements in
each execution cycle, compared with BT. According to
Figure 6a in the 1st execution cycle at BT, the number of
2000 requirements are tested through executing 880 test cases
with the proposed execution order by the testers. However,
the same number of requirements could be covered by execut-
ing 580 test cases if the testers follow the proposed execution
schedule by sOrTES. Since we are using the cumulative
requirement coverage in the end of each testing cycle, the total
number of tested requirements would be the same by both
proposed execution schedules as long as there are no failures
based on dependency between test cases. However, given that
sOrTES has less failures, it can cover more requirements.
Moreover, comparing the tested requirements in Figure 6
indicates that, in all proposed execution schedules by BT,
fewer requirements have been tested compared with sOrTES.
In some testing companies testing as requirements as pos-
sible in a limited period of time is demanded. Therefore
prioritizing test cases based on their requirement coverage
is a well known and acceptable approach. Note that the
proposed execution schedule by sOrTES in Figures 6 is not
only based on the requirement coverage but is also based on

VOLUME 7, 2019 12939

S. Tahvili et al.: sOrTES: Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases

the dependencies between test cases. In other words, we avoid
the risk of failure based on dependencies between test cases
by using the execution schedules proposed by sOrTES. Hence
sOrTES ranks test cases for execution based on their require-
ment coverage (after dependency detection), those test cases
which are covering more requirements will be ranked higher
for execution. As seen in Table 5, the first test candidate for
execution covers 38 requirements. The average of executed
test cases in each testing cycle at BR project is around 1500,
which leads to a very low probability of executing the test
cases with a high number of requirements coverage in the
early stages of a testing cycle. According to Figure 6 using the
proposed execution schedules by sOrTES leads to increase
the average of requirement coverage up to 9.6% . In Figure 7
we compared the scheduled cumulative requirement coverage
with 10000 random test execution orders. As can be seen,
2000 requirements are fulfilled by sOrTES through executing
400 test cases, whereas in the 10000 random execution orders
for more than 1400 test cases, the minimum number of test
cases is 700 to obtain the same 2000 requirements.7

FIGURE 7. Cumulative requirement coverage for random execution
orders.

As highlighted in Section III, one of the main advan-
tages of using sOrTES is the ability to avoid unnecessary
failures based on previous failures (fail based on depen-
dency). All failed test cases at BT are labeled with a tag
such as software change request (SCR). SCRs are usually
used when a test case fails based on an existing bug in the
system or there is a mismatch between a requirement and a
test case. For analyzing the performance of sOrTES in the
troubleshooting time perspective, we assumed all test cases
which are tagged with SCR (and failed in each testing cycle)
would result in a failure with the proposed execution order by
sOrTES as well. Since, the dependencies between test cases
are detected by sOrTES, we are able to monitor the execution
results for dependent test cases after each execution cycle.
In fact, we have searched for ‘‘failed based on failed’’ test
cases among all failed test cases. To exhibit the differences

7Note that Figure 7 shows the first execution schedule plan (before the
first execution), i.e. CSs defined before. For this reason Figure 7 does not
coincide with Figure 6a.

between the proposed execution schedule by sOrTES and
BT’s execution orders, we consider those test cases that have
resulted in a fail based on dependencies as a pass instead.

In all three execution cycles at BT, a test case which
depends on any test case is failed when: (i) the independent
test casewas already tested, and the result was failed or (ii) the
independent test case was not tested before the dependent one
(wrong execution order). As highlighted before, we need to
consider that using the proposed execution order by sOrTES
does not avoid any other causes of failure (e.g. the mismatch-
ing between test cases and requirements), as those kinds of
failures would most likely occur with sOrTES schedules.
As previous study [1] shows, fails based on dependency are
the most common cause of failure in the integration testing
level for the Zefiro8 project at BT.
Our analysis shows that 20.79% of the executed test cases

in the first execution cycle at BR project have failed, where
40.79% of the failures have occurred based on the depen-
dencies between test cases. The occurrence percentage is
44.20% and 36.18%, out of a failure percentage given by
33.92% and 19.86%, for the second and third execution cycle
respectively. The total troubleshooting time for each test case
is estimated as 16 labor hours with a collaboration of the
testing experts at BT, meaning a failed test case takes two
days to cycle back to testing again. Figure 8 illustrates the
troubleshooting time for the failed test cases in the three
testing cycles at BT. As can be seen in Figure 8a, the total
required troubleshooting time in the first execution cycle at
BT is close to 5000 labor hours, where using the proposed
schedule by sOrTES can lead to less than 3000 labor hours.
Furthermore, in the second execution cycle (see Figure 8b),
we observe that the troubleshooting time has increased even
more, reaching 8000 labor hours, which is almost two times
higher than the required troubleshooting time by sOrTES.

According to Figure 8, the proposed execution schedule
by BT has less failure in the beginning of each testing cycle.
In the first cycle, after executing 100 test cases, a significant
increase in troubleshooting can be observed (see Figure 8a),
which indicates the fail based on fail problem. In the second
execution cycle, failure starts from the beginning, illustrated
in Figure 8b. Moreover, failure starts after almost 100 execu-
tions, displayed in Figure 8c, for the third execution cycle.

As stated earlier in this section, 44.20% of the executed test
cases failed in the second execution cycle at BT. This led to
a longer troubleshooting time compared to the first and third
execution cycle (See Figure 8b).

Themain reason that the execution order at BT in Figure 8a
and Figure 8c has a lower failure in the beginning is that the
testers are usually executing the simple test cases in the begin-
ning of each testing cycle. Those type of test cases, which
are not complicated and generally cover one or two require-
ments, have a higher chance for a successful execution.

8Bombardier Zefiro is a family of very high-speed passenger trains
designed by Bombardier Transportation whose variants have top operating
speeds of between 250 km/h (155 mph) and 380 km/h (236 mph).

12940 VOLUME 7, 2019

S. Tahvili et al.: sOrTES: Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases

FIGURE 8. Troubleshooting time comparison at BT with the proposed execution schedules by sOrTES for the BR project. (a) Cumulative
requirement coverage after the 1st execution cycle. (b) Troubleshooting time after the 2nd execution cycle. (c) Troubleshooting time after
the 3rd execution cycle.

In the proposed execution schedule by sOrTES, those test
cases which cover a high number of requirements need to
be tested as soon as possible. However, postponing more
complex test cases for execution is not an optimal decision.
First of all, ranking test cases based on their requirement
coverage (and the execution time) leads to testing the software
product faster. Secondly, if a complex test case fails in the
end of the testing process, it would be necessary to cycle the
test case back through testing, which would take more overall
time and could ultimately require a deadline extension for the
testing project.

B. PERFORMANCE COMPARISON INCLUDING A
HISTORY-BASED TEST CASE PRIORITIZATION APPROACH
As reviewed earlier in Section II-D, several approaches
have been proposed for test case selection and prioritiza-
tion in the state of the art. Among the existing methods,
we have opted to compare the performance of sOrTES with
a history-based prioritization approach in this subsection.
The history-based approaches utilize information from test
case’s history data [38] for selecting and prioritizing test
cases for the next execution. Strandberg et al. [19] provide

a list of critical factors for test case prioritization, where the
test case’s history is recognized as themost impact. Generally,
in a history-based test prioritization, the failed test cases
in each testing cycle will be high ranked for execution in
the next test cycle [39]. In some cases, the history-based
prioritization improves the test efficiency compared to other
existing test case prioritization techniques [40]. Furthermore,
the history-based test prioritization has been considered as
a common and popular approach in terms of reducing the
risk of failure between those test cases which are failed
once before. In the previous subsection, the performance
of sOrTES is compared with the proposed test scheduling
approach at BT within three test execution cycles, in terms of
requirement coverage measurement and unnecessary failure
reduction. Since the execution results for the BR project’s test
cases are available, we are able to schedule them one more
time, by using the history-based prioritization method, where
the performance of all three approaches (sOrTES, BT and
history-based approach) can be compared with each other.
Toward this goal, in the history-based prioritization, we high
rank the failed test cases in the first execution cycle, to be
executed in the second cycle.

VOLUME 7, 2019 12941

S. Tahvili et al.: sOrTES: Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases

FIGURE 9. Comparing the scheduling execution results at BT with the proposed execution schedule by sOrTES together with a
historical-based test case prioritization approach for the BR project. (a) Cumulative requirement coverage after the 2nd execution cycle.
(b) Cumulative requirement coverage after the 3rd execution cycle. (c) Troubleshooting time after the 2nd execution cycle. (d)
Troubleshooting time after the 3rd execution cycle.

TABLE 7. Test execution failure analysis in each testing cycle for the BR project at BT.

Table 7 shows the percentage of test failures and the
amount of re-failed test cases together with re-failed test cases
based on dependency in each testing cycle. As one can see,
20.79% of test cases are failed in the first execution cycle,
where 93.36% of those are considered for re-execution in
the second execution cycle at BT. This indicates that, around
6.64% of the failed test cases (in the 1st execution cycle) are
omitted in the 2nd execution cycle. Using the history-based
test prioritization technique, the failed test cases in the 1st exe-
cution cycle are high ranked in the 2nd execution cycle.
For ranking other test cases (which are not failed in the
1st execution cycle), the proposed execution approach by BT
is utilized. As Table 7 presents, 98.66% of the failed test cases
in the 1st execution cycle, are failed again in the 2nd execution
cycle, where 43.39% of the failures are occurred due to the

dependencies between test cases. A similar interpretation can
be done for the 3rd execution cycle.
Moreover, figure 9 shows the gained cumulative require-

ments coverage and also the troubleshooting time for the
failed test cases in the two testing cycles at BT. As we can
see in Figures 9a and 9b, sOrTES maximizes the number
of requirements in both execution cycles, compared with the
history-based prioritization approach. As mentioned earlier,
the first failed test case in the 1st execution cycle is assumed
be to executed as a first test case in the 2nd execution cycle
(see Figures 9a and 9c). In this regard, all failed test cases
in the 2nd execution cycle are high ranked for execution in
the 3rd execution cycle (see Figures 9b and 9d). As Table 7
shows, the dependency between test cases is an important
cause for failure in each testing cycle and therefore the

12942 VOLUME 7, 2019

S. Tahvili et al.: sOrTES: Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases

troubleshooting value in Figures 9a and 9b is higher than
sOrTES and BT.

The cumulative requirement coverage in the 2nd and 3rd

(see Figures 9a and 9b) execution cycles indicates that the
proposed test scheduling approaches by BT, is led to cov-
ering more requirements, compared with the history-based
approach in the both execution cycles. This shows the
intuitions and testing skills of BT’s testers for ranking
test cases for execution. Moreover, one of the main rea-
sons behind the achieved results is the unnecessary fail-
ures which occurred between the failed test cases (again
in the next execution cycle) due to their dependencies
(see the last row in Table 7). The empirical results pre-
sented in Figure 9 indicate that sOrTES outperforms the
historical-based prioritization approach in terms of require-
ment coverage and unnecessary failure between integration
test cases, which leads to reducing the troubleshooting time.
However, the history-based prioritization technique can be an
efficient approach in any other testing environment, where
there is no complex dependency between test cases.

VII. THREATS TO VALIDITY
The threats to the validity, limitations and the challenges
faced in conducting the present study are discussed in this
section.

A. CONSTRUCT VALIDITY
is one of three main types of validity evidence which makes
sure the study measures what it intended to measure [41].
The major construct validity threat in the present study is
the way that the functional dependencies between test cases
is detected. Utilizing the internal signals information of
the software modules for dependency detection may not be
attainable in other testing processes. Generally, the informa-
tion about the signals is provided in the design level of a
software product and it might be hard (or not possible) to
capture this information in the testing level. On the other
side, communication between different departments in an
organization in order to capture and share information may
require more time and effort than the amount of time saved
by test scheduling. Moreover, scheduling test cases for exe-
cution based on other types of dependencies (e.g. temporal
dependency) might be considered as a more efficient way for
scheduling. The execution sequence is an important factor
in a real-time system. The functionally dependent test cases
can be tested after each other at any time during the testing
cycles. However, the temporal dependent test cases should be
executed directly after each other over a specific time period.

B. INTERNAL VALIDITY
concerns the conclusions of the study [35]. In order to reduce
the threats to internal validity, the obtained results in this
study are compared with the execution results of the test
cases from three different testing cycles at BT. Furthermore,
we assumed that those test cases which had failed due to other
testing failure causes (e.g. mismatching between requirement

and test cases) might be failed in the proposed execution
schedule by sOrTES. Therefore only the failed test cases
based on dependencies are assumed to be passed by following
our execution order. In the present work, multiple test artifacts
such as test specification, requirement specification and test
records are analyzed and the experimental knowledge of test-
ing experts is also considered. However, the structure of the
software requirement specification and the test specification
at our use case company provider can be considered a threat
to this study. sOrTES was performed on a set of well-defined
semi-natural language SRSs and test specifications which can
be decomposed and analyzed quickly. In amore complex case
with a different structure of SRS and test cases, sOrTESmight
(or might not) perform accordingly, which can influence the
accuracy of dependencies and thereby the proposed execution
schedules.

C. EXTERNAL VALIDITY
addresses the generalization of the proposed approach and
findings [42]. sOrTES has been applied on just one industrial
testing project in the railway domain, however, it should be
applicable to other similar contexts in other testing domains.
Primarily, the functional dependencies between requirements
(and thereafter test cases) can be detected through analyzing
the internal signal communications between the software
modules in many different contexts. The extraction phase in
sOrTES is currently designed based on the input structure
of the requirements and test cases specifications. Secondly,
scheduling test cases for execution based on several crite-
ria and also their execution results are also applicable in
other testing environments. Since the scheduling phases are
designed based on a stochastic traveling salesman problem,
sOrTES can also be applied for solving other queueing or
stochastic traffic problems. Moreover, the context informa-
tion has been provided in Section III to enable comparison
with other proposed approaches in the testing domain.

D. CONCLUSION VALIDITY
deals with the factors which can impact the observations
and can lead to an inaccurate conclusion [43]. Generally,
an inadequate data analysis can yield conclusions that a
proper analysis of the data would not have supported [44].
Utilizing the human’s judgment, decision and supervision
might decrease this threat. Since sOrTES is designed and
developed for an industrial usage at BT, a close collaboration
and dialoguewith the domain experts is established in order to
ensure the industry’s requisite and needs. The study presented
in this paper is started in parallel with the integration testing
phase of the BR project and the initial results (dependency
detection) have been presented in a few BR project meetings.
Moreover, a workshop is conducted by us at BT for the
members of BR and also C30,9 which is a parallel ongoing
project at BT. The testers’s and engineers’ opinions about the

9MOVIA C30 is a metro cars project ordered by the Stockholm Public
Transport.

VOLUME 7, 2019 12943

S. Tahvili et al.: sOrTES: Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases

proposed schedules by sOrTES have been gathered, resulting
in necessary modifications to sOrTES.

E. RELIABILITY
is the repeatability and consistency of the study [35]. The
extraction phase of sOrTES has been tested for accuracy of
results [32]. As outlined in section V, a total of 737 require-
ments are identified as independent requirements, which
means that sOrTES could not find any matches for them.
In consultation with the testers and engineers at BT, a set
of wrongly spelled meanings were found in the requirements
and test case specification documents. Thus, the data in the
DOORS database sometimes contains ambiguity, uncertainty
and spelling issues. sOrTES searches for exact names for
input−output signals for detecting dependencies. In the case
that no output signal matches are found for an internal input
signal, the corresponding requirement is counted as an inde-
pendent requirement. Indeed, by missing one letter in the
name of a signal, no signal matches will be found, even if
the signal enters (or exits) to several requirements. This issue
can directly impact the proposed execution schedules as well.
In addition, most of the language parsing techniques have
some performance issues when a large set of data needs to be
processed. There are demerits in the available tools for natural
language processing.

VIII. DISCUSSION AND FUTURE WORK
The main goal of this study is to design, implement and
evaluate an automated decision support system which sched-
ules manual integration test cases for execution. To this end,
we make the following contributions:

• We have proposed an NLP-based approach to detect
the dependencies between manual integration test cases
automatically. The dependencies have been extracted
by analyzing multiple test process artifacts such as the
software requirement specification and test case specifi-
cation (the extraction phase). A stochastic approach for
optimal scheduling of test execution has been proposed.
The travelling salesman problem (TSP) was utilized
for identifying a feasible set among the test cases (the
scheduling phase). The mentioned phases are integrated
in a Python based tool called sOrTES.

• The evaluation of sOrTES was performed through
applying it on an industrial testing project (BR) in
a safety critical train control management subsystem
at Bombardier Transportation in Sweden. Moreover,
the execution schedules proposed by sOrTES was com-
pared with three different execution orders, which have
been previously performed by BT.

• The performance analysis of sOrTES indicates that the
number of fulfilled requirements increased by 9.6%
compared to the execution orders at BT.

• The total troubleshooting time is reduced up to 40%
through avoiding redundant test executions based on
dependencies.

Scheduling test cases for execution can provide an oppor-
tunity for using the testing resources in a more efficient
way. Decreasing the redundant execution directly impacts the
testing quality and the troubleshooting cost. Utilizing sOrTES
in an early stage of a testing process can help testers to have
a more clear overview about the dependencies between the
requirements. This information can also be used for designing
more effective test cases. The provided information about
the test cases’ properties (dependency and the requirement
coverage) in Table 4 can be utilized for test case selection
and prioritization purposes. In some testing levels, a subset
of test cases just needs to be executed once. For this pur-
pose, the inserted test cases in Table 4 can be ranked for
execution. However, the problem of dependencies between
test cases does not exist in all testing environments, where
test cases can be prioritized based on a single or multiple
criterion, such as their requirement coverage or execution
time. As we discussed in Section VI, around 40% of fail-
ure that had occurred due to the dependencies between test
cases, which can be eliminated through detecting the depen-
dencies between test cases before the execution. Moreover,
maximizing the requirement coverage in each execution is
another optimization aspect of the proposed approach in this
paper. Developing sOrTES as amore powerful tool which can
handle even larger sets of requirements and test specifications
is one of the future directions of the present work. Moreover,
merging ESPRET for execution time prediction with sOrTES
is also another considered research direction for us. In the
future, one more step in the extraction phase will be added to
sOrTES, which estimates a time value for each test case as the
maximum required time for the execution. Dealing with time
as a constraint for optimizing the scheduling problem can
drive us toward using the traveling salesman problem with
time windows that supports this intuition.

IX. CONCLUSION
Test optimization plays a critical role in the software devel-
opment life cycle, which can be performed through test
case selection, prioritization and scheduling. In this paper,
we introduced, applied and evaluated our proposed approach
and tool, sOrTES, for scheduling manual integration test
cases for execution. sOrTES takes software requirement spec-
ifications and test specifications as input and provides the
dependencies and requirement coverage for each test case
as output. First, a feasible set of dependent test cases is
identified by sOrTES and secondly, test cases are ranked for
execution based on their requirement coverage. Our empirical
evaluations at Bombardier Transportation and analysis of
the results of one industrial project shows that sOrTES is
an applicable tool for scheduling test cases for execution.
sOrTES is also able to handle a large set of manual require-
ments and test specifications. sOrTES assigns a higher rank
for those test cases which have a lower dependency and
cover more requirements. By removing the passed test cases
from each testing schedule, a new execution schedule will be
proposed for the remaining test cases. This process will be

12944 VOLUME 7, 2019

S. Tahvili et al.: sOrTES: Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases

continued until there are no test cases left in the testing cycle.
Continuous monitoring of the test cases’ execution results
minimizes the risk of redundant execution and thereafter the
troubleshooting efforts. Moreover, utilizing sOrTES leads to
maximizing the number of fulfilled requirements per exe-
cution and thereby allowing for a faster release of the final
software product. Having these two optimization aspects at
the same time results in achieving a more efficient testing
process and a higher quality software product.

ACKNOWLDEGMENT
The authors would like to thank Ola Sellin and Per Lindberg
at Bombardier Transportation, Västerås, Sweden, for their
support during the project.

REFERENCES
[1] S. Tahvili, M. Bohlin, M. Saadatmand, S. Larsson, W. Afzal, and

D. Sundmark, ‘‘Cost-benefit analysis of using dependency knowledge at
integration testing,’’ in Proc. Int. Conf. Product-Focused Softw. Process
Improvement. Norway: Springer, 2016, pp. 268–284.

[2] S. Tahvili, W. Afzal, M. Saadatmand, M. Bohlin, D. Sundmark, and
S. Larsson, ‘‘Towards earlier fault detection by value-driven prioritization
of test cases using fuzzy TOPSIS,’’ in Proc. 13th Int. Conf. Inf. Technol.,
New Gener., 2016, pp. 745–759.

[3] G. Kumar and P. K. Bhatia, ‘‘Software testing optimization through test
suite reduction using fuzzy clustering,’’ CSI Trans. ICT, vol. 1, no. 3,
pp. 253–260, 2013.

[4] C. Gonzalez, J. F. Lerch, and C. Lebiere, ‘‘Instance-based learning
in dynamic decision making,’’ Cognit. Sci., vol. 27, pp. 591–635,
Jul./Aug. 2003.

[5] S. Tahvili, M. Saadatmand, and M. Bohlin, ‘‘Multi-criteria test case prior-
itization using fuzzy analytic hierarchy process,’’ in Proc. 10th Int. Conf.
Softw. Eng. Adv., 2015, pp. 290–296.

[6] S. Tahvili, M. Saadatmand, S. Larsson, W. Afzal, M. Bohlin, and
D. Sundmark, ‘‘Dynamic integration test selection based on test case
dependencies,’’ in Proc. 11th Workshop Test., Academia-Ind. Collabora-
tion, Pract. Res. Techn., Apr. 2016, pp. 277–286.

[7] E. Enoiu, D. Sundmark, A. Čaušević, and P. Pettersson, ‘‘A comparative
study of manual and automated testing for industrial control software,’’
in Proc. IEEE Int. Conf. Softw. Test., Verification Validation, Mar. 2017,
pp. 412–417.

[8] R. Ramler, T. Wetzlmaier, and C. Klammer, ‘‘An empirical study on the
application of mutation testing for a safety-critical industrial software
system,’’ in Proc. Symp. Appl. Comput. (SAC), New York, NY, USA, 2017,
pp. 1401–1408.

[9] J. Itkonen and M. Mäntylä, ‘‘Are test cases needed? Replicated compari-
son between exploratory and test-case-based software testing,’’ Empirical
Softw. Eng., vol. 19, no. 2, pp. 303–342, 2014.

[10] S. Yoo and M. Harman, ‘‘Regression testing minimization, selection and
prioritization: A survey,’’ Softw., Test. Verification Rel., vol. 22, no. 2,
pp. 67–120, 2012.

[11] S. Arlt, T. Morciniec, A. Podelski, and S. Wagner, ‘‘If a fails, can b
still succeed? Inferring dependencies between test results in automotive
system testing,’’ in Proc. IEEE 8th Int. Conf. Softw. Test., Verification
Validation (ICST), Apr. 2015, pp. 1–10.

[12] X. Cai, X. Wu, and X. Zhou, in Optimal Stochastic Scheduling (Interna-
tional Series in Operations Research & Management Science). New York,
NY, USA: Springer, 2014.

[13] J. Nin̄o-Mora, ‘‘Stochastic scheduling,’’ in Encyclopedia of Optimization,
C. A. Floudas and P. M. Pardalos, Eds., 2nd ed. New York, NY, USA:
Springer, 2009, pp. 3818–3824.

[14] M. Harman, ‘‘Making the case for MORTO: Multi objective regression
test optimization,’’ in Proc. IEEE 4th Int. Conf. Softw. Test., Verification
Validation Workshops, Mar. 2011, pp. 111–114.

[15] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos,
‘‘Timeaware test suite prioritization,’’ in Proc. Int. Symp. Softw. Test. Anal.,
New York, NY, USA, 2006, pp. 1–12.

[16] L. Zhang, S.-S. Hou, C. Guo, T. Xie, and H. Mei, ‘‘Time-aware test-case
prioritization using integer linear programming,’’ in Proc. 18th Int. Symp.
Softw. Test. Anal., New York, NY, USA, 2009, pp. 213–224.

[17] S. Wang, S. Ali, T. Yue, O. Bakkeli, and M. Liaaen, ‘‘Enhancing test
case prioritization in an industrial setting with resource awareness and
multi-objective search,’’ in Proc. 38th Int. Conf. Softw. Eng. Companion,
New York, NY, USA, May 2016, pp. 182–191.

[18] Z. Li, M. Harman, and R. M. Hierons, ‘‘Search algorithms for regres-
sion test case prioritization,’’ IEEE Trans. Softw. Eng., vol. 33, no. 4,
pp. 225–237, Apr. 2007.

[19] P. E. Strandberg, D. Sundmark, W. Afzal, T. J. Ostrand, and E. J. Weyuker,
‘‘Experience report: Automated system level regression test prioritiza-
tion using multiple factors,’’ in Proc. IEEE 27th Int. Symp. Softw. Rel.
Eng. (ISSRE), Oct. 2016, pp. 12–23.

[20] H. Srikanth, L. Williams, and J. Osborne, ‘‘System test case prioritization
of new and regression test cases,’’ in Proc. Int. Symp. Empirical Softw.
Eng., Nov. 2005, p. 10.

[21] P. Caliebe, T. Herpel, and R. German, ‘‘Dependency-based test case selec-
tion and prioritization in embedded systems,’’ in Proc. IEEE 5th Int. Conf.
Softw. Test., Verification Validation, Apr. 2012, pp. 731–735.

[22] S. E.-Z. Haidry and T. Miller, ‘‘Using dependency structures for prioriti-
zation of functional test suites,’’ IEEE Trans. Softw. Eng., vol. 39, no. 2,
pp. 258–275, Feb. 2013.

[23] S. Tahvili, L. Hatvani, M. Felderer, W. Afzal, M. Saadatmand, and
M. Bohlin, ‘‘Cluster-based test scheduling strategies using semantic rela-
tionships between test specifications,’’ in Proc. 5th Int. Workshop Require-
ments Eng. Test., 2018, pp. 1–4.

[24] A. Srivastava and J. Thiagarajan, ‘‘Effectively prioritizing tests in devel-
opment environment,’’ SIGSOFT Softw. Eng. Notes, vol. 27, no. 4,
pp. 97–106, 2002.

[25] M. Nahas and R. Bautista-Quintero, ‘‘Developing scheduler test cases to
verify scheduler implementations in time-triggered embedded systems,’’
Int. J. Embedded Syst. Appl., vol. 6, nos. 1–2, pp. 1–20, Jun. 2016.

[26] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, ‘‘Prioritizing test
cases for regression testing,’’ IEEE Trans. Softw. Eng., vol. 27, no. 10,
pp. 929–948, Oct. 2001.

[27] J. M. Kim and A. Porter, ‘‘A history-based test prioritization technique for
regression testing in resource constrained environments,’’ in Proc. 24th Int.
Conf. Softw. Eng. (ICSE), New York, NY, USA, 2002, pp. 119–129.

[28] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal, ‘‘A study of
effective regression testing in practice,’’ in Proc. Int. 8th Symp. Softw. Rel.
Eng., Nov. 1997, pp. 264–274.

[29] H. Do, S. Elbaum, and G. Rothermel, ‘‘Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact,’’
Empirical Softw. Eng., vol. 10, no. 4, pp. 405–435, 2005.

[30] S. Elbaum, A.Malishevsky, and G. Rothermel, ‘‘Incorporating varying test
costs and fault severities into test case prioritization,’’ in Proc. 23rd Int.
Conf. Softw. Eng. (ICSE), May 2001, pp. 329–338.

[31] S. Elbaum, A. G.Malishevsky, andG. Rothermel, ‘‘Test case prioritization:
A family of empirical studies,’’ IEEE Trans. Softw. Eng., vol. 28, no. 2,
pp. 159–182, Feb. 2002.

[32] S. Tahvili et al., ‘‘Functional dependency detection for integration test
cases,’’ in Proc. 18th IEEE Int. Conf. Softw. Qual., Rel. Secur., Jul. 2018,
pp. 207–214.

[33] S. Tahvili, W. Afzal, M. Saadatmand, M. Bohlin, and S. H. Ameerjan,
‘‘ESPRET: A tool for execution time estimation of manual test cases,’’
J. Syst. Softw., vol. 146, pp. 26–41, Dec. 2018.

[34] J. B. Odili and M. N. M. Kahar, ‘‘Solving the traveling salesman’s prob-
lem using the African buffalo optimization,’’ Comput. Intell. Neurosci.,
vol. 2016, Aug. 2016, Art. no. 1510256.

[35] P. Runeson and M. Höst, ‘‘Guidelines for conducting and reporting case
study research in software engineering,’’ Empirical Softw. Eng., vol. 14,
no. 2, p. 131, 2008.

[36] E. Engström, P. Runeson, and A. Ljung, ‘‘Improving regression testing
transparency and efficiency with history-based prioritization—An indus-
trial case study,’’ in Proc. 4th IEEE Int. Conf. Softw. Test., Verification
Validation, Mar. 2011, pp. 367–376.

[37] Hamburg, Germany. Electric Multiple Unit Class 490. Accessed:
Feb. 12, 2018. [Online]. Available: https://www.bombardier.com/en/
transportation/projects/project.ET-490-Hamburg-Germany.html

[38] Y. Cho, J. Kim, and E. Lee, ‘‘History-based test case prioritization for fail-
ure information,’’ in Proc. 23rd Asia–Pacific Softw. Eng. Conf. (APSEC),
Dec. 2016, pp. 385–388.

VOLUME 7, 2019 12945

S. Tahvili et al.: sOrTES: Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases

[39] T. B. Noor and H. Hemmati, ‘‘A similarity-based approach for test case
prioritization using historical failure data,’’ in Proc. IEEE 26th Int. Symp.
Softw. Rel. Eng. (ISSRE), Nov. 2015, pp. 58–68.

[40] X. Wang and H. Zeng, ‘‘History-based dynamic test case prioritization
for requirement properties in regression testing,’’ in Proc. Int. Workshop
Continuous Softw. Evol. Del. (CSED), New York, NY, USA, May 2016,
pp. 41–47.

[41] C. Robson, Real World Research: A Resource for Users of Social Research
Methods in Applied Settings, 3rd ed. Chichester, U.K.: Wiley, 2011.

[42] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering: An Introduction.
Norwell, MA, USA: Kluwer, 2000.

[43] P. C. Cozby, Methods in Behavioural Research. New York, NY, USA:
McGraw-Hill, 2012.

[44] E. A. Drost, ‘‘Validity and reliability in social science research,’’ Educ.,
Res. Perspect., vol. 38, no. 1, p. 105, 2011.

SAHAR TAHVILI received the master’s degree
in applied mathematics and the Ph.D. degree in
software engineering from Mälardalen Univer-
sity. Her Ph.D. Thesis was on multi-criteria opti-
mization of system integration testing. She is
currently a Researcher with RISE SICS Västerås
and also amember of the Software Testing Labora-
tory, Mälardalen University. His research interests
include the advanced methods for testing com-
plex software-intensive systems and designing the
decision support systems.

RITA PIMENTEL received the master’s degree
in mathematical finance and the Ph.D. degree in
statistics and stochastic processes. She is currently
a Researcher with RISE SICS Västerås. She also
works in mathematical modeling, mainly to solve
optimization problems. She also uses statistical
learning for prediction. She is involved in projects
with applications in energy and software testing.

WASIF AFZAL is currently an Associate Profes-
sor with Mälardalen University, Sweden. He likes
to do empirical research within software engi-
neering in general and within software verifi-
cation and validation in particular. His research
interests include (not exhaustive): software testing
and quality assurance, prediction and estimation
in software engineering, the application of artifi-
cial intelligence techniques in software engineer-
ing (including search-based software engineering),

decision-making based on software analytics, software metrics, and eviden-
tial assessment of software engineering literature.

MARCUS AHLBERG received the M.Sc. degree
in applied mathematics from the KTH Royal Insti-
tute of Technology, in 2018.

ERIC FORNANDER received the M.Sc. degree in
appliedmathematics from the KTHRoyal Institute
of Technology, in 2018.

MARKUS BOHLIN received the Ph.D. degree
with Mälardalen University, in 2009, where he
was appointed as an Associate Professor (Docent)
in computer science, in 2013. He is currently
the Leader of the industrial efficiency with RISE
SICS Västerås. His research interests include the
real-world application of optimization methods
and operations research to industrial processes.

12946 VOLUME 7, 2019

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	TEST CASE SELECTION
	TEST CASE PRIORITIZATION
	TEST CASE STOCHASTIC SCHEDULING
	RELATED WORK

	PROPOSED APPROACH
	SORTES- STOCHASTIC OPTIMIZING TEST CASE SCHEDULING
	THE EXTRACTION PHASE
	FUNCTIONAL DEPENDENCIES DETECTION
	REQUIREMENT COVERAGE MEASUREMENT

	THE SCHEDULING PHASE
	MODEL ASSUMPTIONS AND PROBLEM DESCRIPTION

	EMPIRICAL EVALUATION
	UNIT OF ANALYSIS AND PROCEDURE
	CASE STUDY REPORT

	PERFORMANCE EVALUATION
	PERFORMANCE COMPARISON BETWEEN SORTES AND BOMBARDIER
	PERFORMANCE COMPARISON INCLUDING A HISTORY-BASED TEST CASE PRIORITIZATION APPROACH

	THREATS TO VALIDITY
	CONSTRUCT VALIDITY
	INTERNAL VALIDITY
	EXTERNAL VALIDITY
	CONCLUSION VALIDITY
	RELIABILITY

	DISCUSSION AND FUTURE WORK
	CONCLUSION
	REFERENCES
	Biographies
	SAHAR TAHVILI
	RITA PIMENTEL
	WASIF AFZAL
	MARCUS AHLBERG
	ERIC FORNANDER
	MARKUS BOHLIN

