
A
sh

a
la

th
a

 Ku
n

n
a

p
p

illy FO
R

M
A

LLY A
SSU

R
ED

 IN
TELLIG

EN
T SYSTEM

S FO
R EN

H
A

N
C

ED
 A

M
B

IEN
T A

SSISTED
 LIV

IN
G

 SU
P

P
O

R
T

2019

Mälardalen University Licentiate Thesis 278

Formally Assured Intelligent Systems
for Enhanced Ambient Assisted Living
Support
Ashalatha Kunnappilly

ISBN 978-91-7485-425-1
ISSN 1651-9256

Address: P.O. Box 883, SE-721 23 Västerås. Sweden
Address: P.O. Box 325, SE-631 05 Eskilstuna. Sweden
E-mail: info@mdh.se Web: www.mdh.se

Mälardalen University Press Licentiate Theses
No. 278

FORMALLY ASSURED INTELLIGENT SYSTEMS FOR
ENHANCED AMBIENT ASSISTED LIVING SUPPORT

Ashalatha Kunnappilly

2019

School of Innovation, Design and Engineering

Mälardalen University Press Licentiate Theses
No. 278

FORMALLY ASSURED INTELLIGENT SYSTEMS FOR
ENHANCED AMBIENT ASSISTED LIVING SUPPORT

Ashalatha Kunnappilly

2019

School of Innovation, Design and Engineering

1

Copyright © Ashalatha Kunnappilly, 2019
ISBN 978-91-7485-425-1
ISSN 1651-9256
Printed by E-Print AB, Stockholm, Sweden

Copyright © Ashalatha Kunnappilly, 2019
ISBN 978-91-7485-425-1
ISSN 1651-9256
Printed by E-Print AB, Stockholm, Sweden

2

Abstract

Ambient Assisted Living (AAL) solutions are aimed to assist the elderly in
their independent and safe living. During the last decade, the AAL field has
witnessed a significant development due to advancements in Information and
Communication Technologies, Ubiquitous Computing and Internet of Things.
However, a closer look at the existing AAL solutions shows that these im-
provements are used mostly to deliver one or a few functions mainly of the
same type (e.g. health monitoring functions). There are comparatively fewer
initiatives that integrate different kinds of AAL functionalities, such as fall de-
tection, reminders, fire alarms, etc., besides health monitoring, into a common
framework, with intelligent decision-making that can thereby offer enhanced
reasoning by combining multiple events.

To address this shortage, in this thesis, we propose two different categories
of AAL architecture frameworks onto which different functionalities, chosen
based on user preferences, can be integrated. One of them follows a centralized
approach, using an intelligent Decision Support System (DSS), and the other,
follows a truly distributed approach, involving multiple intelligent agents. The
centralized architecture is our initial choice, due to its ease of development by
combining multiple functionalities with a centralized DSS that can assess the
dependency between multiple events in real time. While easy to develop, our
centralized solution suffers from the well-known single point of failure, which
we remove by adding a redundant DSS. Nevertheless, the scalability, flexibility,
multiple user accesses, and potential self-healing capability of the centralized
solution are hard to achieve, therefore we also propose a distributed, agent-
based architecture as a second solution, to provide the community with two
different AAL solutions that can be applied depending on needs and available
resources. Both solutions are to be used in safety-critical applications, there-
fore their design-time assurance, that is, providing a guarantee that they meet

i

Abstract

Ambient Assisted Living (AAL) solutions are aimed to assist the elderly in
their independent and safe living. During the last decade, the AAL field has
witnessed a significant development due to advancements in Information and
Communication Technologies, Ubiquitous Computing and Internet of Things.
However, a closer look at the existing AAL solutions shows that these im-
provements are used mostly to deliver one or a few functions mainly of the
same type (e.g. health monitoring functions). There are comparatively fewer
initiatives that integrate different kinds of AAL functionalities, such as fall de-
tection, reminders, fire alarms, etc., besides health monitoring, into a common
framework, with intelligent decision-making that can thereby offer enhanced
reasoning by combining multiple events.

To address this shortage, in this thesis, we propose two different categories
of AAL architecture frameworks onto which different functionalities, chosen
based on user preferences, can be integrated. One of them follows a centralized
approach, using an intelligent Decision Support System (DSS), and the other,
follows a truly distributed approach, involving multiple intelligent agents. The
centralized architecture is our initial choice, due to its ease of development by
combining multiple functionalities with a centralized DSS that can assess the
dependency between multiple events in real time. While easy to develop, our
centralized solution suffers from the well-known single point of failure, which
we remove by adding a redundant DSS. Nevertheless, the scalability, flexibility,
multiple user accesses, and potential self-healing capability of the centralized
solution are hard to achieve, therefore we also propose a distributed, agent-
based architecture as a second solution, to provide the community with two
different AAL solutions that can be applied depending on needs and available
resources. Both solutions are to be used in safety-critical applications, there-
fore their design-time assurance, that is, providing a guarantee that they meet

i

3

ii

functional requirements and deliver the needed quality-of-service, is beneficial.
Our first solution is a generic architecture that follows the design of many

commercial AAL solutions with sensors, a data collector, DSS, security and
privacy, database (DB) systems, user interfaces (UI), and cloud computing
support. We represent this architecture in the Architecture Analysis and De-
sign Language (AADL) via a set of component patterns that we propose. The
advantage of using patterns is that they are easily re-usable when building spe-
cific AAL architectures. Our patterns describe the behavior of the components
in the Behavioral Annex of AADL, and the error behavior in AADL’s Error
Annex. We also show various instantiations of our generic model that can
be developed based on user requirements. To formally assure these solutions
against functional, timing and reliability requirements, we show how we can
employ exhaustive model checking using the state-of-art model checker, UP-
PAAL, and also statistical model-checking techniques with UPPAAL SMC, an
extension of the UPPAAL model checker for stochastic systems, which can be
employed in cases when exhaustive verification does not scale. The second
proposed architecture is an agent-based architecture for AAL systems, where
agents are intelligent entities capable of communicating with each other in or-
der to decide on an action to take. Therefore, the decision support is now
distributed among agents and can be used by multiple users distributed across
multiple locations. Due to the fact that this solution requires describing agents
and their interaction, the existing core AADL does not suffice as an architec-
tural framework. Hence, we propose an extension to the core AADL language
- The Agent Annex, with formal semantics as Stochastic Transition Systems,
which allows us to specify probabilistic, non-deterministic and real-time AAL
system behaviors. In order to formally assure our multi-agent system, we em-
ploy the state-of-art probabilistic model checker PRISM, which allows us to
perform probabilistic yet exhaustive verification.

As a final contribution, we also present a small-scale validation of an ar-
chitecture of the first category, with end users from three countries (Romania,
Poland, Denmark). This work has been carried out with partners from the men-
tioned countries.

Our work in this thesis paves the way towards the development of user-
centered, intelligent ambient assisted living solutions with ensured quality of
service.

ii

functional requirements and deliver the needed quality-of-service, is beneficial.
Our first solution is a generic architecture that follows the design of many

commercial AAL solutions with sensors, a data collector, DSS, security and
privacy, database (DB) systems, user interfaces (UI), and cloud computing
support. We represent this architecture in the Architecture Analysis and De-
sign Language (AADL) via a set of component patterns that we propose. The
advantage of using patterns is that they are easily re-usable when building spe-
cific AAL architectures. Our patterns describe the behavior of the components
in the Behavioral Annex of AADL, and the error behavior in AADL’s Error
Annex. We also show various instantiations of our generic model that can
be developed based on user requirements. To formally assure these solutions
against functional, timing and reliability requirements, we show how we can
employ exhaustive model checking using the state-of-art model checker, UP-
PAAL, and also statistical model-checking techniques with UPPAAL SMC, an
extension of the UPPAAL model checker for stochastic systems, which can be
employed in cases when exhaustive verification does not scale. The second
proposed architecture is an agent-based architecture for AAL systems, where
agents are intelligent entities capable of communicating with each other in or-
der to decide on an action to take. Therefore, the decision support is now
distributed among agents and can be used by multiple users distributed across
multiple locations. Due to the fact that this solution requires describing agents
and their interaction, the existing core AADL does not suffice as an architec-
tural framework. Hence, we propose an extension to the core AADL language
- The Agent Annex, with formal semantics as Stochastic Transition Systems,
which allows us to specify probabilistic, non-deterministic and real-time AAL
system behaviors. In order to formally assure our multi-agent system, we em-
ploy the state-of-art probabilistic model checker PRISM, which allows us to
perform probabilistic yet exhaustive verification.

As a final contribution, we also present a small-scale validation of an ar-
chitecture of the first category, with end users from three countries (Romania,
Poland, Denmark). This work has been carried out with partners from the men-
tioned countries.

Our work in this thesis paves the way towards the development of user-
centered, intelligent ambient assisted living solutions with ensured quality of
service.

4

Sammanfattning

Ambient Assisted Living (AAL) lösningar är riktade för att assistera äldre till
ett självständigt och säkert leverne. AAL har under det senaste årtiondet fått
ett stort uppsving, mycket tack vare framsteg inom informations- och kom-
munikationsteknologier, Ubiquitous Computing och Internet of Things (IoT).
En närmare granskning av nuvarande AAL lösningar visar dock på att dessa
framsteg främst levererar endast en eller ett fåtal funktioner, oftast av samma
typ, t.ex. (funktioner för att bevaka hälsa). Det finns jämförelsevis mycket
färre initiativ som integrerar olika sorters AAL funktioner som falldetekter-
ing, påminnelser, brandlarm etc., förutom hälsobevakning till ett gemensamt
ramverk som har intelligent beslutsfattande och därmed bättre förutsättning att
kombinera flera olika händelser.

I denna avhandling föreslår vi två olika kategorier av AAL ramverk-
sarkitekturer som implementerar användaranpassade funktionaliteter för att
adressera ovanstående problem. Den ena kategorin har en centraliserad ap-
proach och använder intelligent Decision Support System (DSS). Den andra
kategorin har en distribuerad approach och innefattar flera intelligenta agenter.
Den centraliserade arkitekturen är vårt förstahandsval på grund av den enkel-
heten att utveckla genom att kombinera flera funktionaliteter med ett centralis-
erat DSS som kan utvärdera beroendes mellan flera händelser I real-tid. Genom
att addera ytterligare ett redundant DSS har vi även uteslutit den välkända Sin-
gle Point of Failure problematiken. Skalbarhet, flexibilitet, självläkande för-
måga samt åtkomst för flera användare hos vår centraliserade lösning är svårt
att uppnå, vilket är anledningen till att vi även presenterar en distribuerad,
agentbaserad arkitektur som andrahandslösning som används vid behov. Båda
dessa lösningar kommer att användas i säkerhetskritiska applikationer. Lös-
ningarnas designtidsförsäkran, det vill säga att garantin att de uppfylla kan de
funktionella krav som ställs samt leverans av nödvändig servicekvalitet är där-

iii

Sammanfattning

Ambient Assisted Living (AAL) lösningar är riktade för att assistera äldre till
ett självständigt och säkert leverne. AAL har under det senaste årtiondet fått
ett stort uppsving, mycket tack vare framsteg inom informations- och kom-
munikationsteknologier, Ubiquitous Computing och Internet of Things (IoT).
En närmare granskning av nuvarande AAL lösningar visar dock på att dessa
framsteg främst levererar endast en eller ett fåtal funktioner, oftast av samma
typ, t.ex. (funktioner för att bevaka hälsa). Det finns jämförelsevis mycket
färre initiativ som integrerar olika sorters AAL funktioner som falldetekter-
ing, påminnelser, brandlarm etc., förutom hälsobevakning till ett gemensamt
ramverk som har intelligent beslutsfattande och därmed bättre förutsättning att
kombinera flera olika händelser.

I denna avhandling föreslår vi två olika kategorier av AAL ramverk-
sarkitekturer som implementerar användaranpassade funktionaliteter för att
adressera ovanstående problem. Den ena kategorin har en centraliserad ap-
proach och använder intelligent Decision Support System (DSS). Den andra
kategorin har en distribuerad approach och innefattar flera intelligenta agenter.
Den centraliserade arkitekturen är vårt förstahandsval på grund av den enkel-
heten att utveckla genom att kombinera flera funktionaliteter med ett centralis-
erat DSS som kan utvärdera beroendes mellan flera händelser I real-tid. Genom
att addera ytterligare ett redundant DSS har vi även uteslutit den välkända Sin-
gle Point of Failure problematiken. Skalbarhet, flexibilitet, självläkande för-
måga samt åtkomst för flera användare hos vår centraliserade lösning är svårt
att uppnå, vilket är anledningen till att vi även presenterar en distribuerad,
agentbaserad arkitektur som andrahandslösning som används vid behov. Båda
dessa lösningar kommer att användas i säkerhetskritiska applikationer. Lös-
ningarnas designtidsförsäkran, det vill säga att garantin att de uppfylla kan de
funktionella krav som ställs samt leverans av nödvändig servicekvalitet är där-

iii

5

iv

för fördelaktig.
Vår första lösning är en generisk arkitektur, utformad enligt andra kommer-

siella AAL-lösningar med sensorer, datasamlare, DSS, säkerhet och integritet,
databas (DB) system, användargränssnitt (UI) och Cloud Computing stöd. Vi
specificerar Architecture Analysis and Design Language (AADL) via en up-
psättning av komponentmönster som vi föreslår. Fördelen med att använda
mönster är att de lätt återanvänds när man bygger specifika AAL-arkitekturer.
Våra mönster beskriver beteendet hos komponenterna i AADLs beteendean-
nex och felbeteendet i AADL: s felannex., vi visar även olika instanser av vår
generiska modell som kan utvecklas utifrån användarnas krav. Genom att an-
vända hjälp av den toppmoderna modellkontrollen UPPAAL försäkrar vi även
att dessa lösningar tillmötesgår de funktionella, tidsmässiga och tillförlitliga
kraven. Vi använder även en statistisk modellkontrollsteknik genom UPPAAL
SMC vilket är en förlängning av UPPAAL modell checker för stokastiska sys-
tem som används i de fall då en uttömmande verifiering inte är möjlig. Vår
andra arkitektur är en agent-baserad arkitektur för AAL-system, där agenter
är intelligenta enheter kommunicerar med varandra för att komma fram till
beslut om nödvändiga åtgärder. Beslutsfattandet fördelas nu istället mellan
agenter och kan användas av flera användare fördelade på flera platser. Denna
lösning kräver dock en beskrivning av agenter samt deras interaktion vilket
innebär att den befintliga kärnan AADL inte räcker som enda ramverk. Där-
för föreslår vi en utvidgning till det centrala AADL-språket - Agent Annexet,
som har en formell semantik likt Stochastic Transition Systems, vilket gör att
vi kan specificera probabilistiska, icke-deterministiska och real-tids system be-
teenden inom AAL. Vi använder den toppmoderna probabilistiska modellkon-
trollen PRISM, som gör det möjligt för oss att utföra en probabilistisk, men
uttömmande verifiering av vårt multi-agent system.

Slutligen presenterar vi också en mindre omfattande validering av en
arkitektur i den första kategorin, med slutanvändare från tre länder (Rumänien,
Polen, Danmark). Detta arbete har utförts med partner från de nämnda län-
derna.

Vårt arbete i denna avhandling banar väg mot utveckling av användarcentr-
erade, intelligent ambient-assisted lösningar med garanti för servicekvalitet.

iv

för fördelaktig.
Vår första lösning är en generisk arkitektur, utformad enligt andra kommer-

siella AAL-lösningar med sensorer, datasamlare, DSS, säkerhet och integritet,
databas (DB) system, användargränssnitt (UI) och Cloud Computing stöd. Vi
specificerar Architecture Analysis and Design Language (AADL) via en up-
psättning av komponentmönster som vi föreslår. Fördelen med att använda
mönster är att de lätt återanvänds när man bygger specifika AAL-arkitekturer.
Våra mönster beskriver beteendet hos komponenterna i AADLs beteendean-
nex och felbeteendet i AADL: s felannex., vi visar även olika instanser av vår
generiska modell som kan utvecklas utifrån användarnas krav. Genom att an-
vända hjälp av den toppmoderna modellkontrollen UPPAAL försäkrar vi även
att dessa lösningar tillmötesgår de funktionella, tidsmässiga och tillförlitliga
kraven. Vi använder även en statistisk modellkontrollsteknik genom UPPAAL
SMC vilket är en förlängning av UPPAAL modell checker för stokastiska sys-
tem som används i de fall då en uttömmande verifiering inte är möjlig. Vår
andra arkitektur är en agent-baserad arkitektur för AAL-system, där agenter
är intelligenta enheter kommunicerar med varandra för att komma fram till
beslut om nödvändiga åtgärder. Beslutsfattandet fördelas nu istället mellan
agenter och kan användas av flera användare fördelade på flera platser. Denna
lösning kräver dock en beskrivning av agenter samt deras interaktion vilket
innebär att den befintliga kärnan AADL inte räcker som enda ramverk. Där-
för föreslår vi en utvidgning till det centrala AADL-språket - Agent Annexet,
som har en formell semantik likt Stochastic Transition Systems, vilket gör att
vi kan specificera probabilistiska, icke-deterministiska och real-tids system be-
teenden inom AAL. Vi använder den toppmoderna probabilistiska modellkon-
trollen PRISM, som gör det möjligt för oss att utföra en probabilistisk, men
uttömmande verifiering av vårt multi-agent system.

Slutligen presenterar vi också en mindre omfattande validering av en
arkitektur i den första kategorin, med slutanvändare från tre länder (Rumänien,
Polen, Danmark). Detta arbete har utförts med partner från de nämnda län-
derna.

Vårt arbete i denna avhandling banar väg mot utveckling av användarcentr-
erade, intelligent ambient-assisted lösningar med garanti för servicekvalitet.

6

To my husband, Kiran To my husband, Kiran

7

8

Acknowledgements

It is with immense gratitude that I write this section. First of all, I would like
to sincerely thank my supervisors- Associate Professor Cristina Seceleanu, and
Professor Maria Linden for their support, guidance and patience. Thank you
for believing in me and giving me an opportunity to undertake PhD studies.
Also, special thanks to Dr. Raluca Marinescu for her supervision during her
Postdoc employment at MDH. Without all of your guidance and support, this
thesis would not have been possible.

Next, I would like to thank all the professors and lecturers at the university
for the knowledge they shared. It was a pleasure being with you all and learn-
ing new things. Many thanks to my fellow PhD students and the staff at the
department. I really enjoyed the time spent with you guys! I would especially
like to thank my office mates - Predrag and Nesredin for all the wonderful
times we had. I will really miss you guys. Next, I would like to thank the rest
of my amazing group - Simin and Rong, you guys are amazing and thanks for
all the help and support. I know it is impossible to mention all the people, but
this section would be completely meaningless if I don’t mention some names.
Aida- thanks a lot for all the strong advises and support you have given me.
It really means a lot. Gita - thanks for being a wonderful friend. My sincere
thanks to Leo, Sveta, Hamidur, Gabriel, Sara, Momo, Filip, Sara A. (2), Jakob,
Nabar, Mobyen, Shahina, Elena, Lana etc. etc. for all the helps, friendly chats
and discussions.

I would like to thank my opponent Associate Professor Elena Troubitsyna,
and the grading committee members Professor Einar Broch Jonsen and Asso-
ciate Professor Antonio Cicchetti for accepting the invite and taking time in
reviewing this thesis.

Last but not least, I would like to thank my family and family friends. To
the love of my life, Kiran - words wont suffice to describe what you mean to me

vii

Acknowledgements

It is with immense gratitude that I write this section. First of all, I would like
to sincerely thank my supervisors- Associate Professor Cristina Seceleanu, and
Professor Maria Linden for their support, guidance and patience. Thank you
for believing in me and giving me an opportunity to undertake PhD studies.
Also, special thanks to Dr. Raluca Marinescu for her supervision during her
Postdoc employment at MDH. Without all of your guidance and support, this
thesis would not have been possible.

Next, I would like to thank all the professors and lecturers at the university
for the knowledge they shared. It was a pleasure being with you all and learn-
ing new things. Many thanks to my fellow PhD students and the staff at the
department. I really enjoyed the time spent with you guys! I would especially
like to thank my office mates - Predrag and Nesredin for all the wonderful
times we had. I will really miss you guys. Next, I would like to thank the rest
of my amazing group - Simin and Rong, you guys are amazing and thanks for
all the help and support. I know it is impossible to mention all the people, but
this section would be completely meaningless if I don’t mention some names.
Aida- thanks a lot for all the strong advises and support you have given me.
It really means a lot. Gita - thanks for being a wonderful friend. My sincere
thanks to Leo, Sveta, Hamidur, Gabriel, Sara, Momo, Filip, Sara A. (2), Jakob,
Nabar, Mobyen, Shahina, Elena, Lana etc. etc. for all the helps, friendly chats
and discussions.

I would like to thank my opponent Associate Professor Elena Troubitsyna,
and the grading committee members Professor Einar Broch Jonsen and Asso-
ciate Professor Antonio Cicchetti for accepting the invite and taking time in
reviewing this thesis.

Last but not least, I would like to thank my family and family friends. To
the love of my life, Kiran - words wont suffice to describe what you mean to me

vii

9

viii

and the support and love you have given me in our 5 years of togetherness. Next
to my parents- I cannot express what I feel for them, how much I love them,
and how proud I am to be their daughter. To my in-laws, Kiran’s mom dad-
thanks a lot for accepting me as your daughter, for the freedom and support
you have given me. It means a lot. Next, to my brother, Kishore- there is no
one like you, thank you for the unconditional love. Heartfelt gratitude to all my
school friends, bachelor and master college mates and all the friends we have
at India and Sweden for the love and support you have given me. I would also
like to thank our family friend, Manoj Bhaskar, for motivating me to apply for
PhD positions. And finally, above all, to God, for being my inner strength.

Ashalatha Kunnappilly
Västerås, March, 2019

viii

and the support and love you have given me in our 5 years of togetherness. Next
to my parents- I cannot express what I feel for them, how much I love them,
and how proud I am to be their daughter. To my in-laws, Kiran’s mom dad-
thanks a lot for accepting me as your daughter, for the freedom and support
you have given me. It means a lot. Next, to my brother, Kishore- there is no
one like you, thank you for the unconditional love. Heartfelt gratitude to all my
school friends, bachelor and master college mates and all the friends we have
at India and Sweden for the love and support you have given me. I would also
like to thank our family friend, Manoj Bhaskar, for motivating me to apply for
PhD positions. And finally, above all, to God, for being my inner strength.

Ashalatha Kunnappilly
Västerås, March, 2019

10

List of publications

Publications included in the licentiate thesis1

Paper A Do we need an integrated framework for Ambient Assisted Living?.
Ashalatha Kunnappilly, Cristina Seceleanu, Maria Lindén. In Proceed-
ings of the 10th International Conference on Ubiquitous Computing and
Ambient Intelligence (UCAmI), LNCS, Springer, pages 52-63, Novem-
ber 2016, Canary Islands, Spain.

Paper B A Novel Integrated Architecture for Ambient Assisted Living Systems.
Ashalatha Kunnappilly, Alexandru Sorici, Imad Alex Awada, Irina Mo-
canu, Cristina Seceleanu, Adina Madga Florea. In Proceedings of the
40th IEEE Computer Society International Conference on Computers,
Software & Applications (COMPSAC), July 2017, Turin, Italy, IEEE
Computer Society, pages 465-472.

Paper C A Model-Checking-Based Framework For Analyzing Ambient As-
sisted Living Solutions. Ashalatha Kunnappilly, Raluca Marinescu,
Cristina Seceleanu. MRTC Report, Mälardalen Real-Time Research
Center, MDH-MRTC-322/2018-1-SE, March, 2019. NOTE: This paper
is an extended version of the following article: Assuring Intelligent Am-
bient Assisted Living Solutions by Statistical Model Checking. Ashalatha
Kunnappilly, Raluca Marinescu, Cristina Seceleanu. In Proceedings of
the 8th International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA), November 2018, Limas-
sol, Cyprus, Springer, pages 457-476.

1The included articles have been reformatted to comply with the licentiate thesis layout.

ix

List of publications

Publications included in the licentiate thesis1

Paper A Do we need an integrated framework for Ambient Assisted Living?.
Ashalatha Kunnappilly, Cristina Seceleanu, Maria Lindén. In Proceed-
ings of the 10th International Conference on Ubiquitous Computing and
Ambient Intelligence (UCAmI), LNCS, Springer, pages 52-63, Novem-
ber 2016, Canary Islands, Spain.

Paper B A Novel Integrated Architecture for Ambient Assisted Living Systems.
Ashalatha Kunnappilly, Alexandru Sorici, Imad Alex Awada, Irina Mo-
canu, Cristina Seceleanu, Adina Madga Florea. In Proceedings of the
40th IEEE Computer Society International Conference on Computers,
Software & Applications (COMPSAC), July 2017, Turin, Italy, IEEE
Computer Society, pages 465-472.

Paper C A Model-Checking-Based Framework For Analyzing Ambient As-
sisted Living Solutions. Ashalatha Kunnappilly, Raluca Marinescu,
Cristina Seceleanu. MRTC Report, Mälardalen Real-Time Research
Center, MDH-MRTC-322/2018-1-SE, March, 2019. NOTE: This paper
is an extended version of the following article: Assuring Intelligent Am-
bient Assisted Living Solutions by Statistical Model Checking. Ashalatha
Kunnappilly, Raluca Marinescu, Cristina Seceleanu. In Proceedings of
the 8th International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA), November 2018, Limas-
sol, Cyprus, Springer, pages 457-476.

1The included articles have been reformatted to comply with the licentiate thesis layout.

ix

11

x

In Proceedings of the 8th International Symposium On Leveraging Ap-
plications of Formal Methods, Verification and Validation (ISoLA),
November 2018, Limassol, Cyprus, Springer, pages 457-476.

Paper D Architecture Modelling and Formal Analysis of Intelligent Multi-
Agent Systems. Ashalatha Kunnappilly, Simin Cai, Raluca Marinescu,
Cristina Seceleanu. In Proceedings of the 14th International Conference
on Evaluation of Novel Approaches to Software Engineering (ENASE),
Crete, Greece, SCITEPRESS, May 2019.

Paper E An end-user perspective on the CAMI Ambient Assisted Living
Framework. Imad Alex Awada, Oana Cramariuc, Irina Mocanu, Cristina
Seceleanu, Ashalatha Kunnappilly, Adina Magda Florea. In Proceedings
of the 12th Annual International Technology, Education and Develop-
ment Conference (INTED), Edulearn, March 2018, Spain.

x

In Proceedings of the 8th International Symposium On Leveraging Ap-
plications of Formal Methods, Verification and Validation (ISoLA),
November 2018, Limassol, Cyprus, Springer, pages 457-476.

Paper D Architecture Modelling and Formal Analysis of Intelligent Multi-
Agent Systems. Ashalatha Kunnappilly, Simin Cai, Raluca Marinescu,
Cristina Seceleanu. In Proceedings of the 14th International Conference
on Evaluation of Novel Approaches to Software Engineering (ENASE),
Crete, Greece, SCITEPRESS, May 2019.

Paper E An end-user perspective on the CAMI Ambient Assisted Living
Framework. Imad Alex Awada, Oana Cramariuc, Irina Mocanu, Cristina
Seceleanu, Ashalatha Kunnappilly, Adina Magda Florea. In Proceedings
of the 12th Annual International Technology, Education and Develop-
ment Conference (INTED), Edulearn, March 2018, Spain.

12

xi

Additional publications, not included in the
licentiate thesis

1. CAMI - An Integrated Architecture Solution for Improving Quality of Life
of the Elderly. Alexandru Sorici , Imad Alex Awada , Ashalatha Kun-
nappilly, Irina Mocanu , Oana Cramariuc , Lukasz Malicki , Cristina
Seceleanu, Adina Magda Florea. In Proceedings of the 3rd EAI Inter-
national Conference on IoT Technologies for HealthCare (HealthyIoT),
2016, Springer, LNCS.

2. Analyzing Ambient Assisted Living Solutions: A Research Perspec-
tive. Ashalatha Kunnappilly, Axel Legay, Tiziana Margaria, Cristina
Seceleanu, Bernhard Steffen, Louis-Marie Tranonouez. 12th Interna-
tional Conference on Design and Technology of Integrated Systems in
Nanoscale Era (DTIS), 2017, IEEE.

3. A Formally Assured Intelligent Ecosystem for Enhanced Ambient As-
sisted Living Support. Ashalatha Kunnappilly. The 33rd ACM/SIGAPP
Symposium On Applied Computing (SAC), Student Research Competi-
tion (Second position), 2018, ACM.

4. A Systematic Mapping Study on Real-time Cloud Services. Jakob
Danielsson, Nandinbaatar Tsog, Ashalatha Kunnappilly. IEEE/ACM
International Conference on Utility and Cloud Computing Companion
(UCC Companion), 2018, IEEE.

xi

Additional publications, not included in the
licentiate thesis

1. CAMI - An Integrated Architecture Solution for Improving Quality of Life
of the Elderly. Alexandru Sorici , Imad Alex Awada , Ashalatha Kun-
nappilly, Irina Mocanu , Oana Cramariuc , Lukasz Malicki , Cristina
Seceleanu, Adina Magda Florea. In Proceedings of the 3rd EAI Inter-
national Conference on IoT Technologies for HealthCare (HealthyIoT),
2016, Springer, LNCS.

2. Analyzing Ambient Assisted Living Solutions: A Research Perspec-
tive. Ashalatha Kunnappilly, Axel Legay, Tiziana Margaria, Cristina
Seceleanu, Bernhard Steffen, Louis-Marie Tranonouez. 12th Interna-
tional Conference on Design and Technology of Integrated Systems in
Nanoscale Era (DTIS), 2017, IEEE.

3. A Formally Assured Intelligent Ecosystem for Enhanced Ambient As-
sisted Living Support. Ashalatha Kunnappilly. The 33rd ACM/SIGAPP
Symposium On Applied Computing (SAC), Student Research Competi-
tion (Second position), 2018, ACM.

4. A Systematic Mapping Study on Real-time Cloud Services. Jakob
Danielsson, Nandinbaatar Tsog, Ashalatha Kunnappilly. IEEE/ACM
International Conference on Utility and Cloud Computing Companion
(UCC Companion), 2018, IEEE.

13

14

Contents

I Thesis 1

1 Introduction 3
1.1 Thesis Overview . 7

2 Preliminaries 13
2.1 Architecture Analysis and Design Language 13
2.2 Multi-Agent Systems . 15
2.3 Formal Modeling and Verification by Model Checking 17

2.3.1 Formal Modeling Frameworks 19
2.3.2 Model-checking Tools 22

3 Research Methodology 25

4 Research Problem 29
4.1 Problem Definition . 29
4.2 Research Goals . 30

5 Thesis Contributions 33
5.1 Literature Survey of Existing AAL Solutions 33
5.2 A Centralized Integrated Architecture for Ambient Assisted

Living and a Framework for its Formal Assurance 35
5.3 A Multi-agent-based Integrated Architecture for Ambient As-

sisted Living and its Modeling and Analysis Framework . . . 45
5.4 Validation with End Users 52

xiii

Contents

I Thesis 1

1 Introduction 3
1.1 Thesis Overview . 7

2 Preliminaries 13
2.1 Architecture Analysis and Design Language 13
2.2 Multi-Agent Systems . 15
2.3 Formal Modeling and Verification by Model Checking 17

2.3.1 Formal Modeling Frameworks 19
2.3.2 Model-checking Tools 22

3 Research Methodology 25

4 Research Problem 29
4.1 Problem Definition . 29
4.2 Research Goals . 30

5 Thesis Contributions 33
5.1 Literature Survey of Existing AAL Solutions 33
5.2 A Centralized Integrated Architecture for Ambient Assisted

Living and a Framework for its Formal Assurance 35
5.3 A Multi-agent-based Integrated Architecture for Ambient As-

sisted Living and its Modeling and Analysis Framework . . . 45
5.4 Validation with End Users 52

xiii

15

xiv Contents

6 Related Work 55
6.1 Software Architecture Models for AAL 55

6.1.1 Formal Modeling and Analysis of AAL Systems . . . 57

7 Conclusions and Future Work 61

Bibliography 65

II Included Papers 75

8 Paper A:
Do we need an integrated framework for Ambient Assisted Living? 77
8.1 Introduction . 79
8.2 Literature Survey . 80
8.3 Analysis of Independent vs. Integrated AAL solutions 83

8.3.1 Sequence Diagrams and Schedule Analysis 83
8.4 A Feature Diagram of Integrated AAL Functions 90
8.5 Conclusions and Future Works 91
Bibliography . 93

9 Paper B:
A Novel Integrated Architecture for Ambient Assisted Living Sys-
tems 97
9.1 Introduction . 99
9.2 Literature Review . 100

9.2.1 Architecture Analysis and Design Language 100
9.2.2 Prominent AAL architectures in literature 101

9.3 Proposed Architecture . 108
9.4 AADL model of CAMI architecture 110
9.5 CAMI Architecture Analysis in AADL 112

9.5.1 Flow latency analysis 112
9.5.2 Resource analysis . 113
9.5.3 Safety analysis . 115

9.6 Conclusions . 116
Bibliography . 117

xiv Contents

6 Related Work 55
6.1 Software Architecture Models for AAL 55

6.1.1 Formal Modeling and Analysis of AAL Systems . . . 57

7 Conclusions and Future Work 61

Bibliography 65

II Included Papers 75

8 Paper A:
Do we need an integrated framework for Ambient Assisted Living? 77
8.1 Introduction . 79
8.2 Literature Survey . 80
8.3 Analysis of Independent vs. Integrated AAL solutions 83

8.3.1 Sequence Diagrams and Schedule Analysis 83
8.4 A Feature Diagram of Integrated AAL Functions 90
8.5 Conclusions and Future Works 91
Bibliography . 93

9 Paper B:
A Novel Integrated Architecture for Ambient Assisted Living Sys-
tems 97
9.1 Introduction . 99
9.2 Literature Review . 100

9.2.1 Architecture Analysis and Design Language 100
9.2.2 Prominent AAL architectures in literature 101

9.3 Proposed Architecture . 108
9.4 AADL model of CAMI architecture 110
9.5 CAMI Architecture Analysis in AADL 112

9.5.1 Flow latency analysis 112
9.5.2 Resource analysis . 113
9.5.3 Safety analysis . 115

9.6 Conclusions . 116
Bibliography . 117

16

Contents xv

10 Paper C:
A Model-Checking-Based Framework For Analyzing Ambient As-
sisted Living Solutions 119
10.1 Introduction . 121
10.2 Preliminaries . 122

10.2.1 The Architecture Analysis and Design Language . . . 122
10.2.2 Formal Notations and Tools 124
10.2.3 Timed Automata and Stochastic Timed Automata . . 124
10.2.4 UPPAAL and UPPAAL SMC 125

10.3 A Framework for Formal Analysis of AAL Systems: Proposed
Methedology . 126

10.4 A Generic AAL System Architecture 127
10.4.1 Use Case Scenarios and System Requirements 132

10.5 System Modelling in AADL 135
10.6 Semantics of AAL- Relevant AADL Components 139

10.6.1 Definition of AADL Components for AAL 139
10.6.2 Formal Encoding of AADL Components as NSTA . . 143

10.7 AAL Architecture Verification and Discussion 151
10.8 Related Work . 156
10.9 Conclusions and Future Work 158
Bibliography . 161

11 Paper D:
Architecture Modelling and Formal Analysis of Intelligent Multi-
Agent Systems 165
11.1 Introduction . 167
11.2 Preliminaries . 168

11.2.1 Architecture Analysis and Design Language 168
11.2.2 Stochastic Transition Systems 169
11.2.3 Probabilistic Timed Automata and PRISM 170

11.3 A Multi-Agent System Architecture for AAL 171
11.3.1 Reinforcement Learning in Exercise Agents 173
11.3.2 Use-Case Scenarios and System Requirements 174

11.4 Modeling Multi-Agent Systems in AADL 175
11.4.1 Modeling Behaviours of Agents in AADL: Agent Annex176

11.5 Formal Encoding of MAS 179
11.6 System Analysis with PRISM 181
11.7 Related Work . 184
11.8 Discussion . 185

Contents xv

10 Paper C:
A Model-Checking-Based Framework For Analyzing Ambient As-
sisted Living Solutions 119
10.1 Introduction . 121
10.2 Preliminaries . 122

10.2.1 The Architecture Analysis and Design Language . . . 122
10.2.2 Formal Notations and Tools 124
10.2.3 Timed Automata and Stochastic Timed Automata . . 124
10.2.4 UPPAAL and UPPAAL SMC 125

10.3 A Framework for Formal Analysis of AAL Systems: Proposed
Methedology . 126

10.4 A Generic AAL System Architecture 127
10.4.1 Use Case Scenarios and System Requirements 132

10.5 System Modelling in AADL 135
10.6 Semantics of AAL- Relevant AADL Components 139

10.6.1 Definition of AADL Components for AAL 139
10.6.2 Formal Encoding of AADL Components as NSTA . . 143

10.7 AAL Architecture Verification and Discussion 151
10.8 Related Work . 156
10.9 Conclusions and Future Work 158
Bibliography . 161

11 Paper D:
Architecture Modelling and Formal Analysis of Intelligent Multi-
Agent Systems 165
11.1 Introduction . 167
11.2 Preliminaries . 168

11.2.1 Architecture Analysis and Design Language 168
11.2.2 Stochastic Transition Systems 169
11.2.3 Probabilistic Timed Automata and PRISM 170

11.3 A Multi-Agent System Architecture for AAL 171
11.3.1 Reinforcement Learning in Exercise Agents 173
11.3.2 Use-Case Scenarios and System Requirements 174

11.4 Modeling Multi-Agent Systems in AADL 175
11.4.1 Modeling Behaviours of Agents in AADL: Agent Annex176

11.5 Formal Encoding of MAS 179
11.6 System Analysis with PRISM 181
11.7 Related Work . 184
11.8 Discussion . 185

17

xvi Contents

11.9 Conclusions and Future Work 185
Bibliography . 187

12 Paper E:
An End-User Perspective on the CAMI Ambient And Assisted Liv-
ing Project 189
12.1 Introduction . 191
12.2 An Overview of the CAMI Platform Architecture 193
12.3 Results . 194

12.3.1 The CAMI end-user perspective 194
12.3.2 Health monitoring and fall detection 196
12.3.3 Computer supervised physical exercises 198
12.3.4 CAMI Vocal Interface 200

12.4 Conclusions . 203
Bibliography . 205

xvi Contents

11.9 Conclusions and Future Work 185
Bibliography . 187

12 Paper E:
An End-User Perspective on the CAMI Ambient And Assisted Liv-
ing Project 189
12.1 Introduction . 191
12.2 An Overview of the CAMI Platform Architecture 193
12.3 Results . 194

12.3.1 The CAMI end-user perspective 194
12.3.2 Health monitoring and fall detection 196
12.3.3 Computer supervised physical exercises 198
12.3.4 CAMI Vocal Interface 200

12.4 Conclusions . 203
Bibliography . 205

18

I

Thesis

1

I

Thesis

1

19

20

Chapter 1

Introduction

According to the statistics of the World Population Ageing Report 2015 [1],
the world’s elderly population is predicted to reach 2.1 billion by 2050, which
is more than double of the population of elderly adults in 2015. The ageing
society entails coping with increased health-care costs, shortage of caregivers
[2], etc. Ambient Assisted Living (AAL) solutions are gaining popularity in
this context, as they can assist the elderly in their daily activities and in their
independent living, with limited risks. Some examples of assistance are health
monitoring, home monitoring, fall detection, communication with caregivers,
mobility, providing recommendations, reminders, etc.

AAL systems are real-time safety-critical systems, i.e., not delivering the
right functionality at the right time may have consequences that could even
lead to the death of the elderly user. For example, most of the AAL systems
use sensors to monitor health parameters like pulse, ECG, blood glucose level,
blood pressure, etc. In many cases, health parameter deviations are critical and
must be notified to the caregiver in due time, and the failure to do so can endan-
ger the life of the elderly. Hence, early design-stage assurance via techniques
like model checking can uncover potential errors before their propagation to
implementation levels, or simply provide a guarantee that the design meets the
specification.

Upon undertaking a survey of existing AAL solutions [3], we find that
many of the existing ones have limited support of functionalities, despite the
fact that helping an older adult in his/her daily living requires supporting
health-related functions, but also home and social-life related functionalities.
Although the above holds, one can use various independent systems providing

3

Chapter 1

Introduction

According to the statistics of the World Population Ageing Report 2015 [1],
the world’s elderly population is predicted to reach 2.1 billion by 2050, which
is more than double of the population of elderly adults in 2015. The ageing
society entails coping with increased health-care costs, shortage of caregivers
[2], etc. Ambient Assisted Living (AAL) solutions are gaining popularity in
this context, as they can assist the elderly in their daily activities and in their
independent living, with limited risks. Some examples of assistance are health
monitoring, home monitoring, fall detection, communication with caregivers,
mobility, providing recommendations, reminders, etc.

AAL systems are real-time safety-critical systems, i.e., not delivering the
right functionality at the right time may have consequences that could even
lead to the death of the elderly user. For example, most of the AAL systems
use sensors to monitor health parameters like pulse, ECG, blood glucose level,
blood pressure, etc. In many cases, health parameter deviations are critical and
must be notified to the caregiver in due time, and the failure to do so can endan-
ger the life of the elderly. Hence, early design-stage assurance via techniques
like model checking can uncover potential errors before their propagation to
implementation levels, or simply provide a guarantee that the design meets the
specification.

Upon undertaking a survey of existing AAL solutions [3], we find that
many of the existing ones have limited support of functionalities, despite the
fact that helping an older adult in his/her daily living requires supporting
health-related functions, but also home and social-life related functionalities.
Although the above holds, one can use various independent systems providing

3

21

4 Chapter 1. Introduction

one or more of such supporting functions. However, there exist potentially crit-
ical scenarios that such solutions cannot resolve in due time, which justify the
architectural integration of independent solutions. For instance, if an elderly
person’s home is equipped with an AAL solution that does not support auto-
matic fall detection, the user can purchase it separately, as there exist readily
available solutions that detect a fall and raise an alarm. This functionality of
a fall detection system remains the same whether it is an independent system
or part of an integrated system. The question that follows is: if the separate
solutions can perform their functionality without integration, in isolation, then
why would one even think of designing an integrated, more complex solution
that in addition comes at a higher price? The most obvious reason for a posi-
tive answer would be the increased practicality of a single, integrated solution
that offers all the needed support vs. more systems each delivering a particu-
lar function, which the users need to purchase. However, there exists a more
important reason - the fact that the performance of individualized solutions
differ dramatically if they are integrated into a coherent framework, versus the
case when they are employed in isolation especially in scenarios where critical
events might occur simultaneously. In some cases, independent solutions can-
not even depict a potential causality between simultaneous critical events, as
we exemplify below.

In our first contribution [3], we discuss the behaviors of independent and
integrated solutions by selecting representative scenarios that we simulate via
sequence diagrams, and check their offline schedules against real-time dead-
lines. As a result, we conclude that certain critical scenarios can be tackled
intelligently only by using integrated solutions. For instance, let us assume
the following scenarios:

• A fall event occurring due to low pulse: In this case, if the fall sensor
and the pulse monitoring sensor work independently of each other, no
connection can be established between the two events, indicating that
the potential reason for the fall is in fact the person’s low pulse, which in
turn may be critical for diagnosis.

• Simultaneous occurrence of fire and fall events: When both these events
occur together, a safe mitigation of the scenario is achieved only when
both these events are communicated to caregivers and firefighters, which
is not guaranteed by independent systems working side by side. Assum-
ing that the fire alarm communicated to the firefighters is verified for
confirmation by a phone call to the user’s home, and since the elderly
who has fallen may not be able to answer, the fire alarm may be deemed

4 Chapter 1. Introduction

one or more of such supporting functions. However, there exist potentially crit-
ical scenarios that such solutions cannot resolve in due time, which justify the
architectural integration of independent solutions. For instance, if an elderly
person’s home is equipped with an AAL solution that does not support auto-
matic fall detection, the user can purchase it separately, as there exist readily
available solutions that detect a fall and raise an alarm. This functionality of
a fall detection system remains the same whether it is an independent system
or part of an integrated system. The question that follows is: if the separate
solutions can perform their functionality without integration, in isolation, then
why would one even think of designing an integrated, more complex solution
that in addition comes at a higher price? The most obvious reason for a posi-
tive answer would be the increased practicality of a single, integrated solution
that offers all the needed support vs. more systems each delivering a particu-
lar function, which the users need to purchase. However, there exists a more
important reason - the fact that the performance of individualized solutions
differ dramatically if they are integrated into a coherent framework, versus the
case when they are employed in isolation especially in scenarios where critical
events might occur simultaneously. In some cases, independent solutions can-
not even depict a potential causality between simultaneous critical events, as
we exemplify below.

In our first contribution [3], we discuss the behaviors of independent and
integrated solutions by selecting representative scenarios that we simulate via
sequence diagrams, and check their offline schedules against real-time dead-
lines. As a result, we conclude that certain critical scenarios can be tackled
intelligently only by using integrated solutions. For instance, let us assume
the following scenarios:

• A fall event occurring due to low pulse: In this case, if the fall sensor
and the pulse monitoring sensor work independently of each other, no
connection can be established between the two events, indicating that
the potential reason for the fall is in fact the person’s low pulse, which in
turn may be critical for diagnosis.

• Simultaneous occurrence of fire and fall events: When both these events
occur together, a safe mitigation of the scenario is achieved only when
both these events are communicated to caregivers and firefighters, which
is not guaranteed by independent systems working side by side. Assum-
ing that the fire alarm communicated to the firefighters is verified for
confirmation by a phone call to the user’s home, and since the elderly
who has fallen may not be able to answer, the fire alarm may be deemed

22

5

false and discarded, triggering a potential catastrophe.

Justified by the above, we establish the fact that the need of integrated AAL
solutions that cater for various types of functions is veridical [3]. The next
challenge is to develop such systems that can integrate multiple functionalities
and deliver them correctly. When AAL solutions are integrated such that they
cover a wide variety of functionalities [4], out of which many are safety criti-
cal, ensuring the correctness of the system behavior by verifying the functional
and quality-of-service (QoS) attributes of the system at the design stage is ben-
eficial. In this thesis, we propose two integrated solutions for AAL systems: a)
An architecture with centralized artificial intelligence (AI)-based decision sup-
port, and b) An architecture with distributed decision-making using multiple
intelligent agents that cooperate with each other. We also show the correctness
of the proposed solutions at design level.

The integration of various functionalities can be easily accomplished if
there exists a centralized decision maker that all the various devices communi-
cate to, such that different events can be combined in real-time. This prompts
us to our second contribution as a centralized integrated AAL solution that we
describe in the Architecture Analysis and Design Language (AADL) [5, 6]. We
design our centralized architecture as a generic model that follows the AAL
architecture design in the literature by: (i) integrating multiple sensors, data
collector unit, decision-support systems, cloud computing facilities, communi-
cation gateways and user-interfaces, and (ii) incorporating redundancy to the
decision-support systems (local and cloud) to tackle the single point of fail-
ure in centralized systems, hence increasing the system’s fault tolerance [3, 6].
When modeling this architecture in AADL, we follow a pattern-based model-
ing approach that facilitates the models’ reuse. By using AADL’s Behavior An-
nex (BA), we specify the AI support, combining context modeling, fuzzy logic,
case-based reasoning and rule-based reasoning. The combination of the vari-
ous AI techniques also strengthens the decision-making support of the AAL
architecture. Using the AADL model, we perform initial analysis like latency
analysis, schedulability, and resource analysis, within the OSATE platform [7].

The generic architecture model can also be customized to address differ-
ent user requirements and preferences. In this thesis, we show three different
instantiated versions of the generic model, that is, a minimal configuration, an
intermediate configuration and a complex configuration, modelled in AADL.
We give formal semantics to the “semi-formal" AADL modeling constructs of
the type used in our work, in the framework of stochastic timed automata [8].
In order to formally analyze the system against various functional and quality-

5

false and discarded, triggering a potential catastrophe.

Justified by the above, we establish the fact that the need of integrated AAL
solutions that cater for various types of functions is veridical [3]. The next
challenge is to develop such systems that can integrate multiple functionalities
and deliver them correctly. When AAL solutions are integrated such that they
cover a wide variety of functionalities [4], out of which many are safety criti-
cal, ensuring the correctness of the system behavior by verifying the functional
and quality-of-service (QoS) attributes of the system at the design stage is ben-
eficial. In this thesis, we propose two integrated solutions for AAL systems: a)
An architecture with centralized artificial intelligence (AI)-based decision sup-
port, and b) An architecture with distributed decision-making using multiple
intelligent agents that cooperate with each other. We also show the correctness
of the proposed solutions at design level.

The integration of various functionalities can be easily accomplished if
there exists a centralized decision maker that all the various devices communi-
cate to, such that different events can be combined in real-time. This prompts
us to our second contribution as a centralized integrated AAL solution that we
describe in the Architecture Analysis and Design Language (AADL) [5, 6]. We
design our centralized architecture as a generic model that follows the AAL
architecture design in the literature by: (i) integrating multiple sensors, data
collector unit, decision-support systems, cloud computing facilities, communi-
cation gateways and user-interfaces, and (ii) incorporating redundancy to the
decision-support systems (local and cloud) to tackle the single point of fail-
ure in centralized systems, hence increasing the system’s fault tolerance [3, 6].
When modeling this architecture in AADL, we follow a pattern-based model-
ing approach that facilitates the models’ reuse. By using AADL’s Behavior An-
nex (BA), we specify the AI support, combining context modeling, fuzzy logic,
case-based reasoning and rule-based reasoning. The combination of the vari-
ous AI techniques also strengthens the decision-making support of the AAL
architecture. Using the AADL model, we perform initial analysis like latency
analysis, schedulability, and resource analysis, within the OSATE platform [7].

The generic architecture model can also be customized to address differ-
ent user requirements and preferences. In this thesis, we show three different
instantiated versions of the generic model, that is, a minimal configuration, an
intermediate configuration and a complex configuration, modelled in AADL.
We give formal semantics to the “semi-formal" AADL modeling constructs of
the type used in our work, in the framework of stochastic timed automata [8].
In order to formally analyze the system against various functional and quality-

23

6 Chapter 1. Introduction

of-service (QoS) attributes, we show exhaustive verification of the minimal
configuration using the UPPAAL model checker and statistical model check-
ing of complex configuration using UPPAAL SMC [9]. The reason for employ-
ing statistical model checking is twofold: a) exhaustive model-checking might
not scale for large complex systems, and (ii) we model the failure probabili-
ties of various components, and hence the choice of reasoning statistically is
justified. Our modeling and verification approach facilitate reuse via a pattern-
based modeling infrastructure, covers AI support, and is able to cover a larger
set of properties for verification , as compared to existing approaches to AAL
system formal modeling and analysis [10, 11]. In addition, most of the com-
mercially available AAL solutions lack a documented proof of correctness [5].
However, our first solution has the same disadvantages as all centralized solu-
tions, that is: (i) redundancy overheads due to ensuring fault tolerance, and (ii)
limited scalability and adaptivity.

Our third contribution and second architectural solution [12] follows the
upcoming trend of using distributed architectures for designing AAL systems,
as they provide autonomy, scalability, adaptability and fault-tolerance, in ad-
dition to the fact that it servers multiple users at the same time. Hence, we
propose a distributed agent-based AAL solution, as the second category of ar-
chitectures that support the design of AAL systems. However, such systems
usually possess additional overhead encountered during agent synchronizations
for collective decision-making and data consistency maintenance. This over-
head can sometimes hamper the real-time behavior of the system. To address
this, we investigate how we can use these systems for developing integrated
solutions that ensure a safe trade off between autonomous behavior and con-
sistency overheads. This is a challenging requirement since agents are inter-
dependent, and have only a limited view of the environment. Concretely, the
agent-based solution should ensure a consistent view of the environment, in
terms of processed data and events, as well as an inter-agent communication
overhead that should not result in breaching the real-time system demands.

Our agent-based architecture consists of independent agents that cater for a
particular functionality, respectively, for e.g., a health monitoring agent detects
health parameter variations and raise a notification to caregiver. Our architec-
ture supports interactions between different categories of agents. In this thesis,
we consider only 2 agent categories: a) simple reflex agents, with reasoning
based on if-then-else rules, and b) self-learning intelligent agents, embedded
with AI learning algorithms, like Reinforcement Learning [13]. In order for
the agents to cooperate in real-time, each agent maintains the dependencies it
can have with other agents. For example, if a health-monitoring agent detects

6 Chapter 1. Introduction

of-service (QoS) attributes, we show exhaustive verification of the minimal
configuration using the UPPAAL model checker and statistical model check-
ing of complex configuration using UPPAAL SMC [9]. The reason for employ-
ing statistical model checking is twofold: a) exhaustive model-checking might
not scale for large complex systems, and (ii) we model the failure probabili-
ties of various components, and hence the choice of reasoning statistically is
justified. Our modeling and verification approach facilitate reuse via a pattern-
based modeling infrastructure, covers AI support, and is able to cover a larger
set of properties for verification , as compared to existing approaches to AAL
system formal modeling and analysis [10, 11]. In addition, most of the com-
mercially available AAL solutions lack a documented proof of correctness [5].
However, our first solution has the same disadvantages as all centralized solu-
tions, that is: (i) redundancy overheads due to ensuring fault tolerance, and (ii)
limited scalability and adaptivity.

Our third contribution and second architectural solution [12] follows the
upcoming trend of using distributed architectures for designing AAL systems,
as they provide autonomy, scalability, adaptability and fault-tolerance, in ad-
dition to the fact that it servers multiple users at the same time. Hence, we
propose a distributed agent-based AAL solution, as the second category of ar-
chitectures that support the design of AAL systems. However, such systems
usually possess additional overhead encountered during agent synchronizations
for collective decision-making and data consistency maintenance. This over-
head can sometimes hamper the real-time behavior of the system. To address
this, we investigate how we can use these systems for developing integrated
solutions that ensure a safe trade off between autonomous behavior and con-
sistency overheads. This is a challenging requirement since agents are inter-
dependent, and have only a limited view of the environment. Concretely, the
agent-based solution should ensure a consistent view of the environment, in
terms of processed data and events, as well as an inter-agent communication
overhead that should not result in breaching the real-time system demands.

Our agent-based architecture consists of independent agents that cater for a
particular functionality, respectively, for e.g., a health monitoring agent detects
health parameter variations and raise a notification to caregiver. Our architec-
ture supports interactions between different categories of agents. In this thesis,
we consider only 2 agent categories: a) simple reflex agents, with reasoning
based on if-then-else rules, and b) self-learning intelligent agents, embedded
with AI learning algorithms, like Reinforcement Learning [13]. In order for
the agents to cooperate in real-time, each agent maintains the dependencies it
can have with other agents. For example, if a health-monitoring agent detects

24

1.1 Thesis Overview 7

that there is a high pulse, it would need to cooperate with an activity agent to
determine the user activity, a high pulse during an exercise session is normal
and no notifications should be generated. Hence, the activity agent is included
in the dependency list of the health monitoring agent. For formally modeling
the agent-based architecture, existing architecture languages such as AADL
cannot specify autonomy, adaptability, self-healing, self-learning etc., as these
behaviours are usually non-deterministic, probabilistic and have real-time con-
straints. To describe the agents and the system’s architecture, we propose an
extension to AADL specification language as a sub-language called Agent an-
nex, and define its semantics described in terms of Stochastic Transition Sys-
tems [14].

As the fourth and final contribution, we also present some initial validation
of the centralized architecture by testing some of the implemented functionali-
ties with end-users and in the laboratory [15]. In this contribution, we present
an implemented version of the architecture of the first category. The function-
alities chosen for implementation are based on user surveys undertaken by the
end user organizations within the project. We show the validation results with
respect to functionalities like health monitoring (i.e. blood pressure, heart rate,
blood glucose, weight, blood oxygenation), fall detection, supervised physical
exercises and vocal interactions.

1.1 Thesis Overview

The thesis is divided into two major parts. The first part is an overall summary
of the thesis, organized as follows. In Chapter 2, we give a short overview of
the preliminaries; in Chapter 3, we describe the research method used for con-
ducting the research and producing the research results described in the thesis.
Chapter 4 introduces the research goals of the thesis. In Chapter 5, we briefly
describe the contributions of the thesis, and map them to the corresponding
research goals, respectively. The overview and comparison to the related work
is given in Chapter 6, after which we conclude the first part of the thesis and
present the directions for future work in Chapter 7.

The second part of the thesis is given as a collection of publications that
encompass all the thesis contributions. The included papers are:

Paper A. Do we need an integrated framework for Ambient Assisted Living?.
Ashalatha Kunnappilly, Cristina Seceleanu, Maria Lindén. In Proceedings
of the 10th International Conference on Ubiquitous Computing and Ambient

1.1 Thesis Overview 7

that there is a high pulse, it would need to cooperate with an activity agent to
determine the user activity, a high pulse during an exercise session is normal
and no notifications should be generated. Hence, the activity agent is included
in the dependency list of the health monitoring agent. For formally modeling
the agent-based architecture, existing architecture languages such as AADL
cannot specify autonomy, adaptability, self-healing, self-learning etc., as these
behaviours are usually non-deterministic, probabilistic and have real-time con-
straints. To describe the agents and the system’s architecture, we propose an
extension to AADL specification language as a sub-language called Agent an-
nex, and define its semantics described in terms of Stochastic Transition Sys-
tems [14].

As the fourth and final contribution, we also present some initial validation
of the centralized architecture by testing some of the implemented functionali-
ties with end-users and in the laboratory [15]. In this contribution, we present
an implemented version of the architecture of the first category. The function-
alities chosen for implementation are based on user surveys undertaken by the
end user organizations within the project. We show the validation results with
respect to functionalities like health monitoring (i.e. blood pressure, heart rate,
blood glucose, weight, blood oxygenation), fall detection, supervised physical
exercises and vocal interactions.

1.1 Thesis Overview

The thesis is divided into two major parts. The first part is an overall summary
of the thesis, organized as follows. In Chapter 2, we give a short overview of
the preliminaries; in Chapter 3, we describe the research method used for con-
ducting the research and producing the research results described in the thesis.
Chapter 4 introduces the research goals of the thesis. In Chapter 5, we briefly
describe the contributions of the thesis, and map them to the corresponding
research goals, respectively. The overview and comparison to the related work
is given in Chapter 6, after which we conclude the first part of the thesis and
present the directions for future work in Chapter 7.

The second part of the thesis is given as a collection of publications that
encompass all the thesis contributions. The included papers are:

Paper A. Do we need an integrated framework for Ambient Assisted Living?.
Ashalatha Kunnappilly, Cristina Seceleanu, Maria Lindén. In Proceedings
of the 10th International Conference on Ubiquitous Computing and Ambient

25

8 Chapter 1. Introduction

Intelligence (UCAmI), LNCS, Springer, pages 52-63, November 2016, Canary
Islands, Spain .

Abstract. The significant increase of ageing population calls for solu-
tions that help the elderly to live an independent, healthy and low risk life,
but also ensure their social interaction. The improvements in Information
and Communication Technologies (ICT) and Ambient Assisted Living (AAL)
have resulted in the development of equipment that supports ubiquitous
computing, ubiquitous communication and intelligent user interfaces. The
smart home technologies, assisted robotics, sensors for health monitoring and
e-health solutions are some examples in this category. Despite such growth
in these individualized technologies, there are only few solutions that provide
integrated AAL frameworks that interconnect all of these technologies. In
this paper, we discuss the necessity to opt for an integrated solution in AAL.
To support the study we describe real life scenarios that help us justify the
need for integrated solutions over individualized ones. Our analysis points
to the clear conclusion that an integrated solution for AAL outperforms the
individualized ones.

Contributions. I was the main contributor to this work and the main driver
for the paper. I performed a literature review of the SOA and SOP of existing
AAL solutions and identified that there are very few AAL solutions that are
fully integrated w.r.t functionalities chosen based on a multi-national survey
conducted in the same research project (CAMI EU project) by end-user orga-
nizations. I also performed an analysis of timing requirements for integrated
and non-integrated AAL solutions in certain critical scenarios via sequence di-
agrams and offline schedules. I was helped by the second author to formulate
the scenarios and to select the tools for analysis. The second and third authors
also provided constructive feedback for the paper.

Paper B. A Novel Integrated Architecture for Ambient Assisted Living
Systems.Ashalatha Kunnappilly, Alexandru Sorici, Imad Alex Awada, Irina
Mocanu, Cristina Seceleanu, Adina Madga Florea. In Proceedings of the 40th

IEEE Computer Society International Conference on Computers, Software &
Applications (COMPSAC), July 2017, Turin, Italy, IEEE Computer Society,
pages 465-472.

Abstract. The increase in life expectancy and the slumping birth rates
across the world result in lengthening the average age of the society. There-

8 Chapter 1. Introduction

Intelligence (UCAmI), LNCS, Springer, pages 52-63, November 2016, Canary
Islands, Spain .

Abstract. The significant increase of ageing population calls for solu-
tions that help the elderly to live an independent, healthy and low risk life,
but also ensure their social interaction. The improvements in Information
and Communication Technologies (ICT) and Ambient Assisted Living (AAL)
have resulted in the development of equipment that supports ubiquitous
computing, ubiquitous communication and intelligent user interfaces. The
smart home technologies, assisted robotics, sensors for health monitoring and
e-health solutions are some examples in this category. Despite such growth
in these individualized technologies, there are only few solutions that provide
integrated AAL frameworks that interconnect all of these technologies. In
this paper, we discuss the necessity to opt for an integrated solution in AAL.
To support the study we describe real life scenarios that help us justify the
need for integrated solutions over individualized ones. Our analysis points
to the clear conclusion that an integrated solution for AAL outperforms the
individualized ones.

Contributions. I was the main contributor to this work and the main driver
for the paper. I performed a literature review of the SOA and SOP of existing
AAL solutions and identified that there are very few AAL solutions that are
fully integrated w.r.t functionalities chosen based on a multi-national survey
conducted in the same research project (CAMI EU project) by end-user orga-
nizations. I also performed an analysis of timing requirements for integrated
and non-integrated AAL solutions in certain critical scenarios via sequence di-
agrams and offline schedules. I was helped by the second author to formulate
the scenarios and to select the tools for analysis. The second and third authors
also provided constructive feedback for the paper.

Paper B. A Novel Integrated Architecture for Ambient Assisted Living
Systems.Ashalatha Kunnappilly, Alexandru Sorici, Imad Alex Awada, Irina
Mocanu, Cristina Seceleanu, Adina Madga Florea. In Proceedings of the 40th

IEEE Computer Society International Conference on Computers, Software &
Applications (COMPSAC), July 2017, Turin, Italy, IEEE Computer Society,
pages 465-472.

Abstract. The increase in life expectancy and the slumping birth rates
across the world result in lengthening the average age of the society. There-

26

1.1 Thesis Overview 9

fore, we are in need of techniques that will assist the elderly in their daily
life, while preventing their social isolation. The recent developments in
Ambient Intelligence and Information and Communication Technologies
have facilitated a technological revolution in the field of Ambient Assisted
Living. At present, there are many technologies on the market that support
the independent life of older adults, requiring less assistance from family and
caregivers, yet most of them offer isolated services, such as health monitoring,
reminders etc; moreover none of current solutions incorporates the integration
of various functionalities and user preferences or are formally analyzed for
their functionality and quality-of-service attributes, a much needed endeavor
in order to ensure safe mitigations of potential critical scenarios. In this paper,
we propose a novel architectural solution that integrates necessary functions
of an AAL system seamlessly, based on user preferences. To enable the first
level of the architecture’s analysis, we model our system in Architecture
Analysis and Design Language, and carry out its simulation for analyzing the
end-to-end data-flow latency, resource budgets and system safety.

Contributions. I was the main driver for the paper. My technical contribu-
tions include the AADL analysis of selected architectures from the literature,
proposing a novel architecture solution with local and cloud processing as a
platform for seamless integration of various AAL functionalities chosen based
on Paper 1, evaluation of the proposed architecture in AADL for latency, re-
source budgets and failure. The other authors contributed with ideas on archi-
tecture design, and comments on the paper.

Paper C. A Model-Checking-Based Framework For Analyzing Ambient
Assisted Living Solutions. Ashalatha Kunnappilly, Raluca Marinescu, Cristina
Seceleanu, MRTC Technical Report, Mälardalen Real-Time Research Centre,
Mälardalen University, Mälardalen University Press, MDH-MRTC-322/2018-
1-SE, March 2019. NOTE: This publication is an extended version of the
article: Assuring Intelligent Ambient Assisted Living Solutions by Statistical
Model Checking. Ashalatha Kunnappilly, Raluca Marinescu, Cristina Sece-
leanu. In Proceedings of the 8th International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA),
November 2018, Limassol, Cyprus, Springer, pages 457-476.

Abstract. Since modern ambient assisted living solutions integrate a
multitude of assisted-living functionalities within a common design frame-
work, some are safety-critical, it is desirable that these systems are analyzed

1.1 Thesis Overview 9

fore, we are in need of techniques that will assist the elderly in their daily
life, while preventing their social isolation. The recent developments in
Ambient Intelligence and Information and Communication Technologies
have facilitated a technological revolution in the field of Ambient Assisted
Living. At present, there are many technologies on the market that support
the independent life of older adults, requiring less assistance from family and
caregivers, yet most of them offer isolated services, such as health monitoring,
reminders etc; moreover none of current solutions incorporates the integration
of various functionalities and user preferences or are formally analyzed for
their functionality and quality-of-service attributes, a much needed endeavor
in order to ensure safe mitigations of potential critical scenarios. In this paper,
we propose a novel architectural solution that integrates necessary functions
of an AAL system seamlessly, based on user preferences. To enable the first
level of the architecture’s analysis, we model our system in Architecture
Analysis and Design Language, and carry out its simulation for analyzing the
end-to-end data-flow latency, resource budgets and system safety.

Contributions. I was the main driver for the paper. My technical contribu-
tions include the AADL analysis of selected architectures from the literature,
proposing a novel architecture solution with local and cloud processing as a
platform for seamless integration of various AAL functionalities chosen based
on Paper 1, evaluation of the proposed architecture in AADL for latency, re-
source budgets and failure. The other authors contributed with ideas on archi-
tecture design, and comments on the paper.

Paper C. A Model-Checking-Based Framework For Analyzing Ambient
Assisted Living Solutions. Ashalatha Kunnappilly, Raluca Marinescu, Cristina
Seceleanu, MRTC Technical Report, Mälardalen Real-Time Research Centre,
Mälardalen University, Mälardalen University Press, MDH-MRTC-322/2018-
1-SE, March 2019. NOTE: This publication is an extended version of the
article: Assuring Intelligent Ambient Assisted Living Solutions by Statistical
Model Checking. Ashalatha Kunnappilly, Raluca Marinescu, Cristina Sece-
leanu. In Proceedings of the 8th International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA),
November 2018, Limassol, Cyprus, Springer, pages 457-476.

Abstract. Since modern ambient assisted living solutions integrate a
multitude of assisted-living functionalities within a common design frame-
work, some are safety-critical, it is desirable that these systems are analyzed

27

10 Chapter 1. Introduction

already at their design stage to detect possible errors. To achieve this, one
needs suitable architectures that support the seamless design of the integrated
assisted-living functions, as well as capabilities for the formal modeling and
analysis of the architecture. In this paper, we attempt to address this need,
by proposing a generic integrated ambient assisted living system architecture,
consisting of sensors, data-collector, local and cloud processing schemes,
and an intelligent decision support system, which can be easily extended to
suite specific architecture categories. Our solution is customizable, therefore,
we show three instantiations of the generic model, as simple, intermediate
and complex configuration, respectively, and show how to analyze the first
and third categories by model checking. Our approach starts by specifying
the architecture, using an architecture description language, in our case,
the Architecture Analysis and Design Language that can also account for
the probabilistic behavior of such systems. To enable formal analysis, we
describe the semantics of the simple and complex categories as stochastic
timed automata. The former we model check exhaustively with UPPAAL,
whereas for the latter we employ statistical model checking using UPPAAL
SMC, the statistical extension of UPPAAL, for scalability reasons. Our work
paves the way for the development formally-assured future ambient assisted
living solutions.

Contributions. I was the main driver of the paper. My technical contribu-
tions include: (i) a generalized architecture framework for AAL systems with
centralized decision support, (ii) the pattern-based design of the system ar-
chitecture in AADL, (iii) the design of an Intelligent Decision Support System
combining context modeling, rule-based reasoning, fuzzy logic and case-based
reasoning and its pattern-based model, (iii) formal semantics of the AADL pat-
terns, and (iv) verification of the functional specification, and QoS of the sys-
tem, including its DSS. The other two authors provided ideas w.r.t the modeling
and verification of the AAL system, as well as feedback for the paper.

Paper D. Architecture Modelling and Formal Analysis of Intelligent Multi-
Agent Systems. Ashalatha Kunnappilly, Simin Cai, Raluca Marinescu, Cristina
Seceleanu. Accepted in 14th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE 2019), Crete, Greece, May
2019.

Abstract. Modern cyber-physical systems usually assume a certain de-
gree of autonomy. Such systems, like Ambient Assisted Living systems

10 Chapter 1. Introduction

already at their design stage to detect possible errors. To achieve this, one
needs suitable architectures that support the seamless design of the integrated
assisted-living functions, as well as capabilities for the formal modeling and
analysis of the architecture. In this paper, we attempt to address this need,
by proposing a generic integrated ambient assisted living system architecture,
consisting of sensors, data-collector, local and cloud processing schemes,
and an intelligent decision support system, which can be easily extended to
suite specific architecture categories. Our solution is customizable, therefore,
we show three instantiations of the generic model, as simple, intermediate
and complex configuration, respectively, and show how to analyze the first
and third categories by model checking. Our approach starts by specifying
the architecture, using an architecture description language, in our case,
the Architecture Analysis and Design Language that can also account for
the probabilistic behavior of such systems. To enable formal analysis, we
describe the semantics of the simple and complex categories as stochastic
timed automata. The former we model check exhaustively with UPPAAL,
whereas for the latter we employ statistical model checking using UPPAAL
SMC, the statistical extension of UPPAAL, for scalability reasons. Our work
paves the way for the development formally-assured future ambient assisted
living solutions.

Contributions. I was the main driver of the paper. My technical contribu-
tions include: (i) a generalized architecture framework for AAL systems with
centralized decision support, (ii) the pattern-based design of the system ar-
chitecture in AADL, (iii) the design of an Intelligent Decision Support System
combining context modeling, rule-based reasoning, fuzzy logic and case-based
reasoning and its pattern-based model, (iii) formal semantics of the AADL pat-
terns, and (iv) verification of the functional specification, and QoS of the sys-
tem, including its DSS. The other two authors provided ideas w.r.t the modeling
and verification of the AAL system, as well as feedback for the paper.

Paper D. Architecture Modelling and Formal Analysis of Intelligent Multi-
Agent Systems. Ashalatha Kunnappilly, Simin Cai, Raluca Marinescu, Cristina
Seceleanu. Accepted in 14th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE 2019), Crete, Greece, May
2019.

Abstract. Modern cyber-physical systems usually assume a certain de-
gree of autonomy. Such systems, like Ambient Assisted Living systems

28

1.1 Thesis Overview 11

aimed at assisting elderly people in their daily life, often need to perform
safety-critical functions, for instance, fall detection, health deviation monitor-
ing, communication to caregivers, etc. In many cases, the system users have
distributed locations, as well as different needs that need to be serviced at the
same time. These features call for adaptive, scalable and fault-tolerant system
design solutions, which are well embodied by multi-agent architectures. Ana-
lyzing such complex architectures at design phase, to verify if an abstraction
of the system satisfies all the critical requirements is beneficial. In this paper,
we start from an agent-based architecture for ambient assisted living systems,
inspired from the literature, which we model in the popular Architecture
Description and Design Language. Since the latter lacks the ability to specify
autonomous agent behaviours, which are often non-deterministic or proba-
bilistic, we extend the architectural language with a sub-language called Agent
Annex, which we formally encode as a Stochastic Transition System. This
contribution allows us to specify behaviours of agents involved in agent-based
architectures of cyber-physical systems, which we show how to exhaustively
verify with the state-of-art model checker PRISM. As a final step, we apply
our framework on a distributed ambient assisted living system, whose critical
requirements we verify with PRISM.

Contributions. I was the main driver for the paper. I designed the intel-
ligent multi-agent system architecture for Ambient Assisted Living Systems
(intelligence is incorporated by employing self-learning techniques in agents
using Reinforcement Learning). Also, I proposed the extension to the existing
AADL modeling framework for modeling agent behaviours- the Agent Annex
and formulated its semantics. Further, I also developed the PTA model of the
corresponding AADL model that could be model-checked via PRISM. Simin
Cai helped in writing the introduction and preliminaries of PRISM and also
helped in formatting diagrams, other sections and also gave valuable sugges-
tions and feedback in developing the PTA model and its verification in PRISM.
The other authors provided valuable comments and feedback both on the ap-
proach and on the final version of the paper.

Paper E. An end-user perspective on the CAMI Ambient Assisted Living
Framework.mad Alex Awada, Oana Cramariuc, Irina Mocanu, Cristina
Seceleanu, Ashalatha Kunnappilly, Adina Magda Florea. In Proceedings
of the 12th Annual International Technology, Education and Development
Conference (INTED), Edulearn, March 2018, Spain

1.1 Thesis Overview 11

aimed at assisting elderly people in their daily life, often need to perform
safety-critical functions, for instance, fall detection, health deviation monitor-
ing, communication to caregivers, etc. In many cases, the system users have
distributed locations, as well as different needs that need to be serviced at the
same time. These features call for adaptive, scalable and fault-tolerant system
design solutions, which are well embodied by multi-agent architectures. Ana-
lyzing such complex architectures at design phase, to verify if an abstraction
of the system satisfies all the critical requirements is beneficial. In this paper,
we start from an agent-based architecture for ambient assisted living systems,
inspired from the literature, which we model in the popular Architecture
Description and Design Language. Since the latter lacks the ability to specify
autonomous agent behaviours, which are often non-deterministic or proba-
bilistic, we extend the architectural language with a sub-language called Agent
Annex, which we formally encode as a Stochastic Transition System. This
contribution allows us to specify behaviours of agents involved in agent-based
architectures of cyber-physical systems, which we show how to exhaustively
verify with the state-of-art model checker PRISM. As a final step, we apply
our framework on a distributed ambient assisted living system, whose critical
requirements we verify with PRISM.

Contributions. I was the main driver for the paper. I designed the intel-
ligent multi-agent system architecture for Ambient Assisted Living Systems
(intelligence is incorporated by employing self-learning techniques in agents
using Reinforcement Learning). Also, I proposed the extension to the existing
AADL modeling framework for modeling agent behaviours- the Agent Annex
and formulated its semantics. Further, I also developed the PTA model of the
corresponding AADL model that could be model-checked via PRISM. Simin
Cai helped in writing the introduction and preliminaries of PRISM and also
helped in formatting diagrams, other sections and also gave valuable sugges-
tions and feedback in developing the PTA model and its verification in PRISM.
The other authors provided valuable comments and feedback both on the ap-
proach and on the final version of the paper.

Paper E. An end-user perspective on the CAMI Ambient Assisted Living
Framework.mad Alex Awada, Oana Cramariuc, Irina Mocanu, Cristina
Seceleanu, Ashalatha Kunnappilly, Adina Magda Florea. In Proceedings
of the 12th Annual International Technology, Education and Development
Conference (INTED), Edulearn, March 2018, Spain

29

12 Chapter 1. Introduction

Abstract. In this paper, we present the outcomes and conclusions obtained
by involving seniors from three countries (Denmark, Poland and Romania)
in an innovative project funded under the European Ambient Assisted Living
(ALL) program. CAMI stands for “Companion with Autonomously Mobile
Interface" in “Artificially intelligent ecosystem for self-management and
sustainable quality of life in AAL". The CAMI solution enables flexible,
scalable and individualised services that support elderly to self-manage their
daily life and prolong their involvement in the society (sharing knowledge,
continue working, etc). This also allows their informal caregivers (family
and friends) to continue working and participating in society while caring for
their loved ones. The solution is designed as an innovative architecture that
allows for individualized, intelligent self-management which can be tailored
to an individual’s preferences and needs. A user-centered approach has ranked
health monitoring, computer supervised physical exercises and voice based
interaction among the top favoured CAMI functionalities. Respondents from
three countries (Poland, Romania and Denmark) participated in a multinational
survey and a conjoint analysis study.

Contributions. The second author was the main driver of the work. I con-
tributed to the paper by proposing a smaller implementable version of the
CAMI architecture proposed in Paper 2, took part in DSS implementation and
in testing the fall detection functionality using Vibby sensors in laboratory. I
have also contributed to the writing and reviewing of the paper, along with the
other co-authors.

12 Chapter 1. Introduction

Abstract. In this paper, we present the outcomes and conclusions obtained
by involving seniors from three countries (Denmark, Poland and Romania)
in an innovative project funded under the European Ambient Assisted Living
(ALL) program. CAMI stands for “Companion with Autonomously Mobile
Interface" in “Artificially intelligent ecosystem for self-management and
sustainable quality of life in AAL". The CAMI solution enables flexible,
scalable and individualised services that support elderly to self-manage their
daily life and prolong their involvement in the society (sharing knowledge,
continue working, etc). This also allows their informal caregivers (family
and friends) to continue working and participating in society while caring for
their loved ones. The solution is designed as an innovative architecture that
allows for individualized, intelligent self-management which can be tailored
to an individual’s preferences and needs. A user-centered approach has ranked
health monitoring, computer supervised physical exercises and voice based
interaction among the top favoured CAMI functionalities. Respondents from
three countries (Poland, Romania and Denmark) participated in a multinational
survey and a conjoint analysis study.

Contributions. The second author was the main driver of the work. I con-
tributed to the paper by proposing a smaller implementable version of the
CAMI architecture proposed in Paper 2, took part in DSS implementation and
in testing the fall detection functionality using Vibby sensors in laboratory. I
have also contributed to the writing and reviewing of the paper, along with the
other co-authors.

30

Chapter 2

Preliminaries

In this chapter, we introduce the preliminary concepts that are used through-
out the thesis. First, in Section 2.1 we present the Architecture Analysis and
Design Language. Next, in Section 2.2 we give an overview of agents and
multi-agent systems. In Section 2.3, we present an overview of the formal
modeling, verification and analysis techniques and tools used in the thesis.

2.1 Architecture Analysis and Design Language

AADL [16] is a textual and graphical language in which one can model and
analyze a real-time system’s hardware and software architecture as hierarchies
of components at various levels of abstraction. There are three categories of
component abstractions in AADL: Application Software (Process, Data, Sub-
program, Thread, and Thread Group, etc.), Execution Platform (Device, Bus,
Processor, Memory, etc.), and general composite components (System and Ab-
stract). System components are the top-level components. A process compo-
nent contains a set of thread components that define the dynamic behavior of
the process. AADL component categories like Application Software, Execu-
tion Platform and System are used to represent the run-time architecture of the
system, however a more generalized representation is possible by specifying it
as abstract.

A component in AADL can be defined by its type and implementation: the
component type declaration defines the interface of the component and its ex-
ternally observable attributes, whereas the component implementation defines

13

Chapter 2

Preliminaries

In this chapter, we introduce the preliminary concepts that are used through-
out the thesis. First, in Section 2.1 we present the Architecture Analysis and
Design Language. Next, in Section 2.2 we give an overview of agents and
multi-agent systems. In Section 2.3, we present an overview of the formal
modeling, verification and analysis techniques and tools used in the thesis.

2.1 Architecture Analysis and Design Language

AADL [16] is a textual and graphical language in which one can model and
analyze a real-time system’s hardware and software architecture as hierarchies
of components at various levels of abstraction. There are three categories of
component abstractions in AADL: Application Software (Process, Data, Sub-
program, Thread, and Thread Group, etc.), Execution Platform (Device, Bus,
Processor, Memory, etc.), and general composite components (System and Ab-
stract). System components are the top-level components. A process compo-
nent contains a set of thread components that define the dynamic behavior of
the process. AADL component categories like Application Software, Execu-
tion Platform and System are used to represent the run-time architecture of the
system, however a more generalized representation is possible by specifying it
as abstract.

A component in AADL can be defined by its type and implementation: the
component type declaration defines the interface of the component and its ex-
ternally observable attributes, whereas the component implementation defines

13

31

14 Chapter 2. Preliminaries

its internal structure. AADL allows possible component interactions via port-
s/features, shared data, subprograms, and parameter connections. In AADL,
the input/output ports can be defined as: event ports, data ports, and event-data
ports. Based on the component interactions, explicit control flows and data
flows can be defined across the interfaces of AADL components by specifying
the components as flow source, flow path or flow sink. The components can
also be associated with various properties, like the period and execution time
and the dispatch protocol. The dispatch protocol specifies if the component
trigger is periodic or aperiodic.

The functional and error behavior of a component are described by the
Behavior Annex (BA) [17] and the Error Annex (EA) [18] respectively, which
model behaviors as transition systems. The BA state machine interacts with
the component interface and represents the system behavior. Given finite sets
of states and state variables, the behavior of a component is defined by a set of

state transitions of the form s
guard, actions−−−−−−−−−→ s′, where s, s′ are states, guard is

a boolean condition on the values of state variables or presence of events/data in
the component’s input ports, and actions are performed over the transition and
may update state variables, or generate new outputs. Similarly, the EA models
the error behavior of a component as transitions between states triggered by
error events. It is also possible to represent the different types of errors, re-
covery paradigms, probability distribution associated with the error states and
events, and also specify error flows and propagations within the component,
and between various components.

An abstract component allow us to defer from the run-time architecture
of the system. The need for this generic model stems from the fact that in
real-world applications like AAL, it is difficult to assign run-time semantics to
components before the design matures. These generic component categories
can be parameterized, and can be refined later in the design process through
the “extends" capability of AADL. AADL allows us to archive these com-
ponents and reuse them. For this, we partition them into two public pack-
ages in AADL, namely component library and reference architecture [19]. A
component library creates a repository of component types and implementa-
tions with simple hierarchy. It can be established via two packages: (i) In-
terfaces Library comprising generic components like sensors, actuators and
user-interfaces (UI), and (ii) Controller Library that includes the control logic.
The Reference architecture creates a repository of components of complex hi-
erarchy, e.g. the top-level system architecture.

The AADL core language is designed to be extensible and can be extended
via user-defined properties and annex sub-languages. User-defined properties

14 Chapter 2. Preliminaries

its internal structure. AADL allows possible component interactions via port-
s/features, shared data, subprograms, and parameter connections. In AADL,
the input/output ports can be defined as: event ports, data ports, and event-data
ports. Based on the component interactions, explicit control flows and data
flows can be defined across the interfaces of AADL components by specifying
the components as flow source, flow path or flow sink. The components can
also be associated with various properties, like the period and execution time
and the dispatch protocol. The dispatch protocol specifies if the component
trigger is periodic or aperiodic.

The functional and error behavior of a component are described by the
Behavior Annex (BA) [17] and the Error Annex (EA) [18] respectively, which
model behaviors as transition systems. The BA state machine interacts with
the component interface and represents the system behavior. Given finite sets
of states and state variables, the behavior of a component is defined by a set of

state transitions of the form s
guard, actions−−−−−−−−−→ s′, where s, s′ are states, guard is

a boolean condition on the values of state variables or presence of events/data in
the component’s input ports, and actions are performed over the transition and
may update state variables, or generate new outputs. Similarly, the EA models
the error behavior of a component as transitions between states triggered by
error events. It is also possible to represent the different types of errors, re-
covery paradigms, probability distribution associated with the error states and
events, and also specify error flows and propagations within the component,
and between various components.

An abstract component allow us to defer from the run-time architecture
of the system. The need for this generic model stems from the fact that in
real-world applications like AAL, it is difficult to assign run-time semantics to
components before the design matures. These generic component categories
can be parameterized, and can be refined later in the design process through
the “extends" capability of AADL. AADL allows us to archive these com-
ponents and reuse them. For this, we partition them into two public pack-
ages in AADL, namely component library and reference architecture [19]. A
component library creates a repository of component types and implementa-
tions with simple hierarchy. It can be established via two packages: (i) In-
terfaces Library comprising generic components like sensors, actuators and
user-interfaces (UI), and (ii) Controller Library that includes the control logic.
The Reference architecture creates a repository of components of complex hi-
erarchy, e.g. the top-level system architecture.

The AADL core language is designed to be extensible and can be extended
via user-defined properties and annex sub-languages. User-defined properties

32

2.2 Multi-Agent Systems 15

are relatively simpler extensions, when compared to sub-languages, and can be
associated with modeling elements as simple values, for instance, integers or
strings. However, sub-languages allow more complex structures to be added
to an AADL model. A sub-language can be standardized and published as
an AADL annex. Several such annexes have been defined, for example, the
behavior annex to model the component’s behaviour, and the error annex for
modeling the error behaviour of the system. Annex sub-languages are included
into AADL specifications as annex libraries or annex sub-clauses. An annex
library is used to define classifiers defined in an anonymous namespace, or in
a public or private part of a package. Annex sub-clauses are inserted into com-
ponent types and component implementations and can reference the classifiers
declared in the annex library. In AADL, annexes are considered to be separate
from the core AADL, i.e., if we remove all the annex libraries, sub-clauses, and
annex-related property associations, the resulting model is a valid core AADL
model. Moreover, the different annexes are assumed to be independent of each
other.

2.2 Multi-Agent Systems
Although we can define agents from different perspectives, in this thesis we
define agents as entities that can sense the environment via sensors and act on
the environment via actuators. As described in the literature [20] [21], an agent
can be characterized by the following properties:

• Autonomy: Agents are autonomous entities, that is, they are capable of
taking an independent action without human intervention to meet their
respective functionalities.

• Cooperation: Cooperation is an inherent property of agents, where each
agent has only a limited view of the environment and needs to cooper-
ate with the other agents by exchanging information in order to make a
decision. In our work, we consider agent cooperation via a dependency
relation that each agent has with other agents and we refer to it by the
term agent dependencies. Agent dependencies can be dynamic or static,
i.e, they may or may not change in time. We assume that the agents
establish the cooperation (communication) via message-passing.

• Responsiveness: By responsiveness, we mean that the agents should be
able to perceive the changes in the environment over time and take timely
actions accordingly.

2.2 Multi-Agent Systems 15

are relatively simpler extensions, when compared to sub-languages, and can be
associated with modeling elements as simple values, for instance, integers or
strings. However, sub-languages allow more complex structures to be added
to an AADL model. A sub-language can be standardized and published as
an AADL annex. Several such annexes have been defined, for example, the
behavior annex to model the component’s behaviour, and the error annex for
modeling the error behaviour of the system. Annex sub-languages are included
into AADL specifications as annex libraries or annex sub-clauses. An annex
library is used to define classifiers defined in an anonymous namespace, or in
a public or private part of a package. Annex sub-clauses are inserted into com-
ponent types and component implementations and can reference the classifiers
declared in the annex library. In AADL, annexes are considered to be separate
from the core AADL, i.e., if we remove all the annex libraries, sub-clauses, and
annex-related property associations, the resulting model is a valid core AADL
model. Moreover, the different annexes are assumed to be independent of each
other.

2.2 Multi-Agent Systems
Although we can define agents from different perspectives, in this thesis we
define agents as entities that can sense the environment via sensors and act on
the environment via actuators. As described in the literature [20] [21], an agent
can be characterized by the following properties:

• Autonomy: Agents are autonomous entities, that is, they are capable of
taking an independent action without human intervention to meet their
respective functionalities.

• Cooperation: Cooperation is an inherent property of agents, where each
agent has only a limited view of the environment and needs to cooper-
ate with the other agents by exchanging information in order to make a
decision. In our work, we consider agent cooperation via a dependency
relation that each agent has with other agents and we refer to it by the
term agent dependencies. Agent dependencies can be dynamic or static,
i.e, they may or may not change in time. We assume that the agents
establish the cooperation (communication) via message-passing.

• Responsiveness: By responsiveness, we mean that the agents should be
able to perceive the changes in the environment over time and take timely
actions accordingly.

33

16 Chapter 2. Preliminaries

• Learning: This is the property of some intelligent agents who learn over
the course of their interactions with the environment and thereby produce
an increased performance over time. Specific learning algorithms like
supervised learning, unsupervised learning, or reinforcement learning
can be utilized for imbibing learning into the agents. In this paper, we
consider rule-based reasoning algorithms (which are simple if-then-else
rules) and reinforcement learning [22] techniques.

• Adaptivity: Agent systems should be adaptive, i.e., even if an agent
fails, the other agents should be able to carry out their respective func-
tionalities. In our architecture, this is employed by deploying multiple
redundant agents such that if an agent fails, another one can take over.

• Mobility: Some agents (e.g., robots) are capable of moving from one
location to another and we indicate this via the mobility property. At the
moment, we consider only stationary agents.

Among the different types of agents available, we consider only Reflex
agents and Learning agents. The salient features of these two agent types are
discussed briefly below.

1. Reflex agents: Reflex agents are based on condition-action rules to de-
cide on the action it should enforce on the environment based on sensor
data. They are the fastest, but fail completely if the environment is not
fully observable.

2. Learning agents: These agents have mechanisms to improve their ac-
tions over time. They monitor their actions each time via a performance
element and at any point of time, suggests an action that will improve
the system performance. In our work, we incorporate learning via rein-
forcement learning.

A network of agents is referred to as a Multi-Agent System (MAS). In a MAS,
different types of agents interact with each other to achieve a common or a con-
flicting goal [23]. The interaction between the agents can be direct or indirect.
In direct communication, agents can send messages directly to each other and
are responsible for their own coordination, however communication cost and
implementation complexity (in case of large MAS) are the major disadvantages
of direct communication. An alternative approach is to use mediator for com-
munication between the agents (indirect communication). In this thesis, we use

16 Chapter 2. Preliminaries

• Learning: This is the property of some intelligent agents who learn over
the course of their interactions with the environment and thereby produce
an increased performance over time. Specific learning algorithms like
supervised learning, unsupervised learning, or reinforcement learning
can be utilized for imbibing learning into the agents. In this paper, we
consider rule-based reasoning algorithms (which are simple if-then-else
rules) and reinforcement learning [22] techniques.

• Adaptivity: Agent systems should be adaptive, i.e., even if an agent
fails, the other agents should be able to carry out their respective func-
tionalities. In our architecture, this is employed by deploying multiple
redundant agents such that if an agent fails, another one can take over.

• Mobility: Some agents (e.g., robots) are capable of moving from one
location to another and we indicate this via the mobility property. At the
moment, we consider only stationary agents.

Among the different types of agents available, we consider only Reflex
agents and Learning agents. The salient features of these two agent types are
discussed briefly below.

1. Reflex agents: Reflex agents are based on condition-action rules to de-
cide on the action it should enforce on the environment based on sensor
data. They are the fastest, but fail completely if the environment is not
fully observable.

2. Learning agents: These agents have mechanisms to improve their ac-
tions over time. They monitor their actions each time via a performance
element and at any point of time, suggests an action that will improve
the system performance. In our work, we incorporate learning via rein-
forcement learning.

A network of agents is referred to as a Multi-Agent System (MAS). In a MAS,
different types of agents interact with each other to achieve a common or a con-
flicting goal [23]. The interaction between the agents can be direct or indirect.
In direct communication, agents can send messages directly to each other and
are responsible for their own coordination, however communication cost and
implementation complexity (in case of large MAS) are the major disadvantages
of direct communication. An alternative approach is to use mediator for com-
munication between the agents (indirect communication). In this thesis, we use

34

2.3 Formal Modeling and Verification by Model Checking 17

a combination of direct and indirect communication to achieve the agent inter-
actions in our MAS. The mediator (in our case, a tracker) is responsible for
maintaining agent locations and addresses and thereby establishing the MAS
coordination. Once an agent establishes a coordination to another agent via
the tracker to achieve a goal (via dependency relation), the further communi-
cations are handled directly. In case the tracker fails, the direct communication
between the agents are established for achieving the necessary coordination
and data consistency.

2.3 Formal Modeling and Verification by Model
Checking

Formal Modeling and Verification relies on a set of mathematical techniques
that are used to rigorously prove the correctness of a system model expressed
in some formal notation. Formal verification techniques are deemed to deliver
a higher degree of assurance when compared to other verification techniques
such as simulation and testing.

One of the most popular formal verification techniques, model checking, an
automated technique that checks a finite-state abstract system model in a sys-
tematic and exhaustive manner, to prove whether it satisfies a given property
modeled in logic. Model checking if fully automated and is performed by a ver-
ifier tool called model checker. The core of model checking is the verification
algorithm, performed by the model checker. The input to the model checker is
a system model expressed in a formal notation and a set of formally specified
logical properties. For verification of qualitative properties (that admit a yes/no
answer) there are two possible outcomes of the model checking procedure. If
the model conforms to a given property, the model checker returns a positive
answer. For reachability and some liveness properties (e.g., something good
will eventually happen) the model checker returns a witness trace in case of
fulfillment. Then, the model checking activity can be continued for the rest of
system properties. When a safety property is not satisfied, the model checker
generates a counter example, which is usually a path (error trace) to the state
that violates the property.

Due to its systematic approach and the exhaustiveness of the state space
exploration, the model checking procedure can handle models with state spaces
up to a certain size, above which there is not enough memory to store new
states. This is known as the state space explosion problem.

In this thesis, we apply model checking on architectures of ambient as-

2.3 Formal Modeling and Verification by Model Checking 17

a combination of direct and indirect communication to achieve the agent inter-
actions in our MAS. The mediator (in our case, a tracker) is responsible for
maintaining agent locations and addresses and thereby establishing the MAS
coordination. Once an agent establishes a coordination to another agent via
the tracker to achieve a goal (via dependency relation), the further communi-
cations are handled directly. In case the tracker fails, the direct communication
between the agents are established for achieving the necessary coordination
and data consistency.

2.3 Formal Modeling and Verification by Model
Checking

Formal Modeling and Verification relies on a set of mathematical techniques
that are used to rigorously prove the correctness of a system model expressed
in some formal notation. Formal verification techniques are deemed to deliver
a higher degree of assurance when compared to other verification techniques
such as simulation and testing.

One of the most popular formal verification techniques, model checking, an
automated technique that checks a finite-state abstract system model in a sys-
tematic and exhaustive manner, to prove whether it satisfies a given property
modeled in logic. Model checking if fully automated and is performed by a ver-
ifier tool called model checker. The core of model checking is the verification
algorithm, performed by the model checker. The input to the model checker is
a system model expressed in a formal notation and a set of formally specified
logical properties. For verification of qualitative properties (that admit a yes/no
answer) there are two possible outcomes of the model checking procedure. If
the model conforms to a given property, the model checker returns a positive
answer. For reachability and some liveness properties (e.g., something good
will eventually happen) the model checker returns a witness trace in case of
fulfillment. Then, the model checking activity can be continued for the rest of
system properties. When a safety property is not satisfied, the model checker
generates a counter example, which is usually a path (error trace) to the state
that violates the property.

Due to its systematic approach and the exhaustiveness of the state space
exploration, the model checking procedure can handle models with state spaces
up to a certain size, above which there is not enough memory to store new
states. This is known as the state space explosion problem.

In this thesis, we apply model checking on architectures of ambient as-

35

18 Chapter 2. Preliminaries

26

Model
(TA)

Formal specification of req.
(TCTL)

Model-checker (UPPAAL)

Functional
Req.

QoS
Req.

Yes/No (Invariance),
Witness trace(Reachability)

Counter example

No

Yes

Figure 2.1: Model checking procedure.

sisted living system that we propose, and show our approach on minimal as
well as more complex configurations. For minimal architectures, the exhaus-
tive model-checking method scales. The exhaustive model checking, employ-
ing the model checker UPPAAL, is shown in Figure 2.1. For complex ar-
chitectures that integrate multiple AAL functionalities and have several com-
ponent connections and users, the exhaustive model checking is likely not to
scale. Therefore, we resort to a special type of model checking called statis-
tical model checking (SMC), which offers the guarantee that a model satisfies
a given property up to some probability, based on a finite number of model
simulations. A high-level overview of the SMC, usally employed by statistical
model checkers like UPPAAL SMC, is given in Figure 2.2. SMC uses a series
of simulation-based techniques to answer two types of questions: i) Qualita-
tive: is the probability of a given property being satisfied by random system
executions greater or equal than some threshold? and ii) Quantitative: what is
the probability that a random system execution satisfies a given property? The
qualitative properties are also referred to as hypothesis testing, while the quan-
titative are called probability estimation. In both cases, the answer provided by
the procedure will be correct up to a certain level of confidence. Since statisti-
cal model checking is less memory intensive than traditional model checking, it
can be used to statistically verify models with infinite state spaces. Even though
the technique is less precise than the exact model checking, it still solves the
verification problem in a rigorous and efficient way.

18 Chapter 2. Preliminaries

26

Model
(TA)

Formal specification of req.
(TCTL)

Model-checker (UPPAAL)

Functional
Req.

QoS
Req.

Yes/No (Invariance),
Witness trace(Reachability)

Counter example

No

Yes

Figure 2.1: Model checking procedure.

sisted living system that we propose, and show our approach on minimal as
well as more complex configurations. For minimal architectures, the exhaus-
tive model-checking method scales. The exhaustive model checking, employ-
ing the model checker UPPAAL, is shown in Figure 2.1. For complex ar-
chitectures that integrate multiple AAL functionalities and have several com-
ponent connections and users, the exhaustive model checking is likely not to
scale. Therefore, we resort to a special type of model checking called statis-
tical model checking (SMC), which offers the guarantee that a model satisfies
a given property up to some probability, based on a finite number of model
simulations. A high-level overview of the SMC, usally employed by statistical
model checkers like UPPAAL SMC, is given in Figure 2.2. SMC uses a series
of simulation-based techniques to answer two types of questions: i) Qualita-
tive: is the probability of a given property being satisfied by random system
executions greater or equal than some threshold? and ii) Quantitative: what is
the probability that a random system execution satisfies a given property? The
qualitative properties are also referred to as hypothesis testing, while the quan-
titative are called probability estimation. In both cases, the answer provided by
the procedure will be correct up to a certain level of confidence. Since statisti-
cal model checking is less memory intensive than traditional model checking, it
can be used to statistically verify models with infinite state spaces. Even though
the technique is less precise than the exact model checking, it still solves the
verification problem in a rigorous and efficient way.

36

2.3 Formal Modeling and Verification by Model Checking 19

Probabilistic Model
(STA)

Formal specification of req.
(WMTL)

Model-checker (UPPAAL SMC)

Functional
Req.

QoS
Req.

Probabilistic
guarantee

Distributions

not satisfactory satisfactory

Figure 2.2: Statistical model checking procedure.

In our work, we use the model checkers - UPPAAL [24] and PRISM [25]
for exhaustive model-checking and UPPAAL Statistical Model Checker (SMC)
[8] for statistical model-checking of complex models. In the following sub-
sections, we briefly overview the timed automata, probabilistic timed automata
and stochastic timed automata frameworks, and the temporal logics used for
specification of the system properties in the respective model checkers.

2.3.1 Formal Modeling Frameworks

Timed Automata. Timed automata (TA) [26] formalism is an extension of
finite-state automata with a set or real-valued variables called clocks, suitable
for modeling the behavior of real-time systems. The clocks are non-negative
variables that grow at a fixed rate with the passage of time, and can be reset to
zero.

The semantics of TA is defined as a timed transition system (S,→), where
S is a set of states and → is a transition relation that defines how the system
evolves from one state to another. A state in the system is a pair (l, v), where
l is the location and the v is the valuation of the clocks. A timed automaton
can proceed, that is, move to a new state, by performing either a discrete or a

2.3 Formal Modeling and Verification by Model Checking 19

Probabilistic Model
(STA)

Formal specification of req.
(WMTL)

Model-checker (UPPAAL SMC)

Functional
Req.

QoS
Req.

Probabilistic
guarantee

Distributions

not satisfactory satisfactory

Figure 2.2: Statistical model checking procedure.

In our work, we use the model checkers - UPPAAL [24] and PRISM [25]
for exhaustive model-checking and UPPAAL Statistical Model Checker (SMC)
[8] for statistical model-checking of complex models. In the following sub-
sections, we briefly overview the timed automata, probabilistic timed automata
and stochastic timed automata frameworks, and the temporal logics used for
specification of the system properties in the respective model checkers.

2.3.1 Formal Modeling Frameworks

Timed Automata. Timed automata (TA) [26] formalism is an extension of
finite-state automata with a set or real-valued variables called clocks, suitable
for modeling the behavior of real-time systems. The clocks are non-negative
variables that grow at a fixed rate with the passage of time, and can be reset to
zero.

The semantics of TA is defined as a timed transition system (S,→), where
S is a set of states and → is a transition relation that defines how the system
evolves from one state to another. A state in the system is a pair (l, v), where
l is the location and the v is the valuation of the clocks. A timed automaton
can proceed, that is, move to a new state, by performing either a discrete or a

37

20 Chapter 2. Preliminaries

delay transition. By executing a discrete transition the automaton transitions
from one location into another without any time delay, whereas by executing a
delay transition the automaton stays in the same location while time passes.

A system can be modeled as a set of communicating components. Let
A1, A2, ...An be a set of timed automata each corresponding to an individual
component in the system. A network of timed automata (NTA) is simply a
parallel composition A1‖A2‖ · · · ‖An of a finite number of timed automata.

Next, we present the timed automata variants used by the UPPAAL model
checker, UPPAAL SMC model checker, and PRISM model checker by means
of examples.

UPPAAL Timed Automata. UPPAAL TA [24] extends TA with discrete
variables as well as other modeling features, like urgent and committed lo-
cations, synchronization channels, etc. A real-time system can be modeled as
a network of TA composed via the parallel composition operator (‖), which
allows an individual automaton to carry out internal actions, while pairs of au-
tomata can perform handshake synchronization. UPPAAL model checker [24]
provides exhaustive model checking for UPPAAL TA. The formal definitions
of its syntax and semantics can be found in our Paper C [6].

The automaton in Figure 2.3a shows an example of an ordinary UPPAAL
TA that models the behavior of a periodic sensor executing some computational
routine (compute()) that maps inputs into outputs. It has two locations:
Idle and Operational, out of which Idle is marked to be the initial one,
denoted by two concentric circles. Idle is decorated with an invariant x1 ≤
tp, denoting that the automaton is allowed to stay in that location as long as the
value of the clock variable (x1) is smaller or equal to the value of the period
(tp). The edge from Idle to the Operational location is decorated with
the guard (x1==tp). It also has an update action, in this particular case
being a reset of the clock variable x1 and a synchronization action
(start_sp!) to synchronize the start of the sensor with the rest of the
system. The Operational location is decorated with an invariant x1 ≤
te, denoting that the automaton is allowed to stay in that location as long as
the value of the clock variable is smaller or equal to the value of the execution
time (te). The Operational location represents the operational mode of
the automaton and has a transition decorated with a guard expression x1 ==
te. On the same edge two update actions are performed, namely executing the
computational routine that produces output from the execution (compute()),
and reset of the clock variable. The computational routine is encoded as a C
function.

20 Chapter 2. Preliminaries

delay transition. By executing a discrete transition the automaton transitions
from one location into another without any time delay, whereas by executing a
delay transition the automaton stays in the same location while time passes.

A system can be modeled as a set of communicating components. Let
A1, A2, ...An be a set of timed automata each corresponding to an individual
component in the system. A network of timed automata (NTA) is simply a
parallel composition A1‖A2‖ · · · ‖An of a finite number of timed automata.

Next, we present the timed automata variants used by the UPPAAL model
checker, UPPAAL SMC model checker, and PRISM model checker by means
of examples.

UPPAAL Timed Automata. UPPAAL TA [24] extends TA with discrete
variables as well as other modeling features, like urgent and committed lo-
cations, synchronization channels, etc. A real-time system can be modeled as
a network of TA composed via the parallel composition operator (‖), which
allows an individual automaton to carry out internal actions, while pairs of au-
tomata can perform handshake synchronization. UPPAAL model checker [24]
provides exhaustive model checking for UPPAAL TA. The formal definitions
of its syntax and semantics can be found in our Paper C [6].

The automaton in Figure 2.3a shows an example of an ordinary UPPAAL
TA that models the behavior of a periodic sensor executing some computational
routine (compute()) that maps inputs into outputs. It has two locations:
Idle and Operational, out of which Idle is marked to be the initial one,
denoted by two concentric circles. Idle is decorated with an invariant x1 ≤
tp, denoting that the automaton is allowed to stay in that location as long as the
value of the clock variable (x1) is smaller or equal to the value of the period
(tp). The edge from Idle to the Operational location is decorated with
the guard (x1==tp). It also has an update action, in this particular case
being a reset of the clock variable x1 and a synchronization action
(start_sp!) to synchronize the start of the sensor with the rest of the
system. The Operational location is decorated with an invariant x1 ≤
te, denoting that the automaton is allowed to stay in that location as long as
the value of the clock variable is smaller or equal to the value of the execution
time (te). The Operational location represents the operational mode of
the automaton and has a transition decorated with a guard expression x1 ==
te. On the same edge two update actions are performed, namely executing the
computational routine that produces output from the execution (compute()),
and reset of the clock variable. The computational routine is encoded as a C
function.

38

2.3 Formal Modeling and Verification by Model Checking 21

(a) Timed Automata (b) Stochastic Timed Automata

Figure 2.3: Illustrative scenario of UPPAAL TA and UPPAAL SMC TA

UPPAAL SMC Timed Automata. UPPAAL SMC TA [9], referred to as
stochastic timed automata (STA) is a formalism defined as the stochastic in-
terpretation of the TA and refines it with: (i) probabilistic choices between
multiple enabled transition, where the output probability function γ may be
defined by the user, and (ii) probability distributions for non-deterministic time
delays, where the delay density function µ is a uniform distribution for time-
bounded delays or an exponential distribution with user-defined rates for cases
of unbounded delays.

UPPAAL Statistical Model Checker (UPPAAL SMC) [9] provides statis-
tical model checking for STA. A model in UPPAAL SMC consists of a net-
work of interacting STA (NSTA) that communicate via broadcast channels and
shared variables. In the network, the automata repeatedly race against each
other, that is, they independently and stochastically decide how much to delay
before delivering the output, and what output to broadcast at that moment, with
the “winner" being the component that chooses the minimum delay.

Figure 2.3b shows an example of a timed automaton with stochastic seman-
tics, in our case, a sensor that operates aperiodically. The automaton is com-
posed of the same two locations (Idle - the initial one, and Operational)
like the example we had in Figure 2.3a. To model the aperiodic behavior of
the component, instead of an invariant, the Idle location is decorated with
a rate of exponential. The distribution parameter λ is the user-defined pa-
rameter in the delay function that calculates the probability of the automaton
leaving the Idle location at each simulation step, given as: Pr(leaving after
t) = 1 − e−λt. The greater the value of λ, the smaller is the probability that
the automaton stays in the location.

In this thesis, we use NSTA formalism to model our centralized AAL ar-
chitecture exhibiting random failures.

2.3 Formal Modeling and Verification by Model Checking 21

(a) Timed Automata (b) Stochastic Timed Automata

Figure 2.3: Illustrative scenario of UPPAAL TA and UPPAAL SMC TA

UPPAAL SMC Timed Automata. UPPAAL SMC TA [9], referred to as
stochastic timed automata (STA) is a formalism defined as the stochastic in-
terpretation of the TA and refines it with: (i) probabilistic choices between
multiple enabled transition, where the output probability function γ may be
defined by the user, and (ii) probability distributions for non-deterministic time
delays, where the delay density function µ is a uniform distribution for time-
bounded delays or an exponential distribution with user-defined rates for cases
of unbounded delays.

UPPAAL Statistical Model Checker (UPPAAL SMC) [9] provides statis-
tical model checking for STA. A model in UPPAAL SMC consists of a net-
work of interacting STA (NSTA) that communicate via broadcast channels and
shared variables. In the network, the automata repeatedly race against each
other, that is, they independently and stochastically decide how much to delay
before delivering the output, and what output to broadcast at that moment, with
the “winner" being the component that chooses the minimum delay.

Figure 2.3b shows an example of a timed automaton with stochastic seman-
tics, in our case, a sensor that operates aperiodically. The automaton is com-
posed of the same two locations (Idle - the initial one, and Operational)
like the example we had in Figure 2.3a. To model the aperiodic behavior of
the component, instead of an invariant, the Idle location is decorated with
a rate of exponential. The distribution parameter λ is the user-defined pa-
rameter in the delay function that calculates the probability of the automaton
leaving the Idle location at each simulation step, given as: Pr(leaving after
t) = 1 − e−λt. The greater the value of λ, the smaller is the probability that
the automaton stays in the location.

In this thesis, we use NSTA formalism to model our centralized AAL ar-
chitecture exhibiting random failures.

39

22 Chapter 2. Preliminaries

PRISM Probabilistic Timed Automata. Probabilistic Timed Automata
(PTA) as modelled by PRISM model checker [25] supports formalism to model
systems that exhibit probabilistic, non-deterministic and real-time characteris-
tics.

Listing 2.1 represents an excerpt of the PTA model of a periodic sensor.
The variable s1 represents the location, s1=0 represent the initial location
Idle, and s1=1 represent the location Operational and s1=2 represent
the Failed location indicating the sensor failure. x1 is the Clock variable.
The invariant in location s1=0 represent the periodic activation of the sen-
sor and that in location s1=1 represent the sensor execution time. The tran-
sitions of the system indicate that the sensor gets periodically activated
and it has a probability 0.999 to go to Operational state (s1=1) and
0.111 probability to go to Failed state (s1=2)

Listing 2.1: PTA Model in PRSIM of a periodic sensor
p t a
module s e n s o r

s1 : [0 . . 2] i n i t 0 ; / / s t a t e s 0 −I d l e ,1−O p e r a t i o n a l ,2− F a i l
x1 : c l o c k ;
i n v a r i a n t

(s1 =1 => x1 <=2) & (s1 =0 => x1 <=1)
e n d i n v a r i a n t
[1] s1 =0 & x1=1−> 0 . 9 9 9 : (s1 ’ = 1)

& (x1 ’ = 0) + 0 . 0 0 1 : (s1 ’ = 2) &(x1 ’ = 0)
endmodule

A system is defined as a network of modules via parallel composition:
Sys = PTA1||...||PTAn. A global state is the valuation of all variables of
all modules. A module can both read and write its own local variables, but
only has read access to the local variables of other modules. Synchronized
transitions of modules are identified by the commands with the same labels.

In this thesis, we use PTA models to represent our AAL multi-agent system.

2.3.2 Model-checking Tools

UPPAAL

UPPAAL [24] is an integrated development environment for modeling, simu-
lation and verification of real-time systems. It has been developed as a joint
research effort by the Uppsala University and Aalborg University. The tool
has been first released in 1995 and since has been constantly updated with
new features. The properties to be verified by model checking the result-
ing network of timed automata are specified in a decidable subset of (Timed)

22 Chapter 2. Preliminaries

PRISM Probabilistic Timed Automata. Probabilistic Timed Automata
(PTA) as modelled by PRISM model checker [25] supports formalism to model
systems that exhibit probabilistic, non-deterministic and real-time characteris-
tics.

Listing 2.1 represents an excerpt of the PTA model of a periodic sensor.
The variable s1 represents the location, s1=0 represent the initial location
Idle, and s1=1 represent the location Operational and s1=2 represent
the Failed location indicating the sensor failure. x1 is the Clock variable.
The invariant in location s1=0 represent the periodic activation of the sen-
sor and that in location s1=1 represent the sensor execution time. The tran-
sitions of the system indicate that the sensor gets periodically activated
and it has a probability 0.999 to go to Operational state (s1=1) and
0.111 probability to go to Failed state (s1=2)

Listing 2.1: PTA Model in PRSIM of a periodic sensor
p t a
module s e n s o r

s1 : [0 . . 2] i n i t 0 ; / / s t a t e s 0 −I d l e ,1−O p e r a t i o n a l ,2− F a i l
x1 : c l o c k ;
i n v a r i a n t

(s1 =1 => x1 <=2) & (s1 =0 => x1 <=1)
e n d i n v a r i a n t
[1] s1 =0 & x1=1−> 0 . 9 9 9 : (s1 ’ = 1)

& (x1 ’ = 0) + 0 . 0 0 1 : (s1 ’ = 2) &(x1 ’ = 0)
endmodule

A system is defined as a network of modules via parallel composition:
Sys = PTA1||...||PTAn. A global state is the valuation of all variables of
all modules. A module can both read and write its own local variables, but
only has read access to the local variables of other modules. Synchronized
transitions of modules are identified by the commands with the same labels.

In this thesis, we use PTA models to represent our AAL multi-agent system.

2.3.2 Model-checking Tools

UPPAAL

UPPAAL [24] is an integrated development environment for modeling, simu-
lation and verification of real-time systems. It has been developed as a joint
research effort by the Uppsala University and Aalborg University. The tool
has been first released in 1995 and since has been constantly updated with
new features. The properties to be verified by model checking the result-
ing network of timed automata are specified in a decidable subset of (Timed)

40

2.3 Formal Modeling and Verification by Model Checking 23

Computation Tree Logic ((T)CTL) [27], and checked by the UPPAAL model
checker. UPPAAL supports verification of liveness and safety properties [24].
The ((T)CTL) queries that we verify in this thesis are of the form: i) Reacha-
bility: E♦p means that there exists a path where p is satisfied by at least one
state of the path, and (ii) Time bounded Leads to: p ≤t q, which means
that whenever p holds, q must hold within at most t time units thereafter.

UPPAAL SMC

UPPAAL SMC [9] is an extension of UPPAAL tool that supports the model-
checking of timed-automata networks with stochastic semantics. Unlike the
exhaustive model-checking performed by UPPAAL, SMC performs statistical
model-checking. The SMC algorithms are less memory intensive, and do not
suffer from the state space explosion problem. UPPAAL SMC uses an ex-
tension of weighted metric temporal logic (WMTL) [28] to provide probabil-
ity evaluation Pr(∗x≤Cφ), where ∗ stands for ♦(eventually) or �(always),
which calculates the probability that φ is satisfied within cost x ≤ C, but also
hypothesis testing and probability comparison.

PRISM

PRISM [25] is a probabilistic model checker that allows model-checking of
systems with random or probabilistic behaviour. Although PRSIM supports
model checking of various categories of probablistic models like discrete-time
Markov chains (DTMCs), continuous-time Markov chains (CTMCs), Markov
decision processes (MDPs), probabilistic automata (PAs) and probabilistic
timed automata (PTAs), we employ it only for the PTA models discussed in
the previous section. In PRISM, a PTA is represented by a module. The prop-
erty specification language of PRISM for PTA is based on Probabilistic Com-
putation Tree Logic (PCTL) [29]. The model checker can verify whether the
probability of a path property pp is within a bound b, which is specified as:
P b [pp]. Here, b can be any of >= p, > p, <= p or < p, where p is a dou-
ble within [0,1]. A path property pp is a formula that evaluates to either true
or false for a single path in the model, in which one can apply the following
operators: X (next), U (until), F (eventually), G (always), W (weak until), R
(release). PRISM can also compute the minimum and maximum probabili-
ties of a path property, in the form of: Pmin =? [pp], and Pmax =? [pp],
respectively.

Unlike the statistical model-checking employed in UPPAAL SMC, which
yields approximate results, PRISM supports exhaustive model-checking of

2.3 Formal Modeling and Verification by Model Checking 23

Computation Tree Logic ((T)CTL) [27], and checked by the UPPAAL model
checker. UPPAAL supports verification of liveness and safety properties [24].
The ((T)CTL) queries that we verify in this thesis are of the form: i) Reacha-
bility: E♦p means that there exists a path where p is satisfied by at least one
state of the path, and (ii) Time bounded Leads to: p ≤t q, which means
that whenever p holds, q must hold within at most t time units thereafter.

UPPAAL SMC

UPPAAL SMC [9] is an extension of UPPAAL tool that supports the model-
checking of timed-automata networks with stochastic semantics. Unlike the
exhaustive model-checking performed by UPPAAL, SMC performs statistical
model-checking. The SMC algorithms are less memory intensive, and do not
suffer from the state space explosion problem. UPPAAL SMC uses an ex-
tension of weighted metric temporal logic (WMTL) [28] to provide probabil-
ity evaluation Pr(∗x≤Cφ), where ∗ stands for ♦(eventually) or �(always),
which calculates the probability that φ is satisfied within cost x ≤ C, but also
hypothesis testing and probability comparison.

PRISM

PRISM [25] is a probabilistic model checker that allows model-checking of
systems with random or probabilistic behaviour. Although PRSIM supports
model checking of various categories of probablistic models like discrete-time
Markov chains (DTMCs), continuous-time Markov chains (CTMCs), Markov
decision processes (MDPs), probabilistic automata (PAs) and probabilistic
timed automata (PTAs), we employ it only for the PTA models discussed in
the previous section. In PRISM, a PTA is represented by a module. The prop-
erty specification language of PRISM for PTA is based on Probabilistic Com-
putation Tree Logic (PCTL) [29]. The model checker can verify whether the
probability of a path property pp is within a bound b, which is specified as:
P b [pp]. Here, b can be any of >= p, > p, <= p or < p, where p is a dou-
ble within [0,1]. A path property pp is a formula that evaluates to either true
or false for a single path in the model, in which one can apply the following
operators: X (next), U (until), F (eventually), G (always), W (weak until), R
(release). PRISM can also compute the minimum and maximum probabili-
ties of a path property, in the form of: Pmin =? [pp], and Pmax =? [pp],
respectively.

Unlike the statistical model-checking employed in UPPAAL SMC, which
yields approximate results, PRISM supports exhaustive model-checking of

41

24 Chapter 2. Preliminaries

probabilistic models and hence can yield concrete results. However, it suf-
fers state space explosion problem while model-checking of complex models.
Moreover, PRISM does not have a simulator implemented for PTA models
which makes the debugging of complex models extremely difficult. Finally,
it should be remarked that in contrast to UPPAAL, PRISM does not have a
graphical representation of its models, which are completely defined in a tex-
tual way.

24 Chapter 2. Preliminaries

probabilistic models and hence can yield concrete results. However, it suf-
fers state space explosion problem while model-checking of complex models.
Moreover, PRISM does not have a simulator implemented for PTA models
which makes the debugging of complex models extremely difficult. Finally,
it should be remarked that in contrast to UPPAAL, PRISM does not have a
graphical representation of its models, which are completely defined in a tex-
tual way.

42

Chapter 3

Research Methodology

In this chapter, we present the research methodology that describes the vari-
ous steps followed to address our research goal. In Computer Science, a re-
search process is described by four iterative steps: (i) formulating the research
problem, (ii) proposing the solution, (iii) implementing the solution, and (iv)
validation [30]. Solving a research problem is an iterative process, allowing
feedbacks between stages.

The overview of the research methodology used in this thesis is described
in Figure 3.1. As shown, the main steps are as follows: (i) identifying the
research problem, (ii) formulating the overall research goal, (iii) formulating
research questions that address the goal, (iv) proposing and implementing solu-
tions to tackle the research questions, and (v) validating the proposed solutions
on relevant use cases and users.

As a first step, we identify the research problem. This is done by perform-
ing an extensive literature survey [31] to identify the state-of-art (SOA) and
the state-of- practice (SOP) in the area of research. The literature survey in-
volves identifying and reading potential publications in the form of journals,
conferences, workshops, PhD dissertations, peer reviewed reports related to
the domain. In this thesis, we have conducted an extensive literature survey by
the so-called critical analysis of literature method [32], in the field of AAL.
The literature study has also involved analysis of certain user scenarios. With
the study, we have identified the potential research problems in the field of
AAL, the major ones being the lack of fully integrated systems and rudimen-
tary AI decision support of existing systems, limited user involvement, and lack
of formal assurance of the existing systems. This has helped us to formulate

25

Chapter 3

Research Methodology

In this chapter, we present the research methodology that describes the vari-
ous steps followed to address our research goal. In Computer Science, a re-
search process is described by four iterative steps: (i) formulating the research
problem, (ii) proposing the solution, (iii) implementing the solution, and (iv)
validation [30]. Solving a research problem is an iterative process, allowing
feedbacks between stages.

The overview of the research methodology used in this thesis is described
in Figure 3.1. As shown, the main steps are as follows: (i) identifying the
research problem, (ii) formulating the overall research goal, (iii) formulating
research questions that address the goal, (iv) proposing and implementing solu-
tions to tackle the research questions, and (v) validating the proposed solutions
on relevant use cases and users.

As a first step, we identify the research problem. This is done by perform-
ing an extensive literature survey [31] to identify the state-of-art (SOA) and
the state-of- practice (SOP) in the area of research. The literature survey in-
volves identifying and reading potential publications in the form of journals,
conferences, workshops, PhD dissertations, peer reviewed reports related to
the domain. In this thesis, we have conducted an extensive literature survey by
the so-called critical analysis of literature method [32], in the field of AAL.
The literature study has also involved analysis of certain user scenarios. With
the study, we have identified the potential research problems in the field of
AAL, the major ones being the lack of fully integrated systems and rudimen-
tary AI decision support of existing systems, limited user involvement, and lack
of formal assurance of the existing systems. This has helped us to formulate

25

43

26 Chapter 3. Research Methodology

Identify Research Problem

SOA SOP

Refine research problem
(Define the overall Research Goal)

Derive Research Questions

Propose solutionsValidate solutions
(use cases and users)

Implement solutions

Research results (Papers, reports)

Figure 3.1: Our research process.

our research goal, focusing on the development of integrated AAL solutions
with enhanced AI reasoning, sufficient user involvement and formal assurance.
Once the research goal has been established, to narrow down the focus, we
have identified a set of tailored research questions that need to be answered
in order to meet our overall goal. The research questions are presented in
Chapter 4.2 . After this step, we have moved to addressing the smaller research
questions by developing solutions, presenting the achieved research results and
comparing these research results with the research questions. In developing
our solutions we have drawn ideas from the related work. Our research re-
sults include proposing architecture frameworks for intelligent AAL systems
and their formal specification and verification. In this thesis, we use a com-
bination of various research methods, i.e., proof of concept, inductive method,
model-building and simulations of models, analysis, examples [32, 33, 34]. For

26 Chapter 3. Research Methodology

Identify Research Problem

SOA SOP

Refine research problem
(Define the overall Research Goal)

Derive Research Questions

Propose solutionsValidate solutions
(use cases and users)

Implement solutions

Research results (Papers, reports)

Figure 3.1: Our research process.

our research goal, focusing on the development of integrated AAL solutions
with enhanced AI reasoning, sufficient user involvement and formal assurance.
Once the research goal has been established, to narrow down the focus, we
have identified a set of tailored research questions that need to be answered
in order to meet our overall goal. The research questions are presented in
Chapter 4.2 . After this step, we have moved to addressing the smaller research
questions by developing solutions, presenting the achieved research results and
comparing these research results with the research questions. In developing
our solutions we have drawn ideas from the related work. Our research re-
sults include proposing architecture frameworks for intelligent AAL systems
and their formal specification and verification. In this thesis, we use a com-
bination of various research methods, i.e., proof of concept, inductive method,
model-building and simulations of models, analysis, examples [32, 33, 34]. For

44

27

formulating the AAL architectures, we have used the proof of concept research
method. While modeling the AAL architectures, we have used model building
and simulation of models approaches.

The last stage of our research process is validation. For formally verify-
ing the properties of AAL architectures, we have used the analysis method
of validation. However for analyzing various case-studies to evaluate the ef-
fectiveness of existing solutions, we have used the inductive research method.
We have also used case studies to validate our proposed architecture with end-
users.

27

formulating the AAL architectures, we have used the proof of concept research
method. While modeling the AAL architectures, we have used model building
and simulation of models approaches.

The last stage of our research process is validation. For formally verify-
ing the properties of AAL architectures, we have used the analysis method
of validation. However for analyzing various case-studies to evaluate the ef-
fectiveness of existing solutions, we have used the inductive research method.
We have also used case studies to validate our proposed architecture with end-
users.

45

46

Chapter 4

Research Problem

In this chapter, we define the research problem, the overall goal and the re-
search questions of the thesis. In Chapter 4.1 we describe the research prob-
lem, after which in Chapter 4.2 we define the overall research goal based on
the actual state of practice and state of the art. To narrow the over-arching goal,
we define in the same section research questions that help us to structure our
research and relate the results to the problem.

4.1 Problem Definition

The world population is rapidly increasing across the world [1]. This demo-
graphic trend is followed by new challenges in the society, like increasing num-
ber of diseases, increased health-care costs, shortage of caregivers, etc. Be-
sides, it is also witnessed that almost 89% of elderly adults like to live within
the comfort of their own homes [2]. Such facts have motivated the research
community to focus on the so-called “Ambient Assisted Living” paradigm,
which aims to develop intelligent assisting solutions that help the elderly in
their safe and independent living, while ensuring that they are not socially iso-
lated.

We have carried out a survey of the state-of-the-art and state-of-practice
with respect to AAL solutions, which results in the clear conclusion that there
exists a potential research gap in the design and development of a user-tested
solution for AAL that integrates various relevant functionalities (e.g. health
monitoring, smart home, reminders, fall detection, telepresence etc.) but also

29

Chapter 4

Research Problem

In this chapter, we define the research problem, the overall goal and the re-
search questions of the thesis. In Chapter 4.1 we describe the research prob-
lem, after which in Chapter 4.2 we define the overall research goal based on
the actual state of practice and state of the art. To narrow the over-arching goal,
we define in the same section research questions that help us to structure our
research and relate the results to the problem.

4.1 Problem Definition

The world population is rapidly increasing across the world [1]. This demo-
graphic trend is followed by new challenges in the society, like increasing num-
ber of diseases, increased health-care costs, shortage of caregivers, etc. Be-
sides, it is also witnessed that almost 89% of elderly adults like to live within
the comfort of their own homes [2]. Such facts have motivated the research
community to focus on the so-called “Ambient Assisted Living” paradigm,
which aims to develop intelligent assisting solutions that help the elderly in
their safe and independent living, while ensuring that they are not socially iso-
lated.

We have carried out a survey of the state-of-the-art and state-of-practice
with respect to AAL solutions, which results in the clear conclusion that there
exists a potential research gap in the design and development of a user-tested
solution for AAL that integrates various relevant functionalities (e.g. health
monitoring, smart home, reminders, fall detection, telepresence etc.) but also

29

47

30 Chapter 4. Research Problem

caters for the possible critical situations in a timely manner [3]. Assuming that
particular critical events might occur simultaneously, we have analyzed the
behaviors of existing individualized or partially-integrated solutions working
side by side and concluded that they are not able to tackle particular critical,
concurrent events, in real time. One example of a critical scenario is the oc-
currence of fire and fall events simultaneously, which according to our study
cannot be safely resolved by employing independent systems. In such sce-
narios, a safe resolution can be achieved only when the occurrences of both
events are communicated to both caregivers and firefighters, who can then fur-
ther communicate and prioritize their actions accordingly. If the firefighters are
informed only of the fire event and not of the person’s fall too, and assuming
that answering a telephone call is the way to confirm that the event is veridical,
they might deem the fire alarm false and decide not to take action, which can
possibly result in loss of life.

Moreover, most of the existing AAL solutions are not necessarily backed
by user-acceptance studies, and there is no formal-analysis-based evidence of
their functional and timing correctness, which given the connected and dis-
tributed nature of most AAL systems is no trivial job. Given the above motiva-
tion and challenges, our overall thesis goal is to propose intelligent, integrated
and user-centered AAL solutions with ensured functional and extra-functional
requirements.

4.2 Research Goals

Based on the above discussed problems, we formulate the overall research goal
of the thesis as follows:

Overall Research Goal. Facilitate the integrated support for achieving
self-management of the elderly people by using intelligent ambient assisted
living solutions with ensured quality-of-service.

The overall goal aims to develop integrated solutions for enhancing the
support given to elderly adults living independently in their homes and provide
a formal assurance to such assisted living frameworks at the design stage of
development. Nevertheless, it is obvious that the overall goal is highly abstract
and broad. To narrow down the goal and to be able to measure the contribu-
tions, we divide it into three research questions in the following.

30 Chapter 4. Research Problem

caters for the possible critical situations in a timely manner [3]. Assuming that
particular critical events might occur simultaneously, we have analyzed the
behaviors of existing individualized or partially-integrated solutions working
side by side and concluded that they are not able to tackle particular critical,
concurrent events, in real time. One example of a critical scenario is the oc-
currence of fire and fall events simultaneously, which according to our study
cannot be safely resolved by employing independent systems. In such sce-
narios, a safe resolution can be achieved only when the occurrences of both
events are communicated to both caregivers and firefighters, who can then fur-
ther communicate and prioritize their actions accordingly. If the firefighters are
informed only of the fire event and not of the person’s fall too, and assuming
that answering a telephone call is the way to confirm that the event is veridical,
they might deem the fire alarm false and decide not to take action, which can
possibly result in loss of life.

Moreover, most of the existing AAL solutions are not necessarily backed
by user-acceptance studies, and there is no formal-analysis-based evidence of
their functional and timing correctness, which given the connected and dis-
tributed nature of most AAL systems is no trivial job. Given the above motiva-
tion and challenges, our overall thesis goal is to propose intelligent, integrated
and user-centered AAL solutions with ensured functional and extra-functional
requirements.

4.2 Research Goals

Based on the above discussed problems, we formulate the overall research goal
of the thesis as follows:

Overall Research Goal. Facilitate the integrated support for achieving
self-management of the elderly people by using intelligent ambient assisted
living solutions with ensured quality-of-service.

The overall goal aims to develop integrated solutions for enhancing the
support given to elderly adults living independently in their homes and provide
a formal assurance to such assisted living frameworks at the design stage of
development. Nevertheless, it is obvious that the overall goal is highly abstract
and broad. To narrow down the goal and to be able to measure the contribu-
tions, we divide it into three research questions in the following.

48

4.2 Research Goals 31

In order to gain insight into the existing AAL systems and discover their
potential challenges, we formulate the first research question as follows:

Research Question 1. What are the main characteristics, strengths and
limitations of existing AAL solutions?

To answer this research question, we conduct a literature survey of existing
AAL solutions and establish a need for an integrated, flexible, and user-centric
AAL solution that should include health monitoring, home management, as
well as communication and socialization. This leads to our second research
question that focuses on how to design such a solution with ensured QoS. This
research question is divided into two sub-questions. Research Question 2a
focuses on designing intelligent AAL solutions that integrate various health
and home management functions. Once the AAL solutions are designed, it
is crucial to ensure their QoS and timely response, hence we formulate the
Research Question 2b on how to guarantee the function and the considered
QoS of the proposed solutions.

Research Question 2. How can we achieve an intelligent AAL architecture
with ensured behavior, timeliness and reliability, which integrates various
health and home management functions?

Research Question 2a. How do we design architecture frameworks that
allow for the integration of multiple functionalities to achieve intelligent
decision making in real time?

Research Question 2b. How can we employ formal specification and
verification technologies to provide certain level of assurance to the integrated
solutions with respect to functional correctness and other QoS attributes?

The outcome of addressing Research Question 2 should be an approach
or framework for developing formally assured integrated AAL systems, start-
ing from the architecture design, their specifications and formal verification
that can provide guarantees for the critical functional and quality-of-service
requirements at early stages of development.

4.2 Research Goals 31

In order to gain insight into the existing AAL systems and discover their
potential challenges, we formulate the first research question as follows:

Research Question 1. What are the main characteristics, strengths and
limitations of existing AAL solutions?

To answer this research question, we conduct a literature survey of existing
AAL solutions and establish a need for an integrated, flexible, and user-centric
AAL solution that should include health monitoring, home management, as
well as communication and socialization. This leads to our second research
question that focuses on how to design such a solution with ensured QoS. This
research question is divided into two sub-questions. Research Question 2a
focuses on designing intelligent AAL solutions that integrate various health
and home management functions. Once the AAL solutions are designed, it
is crucial to ensure their QoS and timely response, hence we formulate the
Research Question 2b on how to guarantee the function and the considered
QoS of the proposed solutions.

Research Question 2. How can we achieve an intelligent AAL architecture
with ensured behavior, timeliness and reliability, which integrates various
health and home management functions?

Research Question 2a. How do we design architecture frameworks that
allow for the integration of multiple functionalities to achieve intelligent
decision making in real time?

Research Question 2b. How can we employ formal specification and
verification technologies to provide certain level of assurance to the integrated
solutions with respect to functional correctness and other QoS attributes?

The outcome of addressing Research Question 2 should be an approach
or framework for developing formally assured integrated AAL systems, start-
ing from the architecture design, their specifications and formal verification
that can provide guarantees for the critical functional and quality-of-service
requirements at early stages of development.

49

32 Chapter 4. Research Problem

As a final step, we need to validate our proposed solutions on real-life sce-
narios with representative users. Thus we formulate our Research Question 3
as follows.

Research Question 3. How do we validate the suitability of the proposed
AAL solutions with respect to various AAL scenarios?

The outcome of addressing Research Question 3 should be the validation or
testing of the proposed AAL system in laboratory settings and with real-users
and collecting their feedback.

32 Chapter 4. Research Problem

As a final step, we need to validate our proposed solutions on real-life sce-
narios with representative users. Thus we formulate our Research Question 3
as follows.

Research Question 3. How do we validate the suitability of the proposed
AAL solutions with respect to various AAL scenarios?

The outcome of addressing Research Question 3 should be the validation or
testing of the proposed AAL system in laboratory settings and with real-users
and collecting their feedback.

50

Chapter 5

Thesis Contributions

In this chapter, we give an overview of the research results and contributions
that address the research questions defined in Chapter 4.2. The main contri-
butions of the thesis are on four fronts: i) a literature survey of the existing
AAL solutions to identify their pros and cons; ii) an integrated architecture de-
sign for AAL systems with a centralized decision support, and a formal anal-
ysis framework for such systems, based on model checking the architectural
specifications and behavior, using UPPAAL and UPPPAL SMC; iii) an agent-
based architecture for AAL systems and a method for its formal analysis using
PRISM, and iv) a small-scale validation of the proposed architecture of the
proposed centralized solution with end users.

5.1 Literature Survey of Existing AAL Solutions
In our first contribution, we address the motivation and background of our
study, and thereby tackle RQ 1. The literature study that we undertake com-
pares some AAL solutions against the required functionalities of an AAL sys-
tem. The functionalities for analysis are chosen based on a multi-national
survey with participants from Poland, Denmark and Romania, carried out in
the EU project CAMI 1. The AAL functions that we consider are as follows:
(1) health monitoring, (2) fall detection, (3) communication and socialization,
(4) support for supervised physical exercises, (5) personalized intelligent and
dynamic program management, (6) robotics platform support, (7) intelligent

1http://www.camiproject.eu/

33

Chapter 5

Thesis Contributions

In this chapter, we give an overview of the research results and contributions
that address the research questions defined in Chapter 4.2. The main contri-
butions of the thesis are on four fronts: i) a literature survey of the existing
AAL solutions to identify their pros and cons; ii) an integrated architecture de-
sign for AAL systems with a centralized decision support, and a formal anal-
ysis framework for such systems, based on model checking the architectural
specifications and behavior, using UPPAAL and UPPPAL SMC; iii) an agent-
based architecture for AAL systems and a method for its formal analysis using
PRISM, and iv) a small-scale validation of the proposed architecture of the
proposed centralized solution with end users.

5.1 Literature Survey of Existing AAL Solutions
In our first contribution, we address the motivation and background of our
study, and thereby tackle RQ 1. The literature study that we undertake com-
pares some AAL solutions against the required functionalities of an AAL sys-
tem. The functionalities for analysis are chosen based on a multi-national
survey with participants from Poland, Denmark and Romania, carried out in
the EU project CAMI 1. The AAL functions that we consider are as follows:
(1) health monitoring, (2) fall detection, (3) communication and socialization,
(4) support for supervised physical exercises, (5) personalized intelligent and
dynamic program management, (6) robotics platform support, (7) intelligent

1http://www.camiproject.eu/

33

51

34 Chapter 5. Thesis Contributions

Table 5.1 Functionalities supported by various AAL frameworks

AAL Platforms 1 2 3 4 5 6 7 8 9 10
inCASA X X X 7 7 7 X 7 7 X
iCarer 7 7 X 7 X 7 X 7 7 X

Persona 7 7 X 7 X 7 X X 7 X
Reaction X 7 X 7 X 7 X 7 7 7

UniversAAL X X X 7 X 7 X 7 7 7

iDorm 7 7 7 7 X 7 7 7 7 X
Robocare 7 X 7 7 X X X X 7 X

Aware Home 7 7 X 7 X 7 7 7 7 X
Mav Home 7 7 7 7 X 7 X 7 7 X

CASAS 7 7 7 7 X 7 7 7 7 X
GiraffPlus X X X 7 X X X 7 7 X
MobiServ 7 X X X X X 7 X 7 X

personal assistant that takes orders, gives advice and reminders, (8) support
for vocal interface, (9) mobility assistance, and (10) home and environment
management. Table 5.1 shows the functionalities supported by some of the ex-
isting AAL frameworks. As shown, none of the existing frameworks support
a complete integration of all the functionalities. To establish the need for an
integrated architecture for AAL systems, we analyze the timing requirements
of integrated and non-integrated AAL solutions in certain critical scenarios, in-
volving simultaneous occurrence of fire and fall events. The analysis is carried
out via sequence diagram simulations in Visual Paradigm [35] and by comput-
ing their offline schedules. At the end of the analysis, we conclude that there
are potential critical scenarios, that can only be tackled by fully integrated AAL
solutions.

As a first step targeted towards the design of integrated architectures in
AAL, we present a feature diagram representation [36] of functions of an inte-
grated AAL system. We also analyze the existing architecture frameworks that
support integration of multiple functionalities [37, 38]. Our analysis considers
two types of existing architecture solutions: one with a centralized decision
maker [37] and the other with distributed decision making entities, i.e., agents
[38]. We employ the Architecture Analysis and Design Language (AADL)
to model both architectural variants, and the AADL’s analysis capabilities to
compare the latencies of the selected frameworks. Our analysis points to the

34 Chapter 5. Thesis Contributions

Table 5.1 Functionalities supported by various AAL frameworks

AAL Platforms 1 2 3 4 5 6 7 8 9 10
inCASA X X X 7 7 7 X 7 7 X
iCarer 7 7 X 7 X 7 X 7 7 X

Persona 7 7 X 7 X 7 X X 7 X
Reaction X 7 X 7 X 7 X 7 7 7

UniversAAL X X X 7 X 7 X 7 7 7

iDorm 7 7 7 7 X 7 7 7 7 X
Robocare 7 X 7 7 X X X X 7 X

Aware Home 7 7 X 7 X 7 7 7 7 X
Mav Home 7 7 7 7 X 7 X 7 7 X

CASAS 7 7 7 7 X 7 7 7 7 X
GiraffPlus X X X 7 X X X 7 7 X
MobiServ 7 X X X X X 7 X 7 X

personal assistant that takes orders, gives advice and reminders, (8) support
for vocal interface, (9) mobility assistance, and (10) home and environment
management. Table 5.1 shows the functionalities supported by some of the ex-
isting AAL frameworks. As shown, none of the existing frameworks support
a complete integration of all the functionalities. To establish the need for an
integrated architecture for AAL systems, we analyze the timing requirements
of integrated and non-integrated AAL solutions in certain critical scenarios, in-
volving simultaneous occurrence of fire and fall events. The analysis is carried
out via sequence diagram simulations in Visual Paradigm [35] and by comput-
ing their offline schedules. At the end of the analysis, we conclude that there
are potential critical scenarios, that can only be tackled by fully integrated AAL
solutions.

As a first step targeted towards the design of integrated architectures in
AAL, we present a feature diagram representation [36] of functions of an inte-
grated AAL system. We also analyze the existing architecture frameworks that
support integration of multiple functionalities [37, 38]. Our analysis considers
two types of existing architecture solutions: one with a centralized decision
maker [37] and the other with distributed decision making entities, i.e., agents
[38]. We employ the Architecture Analysis and Design Language (AADL)
to model both architectural variants, and the AADL’s analysis capabilities to
compare the latencies of the selected frameworks. Our analysis points to the

52

5.2 A Centralized Integrated Architecture for Ambient Assisted Living
and a Framework for its Formal Assurance 35

conclusion that centralized architectures are straightforward solutions to inte-
grate multiple AAL functionalities in real time (due to the lower communica-
tion and consistency overheads accounted during the latency analysis, when
compared to distributed architectures). Nevertheless, the agent-based solution
with distributed decision making bears the advantage of better scalability and
adaptivity.

These contributions are addressed in Paper A [3] and Paper B [5], and
answer to RQ 1.

5.2 A Centralized Integrated Architecture for
Ambient Assisted Living and a Framework
for its Formal Assurance

The second contribution of our work is a novel integrated architectural frame-
work for AAL, with a centralized decision support system (DSS), and its for-
mal assurance framework.

Centralized Architecture for integrated AAL Functions. We develop the
centralized architecture as a generic model that can be easily instantiated to
suit different system requirements. The generic architecture model is inspired
by commercial AAL systems with various sensors for home and health moni-
toring, a data collector, DSS, security and privacy, database (DB) systems, user
interfaces (UI), and cloud computing support. The architecture is presented
in Fig. 5.1 and supports four different sensor categories: a) Sensor_A: Wear-
able sensors that send information as data (W_data), e.g., sensors measuring
health parameters like pulse, ECG, etc.; b) Sensor_B: Non-wearable sensors
measuring ambient parameters and health parameters (NW_data), e.g., camera
sensors, motion sensors, etc.; c) Sensor_C: Wearable sensors that detect events
(W_event), e.g., fall sensors; d) Sensor_D: Non-wearable sensors detecting
events (NW_event), e.g., fire sensors. The data from the sensors are collected
by the Data Collector unit. The latter does some data processing and assigns
labels and priorities to the incoming data. The Data Collector sends the data
to the message queue in the Local Controller, where it gets sorted according
to its priority such that when the DSS processes the first element in the queue,
it processes the message with the highest priority. Our architecture has both
local and cloud-based processing in order to ensure fault tolerance with respect
to DSS. The components of the architecture can interact via various commu-

5.2 A Centralized Integrated Architecture for Ambient Assisted Living
and a Framework for its Formal Assurance 35

conclusion that centralized architectures are straightforward solutions to inte-
grate multiple AAL functionalities in real time (due to the lower communica-
tion and consistency overheads accounted during the latency analysis, when
compared to distributed architectures). Nevertheless, the agent-based solution
with distributed decision making bears the advantage of better scalability and
adaptivity.

These contributions are addressed in Paper A [3] and Paper B [5], and
answer to RQ 1.

5.2 A Centralized Integrated Architecture for
Ambient Assisted Living and a Framework
for its Formal Assurance

The second contribution of our work is a novel integrated architectural frame-
work for AAL, with a centralized decision support system (DSS), and its for-
mal assurance framework.

Centralized Architecture for integrated AAL Functions. We develop the
centralized architecture as a generic model that can be easily instantiated to
suit different system requirements. The generic architecture model is inspired
by commercial AAL systems with various sensors for home and health moni-
toring, a data collector, DSS, security and privacy, database (DB) systems, user
interfaces (UI), and cloud computing support. The architecture is presented
in Fig. 5.1 and supports four different sensor categories: a) Sensor_A: Wear-
able sensors that send information as data (W_data), e.g., sensors measuring
health parameters like pulse, ECG, etc.; b) Sensor_B: Non-wearable sensors
measuring ambient parameters and health parameters (NW_data), e.g., camera
sensors, motion sensors, etc.; c) Sensor_C: Wearable sensors that detect events
(W_event), e.g., fall sensors; d) Sensor_D: Non-wearable sensors detecting
events (NW_event), e.g., fire sensors. The data from the sensors are collected
by the Data Collector unit. The latter does some data processing and assigns
labels and priorities to the incoming data. The Data Collector sends the data
to the message queue in the Local Controller, where it gets sorted according
to its priority such that when the DSS processes the first element in the queue,
it processes the message with the highest priority. Our architecture has both
local and cloud-based processing in order to ensure fault tolerance with respect
to DSS. The components of the architecture can interact via various commu-

53

36 Chapter 5. Thesis Contributions

Sensor_A
(W_data)

Sensor_B
(NW_data)

Sensor_C
(W_event)

Sensor_D
(NW_event)

Data
Preprocessing

UI

Cloud DB

Decision Support System

C
o
m
m
u
n
I
c
a
t
I
o
n

Data
Collector

User Message Queue

 Decision
 Support System

Security &
 Privacy module

 Local DB

Cloud

C
o
m
m
u
n
I
c
a
t
I
o
n

C
o
m
m
u
n
I
c
a
t
I
o
n

Local Controller Third-party UI

Health platforms and services

Figure 5.1: A centralized integrated architecture for AAL

Figure 5.2: An intelligent context-aware Decision Support for AAL Systems

nication protocols. Two distinct features of the architecture, as compared to
other AAL architectures, are: (i) the presence of both local and cloud-based
processing schemes, and (ii) the continuity of services, even in the absence of
Internet (due to the local processing of data).

The core of our system is the intelligent context-aware DSS, shown in
Fig.5.2. The novelty of our DSS stems from the combination of various AI al-
gorithms, like rule-based reasoning (RBR), fuzzy logic, and case-based reason-
ing(CBR) with context reasoning for efficient decision-making. The context-
reasoning module of the DSS is capable to react to the rapidly changing con-
texts. We use fuzzy reasoning to identify deviations in health parameters. For
instance, the normal pulse range of a person is between 60-100 heart beats per
minute. If a person has a pulse measure of 59.5 or 100.5, it should be still
considered normal and should not raise any pulse deviation alarms. However,
the normal boolean logic, cannot handle the scenario, which can only calssify
59.5 and 120.5 as abnormal pulse values. Hence, we employ fuzzy reasoning
with RBR, where a crisp classification can be avoided. With fuzzy reasoning,
we can provide degree of memberships, i.e, a pulse value of 59.5 can be con-
sidered 97% normal and 3 % abnormal, making the reasoning more effective.
The inference engine is a combination of RBR and CBR. RBR is based on

36 Chapter 5. Thesis Contributions

Sensor_A
(W_data)

Sensor_B
(NW_data)

Sensor_C
(W_event)

Sensor_D
(NW_event)

Data
Preprocessing

UI

Cloud DB

Decision Support System

C
o
m
m
u
n
I
c
a
t
I
o
n

Data
Collector

User Message Queue

 Decision
 Support System

Security &
 Privacy module

 Local DB

Cloud

C
o
m
m
u
n
I
c
a
t
I
o
n

C
o
m
m
u
n
I
c
a
t
I
o
n

Local Controller Third-party UI

Health platforms and services

Figure 5.1: A centralized integrated architecture for AAL

Figure 5.2: An intelligent context-aware Decision Support for AAL Systems

nication protocols. Two distinct features of the architecture, as compared to
other AAL architectures, are: (i) the presence of both local and cloud-based
processing schemes, and (ii) the continuity of services, even in the absence of
Internet (due to the local processing of data).

The core of our system is the intelligent context-aware DSS, shown in
Fig.5.2. The novelty of our DSS stems from the combination of various AI al-
gorithms, like rule-based reasoning (RBR), fuzzy logic, and case-based reason-
ing(CBR) with context reasoning for efficient decision-making. The context-
reasoning module of the DSS is capable to react to the rapidly changing con-
texts. We use fuzzy reasoning to identify deviations in health parameters. For
instance, the normal pulse range of a person is between 60-100 heart beats per
minute. If a person has a pulse measure of 59.5 or 100.5, it should be still
considered normal and should not raise any pulse deviation alarms. However,
the normal boolean logic, cannot handle the scenario, which can only calssify
59.5 and 120.5 as abnormal pulse values. Hence, we employ fuzzy reasoning
with RBR, where a crisp classification can be avoided. With fuzzy reasoning,
we can provide degree of memberships, i.e, a pulse value of 59.5 can be con-
sidered 97% normal and 3 % abnormal, making the reasoning more effective.
The inference engine is a combination of RBR and CBR. RBR is based on

54

5.2 A Centralized Integrated Architecture for Ambient Assisted Living
and a Framework for its Formal Assurance 37

Figure 5.3: The CAMI architecture

simple if-then-else rules, which works effectively in cases of well-defined do-
main knowledge. For instance, “ if a fire is detected, then alert the firefighter”.
However, RBR systems fails completely if there is no specific rule to handle a
scenario and in situations where we need to learn and adapt. Such a situation
would be, for instance, making a personalized medical recommendation for
a user, which may vary from person to person. In this case, CBR reasoning,
which can adapt and learn from previously-solved cases can be better suited.
In our DSS, we allow RBR to handle the context first, followed by the CBR.
The case base of the CBR system is built with successful RBR outputs.

In this thesis, we show three different instantiated configurations of the
generic architecture model and their DSS as follows:

• A minimal configuration that uses two sensors - a pulse monitoring sen-
sor wearable and fall sensor wearable, a data collector, a mobile phone
UI, and a cloud controller with a DSS that uses limited context modeling
(based on available sensor data) and Rule-based Reasoning with fuzzy
logic.

• An intermediate configuration that comprises of a physical exercise sen-
sor, a fall sensor, a set of health monitoring sensors measuring pulse and
blood pressure, and a set of home sensors that identify the user posi-
tion and movement. It has a local controller with inbuilt data collection
functionality, which forwards the data to the cloud controller. The cloud
controller has a DSS with context modeling, fuzzy logic and RBR.

• A complex configuration architecture (Fig.5.3) developed as part of the
European Project, CAMI 2. The CAMI architecture is based on microser-
vices, and has a clean and robust skeleton, onto which several plugin

2http://www.aal-europe.eu/projects/cami/

5.2 A Centralized Integrated Architecture for Ambient Assisted Living
and a Framework for its Formal Assurance 37

Figure 5.3: The CAMI architecture

simple if-then-else rules, which works effectively in cases of well-defined do-
main knowledge. For instance, “ if a fire is detected, then alert the firefighter”.
However, RBR systems fails completely if there is no specific rule to handle a
scenario and in situations where we need to learn and adapt. Such a situation
would be, for instance, making a personalized medical recommendation for
a user, which may vary from person to person. In this case, CBR reasoning,
which can adapt and learn from previously-solved cases can be better suited.
In our DSS, we allow RBR to handle the context first, followed by the CBR.
The case base of the CBR system is built with successful RBR outputs.

In this thesis, we show three different instantiated configurations of the
generic architecture model and their DSS as follows:

• A minimal configuration that uses two sensors - a pulse monitoring sen-
sor wearable and fall sensor wearable, a data collector, a mobile phone
UI, and a cloud controller with a DSS that uses limited context modeling
(based on available sensor data) and Rule-based Reasoning with fuzzy
logic.

• An intermediate configuration that comprises of a physical exercise sen-
sor, a fall sensor, a set of health monitoring sensors measuring pulse and
blood pressure, and a set of home sensors that identify the user posi-
tion and movement. It has a local controller with inbuilt data collection
functionality, which forwards the data to the cloud controller. The cloud
controller has a DSS with context modeling, fuzzy logic and RBR.

• A complex configuration architecture (Fig.5.3) developed as part of the
European Project, CAMI 2. The CAMI architecture is based on microser-
vices, and has a clean and robust skeleton, onto which several plugin

2http://www.aal-europe.eu/projects/cami/

55

38 Chapter 5. Thesis Contributions

modules can be coupled ensuring modularity and reuse. The major
CAMI architecture components are: (i) Sensor unit with multiple sen-
sors, (ii) Data collector unit that collects data from the sensors, (iii) Gate-
way with intelligent Decision-Support Systems (DSS) for data process-
ing, its local back up, and a DB for storage of data, (iv) Robotic telep-
resence unit for communication with caregivers, friends, family etc., (v)
Mobile phone unit for generation of reminders, and (vi) Cloud Services
for redundant data processing (Cloud DSS) and storage (Cloud DB). The
CAMI AAL architecture, as a contribution by itself, is presented in Paper
B, where we also show its AADL modeling and the initial architecture
analysis supported in AADL models developed in OSATE tool, like la-
tency, resource budget and failure.

Modeling the Centralized Architecture in AADL and its Fornal Assurance
Framework. For specifying the architecture and its properties, we choose
the architecture modeling framework, AADL (Architecture Analysis and De-
sign Language). The generalized AAL architecture along with the DSS is mod-
eled as patterns in AADL (AADL patterns are abstract components). We de-
scribe two categories of component patterns in AADL: a) Atomic Component
(AC) Pattern that do not have hierarchies in terms of sub-components with port
interfaces, and b) Composite Component (CC) Patterns that has hierarchies
with sub-components with port interfaces. We represent the behaviors of the
components in the Behavior Annex (BA) of AADL, and the component failures
in the Error Annex (EA) of AADL. The EA modeling allows us to efficiently
represent the failure and recovery events, which occur via certain probabilistic
distributions.

We also show how the AADL patterns can be extended to suit the re-
quirements of the different architecture instantiations mentioned above. For
instance, an excerpt of an AADL model of the RBR component (AC) of the
DSS (which is a CC), with its interface, BA and EA is shown in Listing 5.1 (The
RBR component is common for all the three architecture configurations.) Lines
1-20 define the interface of the RBR component and specify its features, flows,
properties and sub-components (in this case, the various data sub-components
that do not have port interfaces). The Behaviour Annex (BA) model of the
RBR shows a representative scenario of an abnormal high pulse alert gener-
ated to the caregiver, and modelled as state transition system in lines 21-28.
Lines 29-49 show the error behaviour of the RBR component, modeled as a
state transition system in the Error Annex (EA) of AADL. It also shows the
failure events causing transient and permanent failures, recovery event (reset),

38 Chapter 5. Thesis Contributions

modules can be coupled ensuring modularity and reuse. The major
CAMI architecture components are: (i) Sensor unit with multiple sen-
sors, (ii) Data collector unit that collects data from the sensors, (iii) Gate-
way with intelligent Decision-Support Systems (DSS) for data process-
ing, its local back up, and a DB for storage of data, (iv) Robotic telep-
resence unit for communication with caregivers, friends, family etc., (v)
Mobile phone unit for generation of reminders, and (vi) Cloud Services
for redundant data processing (Cloud DSS) and storage (Cloud DB). The
CAMI AAL architecture, as a contribution by itself, is presented in Paper
B, where we also show its AADL modeling and the initial architecture
analysis supported in AADL models developed in OSATE tool, like la-
tency, resource budget and failure.

Modeling the Centralized Architecture in AADL and its Fornal Assurance
Framework. For specifying the architecture and its properties, we choose
the architecture modeling framework, AADL (Architecture Analysis and De-
sign Language). The generalized AAL architecture along with the DSS is mod-
eled as patterns in AADL (AADL patterns are abstract components). We de-
scribe two categories of component patterns in AADL: a) Atomic Component
(AC) Pattern that do not have hierarchies in terms of sub-components with port
interfaces, and b) Composite Component (CC) Patterns that has hierarchies
with sub-components with port interfaces. We represent the behaviors of the
components in the Behavior Annex (BA) of AADL, and the component failures
in the Error Annex (EA) of AADL. The EA modeling allows us to efficiently
represent the failure and recovery events, which occur via certain probabilistic
distributions.

We also show how the AADL patterns can be extended to suit the re-
quirements of the different architecture instantiations mentioned above. For
instance, an excerpt of an AADL model of the RBR component (AC) of the
DSS (which is a CC), with its interface, BA and EA is shown in Listing 5.1 (The
RBR component is common for all the three architecture configurations.) Lines
1-20 define the interface of the RBR component and specify its features, flows,
properties and sub-components (in this case, the various data sub-components
that do not have port interfaces). The Behaviour Annex (BA) model of the
RBR shows a representative scenario of an abnormal high pulse alert gener-
ated to the caregiver, and modelled as state transition system in lines 21-28.
Lines 29-49 show the error behaviour of the RBR component, modeled as a
state transition system in the Error Annex (EA) of AADL. It also shows the
failure events causing transient and permanent failures, recovery event (reset),

56

5.2 A Centralized Integrated Architecture for Ambient Assisted Living
and a Framework for its Formal Assurance 39

and their distributions.

Listing 5.1: An excerpt from the RBR component in AADL for CAMI
1 −−−RBR (Component Type + I m p l e m e n t a t i o n)−−−
2 a b s t r a c t RBR
3 f e a t u r e s
4 i n p u t : i n e v e n t d a t a p o r t ;
5 o u t p u t : o u t e v e n t d a t a p o r t ;
6 f l o w s
7 F1 : f low p a t h i n p u t −> o u t p u t ;
8 p r o p e r t i e s
9 D i s p a t c h _ P r o t o c o l => A p e r i o d i c ;

10 p r o p e r t y _ e v e n t g e n e r a t i o n : : A p e r i o d i c E v e n t G e n e r a t i o n = >1 .0 ;
11 p r o p e r t y e v e n t g e n e r a t i o n : : D i s t r i b u t i o n => E x p o n e n t i a l ;
12 p r o p e r t y _ f a i l u r e _ r e c o v e r y : : F a i l u r e R e c o v e r y R a t e = >1 .0 ;
13 p r o p e r t y _ f a i l u r e _ r e c o v e r y : : D i s t r i b u t i o n => E x p o n e n t i a l ;
14 Compute_Execut ion_Time =>1 s . . 1 s ;
15 end RBR;
16 a b s t r a c t i m p l e m e n t a t i o n RBR. impl
17 f u z z y _ o u t _ p u l s e : d a t a f u z z i f i e d _ d a t a _ p u l s e ;
18 DA: d a t a ADL;
19 u _ p r o f i l e : d a t a u s e r ;
20 end RBR. impl
21 −−BA−−
22 s t a t e s
23 Wai t ing : i n i t i a l c o m p l e t e f i n a l s t a t e ;
24 O p e r a t i o n a l : s t a t e ;
25 t r a n s i t i o n s
26 Wai t ing −[on d i s p a t c h i n p u t]−> O p e r a t i o n a l
27 { i f (f u z z y o _ p u l s e = h igh and DA!= e x e r c i s i n g and u _ p r o f = c a r d i a c _ p a t i e n t)
28 { o u t p u t := n o t _ c a r e g i v e r _ h i g h p u l s e }
29 −−EA−−
30 s t a t e s
31 Wai t ing : i n i t i a l s t a t e ;
32 F a i l e d _ T r a n s i e n t : s t a t e ;
33 F a i l e d _ P e r m a n e n t : s t a t e ;
34 LRese t : s t a t e ;
35 F a i l e d _ e p : s t a t e ;
36 e v e n t s
37 R e s e t : r e c o v e r e v e n t ;
38 TF : e r r o r e v e n t ;
39 PF : e r r o r e v e n t ;
40 T r a n s i t i o n s
41 t 1 : Wai t i ng −[PF]−> F a i l e d _ P e r m a n e n t
42 t 2 : Wai t i ng −[TF]−> F a i l e d _ T r a n s i e n t ;
43 t 3 : F a i l e d _ T r a n s i e n t −[R e s e t]−> { LReset w i th 0 . 9 ,
44 F a i l e d _ P e r m a n e n t w i th 0 . 1 } ;
45 t 4 : LReset−[]−>{ Wai t i ng wi th 0 . 8 , F a i l e d _ P e r m a n e n t wi th 0 . 2 }
46 p r o p e r t i e s
47 EMV2 : : D u r a t i o n D i s t r i b u t i o n => [D u r a t i o n => 1 s . . 2 s ; a p p l i e s t o R e s e t ;
48 EMV2 : : O c c u r r e n c e D i s t r i b u t i o n = >[P r o b a b i l i t y V a l u e => 0 . 9 ;
49 D i s t r i b u t i o n => Fixed ;] a p p l i e s t o R e s e t ;

To facilitate formal verification, we propose a formal semantics to these
AAL specific architecture patterns as a Network of Stochastic Timed Automata
(NSTA) that can be model-checked using the UPPAAL model checker or its

5.2 A Centralized Integrated Architecture for Ambient Assisted Living
and a Framework for its Formal Assurance 39

and their distributions.

Listing 5.1: An excerpt from the RBR component in AADL for CAMI
1 −−−RBR (Component Type + I m p l e m e n t a t i o n)−−−
2 a b s t r a c t RBR
3 f e a t u r e s
4 i n p u t : i n e v e n t d a t a p o r t ;
5 o u t p u t : o u t e v e n t d a t a p o r t ;
6 f l o w s
7 F1 : f low p a t h i n p u t −> o u t p u t ;
8 p r o p e r t i e s
9 D i s p a t c h _ P r o t o c o l => A p e r i o d i c ;

10 p r o p e r t y _ e v e n t g e n e r a t i o n : : A p e r i o d i c E v e n t G e n e r a t i o n = >1 .0 ;
11 p r o p e r t y e v e n t g e n e r a t i o n : : D i s t r i b u t i o n => E x p o n e n t i a l ;
12 p r o p e r t y _ f a i l u r e _ r e c o v e r y : : F a i l u r e R e c o v e r y R a t e = >1 .0 ;
13 p r o p e r t y _ f a i l u r e _ r e c o v e r y : : D i s t r i b u t i o n => E x p o n e n t i a l ;
14 Compute_Execut ion_Time =>1 s . . 1 s ;
15 end RBR;
16 a b s t r a c t i m p l e m e n t a t i o n RBR. impl
17 f u z z y _ o u t _ p u l s e : d a t a f u z z i f i e d _ d a t a _ p u l s e ;
18 DA: d a t a ADL;
19 u _ p r o f i l e : d a t a u s e r ;
20 end RBR. impl
21 −−BA−−
22 s t a t e s
23 Wai t ing : i n i t i a l c o m p l e t e f i n a l s t a t e ;
24 O p e r a t i o n a l : s t a t e ;
25 t r a n s i t i o n s
26 Wai t ing −[on d i s p a t c h i n p u t]−> O p e r a t i o n a l
27 { i f (f u z z y o _ p u l s e = h igh and DA!= e x e r c i s i n g and u _ p r o f = c a r d i a c _ p a t i e n t)
28 { o u t p u t := n o t _ c a r e g i v e r _ h i g h p u l s e }
29 −−EA−−
30 s t a t e s
31 Wai t ing : i n i t i a l s t a t e ;
32 F a i l e d _ T r a n s i e n t : s t a t e ;
33 F a i l e d _ P e r m a n e n t : s t a t e ;
34 LRese t : s t a t e ;
35 F a i l e d _ e p : s t a t e ;
36 e v e n t s
37 R e s e t : r e c o v e r e v e n t ;
38 TF : e r r o r e v e n t ;
39 PF : e r r o r e v e n t ;
40 T r a n s i t i o n s
41 t 1 : Wai t i ng −[PF]−> F a i l e d _ P e r m a n e n t
42 t 2 : Wai t i ng −[TF]−> F a i l e d _ T r a n s i e n t ;
43 t 3 : F a i l e d _ T r a n s i e n t −[R e s e t]−> { LReset w i th 0 . 9 ,
44 F a i l e d _ P e r m a n e n t w i th 0 . 1 } ;
45 t 4 : LReset−[]−>{ Wai t i ng wi th 0 . 8 , F a i l e d _ P e r m a n e n t wi th 0 . 2 }
46 p r o p e r t i e s
47 EMV2 : : D u r a t i o n D i s t r i b u t i o n => [D u r a t i o n => 1 s . . 2 s ; a p p l i e s t o R e s e t ;
48 EMV2 : : O c c u r r e n c e D i s t r i b u t i o n = >[P r o b a b i l i t y V a l u e => 0 . 9 ;
49 D i s t r i b u t i o n => Fixed ;] a p p l i e s t o R e s e t ;

To facilitate formal verification, we propose a formal semantics to these
AAL specific architecture patterns as a Network of Stochastic Timed Automata
(NSTA) that can be model-checked using the UPPAAL model checker or its

57

40 Chapter 5. Thesis Contributions

statistical extension UPPAAL SMC [6]. An AADL component that we employ
in this thesis can be defined as a tuple:

AADLComp = 〈Comptype, Compimp, EA,BA〉, (5.1)

where Comptype represents the component type, Compimp represents the com-
ponent implementation, BA the behavioral annex specification, and EA the
error annex. The above definition holds for an AC, but for a CC, we model
only the EA showing its composite error behaviour that indicates how the fail-
ure of its sub-components affects the CC failure. No separate BA is modeled
for CC as its behaviour is already encoded by its AC sub-components. We ex-
emplify the generic definition on the RBR and DSS components in a nutshell.
The complete semantics is given in Paper C [6].

RBRAADL = 〈Comptype RBR, Compimp RBR, EARBR, BARBR〉 (5.2)

On the other hand, the DSS component is a CC defined by its type, implemen-
tation and EA, as follows:

DSSAADL = 〈Comptype DSS, Compimp DSS, EADSS〉 (5.3)

Formal encoding of AADL components as NSTA. An AADL
atomic component (AC), formally defined by the tuple: AC =
〈ComptypeAC, CompimplAC, EAAC, BAAC〉 is encoded as an NSTA as
follows: AC NSTAAC = AC iSTA||ACaSTA, where AC iSTA is the
so-called “Interface STA” of AC, which corresponds to ComptypeAC and
CompimplAC, whereas ACaSTA is the “Behavioral STA” that encodes the EA
and BA of an AC.

Similarly, an AADL Composite Component (CC), formally defined by the
tuple: CC = 〈ComptypeCC, CompimplCC, EACC〉 is also a network of two syn-
chronized STA, CCNSTA = CC iSTA||CCaSTA, where CC iSTA is the “interface”
STA of the CC component, and CCaSTA is the “annex” STA that encodes the
information from the error annex in AADL. A nutshell of the AADL encoding
as NSTA model is presented in Table 5.2, with the detailed description of the
encoding rules to be found in Paper C [6].

We take the example of the RBR component and present its semantic en-
coding as an NSTA model. Let us assume an RBR component defined by
Equation 5.2. We define the formal encoding of RBR as the following network
of synchronized STA: RBRNSTA = RBRiSTA||RBRaSTA, where RBRiSTA is
the “interface” STA of the RBR component and RBRaSTA is the “annex” STA
that encodes both the behavior and the error annex information.

40 Chapter 5. Thesis Contributions

statistical extension UPPAAL SMC [6]. An AADL component that we employ
in this thesis can be defined as a tuple:

AADLComp = 〈Comptype, Compimp, EA,BA〉, (5.1)

where Comptype represents the component type, Compimp represents the com-
ponent implementation, BA the behavioral annex specification, and EA the
error annex. The above definition holds for an AC, but for a CC, we model
only the EA showing its composite error behaviour that indicates how the fail-
ure of its sub-components affects the CC failure. No separate BA is modeled
for CC as its behaviour is already encoded by its AC sub-components. We ex-
emplify the generic definition on the RBR and DSS components in a nutshell.
The complete semantics is given in Paper C [6].

RBRAADL = 〈Comptype RBR, Compimp RBR, EARBR, BARBR〉 (5.2)

On the other hand, the DSS component is a CC defined by its type, implemen-
tation and EA, as follows:

DSSAADL = 〈Comptype DSS, Compimp DSS, EADSS〉 (5.3)

Formal encoding of AADL components as NSTA. An AADL
atomic component (AC), formally defined by the tuple: AC =
〈ComptypeAC, CompimplAC, EAAC, BAAC〉 is encoded as an NSTA as
follows: AC NSTAAC = AC iSTA||ACaSTA, where AC iSTA is the
so-called “Interface STA” of AC, which corresponds to ComptypeAC and
CompimplAC, whereas ACaSTA is the “Behavioral STA” that encodes the EA
and BA of an AC.

Similarly, an AADL Composite Component (CC), formally defined by the
tuple: CC = 〈ComptypeCC, CompimplCC, EACC〉 is also a network of two syn-
chronized STA, CCNSTA = CC iSTA||CCaSTA, where CC iSTA is the “interface”
STA of the CC component, and CCaSTA is the “annex” STA that encodes the
information from the error annex in AADL. A nutshell of the AADL encoding
as NSTA model is presented in Table 5.2, with the detailed description of the
encoding rules to be found in Paper C [6].

We take the example of the RBR component and present its semantic en-
coding as an NSTA model. Let us assume an RBR component defined by
Equation 5.2. We define the formal encoding of RBR as the following network
of synchronized STA: RBRNSTA = RBRiSTA||RBRaSTA, where RBRiSTA is
the “interface” STA of the RBR component and RBRaSTA is the “annex” STA
that encodes both the behavior and the error annex information.

58

5.2 A Centralized Integrated Architecture for Ambient Assisted Living
and a Framework for its Formal Assurance 41

Table 5.2 Encoding of AADL Component as STA

AADL comp STA
Comptype, Compimp STA

EA,BA STA
T p Invariant+Guard
T e Invariant+Guard

Ports V ariables + Synchronization
Data V ariable

A sub-component STA
EA + BA states Locations

EA + BA transitions Edges
Error events V ariables

Distribution of error events γ
Distribution of aperiodic events µ

Figure 5.4 depicts the NSTA of the RBR based on the encoding rules.
In Paper C [6], we also show the feasibility of using exhaustive model

checking with UPPAAL and simulation-based model checking with UPPAAL
SMC. For small models, like that of minimal configuration model, exhaustive
verification scales. However, for complex models like CAMI, the only feasi-
ble option is to use simulation-based model-checking, that is, statistical model
checking that returns a probabilistic guarantee of fulfilling a particular require-
ment.

For the CAMI architecture, which is the most complex configuration ob-
tained by instantiating our generic architecture of Fig 5.3, we show the verifi-
cation of a set of functional and QoS requirements presented.
R1: If the fire sensor detects a fire, then the DSS sends a notification to the
firefighters, within 20 s.
R2: If a fall is detected by the wearable or the camera sensor, then the DSS
sends a notification to the caregiver, within 20 s.
R3: If there is a pulse data deviation indicating high pulse, the DA is “not ex-
ercising”, and the user has a disease history of a cardiac patient, then the DSS
sends a notification to the caregiver, within 20 s.
R4: If fire and fall are detected simultaneously by the respective sensors, then
the DSS should detect the presence of the simultaneous events and send notifi-
cations to both the firefighters and the caregiver indicating the presence of both

5.2 A Centralized Integrated Architecture for Ambient Assisted Living
and a Framework for its Formal Assurance 41

Table 5.2 Encoding of AADL Component as STA

AADL comp STA
Comptype, Compimp STA

EA,BA STA
T p Invariant+Guard
T e Invariant+Guard

Ports V ariables + Synchronization
Data V ariable

A sub-component STA
EA + BA states Locations

EA + BA transitions Edges
Error events V ariables

Distribution of error events γ
Distribution of aperiodic events µ

Figure 5.4 depicts the NSTA of the RBR based on the encoding rules.
In Paper C [6], we also show the feasibility of using exhaustive model

checking with UPPAAL and simulation-based model checking with UPPAAL
SMC. For small models, like that of minimal configuration model, exhaustive
verification scales. However, for complex models like CAMI, the only feasi-
ble option is to use simulation-based model-checking, that is, statistical model
checking that returns a probabilistic guarantee of fulfilling a particular require-
ment.

For the CAMI architecture, which is the most complex configuration ob-
tained by instantiating our generic architecture of Fig 5.3, we show the verifi-
cation of a set of functional and QoS requirements presented.
R1: If the fire sensor detects a fire, then the DSS sends a notification to the
firefighters, within 20 s.
R2: If a fall is detected by the wearable or the camera sensor, then the DSS
sends a notification to the caregiver, within 20 s.
R3: If there is a pulse data deviation indicating high pulse, the DA is “not ex-
ercising”, and the user has a disease history of a cardiac patient, then the DSS
sends a notification to the caregiver, within 20 s.
R4: If fire and fall are detected simultaneously by the respective sensors, then
the DSS should detect the presence of the simultaneous events and send notifi-
cations to both the firefighters and the caregiver indicating the presence of both

59

42 Chapter 5. Thesis Contributions

(a) RBRiSTA (b) RBRaSTA

Figure 5.4: The NSTA for the RBR

events, within 20 s.
R5: The decisions taken by the local DSS are updated in the cloud DSS such
that they are eventually synchronized. This requirement relates to the data-
consistency requirement of CAMI.
R6: If the local DSS fails, then the cloud DSS eventually becomes active. It
corresponds to the fault-tolerance aspect of the CAMI system.

The verification results, by employing UPPAAL SMC, are tabulated in Ta-
ble 5.3. To check that our CAMI DSS meets its requirements, we employ
monitor STA that monitor the sensor values, the respective DSS output, and
the corresponding clock. The verification results show that the system satis-
fies all the functional requirements (R1 to R4) with high probabilities (close
to 1) and with high confidence. Requirements R5 and R6 are related the QoS
attributes of the CAMI architecture. R5 checks the data consistency of Local
DSS and Cloud DSS and requires that the RBR outputs of the local DSS get
stored in the case-base of the cloud DSS. This requirement is satisfied with
a high probability of [0.99975, 1] and high confidence of 0.998. Query R6
models the fault-tolerance requirement of CAMI. We see from Table 5.3 that
the probability of cloud DSS to become activated (R4) is [0.01, 0.04]; this is
because it gets activated only when the local DSS has failed and the failure
probability of local DSS is between [0.01, 0.04] for a simulation over 1000
time units. However, if the local DSS has failed, we see that the probability
of cloud DSS getting activated is very high [0.99975, 1] with a confidence of

42 Chapter 5. Thesis Contributions

(a) RBRiSTA (b) RBRaSTA

Figure 5.4: The NSTA for the RBR

events, within 20 s.
R5: The decisions taken by the local DSS are updated in the cloud DSS such
that they are eventually synchronized. This requirement relates to the data-
consistency requirement of CAMI.
R6: If the local DSS fails, then the cloud DSS eventually becomes active. It
corresponds to the fault-tolerance aspect of the CAMI system.

The verification results, by employing UPPAAL SMC, are tabulated in Ta-
ble 5.3. To check that our CAMI DSS meets its requirements, we employ
monitor STA that monitor the sensor values, the respective DSS output, and
the corresponding clock. The verification results show that the system satis-
fies all the functional requirements (R1 to R4) with high probabilities (close
to 1) and with high confidence. Requirements R5 and R6 are related the QoS
attributes of the CAMI architecture. R5 checks the data consistency of Local
DSS and Cloud DSS and requires that the RBR outputs of the local DSS get
stored in the case-base of the cloud DSS. This requirement is satisfied with
a high probability of [0.99975, 1] and high confidence of 0.998. Query R6
models the fault-tolerance requirement of CAMI. We see from Table 5.3 that
the probability of cloud DSS to become activated (R4) is [0.01, 0.04]; this is
because it gets activated only when the local DSS has failed and the failure
probability of local DSS is between [0.01, 0.04] for a simulation over 1000
time units. However, if the local DSS has failed, we see that the probability
of cloud DSS getting activated is very high [0.99975, 1] with a confidence of

60

5.2 A Centralized Integrated Architecture for Ambient Assisted Living
and a Framework for its Formal Assurance 43

0.998, which satisfies our requirement. Most of the requirements are verified
with queries that contain terms of the form A imply B, therefore a pre-check
of each corresponding “A" being reachable is first carried out.

This contribution is a first attempt to analyze formally an integrated AAL
design, including its AI support (context modelling with fuzzy logic and RBR).
The described contributions are addressed in Paper B [5] and Paper C [6] and
answer Research Questions 2a and 2b.

5.2 A Centralized Integrated Architecture for Ambient Assisted Living
and a Framework for its Formal Assurance 43

0.998, which satisfies our requirement. Most of the requirements are verified
with queries that contain terms of the form A imply B, therefore a pre-check
of each corresponding “A" being reachable is first carried out.

This contribution is a first attempt to analyze formally an integrated AAL
design, including its AI support (context modelling with fuzzy logic and RBR).
The described contributions are addressed in Paper B [5] and Paper C [6] and
answer Research Questions 2a and 2b.

61

44 Chapter 5. Thesis Contributions

Table 5.3 SMC analysis results for CAMI Architecture
Req. Query Result Runs

R1

Pr[<= 1000]([]((M_fire.fire_alarm
== 1) imply (se_nw.fire == 1

and M_fire.s1 <= 20)))
Pr [0.99975,1]

confidence 0.998 3868
Pr[<= 1000](<> (M_fire.

fire_alarm == 1))
Pr [0.99975,1]

confidence 0.998 4901

R2

Pr[<= 1000]([]((M_fall.fall_not
== 7) imply ((se_w.fall == 1

or sd_nw.data_val == 1)

and(M_fall.s1 <= 20))))
Pr [0.99975,1]

confidence 0.998 3868
Pr[<= 1000](<> (M_fall.

fall_not == 7))
Pr [0.99975,1]

confidence 0.998 4901

R3

Pr[<= 1000]([]((M_pulse.pulse_not
== 3) imply

(110 <= sd_w.data_val <= 300 and

M_pulse.FIS_out == 3 and
ADL == 1 and

upro.disease_history == 3

and M_pulse.s1 <= 20))
Pr [0.99975,1]

confidence 0.998 3868
Pr[<= 1000](<> (M_pulse.

pulse_not == 3))
Pr [0.99975,1]

confidence 0.998 3868

R4

Pr[<= 1000]([](M_firefall.fire_not
== 2 and

M_firefall.fall_not == 2 imply

((se_w.fall == 1 or sd_nw.data_val == 1)

and se_nw.fire == 1

and M_firefall.s1 <= 20))
Pr [0.99975,1]

confidence 0.998 3868
Pr[<= 1000](<> (Pr[<= 100](<>

(M_firefall.fall_not == 2

and M_firefall.fire_not == 2))
Pr [0.99975,1]

confidence 0.998 7905

R5
Pr[<= 1000]([](M_consistency.stop
imply (RBR_om == iCBRCCm)))

Pr [0.99975,1]
confidence 0.998 3868

Pr[<= 1000](<> (M_consistency.stop))
Pr [0.99975,1]

confidence 0.998 5777

R6
Pr[<= 1000]([](INT_CC.DSSCC

imply PF_DSS == 1))
Pr [0.99975,1]

confidence 0.998 3868

Pr[<= 1000](<> (INT_CC.DSSCC))
Pr [0.01,0.04]

confidence 0.998 2885

44 Chapter 5. Thesis Contributions

Table 5.3 SMC analysis results for CAMI Architecture
Req. Query Result Runs

R1

Pr[<= 1000]([]((M_fire.fire_alarm
== 1) imply (se_nw.fire == 1

and M_fire.s1 <= 20)))
Pr [0.99975,1]

confidence 0.998 3868
Pr[<= 1000](<> (M_fire.

fire_alarm == 1))
Pr [0.99975,1]

confidence 0.998 4901

R2

Pr[<= 1000]([]((M_fall.fall_not
== 7) imply ((se_w.fall == 1

or sd_nw.data_val == 1)

and(M_fall.s1 <= 20))))
Pr [0.99975,1]

confidence 0.998 3868
Pr[<= 1000](<> (M_fall.

fall_not == 7))
Pr [0.99975,1]

confidence 0.998 4901

R3

Pr[<= 1000]([]((M_pulse.pulse_not
== 3) imply

(110 <= sd_w.data_val <= 300 and

M_pulse.FIS_out == 3 and
ADL == 1 and

upro.disease_history == 3

and M_pulse.s1 <= 20))
Pr [0.99975,1]

confidence 0.998 3868
Pr[<= 1000](<> (M_pulse.

pulse_not == 3))
Pr [0.99975,1]

confidence 0.998 3868

R4

Pr[<= 1000]([](M_firefall.fire_not
== 2 and

M_firefall.fall_not == 2 imply

((se_w.fall == 1 or sd_nw.data_val == 1)

and se_nw.fire == 1

and M_firefall.s1 <= 20))
Pr [0.99975,1]

confidence 0.998 3868
Pr[<= 1000](<> (Pr[<= 100](<>

(M_firefall.fall_not == 2

and M_firefall.fire_not == 2))
Pr [0.99975,1]

confidence 0.998 7905

R5
Pr[<= 1000]([](M_consistency.stop
imply (RBR_om == iCBRCCm)))

Pr [0.99975,1]
confidence 0.998 3868

Pr[<= 1000](<> (M_consistency.stop))
Pr [0.99975,1]

confidence 0.998 5777

R6
Pr[<= 1000]([](INT_CC.DSSCC

imply PF_DSS == 1))
Pr [0.99975,1]

confidence 0.998 3868

Pr[<= 1000](<> (INT_CC.DSSCC))
Pr [0.01,0.04]

confidence 0.998 2885

62

5.3 A Multi-agent-based Integrated Architecture for Ambient Assisted
Living and its Modeling and Analysis Framework 45

5.3 A Multi-agent-based Integrated Architecture
for Ambient Assisted Living and its Modeling
and Analysis Framework

Driven by the fact that the scalability, adaptability and service accessibility to
multiple users are also important concerns that need equal attention as inte-
gration and real-timeliness in AAL systems, as the third thesis contribution,
we propose an alternative to the previous centralized solution, as a distributed
agent-based architecture for AAL systems, which is inspired from the existing
architectures in literature. We also propose a modeling and analysis framework
for such solutions. The modeling framework uses the core AADL language
that we extend with a sub-language called “Agent Annex”. The Agent An-
nex sub-language is formulated by extending the core AADL language class
diagrams. The semantics of Agent Annex is defined as Stochastic Transition
Systems [14], which can effectively capture the non-deterministic, probabilis-
tic and real-time behaviours of AAL systems. In order to formally verify the
system for its requirements, we use the PRISM model checker [25], where the
system architecture is modeled as a parallel composition of probabilistic timed
automata (PTA) modules. These contributions are be presented in Paper D
[12].

The multi-agent AAL architecture that we propose in this thesis (Fig. 5.5)
has some important advantages if compared to our centralized AAL solution,
in terms of fault-tolerance, scalability, adaptability and accessibility for mul-
tiple users. Due to these obvious reasons (although difficult to develop and
maintain), distributed architectures are preferred in the AAL community com-
pared to their the centralized counter-parts. However, in our first contribution
in which we analyze the existing the agent-based architectures [5], we con-
clude that the distributed agent-based architectures suffer from an increased
overhead for the collective decision making while handling multiple function-
alities. Therefore, in our solution, we attempt to reduce such overhead by let-
ting the agents cooperate to ensure intelligent decision making. In our solution,
each agent has a particular function, that is, the fire agent deals with detecting
fire and raising a notification to the firefighter, the pulse agent detects the pulse
deviations and alerts the caregiver, etc. To be able to cooperate efficiently, each
agent is equipped with a list of possible dependencies that it can have with other
agents. The dependencies can vary dynamically. Each agent in the system is
represented with two dependency levels, level 1 and 2, respectively. Depen-
dency Level 1 denotes the list of agents that a particular agent has to cooperate

5.3 A Multi-agent-based Integrated Architecture for Ambient Assisted
Living and its Modeling and Analysis Framework 45

5.3 A Multi-agent-based Integrated Architecture
for Ambient Assisted Living and its Modeling
and Analysis Framework

Driven by the fact that the scalability, adaptability and service accessibility to
multiple users are also important concerns that need equal attention as inte-
gration and real-timeliness in AAL systems, as the third thesis contribution,
we propose an alternative to the previous centralized solution, as a distributed
agent-based architecture for AAL systems, which is inspired from the existing
architectures in literature. We also propose a modeling and analysis framework
for such solutions. The modeling framework uses the core AADL language
that we extend with a sub-language called “Agent Annex”. The Agent An-
nex sub-language is formulated by extending the core AADL language class
diagrams. The semantics of Agent Annex is defined as Stochastic Transition
Systems [14], which can effectively capture the non-deterministic, probabilis-
tic and real-time behaviours of AAL systems. In order to formally verify the
system for its requirements, we use the PRISM model checker [25], where the
system architecture is modeled as a parallel composition of probabilistic timed
automata (PTA) modules. These contributions are be presented in Paper D
[12].

The multi-agent AAL architecture that we propose in this thesis (Fig. 5.5)
has some important advantages if compared to our centralized AAL solution,
in terms of fault-tolerance, scalability, adaptability and accessibility for mul-
tiple users. Due to these obvious reasons (although difficult to develop and
maintain), distributed architectures are preferred in the AAL community com-
pared to their the centralized counter-parts. However, in our first contribution
in which we analyze the existing the agent-based architectures [5], we con-
clude that the distributed agent-based architectures suffer from an increased
overhead for the collective decision making while handling multiple function-
alities. Therefore, in our solution, we attempt to reduce such overhead by let-
ting the agents cooperate to ensure intelligent decision making. In our solution,
each agent has a particular function, that is, the fire agent deals with detecting
fire and raising a notification to the firefighter, the pulse agent detects the pulse
deviations and alerts the caregiver, etc. To be able to cooperate efficiently, each
agent is equipped with a list of possible dependencies that it can have with other
agents. The dependencies can vary dynamically. Each agent in the system is
represented with two dependency levels, level 1 and 2, respectively. Depen-
dency Level 1 denotes the list of agents that a particular agent has to cooperate

63

46 Chapter 5. Thesis Contributions

Figure 5.5: A Multi-agent system architecture for AAL systems

with to make an intelligent decision. For instance, in order for the fire agent to
notify the user of a fire in the kitchen, it has to cooperate with location agent to
identify where the user is. Dependency Level 2 shows the external dependen-
cies that an agent can have in terms of simultaneous occurrence of two events,
which does not affect its initial autonomous action directly. For instance, a fire
can occur along with a fall. The agents can later synchronize with second-level
dependent agents and later compensate for the action taken. In this case, a fire
agent compensates its initial action by informing the firefighters that the user
has fallen, besides sending the fire notification, such that the firefighters take an
immediate action without waiting for a fire event confirmation from the user.

Our multi-agent system (MAS) enables interaction with multiple agents be-
longing to different categories, ranging from simple reflex agents to complex
intelligent agents. In our architecture, we consider only two agent categories:
a) reflex agents with simple if-then-else rules, and b) intelligent agents with
reinforcement learning (RL) [13]. The AAL system described as a MAS con-
tains exercise agents, fall agents, health agents and fire agents (Fig. 5.5). The
exercise agent is modelled as an intelligent agent with RL and all other agents
are modelled as reflex agents.

46 Chapter 5. Thesis Contributions

Figure 5.5: A Multi-agent system architecture for AAL systems

with to make an intelligent decision. For instance, in order for the fire agent to
notify the user of a fire in the kitchen, it has to cooperate with location agent to
identify where the user is. Dependency Level 2 shows the external dependen-
cies that an agent can have in terms of simultaneous occurrence of two events,
which does not affect its initial autonomous action directly. For instance, a fire
can occur along with a fall. The agents can later synchronize with second-level
dependent agents and later compensate for the action taken. In this case, a fire
agent compensates its initial action by informing the firefighters that the user
has fallen, besides sending the fire notification, such that the firefighters take an
immediate action without waiting for a fire event confirmation from the user.

Our multi-agent system (MAS) enables interaction with multiple agents be-
longing to different categories, ranging from simple reflex agents to complex
intelligent agents. In our architecture, we consider only two agent categories:
a) reflex agents with simple if-then-else rules, and b) intelligent agents with
reinforcement learning (RL) [13]. The AAL system described as a MAS con-
tains exercise agents, fall agents, health agents and fire agents (Fig. 5.5). The
exercise agent is modelled as an intelligent agent with RL and all other agents
are modelled as reflex agents.

64

5.3 A Multi-agent-based Integrated Architecture for Ambient Assisted
Living and its Modeling and Analysis Framework 47

Listing 5.2: An excerpt of the fire agent modeling in AADL (interface)
1 a b s t r a c t F i r e _ A g e n t 1
2 f e a t u r e s
3 BA1 : r e q u i r e s bus a c c e s s ACP;
4 BA2 : r e q u i r e s bus a c c e s s SA_comm1 ;
5 p r o p e r t i e s
6 D i s p a t c h _ P r o t o c o l => P e r i o d i c ;
7 P e r i o d => 1 ms ;
8 Compute_Execu t ion_ t ime => 2ms . . 2 ms ;
9 end a g e n t 1 ;

10 bus ACP . . . end ACP;
11 sys tem a g e n t _ s y s t e m . . . end a g e n t _ s y s t e m ;
12 sys tem i m p l e m e n t a t i o n a g e n t _ s y s t e m . impl
13 subcomponents
14 A1 : a b s t r a c t F i r e _ A g e n t 1 ;
15 Agent_Comm_Protocol : bus ACP;
16 c o n n e c t i o n s
17 BAsys1 : bus a c c e s s Agent_Comm_Protocol <−>A1 . BA1 ;
18 end a g e n t _ s y s t e m . impl ;

We model the proposed architecture in AADL, which we extend with an
Agent Annex sub-language for specifying agent properties. For simplicity, we
show the modeling and analysis on an abstracted version of our MAS architec-
ture consisting of a pulse agent, a fire agent, a fall agent, and an exercise agent
each with a redundant copy. These agents cooperate via message-passing. Each
agent can accept 2 connections simultaneously from users. We show the case
where this system is used by 2 users simultaneously- Jim and Mary.

In the following, we briefly describe our AADL core model and illustrate
its Agent Annex. We consider the example of a fire agent as a representative
of reflex agents, whereas in Paper D [12], we look at an exercise agent rep-
resenting the intelligent agents category. The fire agent has the functionality
of notifying the firefighter in case of a fire event (with its behavior encoded as
if-then-else rules). Listing 5.2 shows an excerpt of the AADL model of a fire
agent in our MAS, and a bus component; the Agent Communication Protocol
(ACP) models the communication protocol between multiple agents. We as-
sume that the communication protocols defined here work via shared variables.
The communication between the agents via tracker is assumed instantaneous,
however direct communication between the agents always encounters a delay.
The Agent component is modeled as an abstract component in AADL (Lines 1-
9), which can be later refined towards a particular hardware or software, based
on the application. We also show a system-level representation (Lines 12-18)
with its sub-components and their connections defining the communication.

For extending the core AADL with Agent Annex, we first extend the core
AADL meta-model [39], specified as UML2 class diagrams with classes for
specifying agent behaviours. The meta-model extension is presented in our

5.3 A Multi-agent-based Integrated Architecture for Ambient Assisted
Living and its Modeling and Analysis Framework 47

Listing 5.2: An excerpt of the fire agent modeling in AADL (interface)
1 a b s t r a c t F i r e _ A g e n t 1
2 f e a t u r e s
3 BA1 : r e q u i r e s bus a c c e s s ACP ;
4 BA2 : r e q u i r e s bus a c c e s s SA_comm1 ;
5 p r o p e r t i e s
6 D i s p a t c h _ P r o t o c o l => P e r i o d i c ;
7 P e r i o d => 1 ms ;
8 Compute_Execu t ion_ t ime => 2ms . . 2 ms ;
9 end a g e n t 1 ;

10 bus ACP . . . end ACP;
11 sys tem a g e n t _ s y s t e m . . . end a g e n t _ s y s t e m ;
12 sys tem i m p l e m e n t a t i o n a g e n t _ s y s t e m . impl
13 subcomponents
14 A1 : a b s t r a c t F i r e _ A g e n t 1 ;
15 Agent_Comm_Protocol : bus ACP ;
16 c o n n e c t i o n s
17 BAsys1 : bus a c c e s s Agent_Comm_Protocol <−>A1 . BA1 ;
18 end a g e n t _ s y s t e m . impl ;

We model the proposed architecture in AADL, which we extend with an
Agent Annex sub-language for specifying agent properties. For simplicity, we
show the modeling and analysis on an abstracted version of our MAS architec-
ture consisting of a pulse agent, a fire agent, a fall agent, and an exercise agent
each with a redundant copy. These agents cooperate via message-passing. Each
agent can accept 2 connections simultaneously from users. We show the case
where this system is used by 2 users simultaneously- Jim and Mary.

In the following, we briefly describe our AADL core model and illustrate
its Agent Annex. We consider the example of a fire agent as a representative
of reflex agents, whereas in Paper D [12], we look at an exercise agent rep-
resenting the intelligent agents category. The fire agent has the functionality
of notifying the firefighter in case of a fire event (with its behavior encoded as
if-then-else rules). Listing 5.2 shows an excerpt of the AADL model of a fire
agent in our MAS, and a bus component; the Agent Communication Protocol
(ACP) models the communication protocol between multiple agents. We as-
sume that the communication protocols defined here work via shared variables.
The communication between the agents via tracker is assumed instantaneous,
however direct communication between the agents always encounters a delay.
The Agent component is modeled as an abstract component in AADL (Lines 1-
9), which can be later refined towards a particular hardware or software, based
on the application. We also show a system-level representation (Lines 12-18)
with its sub-components and their connections defining the communication.

For extending the core AADL with Agent Annex, we first extend the core
AADL meta-model [39], specified as UML2 class diagrams with classes for
specifying agent behaviours. The meta-model extension is presented in our

65

48 Chapter 5. Thesis Contributions

Paper D [12]. The Agent Model Annex is formulated by extending the AADL
abstract classes, Annex Library and Annex Subclause. The Annex Library is
used to declare classifiers of our Agent Annex in packages. The Annex Library
concepts are attached to an AADL model by using Annex subclause within a
component type or component implementation declaration.

Listing 5.3 shows the syntax of the Annex sub-clause of fire agent attached
to its component implementation. It defines a probabilistic transition system
with 3 states - Idle, Operational, and Fail, and a clock variable x, and
boolean variables fire and the alarm. Idle represents the initial state. It
also defines a probabilistic transition from state Idle. The transition is enabled
periodically based on the component’s period and it has a probability of 0.999
to reach the state Operational, and 0.001 probability to reach the state Fail.
If the agent reaches the Operational state, it raises a fire alarm in response
to the fire event, and takes a transition back to Idle, once the component has
consumed its execution time (defined by exec_time).

Listing 5.3: An example of Agent Model Annex Subclause attached to Fire
Agent

1 sys tem i m p l e m e n t a t i o n f i r e . a g e n t
2 subcomponents
3 f i r e _ s e n s o r : d e v i c e f _ s e n s o r ;
4 annex Agent_Model {∗∗
5 s t a t e s
6 I d l e , O p e r a t i o n a l , F a i l ;
7 I d l e : i n i t i a l s t a t e ;
8 t r a n s i t i o n s
9 [] s t a t e = I d l e & x= Per iod − >0.999:(s t a t e ’= O p e r a t i o n a l & x ’ = 0)

10 + 0 . 0 0 1 : (s t a t e ’= F a i l) ;
11 [] s t a t e = I d l e & x= P e r i o d & f i r e =1− >0.999:(s t a t e ’= O p e r a t i o n a l
12 & x ’=0 & f i r e _ a l a r m ’=1)+ 0 . 0 0 1 : (s t a t e ’= F a i l &f i r e _ a l a r m ’ = 0) ;
13 [] s t a t e = O p e r a t i o n a l & x= exec_ t ime−>s t a t e ’= I d l e & f i r e _ a l a r m ’ = 0 ;
14 v a r i a b l e s
15 c l o c k x ;
16 boo l f i r e ;
17 boo l f i r e _ a l a r m ;
18 ∗∗};
19 end f i r e . a g e n t ;

Formal Encoding and Analysis of MAS. An AADL component is defined
by the following tuple:

AADLComp = 〈Comptype, Compimp, AA〉, (5.4)

48 Chapter 5. Thesis Contributions

Paper D [12]. The Agent Model Annex is formulated by extending the AADL
abstract classes, Annex Library and Annex Subclause. The Annex Library is
used to declare classifiers of our Agent Annex in packages. The Annex Library
concepts are attached to an AADL model by using Annex subclause within a
component type or component implementation declaration.

Listing 5.3 shows the syntax of the Annex sub-clause of fire agent attached
to its component implementation. It defines a probabilistic transition system
with 3 states - Idle, Operational, and Fail, and a clock variable x, and
boolean variables fire and the alarm. Idle represents the initial state. It
also defines a probabilistic transition from state Idle. The transition is enabled
periodically based on the component’s period and it has a probability of 0.999
to reach the state Operational, and 0.001 probability to reach the state Fail.
If the agent reaches the Operational state, it raises a fire alarm in response
to the fire event, and takes a transition back to Idle, once the component has
consumed its execution time (defined by exec_time).

Listing 5.3: An example of Agent Model Annex Subclause attached to Fire
Agent

1 sys tem i m p l e m e n t a t i o n f i r e . a g e n t
2 subcomponents
3 f i r e _ s e n s o r : d e v i c e f _ s e n s o r ;
4 annex Agent_Model {∗∗
5 s t a t e s
6 I d l e , O p e r a t i o n a l , F a i l ;
7 I d l e : i n i t i a l s t a t e ;
8 t r a n s i t i o n s
9 [] s t a t e = I d l e & x= Per iod − >0.999:(s t a t e ’= O p e r a t i o n a l & x ’ = 0)

10 + 0 . 0 0 1 : (s t a t e ’= F a i l) ;
11 [] s t a t e = I d l e & x= P e r i o d & f i r e =1− >0.999:(s t a t e ’= O p e r a t i o n a l
12 & x ’=0 & f i r e _ a l a r m ’=1)+ 0 . 0 0 1 : (s t a t e ’= F a i l &f i r e _ a l a r m ’ = 0) ;
13 [] s t a t e = O p e r a t i o n a l & x= exec_ t ime−>s t a t e ’= I d l e & f i r e _ a l a r m ’ = 0 ;
14 v a r i a b l e s
15 c l o c k x ;
16 boo l f i r e ;
17 boo l f i r e _ a l a r m ;
18 ∗∗};
19 end f i r e . a g e n t ;

Formal Encoding and Analysis of MAS. An AADL component is defined
by the following tuple:

AADLComp = 〈Comptype, Compimp, AA〉, (5.4)

66

5.3 A Multi-agent-based Integrated Architecture for Ambient Assisted
Living and its Modeling and Analysis Framework 49

where Comptype is the component type, Compimp represents the component
implementation, and AA, the agent annex specification 3. The AA is formally
encoded as a tuple:

AA = 〈V ar, Init, T t〉, (5.5)

where: V ar represents the set of variables defined in AA, inclusive of state
labels, and others representing the sensor data and events, as well as clock
variables for specifying the real-time behaviour; Init is the assertion over V ar
denoting the set of initial states; Tt is the set of state transitions, defined ac-
cordingly to follow PRISM’s input language syntax defined in Chapter 2.

We also provide a formal encoding of our multi-agent system, including its
Agent Annex, in terms of a Stochastic Transition System (STS) [14] as follows:

The AADL component defined by Equation 5.4 is formally encoded as an
STS. The MAS architecture is represented as a parallel composition of all the
STS modules: MAS = ||ni=0STSmodulesi, where n is the number of AADL
components of the system, excluding data components and bus components, if
defined in the system (as variables in the AADL component using them).

For instance, the fire agent is formally encoded as an STS module, where:

• V : {(s1 = 0, fire = 0, fire_alarm = 0, x = 0), (s1 = 0, fire =
0, fire_alarm = 0, x = 1), (s1 = 1, fire = 1, fire_alarm = 1, x =
0), (s1 = 1, fire = 1, fire_alarm = 1, x = 1), (s1 = 1, fire =
1, fire_alarm = 1, x = 2), (s1 = 2, fire = 1, fire_alarm = 0, x =
0)}

• θ : s |= (s1 = 0 ∧ fire = 0 ∧ fire_alarm = 0 ∧ x = 0)

• T is defined by the set of transitions as follows:
T : {τ1 : {(s1 = 0 ∧ fire = 0 ∧ fire_alarm = 0 ∧ x = period) −→
(s1′ = 0 ∧ fire′ = 0 ∧ fire_alarm′ = 0 ∧ x′ = 0), P = 1},
τ2 : {(s1 = 0 ∧ fire = 1 ∧ fire_alarm = 0 ∧ x = period) −→
(s1′ = 1∧fire′ = 1∧fire_alarm′ = 1∧x′ = 0), P = 0.999∪(s1′ =
2 ∧ fire′ = 1 ∧ fire_alarm′ = 0 ∧ x′ = 0), P = 0.001},
τ3 : {(s1 = 1 ∧ fire = 1 ∧ fire_alarm = 1 ∧ x = 2) −→ (s1′ =
0 ∧ fire′ = 0 ∧ fire_alarm′ = 0 ∧ x′ = 0), P = 1}}

Similarly, all other AADL components are encoded as STS modules, respec-
tively.

3Although Agent Annex is specifically tailored to represent agent behaviours, it can also specify
the behaviours of other components, like the standard Behaviour Annex.

5.3 A Multi-agent-based Integrated Architecture for Ambient Assisted
Living and its Modeling and Analysis Framework 49

where Comptype is the component type, Compimp represents the component
implementation, and AA, the agent annex specification 3. The AA is formally
encoded as a tuple:

AA = 〈V ar, Init, T t〉, (5.5)

where: V ar represents the set of variables defined in AA, inclusive of state
labels, and others representing the sensor data and events, as well as clock
variables for specifying the real-time behaviour; Init is the assertion over V ar
denoting the set of initial states; Tt is the set of state transitions, defined ac-
cordingly to follow PRISM’s input language syntax defined in Chapter 2.

We also provide a formal encoding of our multi-agent system, including its
Agent Annex, in terms of a Stochastic Transition System (STS) [14] as follows:

The AADL component defined by Equation 5.4 is formally encoded as an
STS. The MAS architecture is represented as a parallel composition of all the
STS modules: MAS = ||ni=0STSmodulesi, where n is the number of AADL
components of the system, excluding data components and bus components, if
defined in the system (as variables in the AADL component using them).

For instance, the fire agent is formally encoded as an STS module, where:

• V : {(s1 = 0, fire = 0, fire_alarm = 0, x = 0), (s1 = 0, fire =
0, fire_alarm = 0, x = 1), (s1 = 1, fire = 1, fire_alarm = 1, x =
0), (s1 = 1, fire = 1, fire_alarm = 1, x = 1), (s1 = 1, fire =
1, fire_alarm = 1, x = 2), (s1 = 2, fire = 1, fire_alarm = 0, x =
0)}

• θ : s |= (s1 = 0 ∧ fire = 0 ∧ fire_alarm = 0 ∧ x = 0)

• T is defined by the set of transitions as follows:
T : {τ1 : {(s1 = 0 ∧ fire = 0 ∧ fire_alarm = 0 ∧ x = period) −→
(s1′ = 0 ∧ fire′ = 0 ∧ fire_alarm′ = 0 ∧ x′ = 0), P = 1},
τ2 : {(s1 = 0 ∧ fire = 1 ∧ fire_alarm = 0 ∧ x = period) −→
(s1′ = 1∧fire′ = 1∧fire_alarm′ = 1∧x′ = 0), P = 0.999∪(s1′ =
2 ∧ fire′ = 1 ∧ fire_alarm′ = 0 ∧ x′ = 0), P = 0.001},
τ3 : {(s1 = 1 ∧ fire = 1 ∧ fire_alarm = 1 ∧ x = 2) −→ (s1′ =
0 ∧ fire′ = 0 ∧ fire_alarm′ = 0 ∧ x′ = 0), P = 1}}

Similarly, all other AADL components are encoded as STS modules, respec-
tively.

3Although Agent Annex is specifically tailored to represent agent behaviours, it can also specify
the behaviours of other components, like the standard Behaviour Annex.

67

50 Chapter 5. Thesis Contributions

Listing 5.4: PRISM Model of a Fire Agent
1 p t a
2 module F i r e _ a g e n t 1
3 s1 : [0 . . 2] i n i t 0 ; / / s t a t e s 0 −I d l e ,1−O p e r a t i o n a l ,2− F a i l
4 f i r e : [0 . . 1] i n i t 0 ; f i r e _ a l e r t 0 : [0 . . 1] i n i t 0 ;
5 x1 : c l o c k ;
6 i n v a r i a n t
7 (s1 =1 => x1 <=2) & (s1 =0 => x1 <=1)
8 e n d i n v a r i a n t
9 [1] s1 =0 & f i r e =0 &x1=1−> (s1 ’ = 0) &(x1 ’ = 0) &(f i r e _ a l e r t 0 ’ = 0) ;

10 [2] s1 =0 & f i r e =1 & x1=1−> 0 . 9 9 9 : (s1 ’ = 1) & (f i r e _ a l e r t 0 ’ = 1)
11 & (x1 ’ = 0) + 0 . 0 0 1 : (s1 ’ = 2) &(x1 ’ = 0) & (f i r e _ a l e r t 0 ’ = 0) ;
12 [3] s1 =1 & x1=2 −> (s1 ’ = 0) & (x1 ’ = 0) &(f i r e _ a l e r t 0 ’ = 0) ;
13 endmodule

The next step is the formal analysis of the architecture using PRISM model-
checker. The STS modules are encoded as PTA modules in PRISM. Listing
5.4 shows the encoding of the fire agent in PRISM. The encoding of STS
as PTA modules used by PRISM is straightforward, hence we change only
the syntax to match the PRISM input language. The Fire Agent PTA module
uses a variable s1 to represent the state: s1 = 0 (Idle), s1 = 1 (Operational),
s1 = 2 (Fail). There are variables to represent the fire event (fire: [0..1]), and
raised fall alert (fire_alert0[0..1]), where 0 indicates that the event has not
occurred, whereas 1 indicates the opposite. Variable x1 is a clock variable.
The invariants associated with the states (Lines 6-8) depend on the component
properties like dispatch protocol and execution time (that are defined at the
interface of the AADL component’s model). If the component is periodic, the
state Idle has the invariant x1 ≤ Period associated with it. Similarly, the
invariant of state Operational is x1 ≤ Exec_time. The transitions (Lines
denoted by labels 1-3) follow the transitions definition of the Agent Annex
specification of the Fire Agent.

After specifying the architecture as a parallel composition of the PTA mod-
ules [12], we verify the the following system requirements with PRISM.

• R1: If a fall occurs due to low pulse, then raise an alert to caregiver
indicating fall due to low pulse within 20 s.

• R2: If a fire and a fall event occur simultaneously, then raise an alert to
both caregiver and firefighter indicating the issue, within 20 s.

• R3: The exercise session is scheduled only if the health agent indicates
a normal pulse.

50 Chapter 5. Thesis Contributions

Listing 5.4: PRISM Model of a Fire Agent
1 p t a
2 module F i r e _ a g e n t 1
3 s1 : [0 . . 2] i n i t 0 ; / / s t a t e s 0 −I d l e ,1−O p e r a t i o n a l ,2− F a i l
4 f i r e : [0 . . 1] i n i t 0 ; f i r e _ a l e r t 0 : [0 . . 1] i n i t 0 ;
5 x1 : c l o c k ;
6 i n v a r i a n t
7 (s1 =1 => x1 <=2) & (s1 =0 => x1 <=1)
8 e n d i n v a r i a n t
9 [1] s1 =0 & f i r e =0 &x1=1−> (s1 ’ = 0) &(x1 ’ = 0) &(f i r e _ a l e r t 0 ’ = 0) ;

10 [2] s1 =0 & f i r e =1 & x1=1−> 0 . 9 9 9 : (s1 ’ = 1) & (f i r e _ a l e r t 0 ’ = 1)
11 & (x1 ’ = 0) + 0 . 0 0 1 : (s1 ’ = 2) &(x1 ’ = 0) & (f i r e _ a l e r t 0 ’ = 0) ;
12 [3] s1 =1 & x1=2 −> (s1 ’ = 0) & (x1 ’ = 0) &(f i r e _ a l e r t 0 ’ = 0) ;
13 endmodule

The next step is the formal analysis of the architecture using PRISM model-
checker. The STS modules are encoded as PTA modules in PRISM. Listing
5.4 shows the encoding of the fire agent in PRISM. The encoding of STS
as PTA modules used by PRISM is straightforward, hence we change only
the syntax to match the PRISM input language. The Fire Agent PTA module
uses a variable s1 to represent the state: s1 = 0 (Idle), s1 = 1 (Operational),
s1 = 2 (Fail). There are variables to represent the fire event (fire: [0..1]), and
raised fall alert (fire_alert0[0..1]), where 0 indicates that the event has not
occurred, whereas 1 indicates the opposite. Variable x1 is a clock variable.
The invariants associated with the states (Lines 6-8) depend on the component
properties like dispatch protocol and execution time (that are defined at the
interface of the AADL component’s model). If the component is periodic, the
state Idle has the invariant x1 ≤ Period associated with it. Similarly, the
invariant of state Operational is x1 ≤ Exec_time. The transitions (Lines
denoted by labels 1-3) follow the transitions definition of the Agent Annex
specification of the Fire Agent.

After specifying the architecture as a parallel composition of the PTA mod-
ules [12], we verify the the following system requirements with PRISM.

• R1: If a fall occurs due to low pulse, then raise an alert to caregiver
indicating fall due to low pulse within 20 s.

• R2: If a fire and a fall event occur simultaneously, then raise an alert to
both caregiver and firefighter indicating the issue, within 20 s.

• R3: The exercise session is scheduled only if the health agent indicates
a normal pulse.

68

5.3 A Multi-agent-based Integrated Architecture for Ambient Assisted
Living and its Modeling and Analysis Framework 51

Table 5.4 Verification results
Req. Query Result

R1

filter(forall, fall_user1 = 1&pulse_user1 ≤ 50

&tracker_fail = 0→ P ≥ 0.999 [F ((pulse_alert0_u1 = 3

|pulse_alert1_u1 = 3| pulse_alert2_u1 = 3|pulse_alert3_u1

= 3) & (y ≤ 10)&(fall_fail = 0) &(pulse_fail = 0))] satisfied

R2

filter(forall, fall_user2 = 1&fire_user2 = 1&

tracker_fail = 0→ P ≥ 0.999 [F ((firefall_alert0_u2 = 2

|firefall_alert1_u2 = 2| firefall_alert2_u2 = 2|
firefall_alert3_u2 = 2)&(y ≤ 10) &(fall_fail = 0)

&(fire_fail = 0))] satisfied

R3

filter(forall, cal_notexc_user1 = 1&tracker_fail = 0

&(pulse_user1 ≥ 60 &pulse_user1 ≤ 120)→
P ≥ 0.999 [F (exc_sch_u1 = 1))] satisfied

R4
filter(forall, exc_sch_u1 = 1&u1_disease_history = 1

&u1_pref = 2→ P ≥ 0.999 [F (exc_u1_int1 = 2)] satisfied

R5
filter(forall, exc_sch_u1 = 1&interval = 1 &y ≤ 5

&pulse_user1 ≥ 200→ P ≥ 0.999 [F (exc_u1_int2 = 1)] satisfied

R6

filter(forall, fall_user2 = 1&fire_user2 = 1

&tracker_fail = 1→ P ≥ 0.999 [F ((fall_alert0_u2 = 2|
fall_alert1_u2 = 2| fall_alert2_u2 = 2|fall_alert3_u2 = 2)

&(y ≤ 20) & (fall_fail = 0)&(fire_fail = 0))] satisfied

R7

filter(forall, fall_user2 = 1&tracker_fail = 0&

fail1_fall = 1 &fall2_fall = 0→ P ≥ 0.999

[F ((fall_alert2_u2 = 1|fall_alert3_u2 = 1) &y ≤ 20)] satisfied

• R4: The initially suggested exercise is based on user preferences and
health condition.

• R5: If any health abnormality is detected in the first sub-session of the
exercise, a different set of exercises of lower intensity is prescribed. It
should be noted that R1-R5 are safety-critical requirements.

In addition, the system has quality-of-service (QoS) requirements as follows:

• R6: If the tracker fails, the system continues its functionality.

• R7: If one of the agent fails, its function is carried out by the back-up.

The verification results are tabulated in Table 5.4. The requirements are
formulated as PCTL queries and the model-checking method is Digital Clocks.

5.3 A Multi-agent-based Integrated Architecture for Ambient Assisted
Living and its Modeling and Analysis Framework 51

Table 5.4 Verification results
Req. Query Result

R1

filter(forall, fall_user1 = 1&pulse_user1 ≤ 50

&tracker_fail = 0→ P ≥ 0.999 [F ((pulse_alert0_u1 = 3

|pulse_alert1_u1 = 3| pulse_alert2_u1 = 3|pulse_alert3_u1

= 3) & (y ≤ 10)&(fall_fail = 0) &(pulse_fail = 0))] satisfied

R2

filter(forall, fall_user2 = 1&fire_user2 = 1&

tracker_fail = 0→ P ≥ 0.999 [F ((firefall_alert0_u2 = 2

|firefall_alert1_u2 = 2| firefall_alert2_u2 = 2|
firefall_alert3_u2 = 2)&(y ≤ 10) &(fall_fail = 0)

&(fire_fail = 0))] satisfied

R3

filter(forall, cal_notexc_user1 = 1&tracker_fail = 0

&(pulse_user1 ≥ 60 &pulse_user1 ≤ 120)→
P ≥ 0.999 [F (exc_sch_u1 = 1))] satisfied

R4
filter(forall, exc_sch_u1 = 1&u1_disease_history = 1

&u1_pref = 2→ P ≥ 0.999 [F (exc_u1_int1 = 2)] satisfied

R5
filter(forall, exc_sch_u1 = 1&interval = 1 &y ≤ 5

&pulse_user1 ≥ 200→ P ≥ 0.999 [F (exc_u1_int2 = 1)] satisfied

R6

filter(forall, fall_user2 = 1&fire_user2 = 1

&tracker_fail = 1→ P ≥ 0.999 [F ((fall_alert0_u2 = 2|
fall_alert1_u2 = 2| fall_alert2_u2 = 2|fall_alert3_u2 = 2)

&(y ≤ 20) & (fall_fail = 0)&(fire_fail = 0))] satisfied

R7

filter(forall, fall_user2 = 1&tracker_fail = 0&

fail1_fall = 1 &fall2_fall = 0→ P ≥ 0.999

[F ((fall_alert2_u2 = 1|fall_alert3_u2 = 1) &y ≤ 20)] satisfied

• R4: The initially suggested exercise is based on user preferences and
health condition.

• R5: If any health abnormality is detected in the first sub-session of the
exercise, a different set of exercises of lower intensity is prescribed. It
should be noted that R1-R5 are safety-critical requirements.

In addition, the system has quality-of-service (QoS) requirements as follows:

• R6: If the tracker fails, the system continues its functionality.

• R7: If one of the agent fails, its function is carried out by the back-up.

The verification results are tabulated in Table 5.4. The requirements are
formulated as PCTL queries and the model-checking method is Digital Clocks.

69

52 Chapter 5. Thesis Contributions

Since PRISM, by default, returns the value for the (single) initial state of the
model while model checking, we employ filters to verify our properties over
all states. Requirement R1 ensures that if a fall event occurs due to a low pulse
for user1 (Jim), and the tracker is operational, then the tracker initiates the
communication between the respective fall and pulse agents associated with
user Jim (the request can be assigned to any of the agent sockets depending on
availability), and the probability that one of them sends an alert to caregiver
indicating that there is “fall due to low pulse” is greater than 0.999 provided
that at least one of the sockets of each agent is functional. Assuming that the
communication via tracker takes less time, the requirement is satisfied within
10 time units. Similarly, for R2, we verify for user2 (Mary) that in case of
fire and fall events occurring simultaneously, an alert indicating both events is
raised and sent within 10 time units, provided that the tracker has not failed. In
case ofR3,R4 andR5, we verify the functionality of the exercise agent serving
Jim. By R3, we establish that the exercise session is scheduled only if the
corresponding health agent indicates that the user’s pulse level is normal. R4
indicates that the initial exercise category is chosen based on user preferences
and health condition. By verifying R5, we show that if a high pulse deviation
occurs during the exercise sub-session, a low intensity exercise is chosen in the
next sub-session, irrespective of user preferences. InR6, we illustrate a similar
function as in R2, but assuming that the tracker has failed. In this case, the
functionality is met by direct communication between the agents, which takes
more time than the communication via tracker (it is shown that this requirement
is satisfied within 20 time units). Next, inR7, we assume a fall event of user2,
and one failed fall agent; then, a fall alert is raised and sent to the caregiver by
either one of the redundant fall agents. PRISM shows that this requirement is
satisfied within 20 time units.

These contributions are contained in Paper D and address Research Ques-
tions 2a and 2b.

5.4 Validation with End Users

As a final contribution, we present some initial validation that we have per-
formed on the CAMI architecture (contribution 2), thereby addressing the Re-
search Question 3 formulated in Chapter 4. The research contribution is pre-
sented in Paper E. In the analysis presented in the paper, we show the response
of 105 senior citizens (55-75 years old) from Romania, Poland and Denmark
regarding the CAMI functionalities. With the responses, we give priorities to

52 Chapter 5. Thesis Contributions

Since PRISM, by default, returns the value for the (single) initial state of the
model while model checking, we employ filters to verify our properties over
all states. Requirement R1 ensures that if a fall event occurs due to a low pulse
for user1 (Jim), and the tracker is operational, then the tracker initiates the
communication between the respective fall and pulse agents associated with
user Jim (the request can be assigned to any of the agent sockets depending on
availability), and the probability that one of them sends an alert to caregiver
indicating that there is “fall due to low pulse” is greater than 0.999 provided
that at least one of the sockets of each agent is functional. Assuming that the
communication via tracker takes less time, the requirement is satisfied within
10 time units. Similarly, for R2, we verify for user2 (Mary) that in case of
fire and fall events occurring simultaneously, an alert indicating both events is
raised and sent within 10 time units, provided that the tracker has not failed. In
case ofR3,R4 andR5, we verify the functionality of the exercise agent serving
Jim. By R3, we establish that the exercise session is scheduled only if the
corresponding health agent indicates that the user’s pulse level is normal. R4
indicates that the initial exercise category is chosen based on user preferences
and health condition. By verifying R5, we show that if a high pulse deviation
occurs during the exercise sub-session, a low intensity exercise is chosen in the
next sub-session, irrespective of user preferences. InR6, we illustrate a similar
function as in R2, but assuming that the tracker has failed. In this case, the
functionality is met by direct communication between the agents, which takes
more time than the communication via tracker (it is shown that this requirement
is satisfied within 20 time units). Next, inR7, we assume a fall event of user2,
and one failed fall agent; then, a fall alert is raised and sent to the caregiver by
either one of the redundant fall agents. PRISM shows that this requirement is
satisfied within 20 time units.

These contributions are contained in Paper D and address Research Ques-
tions 2a and 2b.

5.4 Validation with End Users

As a final contribution, we present some initial validation that we have per-
formed on the CAMI architecture (contribution 2), thereby addressing the Re-
search Question 3 formulated in Chapter 4. The research contribution is pre-
sented in Paper E. In the analysis presented in the paper, we show the response
of 105 senior citizens (55-75 years old) from Romania, Poland and Denmark
regarding the CAMI functionalities. With the responses, we give priorities to

70

5.4 Validation with End Users 53

health monitoring, fall detection, supervised physical exercises and vocal in-
teraction. We formulate a smaller implemented version of the initial CAMI
architecture, presented in Paper B [5]. We also show an initial analysis results
of these implemented functionalities by carrying out a set of tests in laborato-
ries by involving different users.

Health-monitoring functionalities: In CAMI, we offer a set of health mon-
itoring functionalities that allow us to monitor blood pressure, heart rate, blood
glucose, etc. In addition, CAMI also employs fall detection sensors to identify
falls of the elderly and raise timely alerts. Among the respondents, 59% con-
sider the graphic display of various health measurements (e.g. blood pressure,
heart rate, oxygen levels) as an interesting feature. The ability to share health
measurements with various doctors is considered useful by 60% of the respon-
dents. CAMI’s fall detection functionality employing Vibby wearable is tested
in laboratory by employing multiple users.

Physical exercise monitoring: CAMI system implements physical exercise
monitoring using two avatars: the training avatar and the avatar of the user.
The training avatar performs different physical exercises that the user must
reproduce. We also test the suitability of exercise avatars in laboratory with
multiple users.

Vocal interaction: CAMI’s vocal interaction module comprises of modules
for automatic speech recognition , natural language understanding, dialog man-
agement, natural language generation, and text to speech synthesis. In order to
test our vocal interaction functionality, we devise a variety of text inputs for the
user to interact with the CAMI system and test the system responsiveness.

A plan for extensive field trails in user homes has been devised and the
questionnaires has been set up, and this will be accounted in our future work.

5.4 Validation with End Users 53

health monitoring, fall detection, supervised physical exercises and vocal in-
teraction. We formulate a smaller implemented version of the initial CAMI
architecture, presented in Paper B [5]. We also show an initial analysis results
of these implemented functionalities by carrying out a set of tests in laborato-
ries by involving different users.

Health-monitoring functionalities: In CAMI, we offer a set of health mon-
itoring functionalities that allow us to monitor blood pressure, heart rate, blood
glucose, etc. In addition, CAMI also employs fall detection sensors to identify
falls of the elderly and raise timely alerts. Among the respondents, 59% con-
sider the graphic display of various health measurements (e.g. blood pressure,
heart rate, oxygen levels) as an interesting feature. The ability to share health
measurements with various doctors is considered useful by 60% of the respon-
dents. CAMI’s fall detection functionality employing Vibby wearable is tested
in laboratory by employing multiple users.

Physical exercise monitoring: CAMI system implements physical exercise
monitoring using two avatars: the training avatar and the avatar of the user.
The training avatar performs different physical exercises that the user must
reproduce. We also test the suitability of exercise avatars in laboratory with
multiple users.

Vocal interaction: CAMI’s vocal interaction module comprises of modules
for automatic speech recognition , natural language understanding, dialog man-
agement, natural language generation, and text to speech synthesis. In order to
test our vocal interaction functionality, we devise a variety of text inputs for the
user to interact with the CAMI system and test the system responsiveness.

A plan for extensive field trails in user homes has been devised and the
questionnaires has been set up, and this will be accounted in our future work.

71

72

Chapter 6

Related Work

In recent years, there has been a lot of research in the field of AAL, due to to
the need for supporting an increased elderly population [4]. In this section, we
describe some of the prominent AAL solutions with respect to their software
architecture models and and compare the formal approaches where they exist
with our solutions.

6.1 Software Architecture Models for AAL

A literature study on existing AAL architectures shows that there are certain
architecture types that address the construction of integrative AAL applica-
tions (i.e., those that focus on creating a holistic user experience, not just the
development of a specific functionality such as health data management or so-
cial interaction) [40]. We have classified them into the following architecture
types: Multi-Agent Systems (MAS), Cloud-based systems, and Internet-of-
Things (IoT) centric.
Agent-based architectures: These are the most commonly used architectures
for AAL applications due to their flexibility, autonomy, adaptability, better re-
sponse and service continuity due to the distributed nature [41, 42]. The agents
are autonomous processing entities and can be local and/or cloud based. Some
examples of healthcare frameworks that rely on a distributed agent architecture
are proposed by Pez et al.[43], Sernani et. al [44], and Tapia et. al[38]. How-
ever, the agent based architectures also have some drawbacks, for instance,
restricted communication protocols for agent communication and the delay

55

Chapter 6

Related Work

In recent years, there has been a lot of research in the field of AAL, due to to
the need for supporting an increased elderly population [4]. In this section, we
describe some of the prominent AAL solutions with respect to their software
architecture models and and compare the formal approaches where they exist
with our solutions.

6.1 Software Architecture Models for AAL

A literature study on existing AAL architectures shows that there are certain
architecture types that address the construction of integrative AAL applica-
tions (i.e., those that focus on creating a holistic user experience, not just the
development of a specific functionality such as health data management or so-
cial interaction) [40]. We have classified them into the following architecture
types: Multi-Agent Systems (MAS), Cloud-based systems, and Internet-of-
Things (IoT) centric.
Agent-based architectures: These are the most commonly used architectures
for AAL applications due to their flexibility, autonomy, adaptability, better re-
sponse and service continuity due to the distributed nature [41, 42]. The agents
are autonomous processing entities and can be local and/or cloud based. Some
examples of healthcare frameworks that rely on a distributed agent architecture
are proposed by Pez et al.[43], Sernani et. al [44], and Tapia et. al[38]. How-
ever, the agent based architectures also have some drawbacks, for instance,
restricted communication protocols for agent communication and the delay

55

73

56 Chapter 6. Related Work

overhead in taking a collective decision [41].
Cloud-based AAL solutions: There are many AAL solutions that leverage
the potential of cloud computing for context modeling [45, 46, 47] intelligent
decision making, and use it as a data store [37].

Although cloud-based solutions are scalable, cost-effective, reusable,
adaptable, and extendable, the sole processing with cloud cannot guarantee
strict hard real-time properties, and the system fails completely in the absence
of Internet.
IoT architectures: IoT technology is now getting widely utilized in the field
of AAL owing to its technological advancements. The IoT concept of com-
munication (i) between smart objects, (ii) smart objects and people, and (iii)
among people themselves, are widely exploited in the field of AAL, thereby
providing connectivity, context-awareness and adaptivity [48]. There are also
approaches to integrate the autonomous behavior of agent-based systems with
IoT technology [49, 50, 51].

Although AAL systems based on IoT offer high flexibility, adaptability, the
system depends only on the availability of the Internet for operation, which can
lead to a complete failure of such systems in places where Internet connectivity
is meager.

In our work, we propose two architecture solutions using the concepts from
these existing architecture solutions:

• A centralized solution which uses the cloud for data processing and stor-
age (Paper B [5], Paper C [6]).

Our architecture is designed with local processing along with cloud pro-
cessing. In order to overcome the lack of real timeliness property of
cloud, we allow hard real-time functionalities to be handled by the local
processor. We also overcome the sole dependency of Internet for the op-
eration of our system by a switch which can select using either GSM and
Internet communication options.

• A distributed architecture solution with agents and cloud support [Paper
D [12]].

In this architecture, we use cloud as a data store, and for the long-term
processing of the stored data. Our architecture eliminates the disadvan-
tages of existing agent systems by providing an efficient way to deal with
agent cooperation for intelligent decision making, in real-time.

The backbone of any AAL solution lies in its ambient intelligence utilized
for context awareness and intelligent decision making [52]. Many studies have

56 Chapter 6. Related Work

overhead in taking a collective decision [41].
Cloud-based AAL solutions: There are many AAL solutions that leverage
the potential of cloud computing for context modeling [45, 46, 47] intelligent
decision making, and use it as a data store [37].

Although cloud-based solutions are scalable, cost-effective, reusable,
adaptable, and extendable, the sole processing with cloud cannot guarantee
strict hard real-time properties, and the system fails completely in the absence
of Internet.
IoT architectures: IoT technology is now getting widely utilized in the field
of AAL owing to its technological advancements. The IoT concept of com-
munication (i) between smart objects, (ii) smart objects and people, and (iii)
among people themselves, are widely exploited in the field of AAL, thereby
providing connectivity, context-awareness and adaptivity [48]. There are also
approaches to integrate the autonomous behavior of agent-based systems with
IoT technology [49, 50, 51].

Although AAL systems based on IoT offer high flexibility, adaptability, the
system depends only on the availability of the Internet for operation, which can
lead to a complete failure of such systems in places where Internet connectivity
is meager.

In our work, we propose two architecture solutions using the concepts from
these existing architecture solutions:

• A centralized solution which uses the cloud for data processing and stor-
age (Paper B [5], Paper C [6]).

Our architecture is designed with local processing along with cloud pro-
cessing. In order to overcome the lack of real timeliness property of
cloud, we allow hard real-time functionalities to be handled by the local
processor. We also overcome the sole dependency of Internet for the op-
eration of our system by a switch which can select using either GSM and
Internet communication options.

• A distributed architecture solution with agents and cloud support [Paper
D [12]].

In this architecture, we use cloud as a data store, and for the long-term
processing of the stored data. Our architecture eliminates the disadvan-
tages of existing agent systems by providing an efficient way to deal with
agent cooperation for intelligent decision making, in real-time.

The backbone of any AAL solution lies in its ambient intelligence utilized
for context awareness and intelligent decision making [52]. Many studies have

74

6.1 Software Architecture Models for AAL 57

progressed in this aspect; some of them utilize AI solutions like case-based
reasoning [53, 52], fuzzy-logic-based reasoning [54, 55] etc. Based on our
preliminary studies [3, 5], we conclude that there is room for improving ex-
isting AAL solutions in terms of flexibility and continuity of use, range of
provided services, as well as incorporating user preferences into the design,
for higher acceptance. In addition, by incorporating multiple AI intelligence
algorithms to tackle different scenarios, one can effectively improve the in-
telligence offered in such solutions. In this thesis, we also propose a DSS
architecture combining multiple AI techniques to support enhanced reasoning
(Paper C [6]) .

6.1.1 Formal Modeling and Analysis of AAL Systems

Since AAL systems are complex safety-critical systems, which are dynamic
and subjected to an unpredictable environment, it is essential that their behavior
is analyzed by using formal techniques, to provide assurance that they meet
their requirements.

The use of architecture description languages to specify AAL systems has
not been exercised previously, yet this is a common approach in automotive or
automation systems. In order to specify agent-based systems, there are other
approaches for their modeling, especially based on logic-based formalisms, al-
though not so commonly used in the AAL domain. Some of the most popular
ones are AUML [56], extended DESCARTES [57], GAIA [58], SLABS [59],
CASL[60], DESIRE [61], dMARS [62], agent-based G-net model [63], con-
current METATEM [64] etc. AUML (Agent Unified Modeling Language) [56]
is one of the most widely employed modeling framework for agent-based sys-
tems in industry. The advantages include provision of simple graphical design
tools that enable non-mathematical designers to use it efficiently. However,
AUML specifications are often graphical and lack formal semantics. There-
fore, one cannot verify AUML designs formally to guarantee certain assur-
ance, which is a very important factor to be considered in the design of safety-
critical systems. The specification language called extended DESCARTES
[57], provides an executable specification language for BDI (Belief-Desire-
Intention) agents, based on Hoare logic. The language is an extension of
the DESCARTES specification language [65] developed for specifying real-
time systems. However, the language is targeted to specify only closed-loop
BDI agents, and lacks expressions for the self-learning of autonomous agents.
GAIA [58] is one of the initial approaches for agent-oriented design and anal-
ysis. However, the lack of a formal specification language, and the inability

6.1 Software Architecture Models for AAL 57

progressed in this aspect; some of them utilize AI solutions like case-based
reasoning [53, 52], fuzzy-logic-based reasoning [54, 55] etc. Based on our
preliminary studies [3, 5], we conclude that there is room for improving ex-
isting AAL solutions in terms of flexibility and continuity of use, range of
provided services, as well as incorporating user preferences into the design,
for higher acceptance. In addition, by incorporating multiple AI intelligence
algorithms to tackle different scenarios, one can effectively improve the in-
telligence offered in such solutions. In this thesis, we also propose a DSS
architecture combining multiple AI techniques to support enhanced reasoning
(Paper C [6]) .

6.1.1 Formal Modeling and Analysis of AAL Systems

Since AAL systems are complex safety-critical systems, which are dynamic
and subjected to an unpredictable environment, it is essential that their behavior
is analyzed by using formal techniques, to provide assurance that they meet
their requirements.

The use of architecture description languages to specify AAL systems has
not been exercised previously, yet this is a common approach in automotive or
automation systems. In order to specify agent-based systems, there are other
approaches for their modeling, especially based on logic-based formalisms, al-
though not so commonly used in the AAL domain. Some of the most popular
ones are AUML [56], extended DESCARTES [57], GAIA [58], SLABS [59],
CASL[60], DESIRE [61], dMARS [62], agent-based G-net model [63], con-
current METATEM [64] etc. AUML (Agent Unified Modeling Language) [56]
is one of the most widely employed modeling framework for agent-based sys-
tems in industry. The advantages include provision of simple graphical design
tools that enable non-mathematical designers to use it efficiently. However,
AUML specifications are often graphical and lack formal semantics. There-
fore, one cannot verify AUML designs formally to guarantee certain assur-
ance, which is a very important factor to be considered in the design of safety-
critical systems. The specification language called extended DESCARTES
[57], provides an executable specification language for BDI (Belief-Desire-
Intention) agents, based on Hoare logic. The language is an extension of
the DESCARTES specification language [65] developed for specifying real-
time systems. However, the language is targeted to specify only closed-loop
BDI agents, and lacks expressions for the self-learning of autonomous agents.
GAIA [58] is one of the initial approaches for agent-oriented design and anal-
ysis. However, the lack of a formal specification language, and the inability

75

58 Chapter 6. Related Work

to model dynamic and open systems are its major drawbacks. SLABS (Spec-
ification Language for agent Based Systems)[59] is one of the popular agent
specification languages that specifies the notion of agents, environment and
multi-agent systems, and communication between agents. However, SLABS
lacks an executable framework like DESCARTES and fails to express high-
level agent properties like self-learning.

CASL (Cognitive Agent Specification Language) [60] specifies agents with
mental attributes, knowledge, beliefs, and goals. For the formal specification,
it considers the action theory defined by situation calculus. However, limited
expressiveness due to the employed modeling notations, and difficulty in spec-
ifying complex multi-agent systems are the major drawbacks of CASL. DE-
SIRE [61] is a modeling framework developed to specify multi-agent systems,
which allows user to specify various intra-agent and inter-agent functionalities.
However, DESIRE lacks a formal language to represent the agents, and does
not specify various agent properties, such as beliefs, desires, intentions, com-
mitments etc. dMARS (Distributed Multi-Agent Reasoning System) [62] is
based on a Procedural Reasoning System (PRS) [66] for modeling BDI agents.
However, the approach restricts only to BDI agents, does not support agent
properties such as agent roles, interactions and message passing and it does not
provide tool support for executing agent specifications.

Another type of approach relies on using traditional software engineering
formalisms. One such approach proposed by Luck and d’Inverno [67] using
the Z-specification language. However, the usage of Z makes the specifica-
tions of MAS complex. Moreover, certain aspects of MAS, like reactive be-
haviour are difficult to specify using Z. In addition, these specifications are
not executable so simulation and prototyping are not possible [68]. Hilaire
et al. [68] have used a multi-formalism-based approach using Object Z and
statecharts, which provides expressiveness to specify agent reactiveness and
supports prototyping by simulation. However, the specifications are way too
complex to be easily comprehensible. Moreover, the Object Z specifications
are not executable. Another interesting work by authors in [69], uses Event-B
specifications to specify goal-oriented resilient MAS. The approach is not as
complex as Z-language, and can specify different abstractions, and in addition,
has a tool support Rodin to develop the specifications, hence can be viewed as
complementary to our approach due to the deductive approach for verification.

Few works have considered the specification and formal analysis of agent
behavior in architecture description languages [70]. However, it uses complex
formal semantics that hinder their usability and extension.

In comparison, we propose solutions that are able to specify AAL sys-

58 Chapter 6. Related Work

to model dynamic and open systems are its major drawbacks. SLABS (Spec-
ification Language for agent Based Systems)[59] is one of the popular agent
specification languages that specifies the notion of agents, environment and
multi-agent systems, and communication between agents. However, SLABS
lacks an executable framework like DESCARTES and fails to express high-
level agent properties like self-learning.

CASL (Cognitive Agent Specification Language) [60] specifies agents with
mental attributes, knowledge, beliefs, and goals. For the formal specification,
it considers the action theory defined by situation calculus. However, limited
expressiveness due to the employed modeling notations, and difficulty in spec-
ifying complex multi-agent systems are the major drawbacks of CASL. DE-
SIRE [61] is a modeling framework developed to specify multi-agent systems,
which allows user to specify various intra-agent and inter-agent functionalities.
However, DESIRE lacks a formal language to represent the agents, and does
not specify various agent properties, such as beliefs, desires, intentions, com-
mitments etc. dMARS (Distributed Multi-Agent Reasoning System) [62] is
based on a Procedural Reasoning System (PRS) [66] for modeling BDI agents.
However, the approach restricts only to BDI agents, does not support agent
properties such as agent roles, interactions and message passing and it does not
provide tool support for executing agent specifications.

Another type of approach relies on using traditional software engineering
formalisms. One such approach proposed by Luck and d’Inverno [67] using
the Z-specification language. However, the usage of Z makes the specifica-
tions of MAS complex. Moreover, certain aspects of MAS, like reactive be-
haviour are difficult to specify using Z. In addition, these specifications are
not executable so simulation and prototyping are not possible [68]. Hilaire
et al. [68] have used a multi-formalism-based approach using Object Z and
statecharts, which provides expressiveness to specify agent reactiveness and
supports prototyping by simulation. However, the specifications are way too
complex to be easily comprehensible. Moreover, the Object Z specifications
are not executable. Another interesting work by authors in [69], uses Event-B
specifications to specify goal-oriented resilient MAS. The approach is not as
complex as Z-language, and can specify different abstractions, and in addition,
has a tool support Rodin to develop the specifications, hence can be viewed as
complementary to our approach due to the deductive approach for verification.

Few works have considered the specification and formal analysis of agent
behavior in architecture description languages [70]. However, it uses complex
formal semantics that hinder their usability and extension.

In comparison, we propose solutions that are able to specify AAL sys-

76

6.1 Software Architecture Models for AAL 59

tem architectures that possess autonomy, non-determinism, probabilistic and
real-time behaviour. In our work, we choose AADL as modeling framework
due to the fact that it is a popular architecture modeling framework used with
a practical appeal, also providing tool support [19]. In addition to the rich
semantics provided by the language to specify real-time embedded systems,
and its mechanisms to carry out initial architecture analysis (schedulability, la-
tency, resource utilization, error analysis, etc.), the language is also extensible
with user-defined properties and annex sub-languages. In the AADL model-
ing framework that we propose in Paper D [12] to specify MAS, we present
an annex extension to the core AADL language that can specify the non-
deterministic, probabilistic, real-time behaviours of agents along with agent
learning, reactiveness, and system fault-tolerance. Although we have cur-
rently modeled the specifications of a small-scale MAS architecture compris-
ing of simple reflex agents and other self-learning agents utilizing reinforce-
ment learning, due to the extensibility offered by AADL, we can also extend
our proposed sub-language to represent any agent types, and their properties.
Moreover, there are also many standardized annexes like the Behaviour Annex
(BA) and Error Annex (EA) that are integrated to the core AADL, which can
also be utilized for specifying the behaviour of systems according to the needs.
We show the usage of AADL’s EA and BA for specifying the behaviour of our
centralized AAL architecture (Paper C [6]).

For the purpose of formal analysis, we employ model-checking. Unlike
theorem proving approaches for the structured formal development of systems
[71], model-checking is an automated approach, although it has limitations
with respect to state space explosion in case of large models and is less expres-
sive compared to theorem-provers.

To enable model checking our architectural models, we transform the
AADL model to timed automata constructs. There have also been approaches
to formally verify AADL designs in other domains. The transformation ap-
proach from AADL to TA or variants has been already addressed by related
work [72, 73, 74]. Although these approaches are automated verification tech-
niques, there is a lack of focus on abstract components/patterns with stochastic
properties (like our approach in Paper C [6]). In addition, these approaches
also suffer from state-space explosion, therefore they might not scale well with
complex AAL designs. Nevertheless, there is interesting research that deals
with stochastic properties and statistical model checking for the analysis of ex-
tended AADL models. One such example is the work of Bruintjes et al. [75],
where the authors have used an SMC approach for timed reachability analysis
of extended AADL designs. Although our approach in Paper C [6] also focuses

6.1 Software Architecture Models for AAL 59

tem architectures that possess autonomy, non-determinism, probabilistic and
real-time behaviour. In our work, we choose AADL as modeling framework
due to the fact that it is a popular architecture modeling framework used with
a practical appeal, also providing tool support [19]. In addition to the rich
semantics provided by the language to specify real-time embedded systems,
and its mechanisms to carry out initial architecture analysis (schedulability, la-
tency, resource utilization, error analysis, etc.), the language is also extensible
with user-defined properties and annex sub-languages. In the AADL model-
ing framework that we propose in Paper D [12] to specify MAS, we present
an annex extension to the core AADL language that can specify the non-
deterministic, probabilistic, real-time behaviours of agents along with agent
learning, reactiveness, and system fault-tolerance. Although we have cur-
rently modeled the specifications of a small-scale MAS architecture compris-
ing of simple reflex agents and other self-learning agents utilizing reinforce-
ment learning, due to the extensibility offered by AADL, we can also extend
our proposed sub-language to represent any agent types, and their properties.
Moreover, there are also many standardized annexes like the Behaviour Annex
(BA) and Error Annex (EA) that are integrated to the core AADL, which can
also be utilized for specifying the behaviour of systems according to the needs.
We show the usage of AADL’s EA and BA for specifying the behaviour of our
centralized AAL architecture (Paper C [6]).

For the purpose of formal analysis, we employ model-checking. Unlike
theorem proving approaches for the structured formal development of systems
[71], model-checking is an automated approach, although it has limitations
with respect to state space explosion in case of large models and is less expres-
sive compared to theorem-provers.

To enable model checking our architectural models, we transform the
AADL model to timed automata constructs. There have also been approaches
to formally verify AADL designs in other domains. The transformation ap-
proach from AADL to TA or variants has been already addressed by related
work [72, 73, 74]. Although these approaches are automated verification tech-
niques, there is a lack of focus on abstract components/patterns with stochastic
properties (like our approach in Paper C [6]). In addition, these approaches
also suffer from state-space explosion, therefore they might not scale well with
complex AAL designs. Nevertheless, there is interesting research that deals
with stochastic properties and statistical model checking for the analysis of ex-
tended AADL models. One such example is the work of Bruintjes et al. [75],
where the authors have used an SMC approach for timed reachability analysis
of extended AADL designs. Although our approach in Paper C [6] also focuses

77

60 Chapter 6. Related Work

on linear systems, it is different from the mentioned work in the fact that we fo-
cus on abstract components, and also introduce BA modeling for capturing the
functional behavior of our modules, specifically for modeling the behavior of
intelligent DSS. In their work, Bruintjes et al. use the SLIM Language, which
is strongly based on AADL and is specific to avionics and automotive indus-
try, including the error behavior and modes. However, we use the AADL core
language with its standardized annex sets (EA and BA) for the architecture
specification, thereby enabling the representation of the functional and error
behavior with the architecture model. The abstract component-based modeling
also brings exensiblity and reusability to our approach. Moreover, the authors
only consider the event occurrences or delay variations using uniform or ex-
ponential distributions, whereas by employing our user-defined properties, we
can also specify other distributions. Furthermore, the approach of Bruintjes
et al. only deals with evaluation of time-bounded queries, however we also
evaluate properties like reliability, data consistency, etc., besides timeliness.
Another interesting work [76], possibly carried out in parallel with our work,
employs statistical model checking using UPPAAL SMC to evaluate the per-
formance of nonlinear hybrid models with uncertainty modeled in extended
AADL. Although the approach is not specific to the AAL domain, it is promis-
ing to specify complex CPS systems considering uncertainties from the phys-
ical environment. Unlike our model which uses STA, the authors use Priced
Timed Automata (PTA) models. In our work in Paper D [12], we also propose
the extension of AADL with the Agent Annex specification, whose semantics
we define in terms of Stochastic Transition Systems, that can explicitly capture
the non-determinism, probabilistic and real-time behavior of AAL systems.
We also specify the formal encoding of our AAL specific AADL constructs as
PTA and show exhaustive verification in PRISM.

In the AAL domain, we do not have any evidence for any AAL architec-
tures existing on the market being formally assured, although there has been
some research in this direction. Parente et al. provide a list of various formal
methods that can be used for AAL systems [77]. Rodrigues et al. perform
a dependability analysis of AAL architectures using UML and PRISM [11].
Other interesting works use temporal reasoning [10, 78] and Markov Decision
Processes to formally verify the reliability of AAL systems [79]. However, the
analysis presented in these approaches address only simple scenarios and are
not used to analyze complex behaviors of integrated AAL systems and their de-
cision making capabilities during critical scenarios, unlike the work presented
in this thesis, in Paper C [6] and Paper D [12].

60 Chapter 6. Related Work

on linear systems, it is different from the mentioned work in the fact that we fo-
cus on abstract components, and also introduce BA modeling for capturing the
functional behavior of our modules, specifically for modeling the behavior of
intelligent DSS. In their work, Bruintjes et al. use the SLIM Language, which
is strongly based on AADL and is specific to avionics and automotive indus-
try, including the error behavior and modes. However, we use the AADL core
language with its standardized annex sets (EA and BA) for the architecture
specification, thereby enabling the representation of the functional and error
behavior with the architecture model. The abstract component-based modeling
also brings exensiblity and reusability to our approach. Moreover, the authors
only consider the event occurrences or delay variations using uniform or ex-
ponential distributions, whereas by employing our user-defined properties, we
can also specify other distributions. Furthermore, the approach of Bruintjes
et al. only deals with evaluation of time-bounded queries, however we also
evaluate properties like reliability, data consistency, etc., besides timeliness.
Another interesting work [76], possibly carried out in parallel with our work,
employs statistical model checking using UPPAAL SMC to evaluate the per-
formance of nonlinear hybrid models with uncertainty modeled in extended
AADL. Although the approach is not specific to the AAL domain, it is promis-
ing to specify complex CPS systems considering uncertainties from the phys-
ical environment. Unlike our model which uses STA, the authors use Priced
Timed Automata (PTA) models. In our work in Paper D [12], we also propose
the extension of AADL with the Agent Annex specification, whose semantics
we define in terms of Stochastic Transition Systems, that can explicitly capture
the non-determinism, probabilistic and real-time behavior of AAL systems.
We also specify the formal encoding of our AAL specific AADL constructs as
PTA and show exhaustive verification in PRISM.

In the AAL domain, we do not have any evidence for any AAL architec-
tures existing on the market being formally assured, although there has been
some research in this direction. Parente et al. provide a list of various formal
methods that can be used for AAL systems [77]. Rodrigues et al. perform
a dependability analysis of AAL architectures using UML and PRISM [11].
Other interesting works use temporal reasoning [10, 78] and Markov Decision
Processes to formally verify the reliability of AAL systems [79]. However, the
analysis presented in these approaches address only simple scenarios and are
not used to analyze complex behaviors of integrated AAL systems and their de-
cision making capabilities during critical scenarios, unlike the work presented
in this thesis, in Paper C [6] and Paper D [12].

78

Chapter 7

Conclusions and Future
Work

In this thesis, we have presented the first research steps towards increasing the
support offered to the elderly by providing assured intelligent AAL solutions
that integrate most of the functionalities that the users would need to be helped
in their daily lives.

First of all, we have surveyed the SOA and SOP of existing solutions and
identified that most of them are fragmented, less user-friendly, and lack as-
surance of their functionality and QoS. We have evaluated the performance
of AAL systems by combining functionalities of individualized solutions and
identified that they are not sufficient to tackle potential critical scenarios in-
volving multiple events, which need combined analysis for enhanced and safe
reasoning.

As a second contribution, we have proposed a generic model of an inte-
grated architecture solution for AAL, with a centralized “brain" (intelligent
DSS) and its formal assurance framework. This architecture can be chosen as
the integration framework for future AAL systems, if major concerns are the
ease of development and maintenance. To carry out architecture analysis, we
have represented it at pattern-level using AADL. These representations can be
easily instantiated to form specific architecture types. In this thesis, we present
three different configurations of the generic model - a simple model, an inter-
mediate model and a complex model. To provide formal verification for the
AAL systems, we have formally encoded the AADL model into a Network of

61

Chapter 7

Conclusions and Future
Work

In this thesis, we have presented the first research steps towards increasing the
support offered to the elderly by providing assured intelligent AAL solutions
that integrate most of the functionalities that the users would need to be helped
in their daily lives.

First of all, we have surveyed the SOA and SOP of existing solutions and
identified that most of them are fragmented, less user-friendly, and lack as-
surance of their functionality and QoS. We have evaluated the performance
of AAL systems by combining functionalities of individualized solutions and
identified that they are not sufficient to tackle potential critical scenarios in-
volving multiple events, which need combined analysis for enhanced and safe
reasoning.

As a second contribution, we have proposed a generic model of an inte-
grated architecture solution for AAL, with a centralized “brain" (intelligent
DSS) and its formal assurance framework. This architecture can be chosen as
the integration framework for future AAL systems, if major concerns are the
ease of development and maintenance. To carry out architecture analysis, we
have represented it at pattern-level using AADL. These representations can be
easily instantiated to form specific architecture types. In this thesis, we present
three different configurations of the generic model - a simple model, an inter-
mediate model and a complex model. To provide formal verification for the
AAL systems, we have formally encoded the AADL model into a Network of

61

79

62 Chapter 7. Conclusions and Future Work

Stochastic Timed Automata (NSTA). We also show the formal modeling and
analysis of the simple and complex configuration (CAMI architecture). In case
of the simple configuration, the formal model represented as NSTA is verified
with the model-checking tool UPPAAL, whereas for the complex configura-
tion, exhaustive model-checking does not scale and hence we use the statistical
model-checking tool, UPPAAL SMC, to ensure functional behavior with time-
liness, consistency and fault-tolerance. The approach presented paves the way
for the development of formally assured future intelligent AAL solutions that
integrate multiple functionalities and it can be applied at earlier design stages
to capture potential errors that can propagate across the development stages,
which may result in significant re-engineering costs. Our architecture descrip-
tion framework (AADL) has a commercially available tool support, OSATE
[80] for automated modeling, and provides some preliminary architecture level
analysis. It also allows us to model the behavior of the architecture components
via behavior annex and encode the probabilities of failures of various compo-
nents, via the error annex. However, AADL also has its limitations of express-
ing complex behaviors of algorithms such as CBR, which we have omitted in
this work. The analysis approach which we use is exhaustive model check-
ing and stochastic model checking, that is automated via commercial tools
called UPPAAL [24], and its extension, UPPAAL SMC [9], respectively. The
verification results are specific to our architecture instantiations, however one
can use the approach to verify any set of requirements for various architecture
types defined by the generic architectural model. It is worth mentioning that
the results are derived assuming high reliability of individual architecture com-
ponents and considering specific values for the periods and execution times.
However, taking into account the wide variety of available sensors and other
components, we can easily adapt the values to account for requirements of any
specific architecture.

Our third contribution is another architecture of integrated AAL system
architecture, following a distributed approach with multiple intelligent agents
and its formal modeling and analysis framework. If fault-tolerance, scalability,
adaptability, and simultaneous access to multiple users are the major consider-
ations, then the second solution outweighs the first-one. For representing our
agent-based architecture, we use the same AADL modeling framework, as our
first solution. Although MAS specifications based on logics and domain spe-
cific languages do exist and are popular, they are mostly limited to specification
of properties at the agent level and also do not have tool support (see Chapter
6). AADL, on the other hand, allows us to focus on the component level (here
agents) and also at the system level (MAS architecture) and can effectively

62 Chapter 7. Conclusions and Future Work

Stochastic Timed Automata (NSTA). We also show the formal modeling and
analysis of the simple and complex configuration (CAMI architecture). In case
of the simple configuration, the formal model represented as NSTA is verified
with the model-checking tool UPPAAL, whereas for the complex configura-
tion, exhaustive model-checking does not scale and hence we use the statistical
model-checking tool, UPPAAL SMC, to ensure functional behavior with time-
liness, consistency and fault-tolerance. The approach presented paves the way
for the development of formally assured future intelligent AAL solutions that
integrate multiple functionalities and it can be applied at earlier design stages
to capture potential errors that can propagate across the development stages,
which may result in significant re-engineering costs. Our architecture descrip-
tion framework (AADL) has a commercially available tool support, OSATE
[80] for automated modeling, and provides some preliminary architecture level
analysis. It also allows us to model the behavior of the architecture components
via behavior annex and encode the probabilities of failures of various compo-
nents, via the error annex. However, AADL also has its limitations of express-
ing complex behaviors of algorithms such as CBR, which we have omitted in
this work. The analysis approach which we use is exhaustive model check-
ing and stochastic model checking, that is automated via commercial tools
called UPPAAL [24], and its extension, UPPAAL SMC [9], respectively. The
verification results are specific to our architecture instantiations, however one
can use the approach to verify any set of requirements for various architecture
types defined by the generic architectural model. It is worth mentioning that
the results are derived assuming high reliability of individual architecture com-
ponents and considering specific values for the periods and execution times.
However, taking into account the wide variety of available sensors and other
components, we can easily adapt the values to account for requirements of any
specific architecture.

Our third contribution is another architecture of integrated AAL system
architecture, following a distributed approach with multiple intelligent agents
and its formal modeling and analysis framework. If fault-tolerance, scalability,
adaptability, and simultaneous access to multiple users are the major consider-
ations, then the second solution outweighs the first-one. For representing our
agent-based architecture, we use the same AADL modeling framework, as our
first solution. Although MAS specifications based on logics and domain spe-
cific languages do exist and are popular, they are mostly limited to specification
of properties at the agent level and also do not have tool support (see Chapter
6). AADL, on the other hand, allows us to focus on the component level (here
agents) and also at the system level (MAS architecture) and can effectively

80

63

model agents’ real-time characteristics. However, since the core AADL and
its integrated annexes lack expressiveness to specify the behaviour of multi-
agent systems that are non-deterministic, probabilistic and real-time, we have
proposed a sub-language extension to AADL, named Agent Annex. Our mod-
eling framework of MAS is the core AADL language and Agent Annex. The
semantics of the modeling framework is encoded as a Stochastic Transition
System. We have also proposed a formal analysis framework for a small-scale
MAS architecture that possesses four agent categories and their back-ups using
the PRISM model checker that supports exhaustive model-checking of proba-
bilistic models. To enable model-checking in PRISM, the AADL model of the
system, including its Agent Annex encoded as Stochastic Transition Systems
(STS) is represented as Probabilistic Timed Automata (PTA) in PRISM. Also,
since our approach is exhaustive, we provide comprehensive guarantees to the
functional and QoS attributes of the system.

As a final contribution, we have also shown some initial validation of the
architecture of the first category with respect to various functionalities like fall
detection, health monitoring, voice interaction and supervised physical exer-
cises.

Future Work. There are several directions for future research endeavors to
fill in the voids in the current state of the framework proposed for analyzing our
AAL architectures. The most immediate future work is to provide tool support
for our model-transformations, that is, to automate the AADL to NSTA and
PTA transformations, respectively. We also plan to integrate the Agent Annex
sublanguage to the core AADL. In addition, since the PRISM-based formal
analysis framework of MAS is hard to scale in case of a larger system with
many and different kinds of agents, we intend to show the feasibility of using
other model-checkers, like UPPAAL SMC instead. Although this approach
can generate only probabilistic guarantees, it is one of the best suited approach
to formally analyze complex cyber-physical systems that do not scale with ex-
haustive verification. Finally, we also envision to perform a comparison of
the two architecture solutions that we have proposed in terms of their formal
modeling and analysis framework. We also intend to continue with the system
validation of CAMI architecture in real-user scenarios.

63

model agents’ real-time characteristics. However, since the core AADL and
its integrated annexes lack expressiveness to specify the behaviour of multi-
agent systems that are non-deterministic, probabilistic and real-time, we have
proposed a sub-language extension to AADL, named Agent Annex. Our mod-
eling framework of MAS is the core AADL language and Agent Annex. The
semantics of the modeling framework is encoded as a Stochastic Transition
System. We have also proposed a formal analysis framework for a small-scale
MAS architecture that possesses four agent categories and their back-ups using
the PRISM model checker that supports exhaustive model-checking of proba-
bilistic models. To enable model-checking in PRISM, the AADL model of the
system, including its Agent Annex encoded as Stochastic Transition Systems
(STS) is represented as Probabilistic Timed Automata (PTA) in PRISM. Also,
since our approach is exhaustive, we provide comprehensive guarantees to the
functional and QoS attributes of the system.

As a final contribution, we have also shown some initial validation of the
architecture of the first category with respect to various functionalities like fall
detection, health monitoring, voice interaction and supervised physical exer-
cises.

Future Work. There are several directions for future research endeavors to
fill in the voids in the current state of the framework proposed for analyzing our
AAL architectures. The most immediate future work is to provide tool support
for our model-transformations, that is, to automate the AADL to NSTA and
PTA transformations, respectively. We also plan to integrate the Agent Annex
sublanguage to the core AADL. In addition, since the PRISM-based formal
analysis framework of MAS is hard to scale in case of a larger system with
many and different kinds of agents, we intend to show the feasibility of using
other model-checkers, like UPPAAL SMC instead. Although this approach
can generate only probabilistic guarantees, it is one of the best suited approach
to formally analyze complex cyber-physical systems that do not scale with ex-
haustive verification. Finally, we also envision to perform a comparison of
the two architecture solutions that we have proposed in terms of their formal
modeling and analysis framework. We also intend to continue with the system
validation of CAMI architecture in real-user scenarios.

81

82

Bibliography

[1] Department of Economic and Social Affairs Population Division. World
Population Ageing 2015. Technical report, United Nations, NewYork, 11
2015.

[2] Parisa Rashidi and Alex Mihailidis. A survey on ambient-assisted living
tools for older adults. IEEE journal of biomedical and health informatics,
17(3):579–590, 2013.

[3] Ashalatha Kunnappilly, Cristina Seceleanu, and Maria Lindén. Do We
Need an Integrated Framework for Ambient Assisted Living? In Ubiq-
uitous Computing and Ambient Intelligence: 10th International Confer-
ence, UCAmI 2016, San Bartolomé de Tirajana, Gran Canaria, Spain,
November 29–December 2, 2016, Part II 10, pages 52–63. Springer,
2016.

[4] Ruijiao Li, Bowen Lu, and Klaus D McDonald-Maier. Cognitive assisted
living ambient system: A survey. Digital Communications and Networks,
1(4):229–252, 2015.

[5] Ashalatha Kunnappilly, Alexandru Sorici, Imad Alex Awada, Irina Mo-
canu, Cristina Seceleanu, and Adina Madga Florea. A Novel Integrated
Architecture for Ambient Assisted Living Systems. In Computer Soft-
ware and Applications Conference (COMPSAC), 2017 IEEE 41st Annual,
volume 1, pages 465–472. IEEE, 2017.

[6] Ashalatha Kunnappilly, Raluca Marinescu, and Cristina Seceleanu. A
Model-Checking-Based Framework For Analyzing Ambient Assisted
Living Solutions. Mälardalen Real-Time Research Centre, Mälardalen
University, March 2019.

65

Bibliography

[1] Department of Economic and Social Affairs Population Division. World
Population Ageing 2015. Technical report, United Nations, NewYork, 11
2015.

[2] Parisa Rashidi and Alex Mihailidis. A survey on ambient-assisted living
tools for older adults. IEEE journal of biomedical and health informatics,
17(3):579–590, 2013.

[3] Ashalatha Kunnappilly, Cristina Seceleanu, and Maria Lindén. Do We
Need an Integrated Framework for Ambient Assisted Living? In Ubiq-
uitous Computing and Ambient Intelligence: 10th International Confer-
ence, UCAmI 2016, San Bartolomé de Tirajana, Gran Canaria, Spain,
November 29–December 2, 2016, Part II 10, pages 52–63. Springer,
2016.

[4] Ruijiao Li, Bowen Lu, and Klaus D McDonald-Maier. Cognitive assisted
living ambient system: A survey. Digital Communications and Networks,
1(4):229–252, 2015.

[5] Ashalatha Kunnappilly, Alexandru Sorici, Imad Alex Awada, Irina Mo-
canu, Cristina Seceleanu, and Adina Madga Florea. A Novel Integrated
Architecture for Ambient Assisted Living Systems. In Computer Soft-
ware and Applications Conference (COMPSAC), 2017 IEEE 41st Annual,
volume 1, pages 465–472. IEEE, 2017.

[6] Ashalatha Kunnappilly, Raluca Marinescu, and Cristina Seceleanu. A
Model-Checking-Based Framework For Analyzing Ambient Assisted
Living Solutions. Mälardalen Real-Time Research Centre, Mälardalen
University, March 2019.

65

83

66 Bibliography

[7] Peter Feiler. Open Source AADL tool environment (OSATE). In AADL
Workshop, Paris, pages 1–40, 2004.

[8] Alexandre David, Dehui Du, Kim G Larsen, Axel Legay, Marius
Mikučionis, Danny Bøgsted Poulsen, and Sean Sedwards. Statistical
model checking for stochastic hybrid systems. Electronic Proceedings
in Theoretical Computer Science, pages 122–136, 2012.

[9] Alexandre David, Kim G Larsen, Axel Legay, Marius Mikučionis, and
Danny Bøgsted Poulsen. Uppaal SMC tutorial. International Journal on
Software Tools for Technology Transfer, 17(4):397–415, 2015.

[10] Juan C Augusto and Chris D Nugent. The use of temporal reasoning
and management of complex events in smart homes. In Proceedings of
the 16th European Conference on Artificial Intelligence, pages 778–782.
IOS Press, 2004.

[11] Genaína Nunes Rodrigues, Vander Alves, Renato Silveira, and Luiz A
Laranjeira. Dependability analysis in the ambient assisted living domain:
An exploratory case study. Journal of Systems and Software, 85(1):112–
131, 2012.

[12] Ashalatha Kunnappilly, Simin Cai, Cristina Seceleanu, and Raluca Mari-
nescu. Architecture modelling and formal analysis of intelligent multi-
agent systems. In 14th International Conference on Evaluation of Novel
Approaches to Software Engineering, May 2019.

[13] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement
learning. 135, 1998.

[14] Luca De Alfaro. Stochastic transition systems. In International Confer-
ence on Concurrency Theory, pages 423–438. Springer, 1998.

[15] Imad Alex Awada, Oana Cramariuc, Irina Mocanu, Cristina Seceleanu,
Ashalatha Kunnappilly, and Adina Magda Florea. An end- user perspec-
tive on the cami ambient and assisted living project. In 12th annual In-
ternational Technology, Education and Development Conference, March
2018.

[16] Peter H Feiler, Bruce Lewis, Steve Vestal, and Ed Colbert. An overview
of the SAE architecture analysis & design language (AADL) standard:
a basis for model-based architecture-driven embedded systems engineer-
ing. In Architecture Description Languages, pages 3–15. Springer, 2005.

66 Bibliography

[7] Peter Feiler. Open Source AADL tool environment (OSATE). In AADL
Workshop, Paris, pages 1–40, 2004.

[8] Alexandre David, Dehui Du, Kim G Larsen, Axel Legay, Marius
Mikučionis, Danny Bøgsted Poulsen, and Sean Sedwards. Statistical
model checking for stochastic hybrid systems. Electronic Proceedings
in Theoretical Computer Science, pages 122–136, 2012.

[9] Alexandre David, Kim G Larsen, Axel Legay, Marius Mikučionis, and
Danny Bøgsted Poulsen. Uppaal SMC tutorial. International Journal on
Software Tools for Technology Transfer, 17(4):397–415, 2015.

[10] Juan C Augusto and Chris D Nugent. The use of temporal reasoning
and management of complex events in smart homes. In Proceedings of
the 16th European Conference on Artificial Intelligence, pages 778–782.
IOS Press, 2004.

[11] Genaína Nunes Rodrigues, Vander Alves, Renato Silveira, and Luiz A
Laranjeira. Dependability analysis in the ambient assisted living domain:
An exploratory case study. Journal of Systems and Software, 85(1):112–
131, 2012.

[12] Ashalatha Kunnappilly, Simin Cai, Cristina Seceleanu, and Raluca Mari-
nescu. Architecture modelling and formal analysis of intelligent multi-
agent systems. In 14th International Conference on Evaluation of Novel
Approaches to Software Engineering, May 2019.

[13] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement
learning. 135, 1998.

[14] Luca De Alfaro. Stochastic transition systems. In International Confer-
ence on Concurrency Theory, pages 423–438. Springer, 1998.

[15] Imad Alex Awada, Oana Cramariuc, Irina Mocanu, Cristina Seceleanu,
Ashalatha Kunnappilly, and Adina Magda Florea. An end- user perspec-
tive on the cami ambient and assisted living project. In 12th annual In-
ternational Technology, Education and Development Conference, March
2018.

[16] Peter H Feiler, Bruce Lewis, Steve Vestal, and Ed Colbert. An overview
of the SAE architecture analysis & design language (AADL) standard:
a basis for model-based architecture-driven embedded systems engineer-
ing. In Architecture Description Languages, pages 3–15. Springer, 2005.

84

Bibliography 67

[17] RB Frana, J-P Bodeveix, Mamoun Filali, and J-F Rolland. The AADL
behaviour annex–experiments and roadmap. In Engineering Complex
Computer Systems, 2007. 12th IEEE International Conference on, pages
377–382. IEEE, 2007.

[18] Julien Delange and Peter Feiler. Architecture fault modeling with the
AADL error-model annex. In Software Engineering and Advanced Appli-
cations (SEAA), 2014 40th EUROMICRO Conference on, pages 361–368.
IEEE, 2014.

[19] Model-based engineering with AADL: an introduction to the SAE archi-
tecture analysis & design language.

[20] Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory
and practice. The knowledge engineering review, 10(2):115–152, 1995.

[21] Michael Wooldridge. An introduction to multiagent systems. John Wiley
& Sons, 2009.

[22] Long-Ji Lin. Self-improving reactive agents based on reinforcement
learning, planning and teaching. Machine learning, 8(3-4):293–321,
1992.

[23] Chih-Han Yu, Justin Werfel, and Radhika Nagpal. Collective decision-
making in multi-agent systems by implicit leadership. In Proceedings of
the 9th International Conference on Autonomous Agents and Multiagent
Systems: volume 3-Volume 3, pages 1189–1196. International Foundation
for Autonomous Agents and Multiagent Systems, 2010.

[24] Kim G Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. In-
ternational journal on software tools for technology transfer, 1(1-2):134–
152, 1997.

[25] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: Prob-
abilistic symbolic model checker. In International Conference on Mod-
elling Techniques and Tools for Computer Performance Evaluation, pages
200–204. Springer, 2002.

[26] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical
computer science, 126(2):183–235, 1994.

Bibliography 67

[17] RB Frana, J-P Bodeveix, Mamoun Filali, and J-F Rolland. The AADL
behaviour annex–experiments and roadmap. In Engineering Complex
Computer Systems, 2007. 12th IEEE International Conference on, pages
377–382. IEEE, 2007.

[18] Julien Delange and Peter Feiler. Architecture fault modeling with the
AADL error-model annex. In Software Engineering and Advanced Appli-
cations (SEAA), 2014 40th EUROMICRO Conference on, pages 361–368.
IEEE, 2014.

[19] Model-based engineering with AADL: an introduction to the SAE archi-
tecture analysis & design language.

[20] Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory
and practice. The knowledge engineering review, 10(2):115–152, 1995.

[21] Michael Wooldridge. An introduction to multiagent systems. John Wiley
& Sons, 2009.

[22] Long-Ji Lin. Self-improving reactive agents based on reinforcement
learning, planning and teaching. Machine learning, 8(3-4):293–321,
1992.

[23] Chih-Han Yu, Justin Werfel, and Radhika Nagpal. Collective decision-
making in multi-agent systems by implicit leadership. In Proceedings of
the 9th International Conference on Autonomous Agents and Multiagent
Systems: volume 3-Volume 3, pages 1189–1196. International Foundation
for Autonomous Agents and Multiagent Systems, 2010.

[24] Kim G Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. In-
ternational journal on software tools for technology transfer, 1(1-2):134–
152, 1997.

[25] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: Prob-
abilistic symbolic model checker. In International Conference on Mod-
elling Techniques and Tools for Computer Performance Evaluation, pages
200–204. Springer, 2002.

[26] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical
computer science, 126(2):183–235, 1994.

85

68 Bibliography

[27] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for
real-time systems. In Logic in Computer Science, 1990. LICS’90, Pro-
ceedings., Fifth Annual IEEE Symposium, pages 414–425. IEEE, 1990.

[28] Peter E Bulychev, Alexandre David, Kim G Larsen, Axel Legay,
Guangyuan Li, and Danny Bøgsted Poulsen. Rewrite-Based Statistical
Model Checking of WMTL. RV, 7687:260–275, 2012.

[29] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and
reliability. Formal aspects of computing, 6(5):512–535, 1994.

[30] Hilary J Holz, Anne Applin, Bruria Haberman, Donald Joyce, Helen Pur-
chase, and Catherine Reed. Research methods in computing: what are
they, and how should we teach them? In ACM SIGCSE Bulletin, vol-
ume 38, pages 96–114. ACM, 2006.

[31] Jane Webster and Richard T Watson. Analyzing the past to prepare for
the future: Writing a literature review. MIS quarterly, pages xiii–xxiii,
2002.

[32] Wayne Goddard and Stuart Melville. Research methodology: An intro-
duction. Juta and Company Ltd, 2004.

[33] Dawn G Gregg, Uday R Kulkarni, and Ajay S Vinzé. Understanding the
philosophical underpinnings of software engineering research in informa-
tion systems. Information Systems Frontiers, 3(2):169–183, 2001.

[34] Mary Shaw. What makes good research in software engineering? In-
ternational Journal on Software Tools for Technology Transfer, 4(1):1–7,
2002.

[35] Visual Paradigm. Visual paradigm for uml. Visual Paradigm for UML-
UML tool for software application development, page 72, 2013.

[36] Don Batory. Feature models, grammars, and propositional formulas.
In International Conference on Software Product Lines, pages 7–20.
Springer, 2005.

[37] Mobyen Uddin Ahmed, Mats Björkman, and Maria Lindén. A generic
system-level framework for self-serve health monitoring system through
internet of things (iot). Studies in health technology and informatics,
211:305–307, 2015.

68 Bibliography

[27] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for
real-time systems. In Logic in Computer Science, 1990. LICS’90, Pro-
ceedings., Fifth Annual IEEE Symposium, pages 414–425. IEEE, 1990.

[28] Peter E Bulychev, Alexandre David, Kim G Larsen, Axel Legay,
Guangyuan Li, and Danny Bøgsted Poulsen. Rewrite-Based Statistical
Model Checking of WMTL. RV, 7687:260–275, 2012.

[29] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and
reliability. Formal aspects of computing, 6(5):512–535, 1994.

[30] Hilary J Holz, Anne Applin, Bruria Haberman, Donald Joyce, Helen Pur-
chase, and Catherine Reed. Research methods in computing: what are
they, and how should we teach them? In ACM SIGCSE Bulletin, vol-
ume 38, pages 96–114. ACM, 2006.

[31] Jane Webster and Richard T Watson. Analyzing the past to prepare for
the future: Writing a literature review. MIS quarterly, pages xiii–xxiii,
2002.

[32] Wayne Goddard and Stuart Melville. Research methodology: An intro-
duction. Juta and Company Ltd, 2004.

[33] Dawn G Gregg, Uday R Kulkarni, and Ajay S Vinzé. Understanding the
philosophical underpinnings of software engineering research in informa-
tion systems. Information Systems Frontiers, 3(2):169–183, 2001.

[34] Mary Shaw. What makes good research in software engineering? In-
ternational Journal on Software Tools for Technology Transfer, 4(1):1–7,
2002.

[35] Visual Paradigm. Visual paradigm for uml. Visual Paradigm for UML-
UML tool for software application development, page 72, 2013.

[36] Don Batory. Feature models, grammars, and propositional formulas.
In International Conference on Software Product Lines, pages 7–20.
Springer, 2005.

[37] Mobyen Uddin Ahmed, Mats Björkman, and Maria Lindén. A generic
system-level framework for self-serve health monitoring system through
internet of things (iot). Studies in health technology and informatics,
211:305–307, 2015.

86

Bibliography 69

[38] Dante I Tapia, Sara Rodrıguez, and Juan M Corchado. A distributed
ambient intelligence based multi-agent system for Alzheimer health care.
In Pervasive Computing, pages 181–199. Springer, 2009.

[39] PA USA Society of Automotive Engineers, Warrendale. AE-AS5506/1,
SAE Architecture Analysis and Design Language (AADL) Annex Vol-
ume 1, Annex C: AADL Meta-Model and Interchange Formats, 2006.

[40] Martin Becker. Software architecture trends and promising technology
for ambient assisted living systems. In Dagstuhl Seminar Proceedings.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2008.

[41] David Isern, David Sánchez, and Antonio Moreno. Agents applied in
health care: A review. International journal of medical informatics,
79(3):145–166, 2010.

[42] John Nealon and Antonio Moreno. Agent-based applications in health
care. Applications of software agent technology in the health care do-
main, pages 3–18, 2003.

[43] Juan De Paz, Sara Rodríguez, Javier Bajo, Juan Corchado, and Emilio
Corchado. OVACARE: A multi-agent system for assistance and health
care. Knowledge-Based and Intelligent Information and Engineering Sys-
tems, pages 318–327, 2010.

[44] Paolo Sernani, Andrea Claudi, Luca Palazzo, Gianluca Dolcini, and
Aldo Franco Dragoni. Home care expert systems for ambient assisted
living: A multi-agent approach. In Proceedings of the Workshop on The
Challenge of Ageing Society: Technological Roles and Opportunities for
Artificial Intelligence, Turin, Italy, volume 6, 2013.

[45] Elarbi Badidi and Larbi Esmahi. A cloud-based approach for context
information provisioning. arXiv preprint arXiv:1105.2213, 2011.

[46] Alisa Devlic and Klintskog Erik. Context retrieval and distribution in a
mobile distributed environment. In Third Workshop on Context Aware-
ness for Proactive Systems (CAPS 2007), 2007.

[47] Abdur Forkan, Ibrahim Khalil, and Zahir Tari. CoCaMAAL: A cloud-
oriented context-aware middleware in ambient assisted living. Future
Generation Computer Systems, 35:114–127, 2014.

Bibliography 69

[38] Dante I Tapia, Sara Rodrıguez, and Juan M Corchado. A distributed
ambient intelligence based multi-agent system for Alzheimer health care.
In Pervasive Computing, pages 181–199. Springer, 2009.

[39] PA USA Society of Automotive Engineers, Warrendale. AE-AS5506/1,
SAE Architecture Analysis and Design Language (AADL) Annex Vol-
ume 1, Annex C: AADL Meta-Model and Interchange Formats, 2006.

[40] Martin Becker. Software architecture trends and promising technology
for ambient assisted living systems. In Dagstuhl Seminar Proceedings.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2008.

[41] David Isern, David Sánchez, and Antonio Moreno. Agents applied in
health care: A review. International journal of medical informatics,
79(3):145–166, 2010.

[42] John Nealon and Antonio Moreno. Agent-based applications in health
care. Applications of software agent technology in the health care do-
main, pages 3–18, 2003.

[43] Juan De Paz, Sara Rodríguez, Javier Bajo, Juan Corchado, and Emilio
Corchado. OVACARE: A multi-agent system for assistance and health
care. Knowledge-Based and Intelligent Information and Engineering Sys-
tems, pages 318–327, 2010.

[44] Paolo Sernani, Andrea Claudi, Luca Palazzo, Gianluca Dolcini, and
Aldo Franco Dragoni. Home care expert systems for ambient assisted
living: A multi-agent approach. In Proceedings of the Workshop on The
Challenge of Ageing Society: Technological Roles and Opportunities for
Artificial Intelligence, Turin, Italy, volume 6, 2013.

[45] Elarbi Badidi and Larbi Esmahi. A cloud-based approach for context
information provisioning. arXiv preprint arXiv:1105.2213, 2011.

[46] Alisa Devlic and Klintskog Erik. Context retrieval and distribution in a
mobile distributed environment. In Third Workshop on Context Aware-
ness for Proactive Systems (CAPS 2007), 2007.

[47] Abdur Forkan, Ibrahim Khalil, and Zahir Tari. CoCaMAAL: A cloud-
oriented context-aware middleware in ambient assisted living. Future
Generation Computer Systems, 35:114–127, 2014.

87

70 Bibliography

[48] Angelika Dohr, Robert Modre-Osprian, Mario Drobics, Dieter Hayn, and
Günter Schreier. The Internet of Things for Ambient Assisted Living.
ITNG, 10:804–809, 2010.

[49] Giancarlo Fortino, Antonio Guerrieri, and Wilma Russo. Agent-oriented
smart objects development. In Computer Supported Cooperative Work in
Design (CSCWD), 2012 IEEE 16th International Conference on, pages
907–912. IEEE, 2012.

[50] Peter Leong and Liming Lu. Multiagent web for the Internet of Things. In
Information Science and Applications (ICISA), 2014 International Con-
ference on, pages 1–4. IEEE, 2014.

[51] Teemu Leppänen, Jukka Riekki, Meirong Liu, Erkki Harjula, and Timo
Ojala. Mobile agents-based smart objects for the internet of things. In
Internet of Things Based on Smart Objects, pages 29–48. Springer, 2014.

[52] Feng Zhou, Jianxin Roger Jiao, Songlin Chen, and Daqing Zhang. A
case-driven ambient intelligence system for elderly in-home assistance
applications. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 41(2):179–189, 2011.

[53] Eduardo Lupiani, Jose M Juarez, Jose Palma, Christian Serverin Sauer,
and Thomas Roth-Berghofer. Using case-based reasoning to detect risk
scenarios of elderly people living alone at home. In International Con-
ference on Case-Based Reasoning, pages 274–288. Springer, 2014.

[54] Krasimira Kapitanova, Sang H Son, and Kyoung-Don Kang. Using fuzzy
logic for robust event detection in wireless sensor networks. Ad Hoc
Networks, 10(4):709–722, 2012.

[55] Hamid Medjahed, Dan Istrate, Jérôme Boudy, Jean Louis Baldinger,
Lamine Bougueroua, Mohamed Achraf Dhouib, and Bernadette Dorizzi.
A fuzzy logic approach for remote healthcare monitoring by learning and
recognizing human activities of daily living. In Fuzzy Logic-Emerging
Technologies and Applications. InTech, 2012.

[56] Bernhard Bauer, Jörg P Müller, and James Odell. Agent UML: A formal-
ism for specifying multiagent software systems. International journal of
software engineering and knowledge engineering, 11(03):207–230, 2001.

70 Bibliography

[48] Angelika Dohr, Robert Modre-Osprian, Mario Drobics, Dieter Hayn, and
Günter Schreier. The Internet of Things for Ambient Assisted Living.
ITNG, 10:804–809, 2010.

[49] Giancarlo Fortino, Antonio Guerrieri, and Wilma Russo. Agent-oriented
smart objects development. In Computer Supported Cooperative Work in
Design (CSCWD), 2012 IEEE 16th International Conference on, pages
907–912. IEEE, 2012.

[50] Peter Leong and Liming Lu. Multiagent web for the Internet of Things. In
Information Science and Applications (ICISA), 2014 International Con-
ference on, pages 1–4. IEEE, 2014.

[51] Teemu Leppänen, Jukka Riekki, Meirong Liu, Erkki Harjula, and Timo
Ojala. Mobile agents-based smart objects for the internet of things. In
Internet of Things Based on Smart Objects, pages 29–48. Springer, 2014.

[52] Feng Zhou, Jianxin Roger Jiao, Songlin Chen, and Daqing Zhang. A
case-driven ambient intelligence system for elderly in-home assistance
applications. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 41(2):179–189, 2011.

[53] Eduardo Lupiani, Jose M Juarez, Jose Palma, Christian Serverin Sauer,
and Thomas Roth-Berghofer. Using case-based reasoning to detect risk
scenarios of elderly people living alone at home. In International Con-
ference on Case-Based Reasoning, pages 274–288. Springer, 2014.

[54] Krasimira Kapitanova, Sang H Son, and Kyoung-Don Kang. Using fuzzy
logic for robust event detection in wireless sensor networks. Ad Hoc
Networks, 10(4):709–722, 2012.

[55] Hamid Medjahed, Dan Istrate, Jérôme Boudy, Jean Louis Baldinger,
Lamine Bougueroua, Mohamed Achraf Dhouib, and Bernadette Dorizzi.
A fuzzy logic approach for remote healthcare monitoring by learning and
recognizing human activities of daily living. In Fuzzy Logic-Emerging
Technologies and Applications. InTech, 2012.

[56] Bernhard Bauer, Jörg P Müller, and James Odell. Agent UML: A formal-
ism for specifying multiagent software systems. International journal of
software engineering and knowledge engineering, 11(03):207–230, 2001.

88

Bibliography 71

[57] Vinitha Hannah Subburaj and Joseph E Urban. A formal specification
language for modeling agent systems. In Informatics and Applications
(ICIA), 2013 Second International Conference on, pages 300–305. IEEE,
2013.

[58] Michael Wooldridge, Nicholas R Jennings, and David Kinny. The Gaia
methodology for agent-oriented analysis and design. Autonomous Agents
and multi-agent systems, 3(3):285–312, 2000.

[59] Hong Zhu. SLABS: A formal specification language for agent-based sys-
tems. International Journal of Software Engineering and Knowledge En-
gineering, 11(05):529–558, 2001.

[60] Steven Shapiro, Yves Lespérance, and Hector J Levesque. The cognitive
agents specification language and verification environment for multiagent
systems. In Proceedings of the first international joint conference on
Autonomous agents and multiagent systems: part 1, pages 19–26. ACM,
2002.

[61] Frances MT Brazier, Barbara M Dunin-Keplicz, Nick R Jennings, and Jan
Treur. DESIRE: Modelling multi-agent systems in a compositional for-
mal framework. International Journal of Cooperative Information Sys-
tems, 6(01):67–94, 1997.

[62] Mark d’Inverno, Michael Luck, Michael Georgeff, David Kinny, and
Michael Wooldridge. The dMARS architecture: A specification of the
distributed multi-agent reasoning system. Autonomous Agents and Multi-
Agent Systems, 9(1-2):5–53, 2004.

[63] Haiping Xu and Sol M Shatz. An agent-based Petri net model with ap-
plication to seller/buyer design in electronic commerce. In Autonomous
Decentralized Systems, 2001. Proceedings. 5th International Symposium
on, pages 11–18. IEEE, 2001.

[64] Marcelo Finger, Michael Fisher, and Richard Owens. Metatem at work:
Modelling reactive systems using executable temporal logic. In Sixth
International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems (IEA/AIE-93), 1993.

[65] K-Y Sung and Joseph E Urban. Real-time Descartes: A real-time specifi-
cation language. In Distributed Computing Systems, 1992., Proceedings
of the Third Workshop on Future Trends of, pages 79–85. IEEE, 1992.

Bibliography 71

[57] Vinitha Hannah Subburaj and Joseph E Urban. A formal specification
language for modeling agent systems. In Informatics and Applications
(ICIA), 2013 Second International Conference on, pages 300–305. IEEE,
2013.

[58] Michael Wooldridge, Nicholas R Jennings, and David Kinny. The Gaia
methodology for agent-oriented analysis and design. Autonomous Agents
and multi-agent systems, 3(3):285–312, 2000.

[59] Hong Zhu. SLABS: A formal specification language for agent-based sys-
tems. International Journal of Software Engineering and Knowledge En-
gineering, 11(05):529–558, 2001.

[60] Steven Shapiro, Yves Lespérance, and Hector J Levesque. The cognitive
agents specification language and verification environment for multiagent
systems. In Proceedings of the first international joint conference on
Autonomous agents and multiagent systems: part 1, pages 19–26. ACM,
2002.

[61] Frances MT Brazier, Barbara M Dunin-Keplicz, Nick R Jennings, and Jan
Treur. DESIRE: Modelling multi-agent systems in a compositional for-
mal framework. International Journal of Cooperative Information Sys-
tems, 6(01):67–94, 1997.

[62] Mark d’Inverno, Michael Luck, Michael Georgeff, David Kinny, and
Michael Wooldridge. The dMARS architecture: A specification of the
distributed multi-agent reasoning system. Autonomous Agents and Multi-
Agent Systems, 9(1-2):5–53, 2004.

[63] Haiping Xu and Sol M Shatz. An agent-based Petri net model with ap-
plication to seller/buyer design in electronic commerce. In Autonomous
Decentralized Systems, 2001. Proceedings. 5th International Symposium
on, pages 11–18. IEEE, 2001.

[64] Marcelo Finger, Michael Fisher, and Richard Owens. Metatem at work:
Modelling reactive systems using executable temporal logic. In Sixth
International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems (IEA/AIE-93), 1993.

[65] K-Y Sung and Joseph E Urban. Real-time Descartes: A real-time specifi-
cation language. In Distributed Computing Systems, 1992., Proceedings
of the Third Workshop on Future Trends of, pages 79–85. IEEE, 1992.

89

72 Bibliography

[66] Michael P Georgeff and Amy L Lansky. Reactive reasoning and planning.
In AAAI, volume 87, pages 677–682, 1987.

[67] Michael Luck, Mark d’Inverno, et al. A formal framework for agency
and autonomy. In ICMAS, volume 95, pages 254–260, 1995.

[68] Vincent Hilaire, Abder Koukam, Pablo Gruer, and Jean-Pierre Müller.
Formal specification and prototyping of multi-agent systems. In Inter-
national Workshop on Engineering Societies in the Agents World, pages
114–127. Springer, 2000.

[69] Linas Laibinis, Inna Pereverzeva, and Elena Troubitsyna. Formal reason-
ing about resilient goal-oriented multi-agent systems. Science of Com-
puter Programming, 148:66–87, 2017.

[70] Flavio Oquendo. π-ADL: an Architecture Description Language based
on the higher-order typed π-calculus for specifying dynamic and mo-
bile software architectures. ACM SIGSOFT Software Engineering Notes,
29(3):1–14, 2004.

[71] Maksym Bortin, Einar Broch Johnsen, and Christoph Lüth. Structured
formal development in Isabelle. Nordic Journal of Computing, 13(1/2):2,
2006.

[72] Loïc Besnard, Thierry Gautier, Paul Le Guernic, Clément Guy, Jean-
Pierre Talpin, Brian Larson, and Etienne Borde. Formal semantics of
behavior specifications in the architecture analysis and design language
standard. In Cyber-Physical System Design from an Architecture Analy-
sis Viewpoint, pages 53–79. Springer, 2017.

[73] Mohamed Elkamel Hamdane, Allaoui Chaoui, and Martin Strecker. From
AADL to timed automaton-A verification approach. International Jour-
nal of Software Engineering and Its Applications, 7(4), 2013.

[74] Andreas Johnsen, Kristina Lundqvist, Paul Pettersson, and Omar Jaradat.
Automated verification of AADL-specifications using UPPAAL. In High-
Assurance Systems Engineering (HASE), 2012 IEEE 14th International
Symposium on, pages 130–138. IEEE, 2012.

[75] Harold Bruintjes, Joost-Pieter Katoen, and David Lesens. A statistical
approach for timed reachability in AADL models. In Dependable Systems
and Networks (DSN), 45th Annual IEEE/IFIP International Conference
on, pages 81–88. IEEE, 2015.

72 Bibliography

[66] Michael P Georgeff and Amy L Lansky. Reactive reasoning and planning.
In AAAI, volume 87, pages 677–682, 1987.

[67] Michael Luck, Mark d’Inverno, et al. A formal framework for agency
and autonomy. In ICMAS, volume 95, pages 254–260, 1995.

[68] Vincent Hilaire, Abder Koukam, Pablo Gruer, and Jean-Pierre Müller.
Formal specification and prototyping of multi-agent systems. In Inter-
national Workshop on Engineering Societies in the Agents World, pages
114–127. Springer, 2000.

[69] Linas Laibinis, Inna Pereverzeva, and Elena Troubitsyna. Formal reason-
ing about resilient goal-oriented multi-agent systems. Science of Com-
puter Programming, 148:66–87, 2017.

[70] Flavio Oquendo. π-ADL: an Architecture Description Language based
on the higher-order typed π-calculus for specifying dynamic and mo-
bile software architectures. ACM SIGSOFT Software Engineering Notes,
29(3):1–14, 2004.

[71] Maksym Bortin, Einar Broch Johnsen, and Christoph Lüth. Structured
formal development in Isabelle. Nordic Journal of Computing, 13(1/2):2,
2006.

[72] Loïc Besnard, Thierry Gautier, Paul Le Guernic, Clément Guy, Jean-
Pierre Talpin, Brian Larson, and Etienne Borde. Formal semantics of
behavior specifications in the architecture analysis and design language
standard. In Cyber-Physical System Design from an Architecture Analy-
sis Viewpoint, pages 53–79. Springer, 2017.

[73] Mohamed Elkamel Hamdane, Allaoui Chaoui, and Martin Strecker. From
AADL to timed automaton-A verification approach. International Jour-
nal of Software Engineering and Its Applications, 7(4), 2013.

[74] Andreas Johnsen, Kristina Lundqvist, Paul Pettersson, and Omar Jaradat.
Automated verification of AADL-specifications using UPPAAL. In High-
Assurance Systems Engineering (HASE), 2012 IEEE 14th International
Symposium on, pages 130–138. IEEE, 2012.

[75] Harold Bruintjes, Joost-Pieter Katoen, and David Lesens. A statistical
approach for timed reachability in AADL models. In Dependable Systems
and Networks (DSN), 45th Annual IEEE/IFIP International Conference
on, pages 81–88. IEEE, 2015.

90

[76] Yongxiang Bao, Mingsong Chen, Qi Zhu, Tongquan Wei, Frederic
Mallet, and Tingliang Zhou. Quantitative performance evaluation of
uncertainty-aware hybrid AADL designs using statistical model check-
ing. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 36(12):1989–2002, 2017.

[77] Guido Parente, Christopher D Nugent, Xin Hong, Mark P Donnelly, Lim-
ing Chen, and Enrico Vicario. Formal modeling techniques for ambient
assisted living. Ageing International, 36(2):192–216, 2011.

[78] using temporal logic and model checking in automated recognition of
human activities for ambient-assisted living.

[79] Yan Liu, Lin Gui, and Yang Liu. MDP-based reliability analysis of an
ambient assisted living system. In International Symposium on Formal
Methods, pages 688–702. Springer, 2014.

[80] OSATE-Open Source AADL Test Environment. http://osate.
github.io/. Accessed: 2018-05-15.

[76] Yongxiang Bao, Mingsong Chen, Qi Zhu, Tongquan Wei, Frederic
Mallet, and Tingliang Zhou. Quantitative performance evaluation of
uncertainty-aware hybrid AADL designs using statistical model check-
ing. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 36(12):1989–2002, 2017.

[77] Guido Parente, Christopher D Nugent, Xin Hong, Mark P Donnelly, Lim-
ing Chen, and Enrico Vicario. Formal modeling techniques for ambient
assisted living. Ageing International, 36(2):192–216, 2011.

[78] using temporal logic and model checking in automated recognition of
human activities for ambient-assisted living.

[79] Yan Liu, Lin Gui, and Yang Liu. MDP-based reliability analysis of an
ambient assisted living system. In International Symposium on Formal
Methods, pages 688–702. Springer, 2014.

[80] OSATE-Open Source AADL Test Environment. http://osate.
github.io/. Accessed: 2018-05-15.

91

92

II

Included Papers

75

II

Included Papers

75

93

94

Paper A Paper A

95

96

Chapter 8

Paper A:
Do we need an integrated
framework for Ambient
Assisted Living?

Ashalatha Kunnappilly, Cristina Seceleanu, Maria Lindén.
In Proceedings of the 10th International Conference (UCAmI’16), LNCS,
Springer, pages 52–63, Novemeber 2016, Canary Islands, Spain.

77

Chapter 8

Paper A:
Do we need an integrated
framework for Ambient
Assisted Living?

Ashalatha Kunnappilly, Cristina Seceleanu, Maria Lindén.
In Proceedings of the 10th International Conference (UCAmI’16), LNCS,
Springer, pages 52–63, Novemeber 2016, Canary Islands, Spain.

77

97

Abstract

The significant increase of ageing population calls for solutions that help the
elderly to live an independent, healthy and low risk life, but also ensure their so-
cial interaction. The improvements in Information and Communication Tech-
nologies (ICT) and Ambient Assisted Living (AAL) have resulted in the devel-
opment of equipment that supports ubiquitous computing, ubiquitous commu-
nication and intelligent user interfaces. The smart home technologies, assisted
robotics, sensors for health monitoring and e-health solutions are some exam-
ples in this category. Despite such growth in these individualized technologies,
there are only few solutions that provide integrated AAL frameworks that in-
terconnect all of these technologies. In this paper, we discuss the necessity to
opt for an integrated solution in AAL. To support the study we describe real
life scenarios that help us justify the need for integrated solutions over indi-
vidualized ones. Our analysis points to the clear conclusion that an integrated
solution for AAL outperforms the individualized ones.

Abstract

The significant increase of ageing population calls for solutions that help the
elderly to live an independent, healthy and low risk life, but also ensure their so-
cial interaction. The improvements in Information and Communication Tech-
nologies (ICT) and Ambient Assisted Living (AAL) have resulted in the devel-
opment of equipment that supports ubiquitous computing, ubiquitous commu-
nication and intelligent user interfaces. The smart home technologies, assisted
robotics, sensors for health monitoring and e-health solutions are some exam-
ples in this category. Despite such growth in these individualized technologies,
there are only few solutions that provide integrated AAL frameworks that in-
terconnect all of these technologies. In this paper, we discuss the necessity to
opt for an integrated solution in AAL. To support the study we describe real
life scenarios that help us justify the need for integrated solutions over indi-
vidualized ones. Our analysis points to the clear conclusion that an integrated
solution for AAL outperforms the individualized ones.

98

8.1 Introduction 79

8.1 Introduction

The society is now witnessing a demographic change towards an ageing pop-
ulation. Demographic statistics reports [1] show that the elderly population,
that is, people who are older than 60 years of age constitutes about one-fourth
of the total population in Europe and is expected to increase in the coming
years. A similar ageing trend is also witnessed around the world. The tech-
nological boom and the need to support an increasing elderly population have
prompted the research community to focus on the field of Ambient Assisted
Living (AAL). There are numerous Ambient Intelligent (AI) systems that have
been developed to support the elderly in their independent living. In addition,
there are significant advances in the field of smart homes, wireless sensor tech-
nology, assisted robotics, e-health etc., which have created a breakthrough de-
velopment in the AAL domain [2] [3]. However, a survey of the existing AAL
solutions reveals a potential research gap regarding solutions that integrate all
relevant technologies into a common framework.

In practice, almost all of the AAL solutions are found to be fragmented,
with limited support of only few integrated functionalities. Nevertheless, it is
also possible that one uses various independent systems to build up multiple
functionalities. For instance, if an elderly person’s home is equipped with an
AAL solution that does not have an automatic fall detection system, the user
can purchase it separately, as there exist readily available, wearable separate
solutions that detect a fall and raise an alarm. This functionality of a fall detec-
tion system remains the same whether it is an independent system or part of an
integrated framework.

If this is the case, we need to answer an important question - if the individ-
ualized solutions can perform their functionality without integration, then do
we really need to integrate all of them into a single framework bearing addi-
tional cost overheads? This paper focuses on answering such a question. The
most obvious reason for a positive answer would be the difficulty encountered
in using separate solutions as compared to a single integrated one; however,
there might exist a more important reason - the fact that the performance of in-
dividualized solutions differ dramatically if they are integrated into a coherent
framework, versus the case when they are employed in isolation. We discuss
this issue in detail in Section 8.3.

The paper is organized as follows. In Section 8.2, we review some of the
prominent AAL solutions with respect to their functionalities. Section 8.3 rea-
sons about the necessity of developing integrated solutions rather than indi-
vidualized ones. We show this by selecting representative scenarios that we

8.1 Introduction 79

8.1 Introduction

The society is now witnessing a demographic change towards an ageing pop-
ulation. Demographic statistics reports [1] show that the elderly population,
that is, people who are older than 60 years of age constitutes about one-fourth
of the total population in Europe and is expected to increase in the coming
years. A similar ageing trend is also witnessed around the world. The tech-
nological boom and the need to support an increasing elderly population have
prompted the research community to focus on the field of Ambient Assisted
Living (AAL). There are numerous Ambient Intelligent (AI) systems that have
been developed to support the elderly in their independent living. In addition,
there are significant advances in the field of smart homes, wireless sensor tech-
nology, assisted robotics, e-health etc., which have created a breakthrough de-
velopment in the AAL domain [2] [3]. However, a survey of the existing AAL
solutions reveals a potential research gap regarding solutions that integrate all
relevant technologies into a common framework.

In practice, almost all of the AAL solutions are found to be fragmented,
with limited support of only few integrated functionalities. Nevertheless, it is
also possible that one uses various independent systems to build up multiple
functionalities. For instance, if an elderly person’s home is equipped with an
AAL solution that does not have an automatic fall detection system, the user
can purchase it separately, as there exist readily available, wearable separate
solutions that detect a fall and raise an alarm. This functionality of a fall detec-
tion system remains the same whether it is an independent system or part of an
integrated framework.

If this is the case, we need to answer an important question - if the individ-
ualized solutions can perform their functionality without integration, then do
we really need to integrate all of them into a single framework bearing addi-
tional cost overheads? This paper focuses on answering such a question. The
most obvious reason for a positive answer would be the difficulty encountered
in using separate solutions as compared to a single integrated one; however,
there might exist a more important reason - the fact that the performance of in-
dividualized solutions differ dramatically if they are integrated into a coherent
framework, versus the case when they are employed in isolation. We discuss
this issue in detail in Section 8.3.

The paper is organized as follows. In Section 8.2, we review some of the
prominent AAL solutions with respect to their functionalities. Section 8.3 rea-
sons about the necessity of developing integrated solutions rather than indi-
vidualized ones. We show this by selecting representative scenarios that we

99

80 Paper A

simulate via sequence diagrams, and check their offline schedules against real-
time deadlines. In Section 8.4, we show the functional components of an inte-
grated AAL system by constructing a feature diagram representation. Section
8.5 concludes the paper and gives some directions for future work.

8.2 Literature Survey

In this section, we survey some of the most relevant AAL frameworks devel-
oped during the last two decades. The search is restricted to the platforms
with multi-functionality support, their availability in the market (or at least at a
prototype level) and documented user acceptance. Below, we first list the main
functionalities required by AAL systems, and then identify AAL solutions sup-
porting such functionalities. We summarize the results in Table 1, that is, the
chosen solutions and their supported functionalities, which justify the rest of
the paper.

The functionalities that we have chosen are: health monitoring, fall de-
tection, communication and socialization, support for supervised physical ex-
ercises, personalized intelligent and dynamic program management, robotics
platform support, intelligent personal assistant that takes orders, gives advice
and reminders etc., support for vocal interface, mobility assistance, and home
and environment management.

1. Health monitoring and care:

Health monitoring is an important functionality of AAL systems. The
parameters to monitor depend on the health status of older adults. The
major health monitoring frameworks are inCASA [4], Reaction [5], Uni-
versAAL [6], Diabetic Support Systems, Automated Memory Support
for Social Interaction (AMSSI) [2] etc.

2. Fall detection:

The risk of falling is one of the critical hazardous situations that needs
to be addressed in an AAL system [7]. Examples of existing solutions
include the Tunstall fall alarm, the Bay Alarm sensor etc. The inCASA
architecture [4] comprises fall detection for elderly people. The Giraff-
Plus project [8] uses both the smart phone fall detection application and
the Tunstall fall detection sensor.

3. Communication and social inclusion:

80 Paper A

simulate via sequence diagrams, and check their offline schedules against real-
time deadlines. In Section 8.4, we show the functional components of an inte-
grated AAL system by constructing a feature diagram representation. Section
8.5 concludes the paper and gives some directions for future work.

8.2 Literature Survey

In this section, we survey some of the most relevant AAL frameworks devel-
oped during the last two decades. The search is restricted to the platforms
with multi-functionality support, their availability in the market (or at least at a
prototype level) and documented user acceptance. Below, we first list the main
functionalities required by AAL systems, and then identify AAL solutions sup-
porting such functionalities. We summarize the results in Table 1, that is, the
chosen solutions and their supported functionalities, which justify the rest of
the paper.

The functionalities that we have chosen are: health monitoring, fall de-
tection, communication and socialization, support for supervised physical ex-
ercises, personalized intelligent and dynamic program management, robotics
platform support, intelligent personal assistant that takes orders, gives advice
and reminders etc., support for vocal interface, mobility assistance, and home
and environment management.

1. Health monitoring and care:

Health monitoring is an important functionality of AAL systems. The
parameters to monitor depend on the health status of older adults. The
major health monitoring frameworks are inCASA [4], Reaction [5], Uni-
versAAL [6], Diabetic Support Systems, Automated Memory Support
for Social Interaction (AMSSI) [2] etc.

2. Fall detection:

The risk of falling is one of the critical hazardous situations that needs
to be addressed in an AAL system [7]. Examples of existing solutions
include the Tunstall fall alarm, the Bay Alarm sensor etc. The inCASA
architecture [4] comprises fall detection for elderly people. The Giraff-
Plus project [8] uses both the smart phone fall detection application and
the Tunstall fall detection sensor.

3. Communication and social inclusion:

100

8.2 Literature Survey 81

Communication to health care professionals and social inclusion is an-
other vital functionality of AAL systems. Among the existing frame-
works, inCASA [4], Reaction [5], GiraffPlus [8], MobiServ [9] support
this functionality.

4. Supervised physical exercises:

Mobility problems are very common for elderly people. Exergames are
video games that combine traditional game play with physical activity.
The most common sensors available for physical activity detection are
Webcamera and Kinect sensors. The Mobiserv [9] framework supports
supervised physical exercises.

5. Personalized, intelligent and dynamic program management:

An AAL system should allow the storage of the user’s personal data
like medication plan, daily, weekly, monthly program planning, exercise
planner, record of medical data obtained from sensors, etc. The major
frameworks that support this functionality are listed in Table 1.

6. Robotic platforms support:

The service robots like the Pearl, Care-o-Bot, Cero, PR2, Robocare etc.
play a significant role in the AAL domain. Another major category is the
companion robots, like the robotic baby seal Paro [2]. The major plat-
forms with robotic support include Domeo AAL project [10], GiraffPlus
[8], Mobiserv [9] etc.

7. Intelligent personal assistant:

The cognitive abilities of elderly people decrease with age, hence the
functionality provided by an intelligent informed friendly collaborator
is crucial to AAL systems. Two of the frameworks that support this
functionality are inCASA [4], and Reaction [5].

8. Vocal interface:

Most of the elderly regard traditional computer interfaces as overly tech-
nical and difficult to use. Hence, support for vocal commands is neces-
sary. There are many existing software systems for speech recognition
and synthesis, out of which CMU Sphinx, Julius, Google Speech API
are among the most popular. Some of the platforms that support vocal
interfaces are listed in Table 8.1.

8.2 Literature Survey 81

Communication to health care professionals and social inclusion is an-
other vital functionality of AAL systems. Among the existing frame-
works, inCASA [4], Reaction [5], GiraffPlus [8], MobiServ [9] support
this functionality.

4. Supervised physical exercises:

Mobility problems are very common for elderly people. Exergames are
video games that combine traditional game play with physical activity.
The most common sensors available for physical activity detection are
Webcamera and Kinect sensors. The Mobiserv [9] framework supports
supervised physical exercises.

5. Personalized, intelligent and dynamic program management:

An AAL system should allow the storage of the user’s personal data
like medication plan, daily, weekly, monthly program planning, exercise
planner, record of medical data obtained from sensors, etc. The major
frameworks that support this functionality are listed in Table 1.

6. Robotic platforms support:

The service robots like the Pearl, Care-o-Bot, Cero, PR2, Robocare etc.
play a significant role in the AAL domain. Another major category is the
companion robots, like the robotic baby seal Paro [2]. The major plat-
forms with robotic support include Domeo AAL project [10], GiraffPlus
[8], Mobiserv [9] etc.

7. Intelligent personal assistant:

The cognitive abilities of elderly people decrease with age, hence the
functionality provided by an intelligent informed friendly collaborator
is crucial to AAL systems. Two of the frameworks that support this
functionality are inCASA [4], and Reaction [5].

8. Vocal interface:

Most of the elderly regard traditional computer interfaces as overly tech-
nical and difficult to use. Hence, support for vocal commands is neces-
sary. There are many existing software systems for speech recognition
and synthesis, out of which CMU Sphinx, Julius, Google Speech API
are among the most popular. Some of the platforms that support vocal
interfaces are listed in Table 8.1.

101

82 Paper A

Table 8.1 Functionalities supported by various AAL frameworks

AAL Platforms 1 2 3 4 5 6 7 8 9 10
inCASA X X X 7 7 7 X 7 7 X
iCarer 7 7 X 7 X 7 X 7 7 X

Persona 7 7 X 7 X 7 X X 7 X
Reaction X 7 X 7 X 7 X 7 7 7

UniversAAL X X X 7 X 7 X 7 7 7

iDorm 7 7 7 7 X 7 7 7 7 X
Robocare 7 X 7 7 X X X X 7 X

Aware Home 7 7 X 7 X 7 7 7 7 X
Mav Home 7 7 7 7 X 7 X 7 7 X

CASAS 7 7 7 7 X 7 7 7 7 X
GiraffPlus X X X 7 X X X 7 7 X
MobiServ 7 X X X X X 7 X 7 X

9. Mobility assistance:

Many of the elderly lack the ability to move independently and require
mobility support. There are many smart wheel chairs devised for this
purpose, like NavChair, Wheelesley, VAHM, PerMMa etc. Apart from
wheel chairs, mobility scooters and smart vehicles are prominent in this
category [2].

10. Home and environment management:

The most recognized smart home systems that take care of one’s home,
and perform environment management are iDorm, PERSONA (PER-
ceptive Spaces prOmoting iNdependent Aging)), CASAS Smart Home
Project, MavHome, and Aware Home Research Initiative (AHRI) [2].

Table 8.1 gives a synthetic account of various AAL frameworks in terms of sup-
ported functionalities. By inspecting the table one can notice that none of the
platforms that we have reviewed supports all the functionalities that we have se-
lected. This finding gives rise to a straightforward research question:“Are there
any critical performance differences in using an integrated framework versus
using individual systems side by side, for achieving the desired functionality?”.
The answer to this question is elaborated in the next section.

82 Paper A

Table 8.1 Functionalities supported by various AAL frameworks

AAL Platforms 1 2 3 4 5 6 7 8 9 10
inCASA X X X 7 7 7 X 7 7 X
iCarer 7 7 X 7 X 7 X 7 7 X

Persona 7 7 X 7 X 7 X X 7 X
Reaction X 7 X 7 X 7 X 7 7 7

UniversAAL X X X 7 X 7 X 7 7 7

iDorm 7 7 7 7 X 7 7 7 7 X
Robocare 7 X 7 7 X X X X 7 X

Aware Home 7 7 X 7 X 7 7 7 7 X
Mav Home 7 7 7 7 X 7 X 7 7 X

CASAS 7 7 7 7 X 7 7 7 7 X
GiraffPlus X X X 7 X X X 7 7 X
MobiServ 7 X X X X X 7 X 7 X

9. Mobility assistance:

Many of the elderly lack the ability to move independently and require
mobility support. There are many smart wheel chairs devised for this
purpose, like NavChair, Wheelesley, VAHM, PerMMa etc. Apart from
wheel chairs, mobility scooters and smart vehicles are prominent in this
category [2].

10. Home and environment management:

The most recognized smart home systems that take care of one’s home,
and perform environment management are iDorm, PERSONA (PER-
ceptive Spaces prOmoting iNdependent Aging)), CASAS Smart Home
Project, MavHome, and Aware Home Research Initiative (AHRI) [2].

Table 8.1 gives a synthetic account of various AAL frameworks in terms of sup-
ported functionalities. By inspecting the table one can notice that none of the
platforms that we have reviewed supports all the functionalities that we have se-
lected. This finding gives rise to a straightforward research question:“Are there
any critical performance differences in using an integrated framework versus
using individual systems side by side, for achieving the desired functionality?”.
The answer to this question is elaborated in the next section.

102

8.3 Analysis of Independent vs. Integrated AAL solutions 83

8.3 Analysis of Independent vs. Integrated AAL
solutions

In the previous section we have established the fact that none of the reviewed
frameworks acts as a fully integrated solution for AAL. In order to answer our
original question, we proceed to analyzing a real life scenario involving a fire
event and a fall event, possibly occurring simultaneously.

The motivation for choosing this scenario is based on actual data on fall
and fire incidents. According to statistics, the fall incidents among elderly
people over the age of 75 is at least 30% every year, and 40% of them fall more
than once, turning this incident into one of the major risk factors for elderly
people, which can sometimes lead to death [11]. Besides falls, the number of
fire incidents occurring at home has also been increasing at an alarming rate.
According to the report given by Nation Fire Protection, the number of fire
incidents reported in 2013 is 369.500, causing 2755 civilian deaths [12]. The
fire and fall incidents statistics implies that there is a high likeliness of both
events happening at the same time.

We perform our behavioral analysis of solutions by modeling the sequence
of message exchanges in the automatic fire and fall detection systems, and by
simulating the execution traces of the resulting sequence diagrams in Visual
Paradigm [13]. Fire and fall events have hard deadlines associated with their
resolution, that is, if a proper timely action is not guaranteed, they will have
catastrophic consequences. Therefore, we add response times to individual
messages in the sequence diagrams, and thereby calculate the response times
of fire detection and fall detection systems, respectively. Next, we analyze
the actions schedule of each independent system by using offline scheduling,
which is the most suited type of scheduling for hard real time applications [14].

8.3.1 Sequence Diagrams and Schedule Analysis
In this paper, we aim our analysis to understanding the behavior of automatic
fire detection and fall detection systems when:

1. Both systems are independent, and:

(a) Fire and fall events occur at different times.

(b) Fire and fall events occur simultaneously.

2. Both systems are integrated into a common framework, and:

8.3 Analysis of Independent vs. Integrated AAL solutions 83

8.3 Analysis of Independent vs. Integrated AAL
solutions

In the previous section we have established the fact that none of the reviewed
frameworks acts as a fully integrated solution for AAL. In order to answer our
original question, we proceed to analyzing a real life scenario involving a fire
event and a fall event, possibly occurring simultaneously.

The motivation for choosing this scenario is based on actual data on fall
and fire incidents. According to statistics, the fall incidents among elderly
people over the age of 75 is at least 30% every year, and 40% of them fall more
than once, turning this incident into one of the major risk factors for elderly
people, which can sometimes lead to death [11]. Besides falls, the number of
fire incidents occurring at home has also been increasing at an alarming rate.
According to the report given by Nation Fire Protection, the number of fire
incidents reported in 2013 is 369.500, causing 2755 civilian deaths [12]. The
fire and fall incidents statistics implies that there is a high likeliness of both
events happening at the same time.

We perform our behavioral analysis of solutions by modeling the sequence
of message exchanges in the automatic fire and fall detection systems, and by
simulating the execution traces of the resulting sequence diagrams in Visual
Paradigm [13]. Fire and fall events have hard deadlines associated with their
resolution, that is, if a proper timely action is not guaranteed, they will have
catastrophic consequences. Therefore, we add response times to individual
messages in the sequence diagrams, and thereby calculate the response times
of fire detection and fall detection systems, respectively. Next, we analyze
the actions schedule of each independent system by using offline scheduling,
which is the most suited type of scheduling for hard real time applications [14].

8.3.1 Sequence Diagrams and Schedule Analysis
In this paper, we aim our analysis to understanding the behavior of automatic
fire detection and fall detection systems when:

1. Both systems are independent, and:

(a) Fire and fall events occur at different times.

(b) Fire and fall events occur simultaneously.

2. Both systems are integrated into a common framework, and:

103

84 Paper A

(a) Fire and fall events occur at different times.

(b) Fire and fall events occur simultaneously.

We also annotate duration constraints to the message interactions in both
scenarios, in their respective sequence diagrams. A fall event is usually de-
tected by various feature extraction techniques and fall detection algorithms
running in the fall sensor [7]. Most of the fall sensors take approximately 255
ms to get activated on the occurrence of a fall event [15], and take 5 to 6 s to
detect a fall [16]. Some of the fall sensors available in the market can raise a
fall alarm at 30 s after the detection of a fall [17].

Let us assume that the fall alarm is communicated to a caregiver via an
automatic call that takes about 1 min. The average time for the caregiver to
respond to the fall alarm call is 2.96 min [18]. The caregiver can validate the
fall through a telepresence system (if available), in order to reduce the risk of
false alarms. This timing constraint is a variable based on the design aspects
of the system. Let us assume that validation takes another 1 min. In case of a
real fall, the caregiver should provide assistance immediately. The time taken
for providing the required assistance varies, and depends on many factors like
the distance from the hospital to the patient’s house, type of action taken, etc.
For our analysis, we assume a fair time of about 15 min during which proper
medical care should reach the person who has fallen.

The fire sensors do not fall under the category “wearable”, and hence the
system’s performance depends on a variety of physical factors like the place
of installation, height of installation, type of fire etc. There are now various
categories of fire sensors such as ionization sensors, photoelectric sensors, and
dual sensors. In this paper, we analyze the performance of a photoelectric
sensor installed in a bedroom of a two storey house, which can detect a fire due
to flaming, and raise an alarm within 54 s [19]. Let us split this into 2 actions:
fire detection within 45 s, and alarm raising within 9 s from detection, in order
to carry out a similar analysis like for the fall event. The fire alarm is sent to
the firefighter in 30 s [20]. Due to a high number of false alarms, there is a
need for confirming the alarm before taking an action. This is usually achieved
via telephone call confirmations. All these actions take about 1 min [20]. For
detailed analysis, we split this action into 3 subactions: 10 s response time of
firefighters, 25 s for call confirmation, and another 25 s for confirmation reply.
The volunteer firefighters should arrive at the spot within 9 min from fire alarm
confirmation. The fire’s put out time is 60 s [20], so the total time for the whole
response action is 10 min.

Once we have assigned duration constraints to individual messages in each

84 Paper A

(a) Fire and fall events occur at different times.

(b) Fire and fall events occur simultaneously.

We also annotate duration constraints to the message interactions in both
scenarios, in their respective sequence diagrams. A fall event is usually de-
tected by various feature extraction techniques and fall detection algorithms
running in the fall sensor [7]. Most of the fall sensors take approximately 255
ms to get activated on the occurrence of a fall event [15], and take 5 to 6 s to
detect a fall [16]. Some of the fall sensors available in the market can raise a
fall alarm at 30 s after the detection of a fall [17].

Let us assume that the fall alarm is communicated to a caregiver via an
automatic call that takes about 1 min. The average time for the caregiver to
respond to the fall alarm call is 2.96 min [18]. The caregiver can validate the
fall through a telepresence system (if available), in order to reduce the risk of
false alarms. This timing constraint is a variable based on the design aspects
of the system. Let us assume that validation takes another 1 min. In case of a
real fall, the caregiver should provide assistance immediately. The time taken
for providing the required assistance varies, and depends on many factors like
the distance from the hospital to the patient’s house, type of action taken, etc.
For our analysis, we assume a fair time of about 15 min during which proper
medical care should reach the person who has fallen.

The fire sensors do not fall under the category “wearable”, and hence the
system’s performance depends on a variety of physical factors like the place
of installation, height of installation, type of fire etc. There are now various
categories of fire sensors such as ionization sensors, photoelectric sensors, and
dual sensors. In this paper, we analyze the performance of a photoelectric
sensor installed in a bedroom of a two storey house, which can detect a fire due
to flaming, and raise an alarm within 54 s [19]. Let us split this into 2 actions:
fire detection within 45 s, and alarm raising within 9 s from detection, in order
to carry out a similar analysis like for the fall event. The fire alarm is sent to
the firefighter in 30 s [20]. Due to a high number of false alarms, there is a
need for confirming the alarm before taking an action. This is usually achieved
via telephone call confirmations. All these actions take about 1 min [20]. For
detailed analysis, we split this action into 3 subactions: 10 s response time of
firefighters, 25 s for call confirmation, and another 25 s for confirmation reply.
The volunteer firefighters should arrive at the spot within 9 min from fire alarm
confirmation. The fire’s put out time is 60 s [20], so the total time for the whole
response action is 10 min.

Once we have assigned duration constraints to individual messages in each

104

8.3 Analysis of Independent vs. Integrated AAL solutions 85

(a) Sequence Diagram. (b) Trace

Figure 8.1: Message sequence for fall event.

system, we can analyze both independent and integrated solutions, based on
sequence diagram simulations, and then construct their offline schedules.

1. Behavior of independent, automatic fire detection system, and fall detec-
tion system, assuming fire and fall events occur at different times.

The sequence diagrams for the individual systems, and their execution
traces are described in Figures 8.1 and 8.2, with their respective dura-
tion constraints. The duration constraints are assigned as previously dis-
cussed in this section. In case of automatic fall detection systems, the
total response time is calculated by adding the individual response times
of all messages in the sequence diagram of Figure 8.1.

Rfall =

6∑
i=1

Ri = 20.56min (8.1)

In case of automatic fire detection systems, the response time is calcu-
lated in a similar way:

Rfire =

7∑
i=1

Ri = 12.36min (8.2)

The schedule graphs of the automatic fall detection, and fire detection
systems are shown in Figure 8.3. This gives a clear indication of the
deadlines associated with each of the events in the context of our anal-
ysis: a fall event has to be addressed within 20.56 min to ensure safety,
and the fire, once it occurs, has to be extinguished within 12.36 min.

8.3 Analysis of Independent vs. Integrated AAL solutions 85

(a) Sequence Diagram. (b) Trace

Figure 8.1: Message sequence for fall event.

system, we can analyze both independent and integrated solutions, based on
sequence diagram simulations, and then construct their offline schedules.

1. Behavior of independent, automatic fire detection system, and fall detec-
tion system, assuming fire and fall events occur at different times.

The sequence diagrams for the individual systems, and their execution
traces are described in Figures 8.1 and 8.2, with their respective dura-
tion constraints. The duration constraints are assigned as previously dis-
cussed in this section. In case of automatic fall detection systems, the
total response time is calculated by adding the individual response times
of all messages in the sequence diagram of Figure 8.1.

Rfall =

6∑
i=1

Ri = 20.56min (8.1)

In case of automatic fire detection systems, the response time is calcu-
lated in a similar way:

Rfire =

7∑
i=1

Ri = 12.36min (8.2)

The schedule graphs of the automatic fall detection, and fire detection
systems are shown in Figure 8.3. This gives a clear indication of the
deadlines associated with each of the events in the context of our anal-
ysis: a fall event has to be addressed within 20.56 min to ensure safety,
and the fire, once it occurs, has to be extinguished within 12.36 min.

105

86 Paper A

(a) Sequence Diagram. (b) Trace

Figure 8.2: Message sequence for fire event.

(a) Fall event (b) Fire event

Figure 8.3: Offline scheduling of fire and fall event messages.

2. Behavior of independent, automatic fire detection system, and fall detec-
tion system, assuming fire and fall events occur simultaneously.

The sequence diagram interactions for independent fire and fall detec-
tion systems, with fire and fall events occurring simultaneously is shown
in Figure 8.4. In order to better illustrate the simultaneous occurrence
of both events, we restrict to a single sequence diagram that shows the
interaction of both systems. However, note that these systems are still
independent, without any mutual interactions.

86 Paper A

(a) Sequence Diagram. (b) Trace

Figure 8.2: Message sequence for fire event.

(a) Fall event (b) Fire event

Figure 8.3: Offline scheduling of fire and fall event messages.

2. Behavior of independent, automatic fire detection system, and fall detec-
tion system, assuming fire and fall events occur simultaneously.

The sequence diagram interactions for independent fire and fall detec-
tion systems, with fire and fall events occurring simultaneously is shown
in Figure 8.4. In order to better illustrate the simultaneous occurrence
of both events, we restrict to a single sequence diagram that shows the
interaction of both systems. However, note that these systems are still
independent, without any mutual interactions.

106

8.3 Analysis of Independent vs. Integrated AAL solutions 87

Figure 8.4: Message exchanges of fall event and fire event occurring simulta-
neously in an independent system.

When the fall and fire events occur simultaneously, the fall event follows
the usual sequence of events, but in case of a fire event, the confirma-
tion call of fire event is not answered as the user has fallen (shown as a
lost message in the sequence diagram of Figure 8.4. Consequently, it is
highly possible that firefighters ignore the fire alarm. Let us imagine the
worst case scenario where the fire gets notified to firefighters only when
the caregiver arrives to help the fallen individual, that is, the fire event is
notified after 20.56 min from start, which is far beyond the deadline of
12.36 min, associated with the fire event. A real catastrophe could occur
in this scenario, as the fire is not extinguished in due time.

The deadline miss of the fire event is clearly depicted in the schedule
diagram described in Figure 8.6a.

3. Behavior of an integrated fire detection system and fall detection system,
assuming fire and fall events occur at different times.

When the fire and fall events occur at disjoint points, the integrated sys-
tem follows the same sequence of events described by the sequence di-
agrams in Figures 8.1 and 8.2; the response times for both the events
remain the same as in the case of independent systems, and both events

8.3 Analysis of Independent vs. Integrated AAL solutions 87

Figure 8.4: Message exchanges of fall event and fire event occurring simulta-
neously in an independent system.

When the fall and fire events occur simultaneously, the fall event follows
the usual sequence of events, but in case of a fire event, the confirma-
tion call of fire event is not answered as the user has fallen (shown as a
lost message in the sequence diagram of Figure 8.4. Consequently, it is
highly possible that firefighters ignore the fire alarm. Let us imagine the
worst case scenario where the fire gets notified to firefighters only when
the caregiver arrives to help the fallen individual, that is, the fire event is
notified after 20.56 min from start, which is far beyond the deadline of
12.36 min, associated with the fire event. A real catastrophe could occur
in this scenario, as the fire is not extinguished in due time.

The deadline miss of the fire event is clearly depicted in the schedule
diagram described in Figure 8.6a.

3. Behavior of an integrated fire detection system and fall detection system,
assuming fire and fall events occur at different times.

When the fire and fall events occur at disjoint points, the integrated sys-
tem follows the same sequence of events described by the sequence di-
agrams in Figures 8.1 and 8.2; the response times for both the events
remain the same as in the case of independent systems, and both events

107

88 Paper A

Figure 8.5: Message exchanges of fall event and fire event occurring simulta-
neously in an integrated system.

are addressed within their deadlines, respectively, as shown in the dia-
gram of Figure 8.3.

4. Behavior of an integrated fire detection system and fall detection system,
assuming fire and fall events occur simultaneously.

We have seen earlier that if both fire and fall events occur simultaneously
in independent systems, the fire event misses its deadline, which might
have catastrophic consequences. Let us now check if the integrated sys-
tem can address this issue. The sequence diagram in this case is shown
in Figure 8.5. As described by the scenario, both individual systems are
integrated into a common framework, so both fall and fire events are first
communicated to the integrated framework now.

There exists a design constraint associated with the integrated system requir-
ing that the system has to wait for an arbitrary time to check whether some
other events are activated at the same time. In our case, when the fall event
is sent first to the integrated system, it waits arbitrarily for 0.5 s, such that the
fire event that occurred at the same point of time also gets accounted for. We
can chose this waiting time, depending on the design constraints, such that the
system registers multiple events and does not miss individual deadlines asso-
ciated with the events. In this case, the integrated framework communicates

88 Paper A

Figure 8.5: Message exchanges of fall event and fire event occurring simulta-
neously in an integrated system.

are addressed within their deadlines, respectively, as shown in the dia-
gram of Figure 8.3.

4. Behavior of an integrated fire detection system and fall detection system,
assuming fire and fall events occur simultaneously.

We have seen earlier that if both fire and fall events occur simultaneously
in independent systems, the fire event misses its deadline, which might
have catastrophic consequences. Let us now check if the integrated sys-
tem can address this issue. The sequence diagram in this case is shown
in Figure 8.5. As described by the scenario, both individual systems are
integrated into a common framework, so both fall and fire events are first
communicated to the integrated framework now.

There exists a design constraint associated with the integrated system requir-
ing that the system has to wait for an arbitrary time to check whether some
other events are activated at the same time. In our case, when the fall event
is sent first to the integrated system, it waits arbitrarily for 0.5 s, such that the
fire event that occurred at the same point of time also gets accounted for. We
can chose this waiting time, depending on the design constraints, such that the
system registers multiple events and does not miss individual deadlines asso-
ciated with the events. In this case, the integrated framework communicates

108

8.3 Analysis of Independent vs. Integrated AAL solutions 89

(a) Fall and fire events occuring simultaneously
in independent systems.

(b) Fall and fire events occuring simultaneously
in an integrated system

Figure 8.6: Offline schedules of fire event and fall event messages.

to the firefighters and caregiver that there is fire, and a fall event has occurred
also. As such, the firefighters prioritize their rescuing action without requir-
ing a confirmation call, thus completing their action well before the associated
deadline. Similarly, the caregiver does not spend time with confirmation, as
there are two critical events reported at the same time, so he/she takes his/her
action within the associated deadline of 20.53 s. The schedule of this scenario
is shown in Fig 8.6b.

The scenario that we have analyzed is one among many scenarios that
highlight the necessity of an integrated AAL solution. With the help of this
scenario, we could clearly identify that there is a significant performance dif-
ference between independent and integrated systems, when multiple critical
events occur simultaneously. Due to such evaluations, we can generalize and
infer that a potential AAL framework that integrates all the functionalities rang-
ing from health monitoring systems to assisted robotic systems is highly essen-
tial to be able to tackle multiple simultaneous events. We need a solution that
is capable of making a decision by interconnecting and prioritizing the events
in case more than one critical situation occurs. In short, such intelligence can
be developed only if one analyzes the scenarios collaboratively, which is only
possible if one uses an integrated framework of AAL functions.

8.3 Analysis of Independent vs. Integrated AAL solutions 89

(a) Fall and fire events occuring simultaneously
in independent systems.

(b) Fall and fire events occuring simultaneously
in an integrated system

Figure 8.6: Offline schedules of fire event and fall event messages.

to the firefighters and caregiver that there is fire, and a fall event has occurred
also. As such, the firefighters prioritize their rescuing action without requir-
ing a confirmation call, thus completing their action well before the associated
deadline. Similarly, the caregiver does not spend time with confirmation, as
there are two critical events reported at the same time, so he/she takes his/her
action within the associated deadline of 20.53 s. The schedule of this scenario
is shown in Fig 8.6b.

The scenario that we have analyzed is one among many scenarios that
highlight the necessity of an integrated AAL solution. With the help of this
scenario, we could clearly identify that there is a significant performance dif-
ference between independent and integrated systems, when multiple critical
events occur simultaneously. Due to such evaluations, we can generalize and
infer that a potential AAL framework that integrates all the functionalities rang-
ing from health monitoring systems to assisted robotic systems is highly essen-
tial to be able to tackle multiple simultaneous events. We need a solution that
is capable of making a decision by interconnecting and prioritizing the events
in case more than one critical situation occurs. In short, such intelligence can
be developed only if one analyzes the scenarios collaboratively, which is only
possible if one uses an integrated framework of AAL functions.

109

90 Paper A

Figure 8.7: Feature Diagram capturing the functions of an integrated AAL
system.

8.4 A Feature Diagram of Integrated AAL
Functions

Until now we have analyzed whether one should develop or not an integrated
architectural solution for AAL. As a first step towards the design of such an
integrated architecture for AAL, we capture the functionality features of such
a system using a feature diagram representation [21].

The feature diagram depicting the functional components and attributes of
an integrated AAL system is shown in Figure 8.7. In a feature diagram, a node
with a solid circle represents a mandatory feature of any AAL system. A node
with an empty circle represents an optional feature that can be selected by a
particular system. Several nodes associated with a spanning curve represent
a group of alternative features, from which a feature must be selected for a
particular system.

As one can notice, the AAL system is composed of users, components,
and communication protocols. The primary users of the system are elderly

90 Paper A

Figure 8.7: Feature Diagram capturing the functions of an integrated AAL
system.

8.4 A Feature Diagram of Integrated AAL
Functions

Until now we have analyzed whether one should develop or not an integrated
architectural solution for AAL. As a first step towards the design of such an
integrated architecture for AAL, we capture the functionality features of such
a system using a feature diagram representation [21].

The feature diagram depicting the functional components and attributes of
an integrated AAL system is shown in Figure 8.7. In a feature diagram, a node
with a solid circle represents a mandatory feature of any AAL system. A node
with an empty circle represents an optional feature that can be selected by a
particular system. Several nodes associated with a spanning curve represent
a group of alternative features, from which a feature must be selected for a
particular system.

As one can notice, the AAL system is composed of users, components,
and communication protocols. The primary users of the system are elderly

110

8.5 Conclusions and Future Works 91

adults, but there are also secondary users like the caregivers, family, friends,
etc., and also tertiary users like service providers, firefighters, etc. The com-
ponents include the sensor unit that contains health monitoring sensors (health
monitoring), ambient sensors (home monitoring), fall sensors (fall detection),
and physical exercise monitoring sensors (supervised physical exercises), mo-
bile phone of the elderly to communicate to external users via SMS, provide
reminders, etc., robotic platform support that can also be used as a telepres-
ence system for communication to external users, a private or a public cloud,
mobility assistance devices, interfaces, a high end processing unit acting as the
core of the AAL system, etc. The processor has the following subcomponents:
context awareness module, Decision Support Systems (DSS) with associated
Knowledge Bases (KB) and database. The choice of communication proto-
cols is flexible, based on requirements. Each node is also described as local
or distributed, with or without Real Time (RT) properties. The diagram in Fig.
7 should help the designer to select the appropriate features of a new AAL
system, as well as figure out infeasible combinations of features.

8.5 Conclusions and Future Works
In this paper, we have highlighted the significance of developing an integrated
framework for Ambient Assisted Living by analyzing real-life scenarios that
justify such a solution. The emergent behavior that arises by integrating the
various functionalities like health monitoring, smart homes, physical exercise
monitoring systems, robotic platform systems, fall alarms, intelligent friendly
collaborator systems, multi modal user interface systems, etc., are essential for
ensuring the success of any AAL system. We have also provided a feature
diagram representation of the functionalities of an integrated AAL framework,
which can serve as design reference of existing or future solutions.

As part of the future work, we plan to propose a fully integrated AAL archi-
tecture, which we plan to further model and verify formally against functional
and real-time requirements.

8.5 Conclusions and Future Works 91

adults, but there are also secondary users like the caregivers, family, friends,
etc., and also tertiary users like service providers, firefighters, etc. The com-
ponents include the sensor unit that contains health monitoring sensors (health
monitoring), ambient sensors (home monitoring), fall sensors (fall detection),
and physical exercise monitoring sensors (supervised physical exercises), mo-
bile phone of the elderly to communicate to external users via SMS, provide
reminders, etc., robotic platform support that can also be used as a telepres-
ence system for communication to external users, a private or a public cloud,
mobility assistance devices, interfaces, a high end processing unit acting as the
core of the AAL system, etc. The processor has the following subcomponents:
context awareness module, Decision Support Systems (DSS) with associated
Knowledge Bases (KB) and database. The choice of communication proto-
cols is flexible, based on requirements. Each node is also described as local
or distributed, with or without Real Time (RT) properties. The diagram in Fig.
7 should help the designer to select the appropriate features of a new AAL
system, as well as figure out infeasible combinations of features.

8.5 Conclusions and Future Works
In this paper, we have highlighted the significance of developing an integrated
framework for Ambient Assisted Living by analyzing real-life scenarios that
justify such a solution. The emergent behavior that arises by integrating the
various functionalities like health monitoring, smart homes, physical exercise
monitoring systems, robotic platform systems, fall alarms, intelligent friendly
collaborator systems, multi modal user interface systems, etc., are essential for
ensuring the success of any AAL system. We have also provided a feature
diagram representation of the functionalities of an integrated AAL framework,
which can serve as design reference of existing or future solutions.

As part of the future work, we plan to propose a fully integrated AAL archi-
tecture, which we plan to further model and verify formally against functional
and real-time requirements.

111

112

Bibliography

[1] Department of Economic and Social Affairs Population Division. World
Population Ageing 2015. Technical report, United Nations, NewYork, 11
2015.

[2] Ruijiao Li, Bowen Lu, and Klaus D McDonald-Maier. Cognitive assisted
living ambient system: A survey. Digital Communications and Networks,
1(4):229–252, 2015.

[3] Parisa Rashidi and Alex Mihailidis. A survey on ambient-assisted living
tools for older adults. IEEE journal of biomedical and health informatics,
17(3):579–590, 2013.

[4] Andreas P Kapsalis, Georgios Lamprinakos, Konstantinos A Papadopou-
los, Dimitra I Kaklamani, and Iakovos S Venieris. The inCASA project:
improving the quality of life and social care for the ageing population.
International journal of integrated care, 12(Suppl1), 2012.

[5] Remote Accessibility to Diabetes Management and Therapy in Opera-
tional health care Networks. http://www.reactionproject.eu.
Accessed: 2016-09-28.

[6] UniversAAL Project. http://universaal.sintef9013.com/
index.php/en/. Accessed: 2016-09-28.

[7] Yueng Santiago Delahoz and Miguel Angel Labrador. Survey on fall de-
tection and fall prevention using wearable and external sensors. Sensors,
14(10):19806–19842, 2014.

[8] Annica Kristoffersson, Silvia Coradeschi, and Amy Loutfi. A review of
mobile robotic telepresence. Advances in Human-Computer Interaction,
2013:3, 2013.

93

Bibliography

[1] Department of Economic and Social Affairs Population Division. World
Population Ageing 2015. Technical report, United Nations, NewYork, 11
2015.

[2] Ruijiao Li, Bowen Lu, and Klaus D McDonald-Maier. Cognitive assisted
living ambient system: A survey. Digital Communications and Networks,
1(4):229–252, 2015.

[3] Parisa Rashidi and Alex Mihailidis. A survey on ambient-assisted living
tools for older adults. IEEE journal of biomedical and health informatics,
17(3):579–590, 2013.

[4] Andreas P Kapsalis, Georgios Lamprinakos, Konstantinos A Papadopou-
los, Dimitra I Kaklamani, and Iakovos S Venieris. The inCASA project:
improving the quality of life and social care for the ageing population.
International journal of integrated care, 12(Suppl1), 2012.

[5] Remote Accessibility to Diabetes Management and Therapy in Opera-
tional health care Networks. http://www.reactionproject.eu.
Accessed: 2016-09-28.

[6] UniversAAL Project. http://universaal.sintef9013.com/
index.php/en/. Accessed: 2016-09-28.

[7] Yueng Santiago Delahoz and Miguel Angel Labrador. Survey on fall de-
tection and fall prevention using wearable and external sensors. Sensors,
14(10):19806–19842, 2014.

[8] Annica Kristoffersson, Silvia Coradeschi, and Amy Loutfi. A review of
mobile robotic telepresence. Advances in Human-Computer Interaction,
2013:3, 2013.

93

113

94 Bibliography

[9] H Heuvel, C Huijnen, Praminda Caleb-Solly, HH Nap, M Nani, and
E Lucet. Mobiserv: A service robot and intelligent home environment
for the Provision of health, nutrition and safety services to older adults.
Gerontechnology, 11(2):373, 2012.

[10] P Rumeau, N Vigouroux, B Boudet, G Lepicard, G Fazekas, F Nourha-
chemi, and M Savoldelli. Home deployment of a doubt removal telecare
service for cognitively impaired elderly people: a field deployment. In
Cognitive Infocommunications (CogInfoCom), 2012 IEEE 3rd Interna-
tional Conference on, pages 407–412. IEEE, 2012.

[11] Jiangpeng Dai, Xiaole Bai, Zhimin Yang, Zhaohui Shen, and Dong Xuan.
Mobile phone-based pervasive fall detection. Personal and ubiquitous
computing, 14(7):633–643, 2010.

[12] Fire statistics and reports from National Fire Protec-
tion. http://www.nfpa.org/news-and-research/
fire-statistics-and-reports/fire-statistics/
fires-by-property-type/residential/home-fires.
Accessed: 2016-09-28.

[13] Visual Paradigm for UML. https://www.visual-paradigm.
com. Accessed: 2016-09-28.

[14] Alan Burns. Scheduling hard real-time systems: a review. Software En-
gineering Journal, 6(3):116–128, 1991.

[15] B Yang, Y Lee, and C Lin. On Developing a Real-Time Fall Detecting
and Protecting System using Mobile Device. In Proceedings of the In-
ternational Conference on Fall Prevention and Protection, Tokyo, Japan,
pages 151–156, 2013.

[16] Panagiotis Kostopoulos, Tiago Nunes, Kevin Salvi, Michel Deriaz, and
Julien Torrent. F2d: A fall detection system tested with real data from
daily life of elderly people. In E-health Networking, Application & Ser-
vices (HealthCom), 2015 17th International Conference on, pages 397–
403. IEEE, 2015.

[17] Fall Detection Sensors Reviews. http://
medical-alert-systems-review.toptenreviews.com/
fall-detection/. Accessed: 2016-09-28.

94 Bibliography

[9] H Heuvel, C Huijnen, Praminda Caleb-Solly, HH Nap, M Nani, and
E Lucet. Mobiserv: A service robot and intelligent home environment
for the Provision of health, nutrition and safety services to older adults.
Gerontechnology, 11(2):373, 2012.

[10] P Rumeau, N Vigouroux, B Boudet, G Lepicard, G Fazekas, F Nourha-
chemi, and M Savoldelli. Home deployment of a doubt removal telecare
service for cognitively impaired elderly people: a field deployment. In
Cognitive Infocommunications (CogInfoCom), 2012 IEEE 3rd Interna-
tional Conference on, pages 407–412. IEEE, 2012.

[11] Jiangpeng Dai, Xiaole Bai, Zhimin Yang, Zhaohui Shen, and Dong Xuan.
Mobile phone-based pervasive fall detection. Personal and ubiquitous
computing, 14(7):633–643, 2010.

[12] Fire statistics and reports from National Fire Protec-
tion. http://www.nfpa.org/news-and-research/
fire-statistics-and-reports/fire-statistics/
fires-by-property-type/residential/home-fires.
Accessed: 2016-09-28.

[13] Visual Paradigm for UML. https://www.visual-paradigm.
com. Accessed: 2016-09-28.

[14] Alan Burns. Scheduling hard real-time systems: a review. Software En-
gineering Journal, 6(3):116–128, 1991.

[15] B Yang, Y Lee, and C Lin. On Developing a Real-Time Fall Detecting
and Protecting System using Mobile Device. In Proceedings of the In-
ternational Conference on Fall Prevention and Protection, Tokyo, Japan,
pages 151–156, 2013.

[16] Panagiotis Kostopoulos, Tiago Nunes, Kevin Salvi, Michel Deriaz, and
Julien Torrent. F2d: A fall detection system tested with real data from
daily life of elderly people. In E-health Networking, Application & Ser-
vices (HealthCom), 2015 17th International Conference on, pages 397–
403. IEEE, 2015.

[17] Fall Detection Sensors Reviews. http://
medical-alert-systems-review.toptenreviews.com/
fall-detection/. Accessed: 2016-09-28.

114

[18] Huey-Ming Tzeng and Chang-Yi Yin. Nurses’ response time to call lights
and fall occurrences. Medsurg Nursing, 19(5):266, 2010.

[19] Chris Kasperczyk. Smoke Alarms: Comparing the Differences in Re-
sponse Times and Nuisance Alarms. Technical report, University of
Cincinnati, 2010.

[20] Jennifer D Flynn. NFPA Report: Fire service performance measures,
2009.

[21] Don Batory. Feature models, grammars, and propositional formulas.
In International Conference on Software Product Lines, pages 7–20.
Springer, 2005.

[18] Huey-Ming Tzeng and Chang-Yi Yin. Nurses’ response time to call lights
and fall occurrences. Medsurg Nursing, 19(5):266, 2010.

[19] Chris Kasperczyk. Smoke Alarms: Comparing the Differences in Re-
sponse Times and Nuisance Alarms. Technical report, University of
Cincinnati, 2010.

[20] Jennifer D Flynn. NFPA Report: Fire service performance measures,
2009.

[21] Don Batory. Feature models, grammars, and propositional formulas.
In International Conference on Software Product Lines, pages 7–20.
Springer, 2005.

115

116

BPaper B BPaper B

117

118

Chapter 9

Paper B:
A Novel Integrated
Architecture for Ambient
Assisted Living Systems

Ashalatha Kunnappilly, Alexandru Sorici, Imad Alex Awada, Irina Mocanu,
Cristina Seceleanu, Adina Madga Florea
In Proceedings of the IEEE 41st Annual Computer Software and Applications
Conference (COMPSAC), pages 465-472, 2017, Turin, Italy, June 2017

97

Chapter 9

Paper B:
A Novel Integrated
Architecture for Ambient
Assisted Living Systems

Ashalatha Kunnappilly, Alexandru Sorici, Imad Alex Awada, Irina Mocanu,
Cristina Seceleanu, Adina Madga Florea
In Proceedings of the IEEE 41st Annual Computer Software and Applications
Conference (COMPSAC), pages 465-472, 2017, Turin, Italy, June 2017

97

119

Abstract

The increase in life expectancy and the slumping birth rates across the world
result in lengthening the average age of the society. Therefore, we are in need
of techniques that will assist the elderly in their daily life, while preventing
their social isolation. The recent developments in Ambient Intelligence and
Information and Communication Technologies have facilitated a technologi-
cal revolution in the field of Ambient Assisted Living. At present, there are
many technologies on the market that support the independent life of older
adults, requiring less assistance from family and caregivers, yet most of them
offer isolated services, such as health monitoring, reminders etc; moreover
none of current solutions incorporates the integration of various functionali-
ties and user preferences or are formally analyzed for their functionality and
quality-of-service attributes, a much needed endeavor in order to ensure safe
mitigations of potential critical scenarios. In this paper, we propose a novel
architectural solution that integrates necessary functions of an AAL system
seamlessly, based on user preferences. To enable the first level of the archi-
tecture’s analysis, we model our system in Architecture Analysis and Design
Language, and carry out its simulation for analyzing the end-to-end data-flow
latency, resource budgets and system safety.

Abstract

The increase in life expectancy and the slumping birth rates across the world
result in lengthening the average age of the society. Therefore, we are in need
of techniques that will assist the elderly in their daily life, while preventing
their social isolation. The recent developments in Ambient Intelligence and
Information and Communication Technologies have facilitated a technologi-
cal revolution in the field of Ambient Assisted Living. At present, there are
many technologies on the market that support the independent life of older
adults, requiring less assistance from family and caregivers, yet most of them
offer isolated services, such as health monitoring, reminders etc; moreover
none of current solutions incorporates the integration of various functionali-
ties and user preferences or are formally analyzed for their functionality and
quality-of-service attributes, a much needed endeavor in order to ensure safe
mitigations of potential critical scenarios. In this paper, we propose a novel
architectural solution that integrates necessary functions of an AAL system
seamlessly, based on user preferences. To enable the first level of the archi-
tecture’s analysis, we model our system in Architecture Analysis and Design
Language, and carry out its simulation for analyzing the end-to-end data-flow
latency, resource budgets and system safety.

120

9.1 Introduction 99

9.1 Introduction

According to the statistics of the World Population Ageing Report 2015, the
world’s elderly population is predicted to reach 2.1 billion by 2050, which is
more than double of the population of elderly adults in 2015 [1]. The ageing
society entails coping with an increased number of diseases, increased health-
care costs, shortage of caregivers [2], etc. Assisted living systems can help in
supporting elderly persons in their daily activities and their independent living,
with limited risks.

Nowadays, there are numerous Ambient Assisted Living (AAL) solutions
available, ranging from a large variety of health monitoring and fall detection
sensors, smart homes and assisted robots [3]. However, most current systems
are not very effective in critical situations due to not sufficient support of inte-
gration of functionalities, difficulty of usage and low acceptance rates [4][5].
One such scenario that supports this claim and that we also analyze in this pa-
per is the occurrence of "fire" and "fall" events simultaneously. When both
these events occur together, a safe mitigation of the scenario is achieved only
when both these events are communicated to caregivers and firefighters; which
is not guaranteed by independent systems working side by side. Assuming
that the fire alarm communicated to the firefighters is verified for confirmation
by a phone call to the user’s home, it follows that the elderly who has fallen
that has been communicated to the caregivers only cannot answer in due time,
so the fire alarm may be deemed false and discarded, triggering a potential
catastrophe. The fact that the existing AAL products do not integrate the mod-
ules targeted towards the particular needs of a user, namely health monitoring,
home appliances control, report and communication with health professionals,
telepresence module etc., offering a solution that could safely resolve potential
combined critical situations, also confirmed by model-based behavioral anal-
ysis of the system, serves as the motivation for the research presented in this
paper. We propose a novel modular architecture for AAL that can be seen as
a fully integrated solution, with functionalities selected based on user choices.
Our proposed architecture is designed by taking into account the pros and cons
of existing prominent AAL architectures in the literature. Since our solution
should operate appropriately in critical situations also, it is important that its
quality-of-service (QoS) is analyzed. To achieve this, we model the proposed
architecture in the Architecture Analysis and Design Language (AADL) [6],
and carry out simulations in AADL to estimate the end-to-end flow latency,
resource budgets and system safety.

The remainder of the paper is organized as follows. In Section 9.2, we dis-

9.1 Introduction 99

9.1 Introduction

According to the statistics of the World Population Ageing Report 2015, the
world’s elderly population is predicted to reach 2.1 billion by 2050, which is
more than double of the population of elderly adults in 2015 [1]. The ageing
society entails coping with an increased number of diseases, increased health-
care costs, shortage of caregivers [2], etc. Assisted living systems can help in
supporting elderly persons in their daily activities and their independent living,
with limited risks.

Nowadays, there are numerous Ambient Assisted Living (AAL) solutions
available, ranging from a large variety of health monitoring and fall detection
sensors, smart homes and assisted robots [3]. However, most current systems
are not very effective in critical situations due to not sufficient support of inte-
gration of functionalities, difficulty of usage and low acceptance rates [4][5].
One such scenario that supports this claim and that we also analyze in this pa-
per is the occurrence of "fire" and "fall" events simultaneously. When both
these events occur together, a safe mitigation of the scenario is achieved only
when both these events are communicated to caregivers and firefighters; which
is not guaranteed by independent systems working side by side. Assuming
that the fire alarm communicated to the firefighters is verified for confirmation
by a phone call to the user’s home, it follows that the elderly who has fallen
that has been communicated to the caregivers only cannot answer in due time,
so the fire alarm may be deemed false and discarded, triggering a potential
catastrophe. The fact that the existing AAL products do not integrate the mod-
ules targeted towards the particular needs of a user, namely health monitoring,
home appliances control, report and communication with health professionals,
telepresence module etc., offering a solution that could safely resolve potential
combined critical situations, also confirmed by model-based behavioral anal-
ysis of the system, serves as the motivation for the research presented in this
paper. We propose a novel modular architecture for AAL that can be seen as
a fully integrated solution, with functionalities selected based on user choices.
Our proposed architecture is designed by taking into account the pros and cons
of existing prominent AAL architectures in the literature. Since our solution
should operate appropriately in critical situations also, it is important that its
quality-of-service (QoS) is analyzed. To achieve this, we model the proposed
architecture in the Architecture Analysis and Design Language (AADL) [6],
and carry out simulations in AADL to estimate the end-to-end flow latency,
resource budgets and system safety.

The remainder of the paper is organized as follows. In Section 9.2, we dis-

121

100 Paper B

cuss some of the prominent architectural frameworks developed for AAL and
underline their advantages and disadvantages by simulating these architectures
in AADL. Section 9.3 describes our integrated architecture, whereas in Sec-
tion 9.4 we present the run-time architecture model in AADL. The simulation
results depicting the end-to-end flow latency, resource budgets and safety anal-
ysis in AADL are presented and discussed in Section 9.5. In Section 9.6, we
conclude the paper and outline future lines of research.

9.2 Literature Review
Ambient Assisted Living and Ambient Intelligence (AmI) techniques are some
of the most researched areas in the past few years due to an increasing amount
of elderly population across the world [2]. At present, there are no market so-
lutions that offer a complete integrated solution for AAL. Consequently, in the
following, we survey the existing literature on AAL architectural solutions, and
identify advantages and shortcomings through AADL simulations in OSATE
2.2.1. AADL has been chosen for architecture analysis due to its architecture-
centric and model-based engineering approach, sound specifications and large
acceptance in the industry for modeling embedded systems.

This section is organized as follows: in subsection A, we give a brief in-
troduction to AADL and in subsection B, we describe in detail the existing
architectures in literature and the results of their AADL simulation.

9.2.1 Architecture Analysis and Design Language
AADL [6] models a system’s architecture in terms of hierarchies of compo-
nents at various levels of abstractions, whose interaction is represented by con-
nections via ports (data, event and event data ports). There are three categories
of component abstractions in AADL - Software, Execution Platform and Sys-
tem. Application software comprises the process, data, subprogram, thread,
and thread group components. The execution platform is made up of computa-
tion and communication resources, consisting of processor, memory, bus, and
device components. System components are composites that can consist of
other systems as well as software or hardware components. The major compo-
nents are: 1) Process - a unit of protected address space, 2) Data represents a
type, local data subcomponent, or parameter of a subprogram 3) Thread - unit
of concurrent execution based on various protocols (periodic, aperiodic, spo-
radic, server and background), 4) Processor - a virtual machine that schedules
and executes threads, 5) Memory - a storage abstraction that can hold data or

100 Paper B

cuss some of the prominent architectural frameworks developed for AAL and
underline their advantages and disadvantages by simulating these architectures
in AADL. Section 9.3 describes our integrated architecture, whereas in Sec-
tion 9.4 we present the run-time architecture model in AADL. The simulation
results depicting the end-to-end flow latency, resource budgets and safety anal-
ysis in AADL are presented and discussed in Section 9.5. In Section 9.6, we
conclude the paper and outline future lines of research.

9.2 Literature Review
Ambient Assisted Living and Ambient Intelligence (AmI) techniques are some
of the most researched areas in the past few years due to an increasing amount
of elderly population across the world [2]. At present, there are no market so-
lutions that offer a complete integrated solution for AAL. Consequently, in the
following, we survey the existing literature on AAL architectural solutions, and
identify advantages and shortcomings through AADL simulations in OSATE
2.2.1. AADL has been chosen for architecture analysis due to its architecture-
centric and model-based engineering approach, sound specifications and large
acceptance in the industry for modeling embedded systems.

This section is organized as follows: in subsection A, we give a brief in-
troduction to AADL and in subsection B, we describe in detail the existing
architectures in literature and the results of their AADL simulation.

9.2.1 Architecture Analysis and Design Language
AADL [6] models a system’s architecture in terms of hierarchies of compo-
nents at various levels of abstractions, whose interaction is represented by con-
nections via ports (data, event and event data ports). There are three categories
of component abstractions in AADL - Software, Execution Platform and Sys-
tem. Application software comprises the process, data, subprogram, thread,
and thread group components. The execution platform is made up of computa-
tion and communication resources, consisting of processor, memory, bus, and
device components. System components are composites that can consist of
other systems as well as software or hardware components. The major compo-
nents are: 1) Process - a unit of protected address space, 2) Data represents a
type, local data subcomponent, or parameter of a subprogram 3) Thread - unit
of concurrent execution based on various protocols (periodic, aperiodic, spo-
radic, server and background), 4) Processor - a virtual machine that schedules
and executes threads, 5) Memory - a storage abstraction that can hold data or

122

9.2 Literature Review 101

Figure 9.1: ESS-H architecture.

code, 6) Bus - a connector abstraction between execution platform components,
and 7) Device - an abstraction of an active component that an application sys-
tem can interact with, and a processor executing software that requires access
to, via a bus.

9.2.2 Prominent AAL architectures in literature
By examining the AAL literature, we identify some architecture types that ad-
dress the construction of integrative AAL applications (that is, those that focus
on creating a holistic user experience, not just the development of a specific
functionality such as health data management or social interaction). In what
follows, we investigate two commonly-used architecture types: Cloud based
and Multi-Agent System (MAS), showing an example for each.

1. Cloud-based AAL architectures.
In this category, we describe the ESS-H (Embedded Sensor Systems for
Health) [7], shown in Fig.9.1. Although the architecture supports multi-
ple functionalities like health monitoring, fall detection, communication
to caregiver etc., there is no support for home monitoring (with fire de-
tection systems), robots etc. Hence, inorder to analyze the scenario of
simultaneous fire and fall events, the only choice would be to use an in-
dependent fire detection system along with the ESS-H. In a related work

9.2 Literature Review 101

Figure 9.1: ESS-H architecture.

code, 6) Bus - a connector abstraction between execution platform components,
and 7) Device - an abstraction of an active component that an application sys-
tem can interact with, and a processor executing software that requires access
to, via a bus.

9.2.2 Prominent AAL architectures in literature
By examining the AAL literature, we identify some architecture types that ad-
dress the construction of integrative AAL applications (that is, those that focus
on creating a holistic user experience, not just the development of a specific
functionality such as health data management or social interaction). In what
follows, we investigate two commonly-used architecture types: Cloud based
and Multi-Agent System (MAS), showing an example for each.

1. Cloud-based AAL architectures.
In this category, we describe the ESS-H (Embedded Sensor Systems for
Health) [7], shown in Fig.9.1. Although the architecture supports multi-
ple functionalities like health monitoring, fall detection, communication
to caregiver etc., there is no support for home monitoring (with fire de-
tection systems), robots etc. Hence, inorder to analyze the scenario of
simultaneous fire and fall events, the only choice would be to use an in-
dependent fire detection system along with the ESS-H. In a related work

123

102 Paper B

Figure 9.2: ESS-H architecture in AADL describing data flow during fall event.

[5] , the authors argue, based on sequence diagram simulations, that the
timing constraint of taking a correct decision could not be met by two
independent systems working side by side. However, sequence diagram
simulations cannot analyze flows through the components, while consid-
ering the sensor sampling times, component execution times and com-
munication bus latencies. Hence, we describe the architecture, systems
requirements and flow latency analysis in AADL, for both the ESS-H fall
detection system, and the separate fire detection system, respectively.

ESS-H Fall Detection: Architecture Description in AADL. The ma-
jor components of ESS-H architecture are sensor unit, collector and user-
interface unit, the gateway and switch server, and the intelligent health
server (IHS), with the servers being cloud based as shown in Fig. 9.1.
The data flow during the occurrence of a fall event is described as three
end-to-end flows in AADL as shown in Fig. 9.2. Flow 1 describes the
data flow from issuing the fall event, until its sending to the caregiver
through the data collector (modeled as a process with a thread for an-
alyzing data), gateway (modeled as a device) and cloud (modeled as a
process with a thread for communication); Flow 2 is models the care-
giver’s confirmation of the fall event through the gateway and data col-
lector (which in this case is a tablet); Flow 3 describes the caregiver’s
action on the elderly in case of a genuine alarm. As we cannot model

102 Paper B

Figure 9.2: ESS-H architecture in AADL describing data flow during fall event.

[5] , the authors argue, based on sequence diagram simulations, that the
timing constraint of taking a correct decision could not be met by two
independent systems working side by side. However, sequence diagram
simulations cannot analyze flows through the components, while consid-
ering the sensor sampling times, component execution times and com-
munication bus latencies. Hence, we describe the architecture, systems
requirements and flow latency analysis in AADL, for both the ESS-H fall
detection system, and the separate fire detection system, respectively.

ESS-H Fall Detection: Architecture Description in AADL. The ma-
jor components of ESS-H architecture are sensor unit, collector and user-
interface unit, the gateway and switch server, and the intelligent health
server (IHS), with the servers being cloud based as shown in Fig. 9.1.
The data flow during the occurrence of a fall event is described as three
end-to-end flows in AADL as shown in Fig. 9.2. Flow 1 describes the
data flow from issuing the fall event, until its sending to the caregiver
through the data collector (modeled as a process with a thread for an-
alyzing data), gateway (modeled as a device) and cloud (modeled as a
process with a thread for communication); Flow 2 is models the care-
giver’s confirmation of the fall event through the gateway and data col-
lector (which in this case is a tablet); Flow 3 describes the caregiver’s
action on the elderly in case of a genuine alarm. As we cannot model

124

9.2 Literature Review 103

Figure 9.3: Fire detection system architecture in AADL describing data flow
during fire event.

human behaviors accurately, we model them as devices with maximum
allowed response times.

ESS-H Fall Detection: System Requirements. The system’s latency
requirements are described in Table 9.1, in accordance with values based
on previous work [5], except the split of the human response times into
the time needed to register the information and the time needed to take
the action. For instance, the maximum allowed response time of the
caregiver from the time of being informed of a fall event is 2,96 min [8];
we have divided the response time arbitrarily as 1 min for registering the
data (Flow 1) and 1.96 min for the response (Flow 2). The maximum
latency values for the end-to-end flows are shown in Table 9.1. For the
analysis, we assume periodic sampling of the fall sensor, every 30 sec.
All other components are also activated at 30 sec to effectively handle
the sensor data. The communication, except that of caregiver’s action
occurs via two buses - Bluetooth (Latency: 150 to 200 ms) and Internet
(Latency: 50 to 100 ms).

ESS-H Fall Detection: Analysis Results The AADL flow latency
analysis results are generated based on considering the processing time

9.2 Literature Review 103

Figure 9.3: Fire detection system architecture in AADL describing data flow
during fire event.

human behaviors accurately, we model them as devices with maximum
allowed response times.

ESS-H Fall Detection: System Requirements. The system’s latency
requirements are described in Table 9.1, in accordance with values based
on previous work [5], except the split of the human response times into
the time needed to register the information and the time needed to take
the action. For instance, the maximum allowed response time of the
caregiver from the time of being informed of a fall event is 2,96 min [8];
we have divided the response time arbitrarily as 1 min for registering the
data (Flow 1) and 1.96 min for the response (Flow 2). The maximum
latency values for the end-to-end flows are shown in Table 9.1. For the
analysis, we assume periodic sampling of the fall sensor, every 30 sec.
All other components are also activated at 30 sec to effectively handle
the sensor data. The communication, except that of caregiver’s action
occurs via two buses - Bluetooth (Latency: 150 to 200 ms) and Internet
(Latency: 50 to 100 ms).

ESS-H Fall Detection: Analysis Results The AADL flow latency
analysis results are generated based on considering the processing time

125

104 Paper B

Table 9.1 System requirements and flow latency analysis results of ESS-H.

Name System latency Max Latency (AADL)
Fall detection system 1233600 ms 928755 ms

Flow1 156255 ms 97755 ms
Flow2 177600 ms 30800 ms
Flow3 900000 ms 800200 ms

Table 9.2 System requirements and Flow latency analysis results of Fire detec-
tion system.

Name System latency Max Latency (AADL)
Fire detection system 741600 ms 811400 ms

Flow1 91000 ms 69300 ms
Flow2 28000 ms 12000 ms
Flow3 25000 ms 30100 ms
Flow4 600000 ms 700000 ms

of the tasks, processing delay due to queueing, transfer time of informa-
tion between connections etc. The end-to-end latency analysis results
are shown in Table 9.1. All of the three flows meet their maximum end-
to-end latencies.

Next, we analyze the independent fire detection system that detects the
fire event and communicates it to the firefighters.

Fire Detection: Architecture Description in AADL The fire detec-
tion system has a fire detection sensor, a data analyzer module to process
the sensor data, a gateway device and a mobile phone to communicate
with the firefighters. The fire sensor, gateway, mobile phone and fire-
fighters are modeled as devices, however the data collector is modeled
as a process with an associated thread that deals with processing fire sen-
sor data. The AADL model of the fire detection system contains 4 flows:
Flow 1 for communicating the fire event to the fire fighter, Flow 2 for
confirmation of the fall event, Flow 3 for modeling the response to the
confirmation call and Flow 4 for capturing the firefighter’s action. The
AADL model and associated flows are illustrated in Fig. 9.3.

2. Distributed agent-based AAL architectures.

104 Paper B

Table 9.1 System requirements and flow latency analysis results of ESS-H.

Name System latency Max Latency (AADL)
Fall detection system 1233600 ms 928755 ms

Flow1 156255 ms 97755 ms
Flow2 177600 ms 30800 ms
Flow3 900000 ms 800200 ms

Table 9.2 System requirements and Flow latency analysis results of Fire detec-
tion system.

Name System latency Max Latency (AADL)
Fire detection system 741600 ms 811400 ms

Flow1 91000 ms 69300 ms
Flow2 28000 ms 12000 ms
Flow3 25000 ms 30100 ms
Flow4 600000 ms 700000 ms

of the tasks, processing delay due to queueing, transfer time of informa-
tion between connections etc. The end-to-end latency analysis results
are shown in Table 9.1. All of the three flows meet their maximum end-
to-end latencies.

Next, we analyze the independent fire detection system that detects the
fire event and communicates it to the firefighters.

Fire Detection: Architecture Description in AADL The fire detec-
tion system has a fire detection sensor, a data analyzer module to process
the sensor data, a gateway device and a mobile phone to communicate
with the firefighters. The fire sensor, gateway, mobile phone and fire-
fighters are modeled as devices, however the data collector is modeled
as a process with an associated thread that deals with processing fire sen-
sor data. The AADL model of the fire detection system contains 4 flows:
Flow 1 for communicating the fire event to the fire fighter, Flow 2 for
confirmation of the fall event, Flow 3 for modeling the response to the
confirmation call and Flow 4 for capturing the firefighter’s action. The
AADL model and associated flows are illustrated in Fig. 9.3.

2. Distributed agent-based AAL architectures.

126

9.2 Literature Review 105

Figure 9.4: A service oriented MAS architecture for Alzheimer health care.

Fire Detection: System Requirements The system’s latency require-
ments are tabulated and described in Table 9.2 [5]. For the flow analysis,
we model two different device implementations for mobile phone and
firefighter - one showing the normal behavior (in case of Flow 1 and
Flow 2) and the other showing the delayed behavior (in case of Flow 3
and Flow 4). Moreover, the Flow 2 is dependent on data from Flow 1,
we divide 10 sec response time as 7 sec for registering the fire data and
3 sec for the response. The maximum end-to-end latencies of the flows
are thus 1.5, 0.46, 0.4 and 10 min respectively (Table 9.2). We assume
that the confirmation call is not answered by the elderly within 5 min.
For the analysis, we assume periodic sampling for the fire sensors every
20 sec and all the communication, except firefighter’s action occurs via
two buses - Bluetooth and Internet with the same prescribed latencies as
before.

Fire Detection: Analysis Results The end-to-end flow latency results
show that Flow 3 and 4 miss their deadlines. The simulation results are
also shown in Table 9.2.

9.2 Literature Review 105

Figure 9.4: A service oriented MAS architecture for Alzheimer health care.

Fire Detection: System Requirements The system’s latency require-
ments are tabulated and described in Table 9.2 [5]. For the flow analysis,
we model two different device implementations for mobile phone and
firefighter - one showing the normal behavior (in case of Flow 1 and
Flow 2) and the other showing the delayed behavior (in case of Flow 3
and Flow 4). Moreover, the Flow 2 is dependent on data from Flow 1,
we divide 10 sec response time as 7 sec for registering the fire data and
3 sec for the response. The maximum end-to-end latencies of the flows
are thus 1.5, 0.46, 0.4 and 10 min respectively (Table 9.2). We assume
that the confirmation call is not answered by the elderly within 5 min.
For the analysis, we assume periodic sampling for the fire sensors every
20 sec and all the communication, except firefighter’s action occurs via
two buses - Bluetooth and Internet with the same prescribed latencies as
before.

Fire Detection: Analysis Results The end-to-end flow latency results
show that Flow 3 and 4 miss their deadlines. The simulation results are
also shown in Table 9.2.

127

106 Paper B

Figure 9.5: Fire agent behavior as AADL threads.

Our analysis shows that the ESS-H solution that consists of fall detec-
tion capabilities working side by side with an independent fire detection
system might not cover our critical scenario safely, that is, the response
actions are not completed by their deadlines. However, later in the pa-
per, we show that if the fire and fall detection capabilities are integrated
into the same system, such critical scenarios can be handled in due time.
Moreover, the ESS-H solution also runs the risk of single point of fail-
ure due to the centralized IHS. The dependency of the architecture on
Internet connectivity is high, and there is no local processing of the data,
and so the system is exposed to a complete failure in the absence of a
working Internet connection, or when the IHS is not able to respond in
real-time.

Next, we investigate whether a distributed solution serves the purpose
effectively. Thus, we hereby analyze a distributed multi-agent system
architecture proposed to support people suffering from the Alzheimer
disease [9].

Agent architecture: Architecture Description in AADL The archi-
tecture uses a Flexible User and a Service-Oriented multi-ageNt Archi-
tecture (FUSION@) [10] and is depicted in Fig. 9.4. Though this ar-
chitecture does not offer a fully integrated functionality, it can be easily
extended to support the intended functionalities owing to its distributed
nature. Let us assume that the agent-based architecture contains a fire-
agent and a fall-agent to deal with fire and fall events respectively. The
actions for a fire agent include detecting the fire event, updating its event
list, synchronizing this event with fall agent, updating the event list again
and finally taking the decision. We map all these sequences as separate

106 Paper B

Figure 9.5: Fire agent behavior as AADL threads.

Our analysis shows that the ESS-H solution that consists of fall detec-
tion capabilities working side by side with an independent fire detection
system might not cover our critical scenario safely, that is, the response
actions are not completed by their deadlines. However, later in the pa-
per, we show that if the fire and fall detection capabilities are integrated
into the same system, such critical scenarios can be handled in due time.
Moreover, the ESS-H solution also runs the risk of single point of fail-
ure due to the centralized IHS. The dependency of the architecture on
Internet connectivity is high, and there is no local processing of the data,
and so the system is exposed to a complete failure in the absence of a
working Internet connection, or when the IHS is not able to respond in
real-time.

Next, we investigate whether a distributed solution serves the purpose
effectively. Thus, we hereby analyze a distributed multi-agent system
architecture proposed to support people suffering from the Alzheimer
disease [9].

Agent architecture: Architecture Description in AADL The archi-
tecture uses a Flexible User and a Service-Oriented multi-ageNt Archi-
tecture (FUSION@) [10] and is depicted in Fig. 9.4. Though this ar-
chitecture does not offer a fully integrated functionality, it can be easily
extended to support the intended functionalities owing to its distributed
nature. Let us assume that the agent-based architecture contains a fire-
agent and a fall-agent to deal with fire and fall events respectively. The
actions for a fire agent include detecting the fire event, updating its event
list, synchronizing this event with fall agent, updating the event list again
and finally taking the decision. We map all these sequences as separate

128

9.3 Proposed Architecture 107

Table 9.3 Flow latency analysis results of agent based system.

Flows System Latency Requirements Max Latency (AADL)
Flow1 91000 ms 170100 ms

threads in AADL as shown in Fig. 9.5. In this system model, we an-
alyze whether fire and fall events are effectively communicated to the
firefighter in due time taking into account the agent synchronization and
communication delays.

Agent architecture: System Requirements We assume the system’s
requirements similar to those of the fire detection system described ear-
lier and we assume communication latency of 50 ms to 100 ms for send-
ing synchronization messages.

Agent architecture: Analysis Results The results are tabulated in Ta-
ble 9.3. As shown, Flow 1 clearly misses its deadline. Hence, even
though distributed systems offer higher performance due to resource
sharing and has higher reliability and fault tolerance when compared to
centralized counterparts, data synchronization becomes a new problem
and so does the unpredictable nature of the system (the response times
are dependent on the system organization and network load), as shown
also by the flow latency analysis. Moreover, if we consider the above
system, the solely local deployment of agents makes the system’s main-
tainability difficult. In addition, as the system becomes more distributed,
security challenges are higher, and the system’s maintainability becomes
difficult. As a result of the carried analysis, we opt for a centralized
solution, with necessary fault tolerance to deal effectively in real-time,
especially in scenarios where multiple events occur together.

Based on the above, we conclude that none of these architectures can be di-
rectly used as a framework for building fully integrated AAL systems. More-
over, we have not found any evidence ensuring various QoS attributes. To
alleviate such inconveniences, we propose a new architectural solution, named
CAMI (Companion with Autonomously Mobile Interface), which is a nominal
mix of the studied solutions; described in detail in the following sections.

9.3 Proposed Architecture 107

Table 9.3 Flow latency analysis results of agent based system.

Flows System Latency Requirements Max Latency (AADL)
Flow1 91000 ms 170100 ms

threads in AADL as shown in Fig. 9.5. In this system model, we an-
alyze whether fire and fall events are effectively communicated to the
firefighter in due time taking into account the agent synchronization and
communication delays.

Agent architecture: System Requirements We assume the system’s
requirements similar to those of the fire detection system described ear-
lier and we assume communication latency of 50 ms to 100 ms for send-
ing synchronization messages.

Agent architecture: Analysis Results The results are tabulated in Ta-
ble 9.3. As shown, Flow 1 clearly misses its deadline. Hence, even
though distributed systems offer higher performance due to resource
sharing and has higher reliability and fault tolerance when compared to
centralized counterparts, data synchronization becomes a new problem
and so does the unpredictable nature of the system (the response times
are dependent on the system organization and network load), as shown
also by the flow latency analysis. Moreover, if we consider the above
system, the solely local deployment of agents makes the system’s main-
tainability difficult. In addition, as the system becomes more distributed,
security challenges are higher, and the system’s maintainability becomes
difficult. As a result of the carried analysis, we opt for a centralized
solution, with necessary fault tolerance to deal effectively in real-time,
especially in scenarios where multiple events occur together.

Based on the above, we conclude that none of these architectures can be di-
rectly used as a framework for building fully integrated AAL systems. More-
over, we have not found any evidence ensuring various QoS attributes. To
alleviate such inconveniences, we propose a new architectural solution, named
CAMI (Companion with Autonomously Mobile Interface), which is a nominal
mix of the studied solutions; described in detail in the following sections.

129

108 Paper B

Figure 9.6: CAMI - An integrated architecture for AAL.

9.3 Proposed Architecture
In this section, we describe our novel integrated architecture for AAL, named
CAMI1. CAMI offers a fully integrated AAL solution by providing services
for health monitoring, fall detection, supervised physical exercises, home man-
agement and wellbeing as well as telepresence support. CAMI builds an artifi-
cially intelligent ecosystem that allows the seamless integration of any number
of ambient and wearable sensors, with a mobile robotic platform endowed with
multimodal interaction (touch, voice, person detection), including a telepres-
ence robot with manipulation capabilities. As compared to existing solutions,
the functionalities that we have chosen to integrate in CAMI are based on user
preferences recorded via a multi-national survey with 108 primary and 58 sec-
ondary users from Denmark, Romania and Poland.

The architecture is based on the following underlying assumptions: 1) Bio-
metric data must be handled with extreme caution due to privacy laws, 2) The
end result of the project has to be feasible from a commercial point of view,
3) Due to the need of a business model, the CAMI system as a whole needs a
cloud-based infrastructure.

The CAMI architecture is based on microservices, and has a clean and ro-
bust skeleton, onto which several plug-in modules can be coupled ensuring

1http://www.aal-europe.eu/projects/cami/

108 Paper B

Figure 9.6: CAMI - An integrated architecture for AAL.

9.3 Proposed Architecture
In this section, we describe our novel integrated architecture for AAL, named
CAMI1. CAMI offers a fully integrated AAL solution by providing services
for health monitoring, fall detection, supervised physical exercises, home man-
agement and wellbeing as well as telepresence support. CAMI builds an artifi-
cially intelligent ecosystem that allows the seamless integration of any number
of ambient and wearable sensors, with a mobile robotic platform endowed with
multimodal interaction (touch, voice, person detection), including a telepres-
ence robot with manipulation capabilities. As compared to existing solutions,
the functionalities that we have chosen to integrate in CAMI are based on user
preferences recorded via a multi-national survey with 108 primary and 58 sec-
ondary users from Denmark, Romania and Poland.

The architecture is based on the following underlying assumptions: 1) Bio-
metric data must be handled with extreme caution due to privacy laws, 2) The
end result of the project has to be feasible from a commercial point of view,
3) Due to the need of a business model, the CAMI system as a whole needs a
cloud-based infrastructure.

The CAMI architecture is based on microservices, and has a clean and ro-
bust skeleton, onto which several plug-in modules can be coupled ensuring

1http://www.aal-europe.eu/projects/cami/

130

9.3 Proposed Architecture 109

modularity and reuse. Two distinct features of CAMI, as compared to other
AAL architectures, are: (i) the presence of both local and cloud-based pro-
cessing schemes, and (ii) the continuity of services even in the absence of
Internet. The CAMI architecture is depicted in Fig. 9.6. The major compo-
nents of the architecture are: Sensor unit, Data collector unit, CAMI Gateway,
Mobile phone unit, Telepresence, and the CAMI Cloud, which are discussed
below.

(i) Sensor unit: The CAMI system includes various health monitoring sen-
sors, environmental sensors, physical exercise monitoring sensors and fall sen-
sors.

(ii) Data collector unit: The interfacing of a wide range of specific sen-
sors/devices with the CAMI ecosystem is achieved by the Data collector unit.
The unit acts as an intermediate layer aiming at clearly separating the devices
from the rest of the CAMI ecosystem, thus increasing its modularity and loose-
coupling character.

(iii) CAMI Gateway: The CAMI Gateway is a collection of software mod-
ules that implement the core infrastructure of the CAMI system. Its purpose is
to enable the easy interconnection of the micro services that provide the main
functionality of CAMI, like the sensor data collection, intelligent short-term
event processing, forwarding of shareable data to CAMI cloud services, etc.
At the OS level, there is a switch that can shift the box’s operation from Inter-
net to GSM, if needed, in order to ensure that the CAMI system carries out its
critical functionalities even in the absence of the Internet connection.

A typical CAMI gateway deployment hosts the following micro services:

1. Event Stream Manager: It is a part of the core infrastructure solution
enabling message-based interconnection between all the other micro ser-
vices.

2. Local Data Storage: Local data storage offers short-term storage for data
collected from sensors, and user information inferred by the decision
support algorithms.

3. Decision Support System (DSS): The DSS provides a collection of sym-
bolic and data-driven reasoning algorithms that continuously monitor the
short-term state of the user (current health status and mood, current and
planned daily activities, required reminders, etc).

4. Voice command manager: It is offered as a service implementing voice-
based interaction with the CAMI system.

9.3 Proposed Architecture 109

modularity and reuse. Two distinct features of CAMI, as compared to other
AAL architectures, are: (i) the presence of both local and cloud-based pro-
cessing schemes, and (ii) the continuity of services even in the absence of
Internet. The CAMI architecture is depicted in Fig. 9.6. The major compo-
nents of the architecture are: Sensor unit, Data collector unit, CAMI Gateway,
Mobile phone unit, Telepresence, and the CAMI Cloud, which are discussed
below.

(i) Sensor unit: The CAMI system includes various health monitoring sen-
sors, environmental sensors, physical exercise monitoring sensors and fall sen-
sors.

(ii) Data collector unit: The interfacing of a wide range of specific sen-
sors/devices with the CAMI ecosystem is achieved by the Data collector unit.
The unit acts as an intermediate layer aiming at clearly separating the devices
from the rest of the CAMI ecosystem, thus increasing its modularity and loose-
coupling character.

(iii) CAMI Gateway: The CAMI Gateway is a collection of software mod-
ules that implement the core infrastructure of the CAMI system. Its purpose is
to enable the easy interconnection of the micro services that provide the main
functionality of CAMI, like the sensor data collection, intelligent short-term
event processing, forwarding of shareable data to CAMI cloud services, etc.
At the OS level, there is a switch that can shift the box’s operation from Inter-
net to GSM, if needed, in order to ensure that the CAMI system carries out its
critical functionalities even in the absence of the Internet connection.

A typical CAMI gateway deployment hosts the following micro services:

1. Event Stream Manager: It is a part of the core infrastructure solution
enabling message-based interconnection between all the other micro ser-
vices.

2. Local Data Storage: Local data storage offers short-term storage for data
collected from sensors, and user information inferred by the decision
support algorithms.

3. Decision Support System (DSS): The DSS provides a collection of sym-
bolic and data-driven reasoning algorithms that continuously monitor the
short-term state of the user (current health status and mood, current and
planned daily activities, required reminders, etc).

4. Voice command manager: It is offered as a service implementing voice-
based interaction with the CAMI system.

131

110 Paper B

5. Communication with 3rd party health platforms: This service allows the
sharing of selected health measurements and physical exercise sessions
with primary and secondary caregivers.

6. Connection with the CAMI cloud: Ensures the replication of locally-
collected data to the CAMI cloud platform for longer term and higher
level processing, as well as the communication with the CAMI cloud
to retrieve the results of performed analyses or suggested actions (e.g.,
context-aware rescheduling of planned activities, and physical exercise
recommendations).

(iv) Robotic telepresence unit: The CAMI architecture is equipped with
an integrated robotic support that is missing from many of the existing AAL
frameworks [3]. The robotic teleprsence unit in CAMI can be used for both
input and output interactions, and is furthermore capable of actuation.

(v) Mobile phone unit: The mobile phone carried by the user acts as an in-
telligent, friendly collaborator that provides suggestions, advice or reminders.
It is also equipped with automatic facilities of sending SMS to third party users
like doctors or firefighters in case of emergency situations.

(vi) Cloud Services: The CAMI cloud services enable the communication
to secondary caregivers (family and friends), healthcare professionals, fire-
fighters, and other CAMI instances. The unit also enables intelligent analysis
of user data, collected over a prescribed period of time. Further, it supports
the modeling of user data using Semantic Web Technologies (e.g., ontologies
for Activities of Daily Living). Finally, cloud services enable the clear/easy
administration of each CAMI user account.

9.4 AADL model of CAMI architecture

By their nature, AAL systems are safety-critical real-time systems that need to
mitigate possible real-time scenarios of high criticality, which could endanger
the life of the elderly. Examples of such situations include scenarios when a
person is having a cardiac arrest, or a fire at home etc. Usually, most errors are
introduced at design stage of embedded systems, but they are discovered very
late, leading to increased rework costs and re-engineering efforts. Therefore,
modeling and analyzing AAL architectures at early stages of development can
be used to ensure their real-time performance, schedulability, reliability and
safety [6]. Consequently, we model the CAMI architecture in the architecture

110 Paper B

5. Communication with 3rd party health platforms: This service allows the
sharing of selected health measurements and physical exercise sessions
with primary and secondary caregivers.

6. Connection with the CAMI cloud: Ensures the replication of locally-
collected data to the CAMI cloud platform for longer term and higher
level processing, as well as the communication with the CAMI cloud
to retrieve the results of performed analyses or suggested actions (e.g.,
context-aware rescheduling of planned activities, and physical exercise
recommendations).

(iv) Robotic telepresence unit: The CAMI architecture is equipped with
an integrated robotic support that is missing from many of the existing AAL
frameworks [3]. The robotic teleprsence unit in CAMI can be used for both
input and output interactions, and is furthermore capable of actuation.

(v) Mobile phone unit: The mobile phone carried by the user acts as an in-
telligent, friendly collaborator that provides suggestions, advice or reminders.
It is also equipped with automatic facilities of sending SMS to third party users
like doctors or firefighters in case of emergency situations.

(vi) Cloud Services: The CAMI cloud services enable the communication
to secondary caregivers (family and friends), healthcare professionals, fire-
fighters, and other CAMI instances. The unit also enables intelligent analysis
of user data, collected over a prescribed period of time. Further, it supports
the modeling of user data using Semantic Web Technologies (e.g., ontologies
for Activities of Daily Living). Finally, cloud services enable the clear/easy
administration of each CAMI user account.

9.4 AADL model of CAMI architecture

By their nature, AAL systems are safety-critical real-time systems that need to
mitigate possible real-time scenarios of high criticality, which could endanger
the life of the elderly. Examples of such situations include scenarios when a
person is having a cardiac arrest, or a fire at home etc. Usually, most errors are
introduced at design stage of embedded systems, but they are discovered very
late, leading to increased rework costs and re-engineering efforts. Therefore,
modeling and analyzing AAL architectures at early stages of development can
be used to ensure their real-time performance, schedulability, reliability and
safety [6]. Consequently, we model the CAMI architecture in the architecture

132

9.4 AADL model of CAMI architecture 111

Figure 9.7: CAMI system architecture in AADL showing component inter-
connections.

description language, AADL [6] using OSATE 2.2.1, and analyze the end-to-
end data flow latency of sensor event flows. We also analyze the the system’s
resource feasibility, its safety and reliability.

The AADL model is shown in Fig. 9.7 and we use this model further to
analyze the above attributes. The AADL model of CAMI specifies the commu-
nication and data flow between components, through data and event ports. We
model all the sensors, the CAMI cloud (caregiver and firefighter), the telepres-
ence, the mobile phone, the smart home and the elderly person as devices, and
the data collector and the CAMI Gateway as processes (Fig. 9.7). The data col-
lector process contains one thread called the “Data_analyzer_module”, and the
CAMI Gateway contains two threads, “Event_stream” and “DSS”. The pro-
cess components with their threads and port connections for communication
are shown in Fig. 9.8 and 9.9. The “Data _analyzer_module” thread in the
data collector pre-processes and analyzes the sensor data before it is passed to
the CAMI Gateway. All the normal data is passed to the database through the
data port of the data collector; however, if any deviations from normal values
occur, the data is passed through the output event port, which is then fed to
the input event port of the CAMI Gateway. The “Event_ stream” thread in the

9.4 AADL model of CAMI architecture 111

Figure 9.7: CAMI system architecture in AADL showing component inter-
connections.

description language, AADL [6] using OSATE 2.2.1, and analyze the end-to-
end data flow latency of sensor event flows. We also analyze the the system’s
resource feasibility, its safety and reliability.

The AADL model is shown in Fig. 9.7 and we use this model further to
analyze the above attributes. The AADL model of CAMI specifies the commu-
nication and data flow between components, through data and event ports. We
model all the sensors, the CAMI cloud (caregiver and firefighter), the telepres-
ence, the mobile phone, the smart home and the elderly person as devices, and
the data collector and the CAMI Gateway as processes (Fig. 9.7). The data col-
lector process contains one thread called the “Data_analyzer_module”, and the
CAMI Gateway contains two threads, “Event_stream” and “DSS”. The pro-
cess components with their threads and port connections for communication
are shown in Fig. 9.8 and 9.9. The “Data _analyzer_module” thread in the
data collector pre-processes and analyzes the sensor data before it is passed to
the CAMI Gateway. All the normal data is passed to the database through the
data port of the data collector; however, if any deviations from normal values
occur, the data is passed through the output event port, which is then fed to
the input event port of the CAMI Gateway. The “Event_ stream” thread in the

133

112 Paper B

Figure 9.8: Data collector process and its thread.

CAMI Gateway records all the generated events, and passes them to the “DSS”
thread for determining the actions in case of events. All the threads except the
“Event_stream” are assumed to be periodic, to ensure the continuous monitor-
ing of active events generation, given that the environment is highly dynamic.
In comparison, the “Event_stream” is aperiodic and is invoked each time an
event occurs. The execution of the modules is controlled by 3 processors -
“CAMI_Data_processor”, “CAMI_Main_processor” and “CAMI_Cloud_pro-
cessor” with access to various buses - “Bluetooth”, “Internet” and “GSM”.

9.5 CAMI Architecture Analysis in AADL

In the subsections below, we outline the details of various AADL analyses of
the CAMI architecture.

9.5.1 Flow latency analysis
In this subsection, we model the end-to-end flows to determine if the CAMI ar-
chitecture can successfully mitigate critical scenarios involving simultaneous
fall and fire events within the respective deadlines. In an integrated system,
the occurrences and associated data of concurrent fire and fall events are com-
municated to both caregivers and firefighters, rendering an immediate rescue
action from the firefighters who do not need a phone-based confirmation any-
more. The fall event data flow has the same 3 end-to-end flows as for the
ESS-H architecture detailed in Section 9.2. Similarly, the fire event data flow
is as for ESS-H, adapted to CAMI. The end-to-end latency analysis results are

112 Paper B

Figure 9.8: Data collector process and its thread.

CAMI Gateway records all the generated events, and passes them to the “DSS”
thread for determining the actions in case of events. All the threads except the
“Event_stream” are assumed to be periodic, to ensure the continuous monitor-
ing of active events generation, given that the environment is highly dynamic.
In comparison, the “Event_stream” is aperiodic and is invoked each time an
event occurs. The execution of the modules is controlled by 3 processors -
“CAMI_Data_processor”, “CAMI_Main_processor” and “CAMI_Cloud_pro-
cessor” with access to various buses - “Bluetooth”, “Internet” and “GSM”.

9.5 CAMI Architecture Analysis in AADL

In the subsections below, we outline the details of various AADL analyses of
the CAMI architecture.

9.5.1 Flow latency analysis
In this subsection, we model the end-to-end flows to determine if the CAMI ar-
chitecture can successfully mitigate critical scenarios involving simultaneous
fall and fire events within the respective deadlines. In an integrated system,
the occurrences and associated data of concurrent fire and fall events are com-
municated to both caregivers and firefighters, rendering an immediate rescue
action from the firefighters who do not need a phone-based confirmation any-
more. The fall event data flow has the same 3 end-to-end flows as for the
ESS-H architecture detailed in Section 9.2. Similarly, the fire event data flow
is as for ESS-H, adapted to CAMI. The end-to-end latency analysis results are

134

9.5 CAMI Architecture Analysis in AADL 113

Figure 9.9: CAMI Gateway process and its threads.

Table 9.4 Flow latency analysis results of CAMI system.

Flows Specified Max Latency Max Latency (AADL)
Flow1(Fall) 156255 ms 48055.6 ms
Flow2(Fall) 177600 ms 40851.3 ms
Flow3(Fall) 900000 ms 800200 ms
Flow4(Fire) 91000 ms 90400.6 ms
Flow5(Fire) 28000 ms 22501.3 ms
Flow6(Fire) 25000 ms 19001 ms
Flow7(Fire) 600000 ms 402000 ms

summarized in Table 9.4, and the analysis concludes that all the flows meet
their respective deadlines.

9.5.2 Resource analysis
AADL has resource analysis plugins also, to analyze resource budgets and
allocation during the earlier stages of system development. Resource budget-
ing can be done for processors, memory, and network bandwidth and can be
analyzed to determine whether budgets exceed the allocated sizes (feasibility
analysis). We can allocate application components to the execution platform
and reconsider the resource budgets in terms of those allocations.

Since our model is designed to illustrate that it could effectively handle the
situation with simultaneous occurrence of fire and fall events, only the appli-
cation components belong to this data flow. Therefore, we associate existing
threads to “CAMI_Main_Processor” assigned with a capacity of 200 MIPS

9.5 CAMI Architecture Analysis in AADL 113

Figure 9.9: CAMI Gateway process and its threads.

Table 9.4 Flow latency analysis results of CAMI system.

Flows Specified Max Latency Max Latency (AADL)
Flow1(Fall) 156255 ms 48055.6 ms
Flow2(Fall) 177600 ms 40851.3 ms
Flow3(Fall) 900000 ms 800200 ms
Flow4(Fire) 91000 ms 90400.6 ms
Flow5(Fire) 28000 ms 22501.3 ms
Flow6(Fire) 25000 ms 19001 ms
Flow7(Fire) 600000 ms 402000 ms

summarized in Table 9.4, and the analysis concludes that all the flows meet
their respective deadlines.

9.5.2 Resource analysis
AADL has resource analysis plugins also, to analyze resource budgets and
allocation during the earlier stages of system development. Resource budget-
ing can be done for processors, memory, and network bandwidth and can be
analyzed to determine whether budgets exceed the allocated sizes (feasibility
analysis). We can allocate application components to the execution platform
and reconsider the resource budgets in terms of those allocations.

Since our model is designed to illustrate that it could effectively handle the
situation with simultaneous occurrence of fire and fall events, only the appli-
cation components belong to this data flow. Therefore, we associate existing
threads to “CAMI_Main_Processor” assigned with a capacity of 200 MIPS

135

114 Paper B

Figure 9.10: Error Annex specification of fall sensor.

Table 9.5 Resource allocation analysis results of CAMI system with single
processor.

Components Resource Capacity Resource Usage
“CAMI_Main_processor” 200 MIPS 203.5 MIPS

“Mem1” 100 Kbyte 140 Kbyte

and memory capacity of 100 Kbyte, to analyze the respective resource usage.
The analysis results shown in Table 9.5 illustrate that the tasks’ resource us-
age exceeds the processor capacity and memory capacity, hence we add, more
processor to our system “CAMI_Data_processor” with capacity 50 MIPS and
increase the memory capacity to 150 Kbyte. The process “Data_collector” is
associated with “CAMI_Data_Processor”, the process “box” is associated with
the “CAMI_Main_Processor” and a memory of 150 Kbyte is associated with
the processors. In this case, all the resource budgets are met as shown in Table
9.6.

114 Paper B

Figure 9.10: Error Annex specification of fall sensor.

Table 9.5 Resource allocation analysis results of CAMI system with single
processor.

Components Resource Capacity Resource Usage
“CAMI_Main_processor” 200 MIPS 203.5 MIPS

“Mem1” 100 Kbyte 140 Kbyte

and memory capacity of 100 Kbyte, to analyze the respective resource usage.
The analysis results shown in Table 9.5 illustrate that the tasks’ resource us-
age exceeds the processor capacity and memory capacity, hence we add, more
processor to our system “CAMI_Data_processor” with capacity 50 MIPS and
increase the memory capacity to 150 Kbyte. The process “Data_collector” is
associated with “CAMI_Data_Processor”, the process “box” is associated with
the “CAMI_Main_Processor” and a memory of 150 Kbyte is associated with
the processors. In this case, all the resource budgets are met as shown in Table
9.6.

136

9.5 CAMI Architecture Analysis in AADL 115

Table 9.6 Resource allocation analysis results of CAMI system with two pro-
cessors.

Components Resource Capacity Resource Usage
“CAMI_Main_processor” 200 MIPS 200.0 MIPS
“CAMI_Data_processor” 50 MIPS 3.5 MIPS

“Mem1” 150 Kbyte 140 Kbyte

9.5.3 Safety analysis

In the following, we outline the safety analysis of CAMI architecture using the
Error Annex (EA) V2 [11]. AADL facilitates different types of safety analysis
like the fault hazard analysis (FHA), fault tree analysis (FTA), fault impact
analysis etc.

Error Modeling As a first step towards analyzing the safety of CAMI sys-
tem, we define the error model of the individual components. The CAMI sen-
sor devices are associated with two types of failure: 1) Value Error: When they
have no value (“No Value” error) or when they have wrong value (“Invalid
Value” error), or 2) Other failure events: E.g., internal failure due to system
malfunction (“Fault”). We also define two states of operation of the devices,
“Operational” and “Failed”. Initially the system is in operational mode, i.e.,
it performs its required functionality without any errors. If any value error or
other fault events occur, the system moves to the failed mode. To return from
a failed mode, we define a system self recovery event called “reset". Upon
“reset”, the system moves back to operational from the failed mode.

Safety Analysis The FHA analysis of the architecture generates an excel re-
port of all potential faults in the system. Fault impact analysis is used show
how faults propagate in the system. For this, we assign all the sensor devices
as the error flow sources. An example of EA of fall sensor is depicted in Fig.
9.10. Any of the errors in sensors propagate through the data collector and
CAMI gateway to the cloud (error sink). FTA also helps us to analyze the
failure effects by combining various failure events.

9.5 CAMI Architecture Analysis in AADL 115

Table 9.6 Resource allocation analysis results of CAMI system with two pro-
cessors.

Components Resource Capacity Resource Usage
“CAMI_Main_processor” 200 MIPS 200.0 MIPS
“CAMI_Data_processor” 50 MIPS 3.5 MIPS

“Mem1” 150 Kbyte 140 Kbyte

9.5.3 Safety analysis

In the following, we outline the safety analysis of CAMI architecture using the
Error Annex (EA) V2 [11]. AADL facilitates different types of safety analysis
like the fault hazard analysis (FHA), fault tree analysis (FTA), fault impact
analysis etc.

Error Modeling As a first step towards analyzing the safety of CAMI sys-
tem, we define the error model of the individual components. The CAMI sen-
sor devices are associated with two types of failure: 1) Value Error: When they
have no value (“No Value” error) or when they have wrong value (“Invalid
Value” error), or 2) Other failure events: E.g., internal failure due to system
malfunction (“Fault”). We also define two states of operation of the devices,
“Operational” and “Failed”. Initially the system is in operational mode, i.e.,
it performs its required functionality without any errors. If any value error or
other fault events occur, the system moves to the failed mode. To return from
a failed mode, we define a system self recovery event called “reset". Upon
“reset”, the system moves back to operational from the failed mode.

Safety Analysis The FHA analysis of the architecture generates an excel re-
port of all potential faults in the system. Fault impact analysis is used show
how faults propagate in the system. For this, we assign all the sensor devices
as the error flow sources. An example of EA of fall sensor is depicted in Fig.
9.10. Any of the errors in sensors propagate through the data collector and
CAMI gateway to the cloud (error sink). FTA also helps us to analyze the
failure effects by combining various failure events.

137

116 Paper B

9.6 Conclusions
In this paper, we have proposed an innovative integrated architecture with local
and cloud-based processing for AAL systems. In order to validate the perfor-
mance of our proposed architecture, we have modeled it in AADL, and ana-
lyzed the data-flow latency, resource feasibility and system safety. The end-to-
end latency analysis has helped in deciding on the combined local and cloud-
based centralized architectural solution. The resource analysis in AADL has
effectively determined the processor and memory capacities required for exe-
cuting the application components, facilitating the design decision of resource
increase to remove the potential resource usage overflow. Safety analysis in
AADL is vital to identify the potential system faults, and analyze their propa-
gation within the system, such that one can recognize what components need
back-up and devise error mitigation strategies later.

As future work, we intend to formally verify the CAMI architecture, in-
cluding the internal behavior of components, especially the DSS behavior un-
der critical scenarios. We envision to produce a full working prototype that
will be deployed in the market in the near future.

Acknowledgement
This work has been supported by the joint EU/Vinnova project grant CAMI,
AAL-2014-1-087, which is gratefully acknowledged.

116 Paper B

9.6 Conclusions
In this paper, we have proposed an innovative integrated architecture with local
and cloud-based processing for AAL systems. In order to validate the perfor-
mance of our proposed architecture, we have modeled it in AADL, and ana-
lyzed the data-flow latency, resource feasibility and system safety. The end-to-
end latency analysis has helped in deciding on the combined local and cloud-
based centralized architectural solution. The resource analysis in AADL has
effectively determined the processor and memory capacities required for exe-
cuting the application components, facilitating the design decision of resource
increase to remove the potential resource usage overflow. Safety analysis in
AADL is vital to identify the potential system faults, and analyze their propa-
gation within the system, such that one can recognize what components need
back-up and devise error mitigation strategies later.

As future work, we intend to formally verify the CAMI architecture, in-
cluding the internal behavior of components, especially the DSS behavior un-
der critical scenarios. We envision to produce a full working prototype that
will be deployed in the market in the near future.

Acknowledgement
This work has been supported by the joint EU/Vinnova project grant CAMI,
AAL-2014-1-087, which is gratefully acknowledged.

138

Bibliography

[1] Department of Economic and Social Affairs Population Division. World
Population Ageing 2015. Technical report, United Nations, NewYork, 11
2015.

[2] Parisa Rashidi and Alex Mihailidis. A survey on ambient-assisted living
tools for older adults. IEEE journal of biomedical and health informatics,
17(3):579–590, 2013.

[3] Ruijiao Li, Bowen Lu, and Klaus D McDonald-Maier. Cognitive assisted
living ambient system: A survey. Digital Communications and Networks,
1(4):229–252, 2015.

[4] Hong Sun, Vincenzo De Florio, Ning Gui, and Chris Blondia. The miss-
ing ones: Key ingredients towards effective ambient assisted living sys-
tems. Journal of ambient intelligence and smart environments, 2(2):109–
120, 2010.

[5] Ashalatha Kunnappilly, Cristina Seceleanu, and Maria Lindén. Do We
Need an Integrated Framework for Ambient Assisted Living? In Ubiq-
uitous Computing and Ambient Intelligence: 10th International Confer-
ence, UCAmI 2016, San Bartolomé de Tirajana, Gran Canaria, Spain,
November 29–December 2, 2016, Part II 10, pages 52–63. Springer,
2016.

[6] Peter H Feiler, Bruce Lewis, Steve Vestal, and Ed Colbert. An overview
of the SAE architecture analysis & design language (AADL) standard:
a basis for model-based architecture-driven embedded systems engineer-
ing. In Architecture Description Languages, pages 3–15. Springer, 2005.

117

Bibliography

[1] Department of Economic and Social Affairs Population Division. World
Population Ageing 2015. Technical report, United Nations, NewYork, 11
2015.

[2] Parisa Rashidi and Alex Mihailidis. A survey on ambient-assisted living
tools for older adults. IEEE journal of biomedical and health informatics,
17(3):579–590, 2013.

[3] Ruijiao Li, Bowen Lu, and Klaus D McDonald-Maier. Cognitive assisted
living ambient system: A survey. Digital Communications and Networks,
1(4):229–252, 2015.

[4] Hong Sun, Vincenzo De Florio, Ning Gui, and Chris Blondia. The miss-
ing ones: Key ingredients towards effective ambient assisted living sys-
tems. Journal of ambient intelligence and smart environments, 2(2):109–
120, 2010.

[5] Ashalatha Kunnappilly, Cristina Seceleanu, and Maria Lindén. Do We
Need an Integrated Framework for Ambient Assisted Living? In Ubiq-
uitous Computing and Ambient Intelligence: 10th International Confer-
ence, UCAmI 2016, San Bartolomé de Tirajana, Gran Canaria, Spain,
November 29–December 2, 2016, Part II 10, pages 52–63. Springer,
2016.

[6] Peter H Feiler, Bruce Lewis, Steve Vestal, and Ed Colbert. An overview
of the SAE architecture analysis & design language (AADL) standard:
a basis for model-based architecture-driven embedded systems engineer-
ing. In Architecture Description Languages, pages 3–15. Springer, 2005.

117

139

[7] Mobyen Uddin Ahmed, Mats Björkman, and Maria Lindén. A generic
system-level framework for self-serve health monitoring system through
internet of things (iot). Studies in health technology and informatics,
211:305–307, 2015.

[8] Huey-Ming Tzeng and Chang-Yi Yin. Nurses’ response time to call lights
and fall occurrences. Medsurg Nursing, 19(5):266, 2010.

[9] Dante I Tapia, Sara Rodrıguez, and Juan M Corchado. A distributed
ambient intelligence based multi-agent system for Alzheimer health care.
In Pervasive Computing, pages 181–199. Springer, 2009.

[10] Dante I Tapia, Sara Rodríguez, Javier Bajo, and Juan M Corchado. FU-
SION@, a SOA-based multi-agent architecture. In International Sympo-
sium on Distributed Computing and Artificial Intelligence 2008 (DCAI
2008), pages 99–107. Springer, 2009.

[11] Julien Delange and Peter Feiler. Architecture fault modeling with the
AADL error-model annex. In Software Engineering and Advanced Appli-
cations (SEAA), 2014 40th EUROMICRO Conference on, pages 361–368.
IEEE, 2014.

[7] Mobyen Uddin Ahmed, Mats Björkman, and Maria Lindén. A generic
system-level framework for self-serve health monitoring system through
internet of things (iot). Studies in health technology and informatics,
211:305–307, 2015.

[8] Huey-Ming Tzeng and Chang-Yi Yin. Nurses’ response time to call lights
and fall occurrences. Medsurg Nursing, 19(5):266, 2010.

[9] Dante I Tapia, Sara Rodrıguez, and Juan M Corchado. A distributed
ambient intelligence based multi-agent system for Alzheimer health care.
In Pervasive Computing, pages 181–199. Springer, 2009.

[10] Dante I Tapia, Sara Rodríguez, Javier Bajo, and Juan M Corchado. FU-
SION@, a SOA-based multi-agent architecture. In International Sympo-
sium on Distributed Computing and Artificial Intelligence 2008 (DCAI
2008), pages 99–107. Springer, 2009.

[11] Julien Delange and Peter Feiler. Architecture fault modeling with the
AADL error-model annex. In Software Engineering and Advanced Appli-
cations (SEAA), 2014 40th EUROMICRO Conference on, pages 361–368.
IEEE, 2014.

140

CPaper C CPaper C

141

142

Chapter 10

Paper C:
A Model-Checking-Based
Framework For Analyzing
Ambient Assisted Living
Solutions

Ashalatha Kunnappilly, Raluca Marinescu, Cristina Seceleanu. MRTC Report,
Mälardalen Real-Time Research Center, March, 2019.
NOTE: This paper is an extended version of the following article: Assuring Intelligent
Ambient Assisted Living Solutions by Statistical Model Checking. Ashalatha Kunnap-
pilly, Raluca Marinescu, Cristina Seceleanu. In Proceedings of the 8th International
Symposium On Leveraging Applications of Formal Methods, Verification and Valida-
tion (ISoLA), November 2018, Limassol, Cyprus, Springer, pages 457-476.

119

Chapter 10

Paper C:
A Model-Checking-Based
Framework For Analyzing
Ambient Assisted Living
Solutions

Ashalatha Kunnappilly, Raluca Marinescu, Cristina Seceleanu. MRTC Report,
Mälardalen Real-Time Research Center, March, 2019.
NOTE: This paper is an extended version of the following article: Assuring Intelligent
Ambient Assisted Living Solutions by Statistical Model Checking. Ashalatha Kunnap-
pilly, Raluca Marinescu, Cristina Seceleanu. In Proceedings of the 8th International
Symposium On Leveraging Applications of Formal Methods, Verification and Valida-
tion (ISoLA), November 2018, Limassol, Cyprus, Springer, pages 457-476.

119

143

Abstract

Since modern ambient assisted living solutions integrate a multitude of assisted-
living functionalities, some are safety-critical, it is desirable that these systems are ana-
lyzed already at their design stage to detect possible errors. To achieve this, one needs
suitable architectures that support the seamless design of the integrated assisted-living
functions, as well as capabilities for the formal modeling and analysis of the architec-
ture. In this paper, we attempt to address this need, by proposing a generic integrated
ambient assisted living system architecture, consisting of sensors, data-collector, local
and cloud processing schemes, and an intelligent decision support system, which can be
easily extended to suite specific architecture categories. Our solution is customizable,
therefore, we show three instantiations of the generic model, as simple, intermediate
and complex configuration, respectively, and show how to analyze the first and third
categories by model checking. Our approach starts by specifying the architecture, using
an architecture description language, in our case, the Architecture Analysis and Design
Language that can also account for the probabilistic behavior of such systems. To en-
able formal analysis, we describe the semantics of the simple and complex categories
as stochastic timed automata. The former we model check exhaustively with UPPAAL,
whereas for the latter we employ statistical model checking using UPPAAL SMC, the
statistical extension of UPPAAL, for scalability reasons. Our work paves the way for
the development formally-assured future ambient assisted living solutions.

Abstract

Since modern ambient assisted living solutions integrate a multitude of assisted-
living functionalities, some are safety-critical, it is desirable that these systems are ana-
lyzed already at their design stage to detect possible errors. To achieve this, one needs
suitable architectures that support the seamless design of the integrated assisted-living
functions, as well as capabilities for the formal modeling and analysis of the architec-
ture. In this paper, we attempt to address this need, by proposing a generic integrated
ambient assisted living system architecture, consisting of sensors, data-collector, local
and cloud processing schemes, and an intelligent decision support system, which can be
easily extended to suite specific architecture categories. Our solution is customizable,
therefore, we show three instantiations of the generic model, as simple, intermediate
and complex configuration, respectively, and show how to analyze the first and third
categories by model checking. Our approach starts by specifying the architecture, using
an architecture description language, in our case, the Architecture Analysis and Design
Language that can also account for the probabilistic behavior of such systems. To en-
able formal analysis, we describe the semantics of the simple and complex categories
as stochastic timed automata. The former we model check exhaustively with UPPAAL,
whereas for the latter we employ statistical model checking using UPPAAL SMC, the
statistical extension of UPPAAL, for scalability reasons. Our work paves the way for
the development formally-assured future ambient assisted living solutions.

144

10.1 Introduction 121

10.1 Introduction

Elderly people across the world are offered enhanced care via the Ambient Assisted
Living (AAL) solutions that support their independent and low-risk living. In order
to facilitate the elderly support efficiently and safely, it is often required that these
solutions integrate various assisted-living functionalities like health monitoring, home
monitoring, fall detection, robotic platform support, communication support, etc. Such
integration is extremely beneficial in safety-critical situations, for instance, the case of a
fall event occurring due to low pulse, which should trigger sending timely alerts to care-
givers, for immediate intervention or else the life of the elderly can be endangered. This
requires timely integration of health monitoring (in this case, pulse monitoring) and fall
detection functionalities. However, in literature, there are only few architectures, that
address the concern of multiple-functionality integration in a timely and robust man-
ner [1, 2]. Due to their critical nature, it is beneficial that such behaviors (especially
those emerging due to multiple functionality integration) are analyzed at early stages
of development, for instance, at design stage, using formal techniques, to provide some
formal guarantees of meeting requirements. There has been some work in this direction,
however, the existing frameworks [3, 4] are still in infancy and cannot be used to spec-
ify the complete AAL system architecture including its artificial intelligent algorithms,
timeliness, reliability, and fault-tolerance attributes.

In this paper, we describe these shortcomings and propose an integrated architec-
ture framework for describing AAL systems and a formal analysis framework that can
be employed at the design stages of development. The integrated AAL architecture that
we propose supports a range of assisted-living functionalities, like health monitoring,
fall detection, reminder services, home monitoring, robotic platform support, etc. and
follows the design of common AAL frameworks, with a variety of sensors, data col-
lector unit, user interfaces, intelligent decision support system (DSS), local and cloud
processing, etc. Our architecture gives due importance to intelligent decision making by
proposing a DSS that employs a mix of artificial intelligent (AI) techniques, like fuzzy
reasoning, rule-based reasoning (RBR) and case-based reasoning (CBR) for effectively
modelling the context space and taking the respective actions based on the current con-
text. The system architecture and its DSS is designed as a generic model that can be
customized to fit various categories of architectures, of different complexity. In this
work, we show three of such instantiations of our generic model, that is, i) a minimal
configuration that contains two sensors (pulse and fall), one user interface (a mobile
phone), and a cloud controller with a simple DSS system to handle the events from both
the sensors, ii) an intermediate one with added sensors for blood pressure monitor-
ing, motion detection and exercise monitoring and an enhanced cloud DSS, and iii) a
complex one comprising wider categories of health monitoring and home monitoring
sensors, multiple user interfaces inclusive of robotic telepresence and vocal interactions,
and a complex DSS system for handling multiple events simultaneously, and possess-
ing both local and cloud copies for ensuring fault-tolerance via redundancy. The system

10.1 Introduction 121

10.1 Introduction

Elderly people across the world are offered enhanced care via the Ambient Assisted
Living (AAL) solutions that support their independent and low-risk living. In order
to facilitate the elderly support efficiently and safely, it is often required that these
solutions integrate various assisted-living functionalities like health monitoring, home
monitoring, fall detection, robotic platform support, communication support, etc. Such
integration is extremely beneficial in safety-critical situations, for instance, the case of a
fall event occurring due to low pulse, which should trigger sending timely alerts to care-
givers, for immediate intervention or else the life of the elderly can be endangered. This
requires timely integration of health monitoring (in this case, pulse monitoring) and fall
detection functionalities. However, in literature, there are only few architectures, that
address the concern of multiple-functionality integration in a timely and robust man-
ner [1, 2]. Due to their critical nature, it is beneficial that such behaviors (especially
those emerging due to multiple functionality integration) are analyzed at early stages
of development, for instance, at design stage, using formal techniques, to provide some
formal guarantees of meeting requirements. There has been some work in this direction,
however, the existing frameworks [3, 4] are still in infancy and cannot be used to spec-
ify the complete AAL system architecture including its artificial intelligent algorithms,
timeliness, reliability, and fault-tolerance attributes.

In this paper, we describe these shortcomings and propose an integrated architec-
ture framework for describing AAL systems and a formal analysis framework that can
be employed at the design stages of development. The integrated AAL architecture that
we propose supports a range of assisted-living functionalities, like health monitoring,
fall detection, reminder services, home monitoring, robotic platform support, etc. and
follows the design of common AAL frameworks, with a variety of sensors, data col-
lector unit, user interfaces, intelligent decision support system (DSS), local and cloud
processing, etc. Our architecture gives due importance to intelligent decision making by
proposing a DSS that employs a mix of artificial intelligent (AI) techniques, like fuzzy
reasoning, rule-based reasoning (RBR) and case-based reasoning (CBR) for effectively
modelling the context space and taking the respective actions based on the current con-
text. The system architecture and its DSS is designed as a generic model that can be
customized to fit various categories of architectures, of different complexity. In this
work, we show three of such instantiations of our generic model, that is, i) a minimal
configuration that contains two sensors (pulse and fall), one user interface (a mobile
phone), and a cloud controller with a simple DSS system to handle the events from both
the sensors, ii) an intermediate one with added sensors for blood pressure monitor-
ing, motion detection and exercise monitoring and an enhanced cloud DSS, and iii) a
complex one comprising wider categories of health monitoring and home monitoring
sensors, multiple user interfaces inclusive of robotic telepresence and vocal interactions,
and a complex DSS system for handling multiple events simultaneously, and possess-
ing both local and cloud copies for ensuring fault-tolerance via redundancy. The system

145

122 Paper C

architecture, its DSS, and instance models are explained in detail in Section 10.4.
Our contributions also include a modelling and analysis framework proposed for

the design-time analysis of complex AAL systems as described earlier. The architec-
ture design relies on the Architecture Analysis and Design (AADL) language in which
we show the structure and communication between the components of our proposed
solution. In AADL, we are able to design the architecture together with the functional
and error behavior of the constituting components (Section 10.2.1). Once described, the
architecture needs to be analyzed formally for meeting functional and quality-of-service
requirements (end-to-end deadlines, fault tolerance, etc.). To enable this, we transform
the architecture specifications to a formal model, in our case, the stochastic timed au-
tomata (STA) model, that can effectively capture the probabilistic behaviour of AAL
components such as random component failures. We demonstrate our formal analysis
via two techniques: a) exhaustive model-checking using the state of art model checker,
UPPAAL, in case of the minimal architecture configuration (for which exhaustive ver-
ification scales) and b) statistical model-checking with UPPAAL SMC for analyzing
the complex model instance [5]. The analysis results are described in (Section 10.7).
Although the analysis results are not exact in case of statistical model-checking, these
simulation-based methods are sometimes the only choice for reasoning of such complex
cyber-physiscal systems (CPS) [6, 7].

10.2 Preliminaries
In this section, we briefly overview AADL, and the other formal notations and tools
used for architecture analysis.

10.2.1 The Architecture Analysis and Design Language
AADL [8] is a textual and graphical language in which one can model and analyze
a real-time system’s hardware and software architecture as hierarchies of components
at various levels of abstraction. AADL component categories like Application Soft-
ware (Process, Data, Subprogram, Thread, and Thread Group, etc.), Execution Plat-
form(Device, Bus, Processor, Memory, etc.) and System are used to represent the run-
time architecture of the system, however a more generalized representation is possible
by specifying a component type as abstract.

AADL allows possible component interactions via ports/features, shared data, sub-
programs, and parameter connections. In AADL, the input/output ports can be defined
as: event ports, data ports, and event-data ports. Based on the component interactions,
explicit control flows and data flows can be defined across the interfaces of AADL
components by specifying the components as flow source, flow path or flow sink. The
components can also be associated with various properties, like the period and execu-
tion time and the dispatch protocol. The dispatch protocol specifies if the component
trigger is periodic or aperiodic.

122 Paper C

architecture, its DSS, and instance models are explained in detail in Section 10.4.
Our contributions also include a modelling and analysis framework proposed for

the design-time analysis of complex AAL systems as described earlier. The architec-
ture design relies on the Architecture Analysis and Design (AADL) language in which
we show the structure and communication between the components of our proposed
solution. In AADL, we are able to design the architecture together with the functional
and error behavior of the constituting components (Section 10.2.1). Once described, the
architecture needs to be analyzed formally for meeting functional and quality-of-service
requirements (end-to-end deadlines, fault tolerance, etc.). To enable this, we transform
the architecture specifications to a formal model, in our case, the stochastic timed au-
tomata (STA) model, that can effectively capture the probabilistic behaviour of AAL
components such as random component failures. We demonstrate our formal analysis
via two techniques: a) exhaustive model-checking using the state of art model checker,
UPPAAL, in case of the minimal architecture configuration (for which exhaustive ver-
ification scales) and b) statistical model-checking with UPPAAL SMC for analyzing
the complex model instance [5]. The analysis results are described in (Section 10.7).
Although the analysis results are not exact in case of statistical model-checking, these
simulation-based methods are sometimes the only choice for reasoning of such complex
cyber-physiscal systems (CPS) [6, 7].

10.2 Preliminaries
In this section, we briefly overview AADL, and the other formal notations and tools
used for architecture analysis.

10.2.1 The Architecture Analysis and Design Language
AADL [8] is a textual and graphical language in which one can model and analyze
a real-time system’s hardware and software architecture as hierarchies of components
at various levels of abstraction. AADL component categories like Application Soft-
ware (Process, Data, Subprogram, Thread, and Thread Group, etc.), Execution Plat-
form(Device, Bus, Processor, Memory, etc.) and System are used to represent the run-
time architecture of the system, however a more generalized representation is possible
by specifying a component type as abstract.

AADL allows possible component interactions via ports/features, shared data, sub-
programs, and parameter connections. In AADL, the input/output ports can be defined
as: event ports, data ports, and event-data ports. Based on the component interactions,
explicit control flows and data flows can be defined across the interfaces of AADL
components by specifying the components as flow source, flow path or flow sink. The
components can also be associated with various properties, like the period and execu-
tion time and the dispatch protocol. The dispatch protocol specifies if the component
trigger is periodic or aperiodic.

146

10.2 Preliminaries 123

A component in AADL can be defined by its type and implementation. The com-
ponent type declaration defines the interface of the component (defining the component
category and its interaction points with other components) and its externally observable
attributes, whereas the component implementation defines its internal structure in terms
of its subcomponents and connections between them. In this paper, we distinguish the
subcomponents that are composed within a component in port interfaces in terms of
their port interfaces. For instance, a data component, has no interfaces defined in terms
of input-output ports, however it can be defined as a subcomponent of another compo-
nent. We refer such components as Atomic Components. However, if a component is
composed of another component with port interfaces (like device, thread, abstract, etc.),
then a well-defined component hierarchy is identified and we call such components as
Composite Components.

The AADL core language can be extended via annex sublanguages and user-defined
properties. In this work, we employ the standardized annexes of AADL for describing
the functional and error behavior of a component, namely the Behavior Annex (BA) [9]
and the Error Annex (EA) [10] respectively, which model behaviors as transition sys-
tems. The BA state machine interacts with the component interface and represents the
system behavior. Given finite sets of states and state variables, the behavior of a com-

ponent is defined by a set of state transitions of the form s
guard, actions−−−−−−−−−→ s′, where s,

s′ are states, guard is a boolean condition on the values of state variables or presence of
events/data in the component’s input ports, and actions are performed over the transition
and may update state variables, or generate new outputs. Similarly, the EA models the
error behavior of a component as transitions between states triggered by error events. It
is also possible to represent the different types of errors, recovery paradigms, probabil-
ity distribution associated with the error states and events, and also specify error flows
and propagations within the component, and between various components.

In this paper, we focus on abstract components that allow us to defer from the
run-time architecture of the system. The need for this generic model stems from the
fact that in real-world applications like AAL, it is difficult to assign run-time semantics
to components before the design matures. These generic component categories can be
parametrized, and can be refined later in the design process through the “extends" ca-
pability of AADL. AADL allows us to archive these components and reuse them. For
this, we partition them into two public packages in AADL, namely component library
and reference architecture [11]. A component library creates a repository of compo-
nent types and implementations with simple hierarchy. It can be established via two
packages: (i) Interfaces Library comprising generic components like sensors, actuators
and user-interfaces (UI), and (ii) Controller Library that includes the control logic. The
Reference architecture creates a repository of components of complex hierarchy, e.g.
the top-level system architecture.

10.2 Preliminaries 123

A component in AADL can be defined by its type and implementation. The com-
ponent type declaration defines the interface of the component (defining the component
category and its interaction points with other components) and its externally observable
attributes, whereas the component implementation defines its internal structure in terms
of its subcomponents and connections between them. In this paper, we distinguish the
subcomponents that are composed within a component in port interfaces in terms of
their port interfaces. For instance, a data component, has no interfaces defined in terms
of input-output ports, however it can be defined as a subcomponent of another compo-
nent. We refer such components as Atomic Components. However, if a component is
composed of another component with port interfaces (like device, thread, abstract, etc.),
then a well-defined component hierarchy is identified and we call such components as
Composite Components.

The AADL core language can be extended via annex sublanguages and user-defined
properties. In this work, we employ the standardized annexes of AADL for describing
the functional and error behavior of a component, namely the Behavior Annex (BA) [9]
and the Error Annex (EA) [10] respectively, which model behaviors as transition sys-
tems. The BA state machine interacts with the component interface and represents the
system behavior. Given finite sets of states and state variables, the behavior of a com-

ponent is defined by a set of state transitions of the form s
guard, actions−−−−−−−−−→ s′, where s,

s′ are states, guard is a boolean condition on the values of state variables or presence of
events/data in the component’s input ports, and actions are performed over the transition
and may update state variables, or generate new outputs. Similarly, the EA models the
error behavior of a component as transitions between states triggered by error events. It
is also possible to represent the different types of errors, recovery paradigms, probabil-
ity distribution associated with the error states and events, and also specify error flows
and propagations within the component, and between various components.

In this paper, we focus on abstract components that allow us to defer from the
run-time architecture of the system. The need for this generic model stems from the
fact that in real-world applications like AAL, it is difficult to assign run-time semantics
to components before the design matures. These generic component categories can be
parametrized, and can be refined later in the design process through the “extends" ca-
pability of AADL. AADL allows us to archive these components and reuse them. For
this, we partition them into two public packages in AADL, namely component library
and reference architecture [11]. A component library creates a repository of compo-
nent types and implementations with simple hierarchy. It can be established via two
packages: (i) Interfaces Library comprising generic components like sensors, actuators
and user-interfaces (UI), and (ii) Controller Library that includes the control logic. The
Reference architecture creates a repository of components of complex hierarchy, e.g.
the top-level system architecture.

147

124 Paper C

10.2.2 Formal Notations and Tools
The formal analysis technique employed in this paper is model checking. We employ
two different types of model checking in this paper- 1) exhaustive-model checking using
the state-of-the-art model checker UPPAAL, and 2) statistical model-checking, using
the statistical extension of UPPAAL model checker, UPPAAL SMC. In the following,
we overview the semantics of the input models and the mentioned tools.

10.2.3 Timed Automata and Stochastic Timed Automata
A timed automaton (TA) as used in the model checker UPPAAL is a formal notation for
describing real-time systems [12], and is defined by the following tuple:

TA = 〈L, l0, A, V, C,E, I〉 (10.1)

where: L is a finite set of locations, l0 ∈ L is the initial location, A = Σ ∪ τ is a set
of actions, where Σ is a finite set of synchronizing actions(c! denotes the send action,
and c? the receiving action) partitioned into inputs and outputs, Σ = Σi ∪ Σo, and
τ /∈ Σ denotes internal or empty actions without synchronization, V is a set of data
variables, C is a set of clocks, E ⊆ L × B(C, V) × A × 2C × L is the set of edges,
whereB(C, V) is the set of guards overC and V , that is, conjunctive formulas of clock
constraints (B(C)), of the form x ./ n or x − y ./ n, where x, y ∈ C, n ∈ N, ./∈
{<,≤,=,≥, >}, and non-clock constraints over V (B(V)), and I : L −→ Bdc(C)
is a function that assigns invariants to locations, where Bdc(C) ⊆ B(C) is the set
of downward-closed clock constraints with ./∈ {<,≤,=}. The invariants bound the
time that can be spent in locations, hence ensuring progress of TA’s execution. An edge
from location l to location l′ is denoted by l

g,a,r−−−→ l, where g is the guard of the edge,
a is an update action, and r is the clock reset set, that is, the clocks that are set to 0
over the edge. A location can be marked as urgent (marked with an U) or committed
(marked with a C) indicating that the time cannot progress in such locations. The latter
is a more restrictive, indicating that the next edge to be transversed needs to start from
a committed location.

The semantics of TA is a labeled transition system. The states of the labeled tran-
sition system are pairs (l, u), where l ∈ L is the current location, and u ∈ RC≥0

is the clock valuation in location l. The initial state is denoted by (l0, u0), where
∀x ∈ C, u0(x) = 0. Let u � g denote the clock value u that satisfies guard g.
We use u+ d to denote the time elapse where all the clock values have increased by d,
for d ∈ R≥0. There are two kinds of transitions:

(i) Delay transitions: < l, u >
d−→< l, u+ d > if u � I(l) and (u+ d′) � I(l), for

0 ≤ d′ ≤ d, and
(ii) Action transitions: < l, u >

a−→< l′, u′ > if l
g,a,r−−−→ l′, a ∈ Σ, u � g, clock

valuation u′ in the target state (l′, u′) is derived from u by resetting all clocks in the
reset set r of the edge, such that u′ � I(l′).

124 Paper C

10.2.2 Formal Notations and Tools
The formal analysis technique employed in this paper is model checking. We employ
two different types of model checking in this paper- 1) exhaustive-model checking using
the state-of-the-art model checker UPPAAL, and 2) statistical model-checking, using
the statistical extension of UPPAAL model checker, UPPAAL SMC. In the following,
we overview the semantics of the input models and the mentioned tools.

10.2.3 Timed Automata and Stochastic Timed Automata
A timed automaton (TA) as used in the model checker UPPAAL is a formal notation for
describing real-time systems [12], and is defined by the following tuple:

TA = 〈L, l0, A, V, C,E, I〉 (10.1)

where: L is a finite set of locations, l0 ∈ L is the initial location, A = Σ ∪ τ is a set
of actions, where Σ is a finite set of synchronizing actions(c! denotes the send action,
and c? the receiving action) partitioned into inputs and outputs, Σ = Σi ∪ Σo, and
τ /∈ Σ denotes internal or empty actions without synchronization, V is a set of data
variables, C is a set of clocks, E ⊆ L × B(C, V) × A × 2C × L is the set of edges,
whereB(C, V) is the set of guards overC and V , that is, conjunctive formulas of clock
constraints (B(C)), of the form x ./ n or x − y ./ n, where x, y ∈ C, n ∈ N, ./∈
{<,≤,=,≥, >}, and non-clock constraints over V (B(V)), and I : L −→ Bdc(C)
is a function that assigns invariants to locations, where Bdc(C) ⊆ B(C) is the set
of downward-closed clock constraints with ./∈ {<,≤,=}. The invariants bound the
time that can be spent in locations, hence ensuring progress of TA’s execution. An edge
from location l to location l′ is denoted by l

g,a,r−−−→ l, where g is the guard of the edge,
a is an update action, and r is the clock reset set, that is, the clocks that are set to 0
over the edge. A location can be marked as urgent (marked with an U) or committed
(marked with a C) indicating that the time cannot progress in such locations. The latter
is a more restrictive, indicating that the next edge to be transversed needs to start from
a committed location.

The semantics of TA is a labeled transition system. The states of the labeled tran-
sition system are pairs (l, u), where l ∈ L is the current location, and u ∈ RC≥0

is the clock valuation in location l. The initial state is denoted by (l0, u0), where
∀x ∈ C, u0(x) = 0. Let u � g denote the clock value u that satisfies guard g.
We use u+ d to denote the time elapse where all the clock values have increased by d,
for d ∈ R≥0. There are two kinds of transitions:

(i) Delay transitions: < l, u >
d−→< l, u+ d > if u � I(l) and (u+ d′) � I(l), for

0 ≤ d′ ≤ d, and
(ii) Action transitions: < l, u >

a−→< l′, u′ > if l
g,a,r−−−→ l′, a ∈ Σ, u � g, clock

valuation u′ in the target state (l′, u′) is derived from u by resetting all clocks in the
reset set r of the edge, such that u′ � I(l′).

148

10.2 Preliminaries 125

A stochastic timed automaton (STA) refines TA as follows: (i) probabilistic choices
between multiple enabled transitions, where the output probability function γ may be
defined by the user, and (ii) probability distributions for non-deterministic time delays,
where the delay density function µ is a uniform distribution for time-bounded delays
or an exponential distribution with user-defined rates for cases of unbounded delays.
Formally, an STA is defined by the tuple:

STA = 〈TA, µ, γ〉 (10.2)

The delay density function (µ) over delays in R≥0 is either a uniform or an exponential
distribution depending on whether the time in location l is bounded by an invarinat, or
is unbounded, respectively. With E l we denote the disjunction of guards g such that
l
g,o,-−−−→ - ∈ E for some output o. Then d(l, v) denotes the infimum delay before the

output is enabled, d(l, v) =inf {d ∈ R≥0 : v+d � E(l)}, whereasD(l, v) =sup {d ∈
R≥0 : v+ d � I(l)} is the supremum delay. If the supremum delay D(l, v) <∞, then
the delay density function µ in a given state s is the same is a uniform distribution over
the interval [d(l, v);D(l, v)]. Otherwise, when the upper bound on the delays out of s
does not exist, µs is an exponential distribution with a rate P (l), where P : L → R≥0

is an additional distribution rate specified for the automaton. The output probability
function γs for every state s = (l, v) ∈ S is the uniform distribution over the set
{o : (l, g, o, -, -) ∈ E ∧ v � g}.

In this paper, we use STA to model our AAL system architecture.

10.2.4 UPPAAL and UPPAAL SMC
UPPAAL model checker provides exhaustive model-checking of timed-automata mod-
els like the ones overviewed in Section 10.2.2. A real-time system can be modeled as
a network of TA (NTA) composed via the parallel composition operator (“||”), which
allows an individual automaton to carry out internal actions, while pairs of automata
can perform handshake synchronization. The locations of all automata, together with
the clock valuations, define the state of an NTA. The properties to be verified by model
checking on the resulting NTA are specified in a decidable subset of (Timed) Computa-
tion Tree Logic ((T)CTL) [13], and checked by the UPPAAL model checker. UPPAAL
supports verification of liveness and safety properties [14]. The queries that we verify in
this paper are of the form: i) Reachability: E♦p means that there exists a path where p
is satisfied by at least one state of the path, and (ii) Time bounded Leads to: p ≤t q,
which means that whenever p holds, q must hold within at most t time units thereafter.

UPPAAL SMC [5], the extension of UPPAAL for statistical model checking, pro-
vides means to formally analyze stochastic models. A model in UPPAAL SMC consists
of a network of interacting STA (NSTA) that communicate via broadcast channels and
shared variables. In a broadcast synchronization one sender c! can synchronize with an
arbitrary number of receivers c?. In the network, the automata repeatedly race against

10.2 Preliminaries 125

A stochastic timed automaton (STA) refines TA as follows: (i) probabilistic choices
between multiple enabled transitions, where the output probability function γ may be
defined by the user, and (ii) probability distributions for non-deterministic time delays,
where the delay density function µ is a uniform distribution for time-bounded delays
or an exponential distribution with user-defined rates for cases of unbounded delays.
Formally, an STA is defined by the tuple:

STA = 〈TA, µ, γ〉 (10.2)

The delay density function (µ) over delays in R≥0 is either a uniform or an exponential
distribution depending on whether the time in location l is bounded by an invarinat, or
is unbounded, respectively. With E l we denote the disjunction of guards g such that
l
g,o,-−−−→ - ∈ E for some output o. Then d(l, v) denotes the infimum delay before the

output is enabled, d(l, v) =inf {d ∈ R≥0 : v+d � E(l)}, whereasD(l, v) =sup {d ∈
R≥0 : v+ d � I(l)} is the supremum delay. If the supremum delay D(l, v) <∞, then
the delay density function µ in a given state s is the same is a uniform distribution over
the interval [d(l, v);D(l, v)]. Otherwise, when the upper bound on the delays out of s
does not exist, µs is an exponential distribution with a rate P (l), where P : L → R≥0

is an additional distribution rate specified for the automaton. The output probability
function γs for every state s = (l, v) ∈ S is the uniform distribution over the set
{o : (l, g, o, -, -) ∈ E ∧ v � g}.

In this paper, we use STA to model our AAL system architecture.

10.2.4 UPPAAL and UPPAAL SMC
UPPAAL model checker provides exhaustive model-checking of timed-automata mod-
els like the ones overviewed in Section 10.2.2. A real-time system can be modeled as
a network of TA (NTA) composed via the parallel composition operator (“||”), which
allows an individual automaton to carry out internal actions, while pairs of automata
can perform handshake synchronization. The locations of all automata, together with
the clock valuations, define the state of an NTA. The properties to be verified by model
checking on the resulting NTA are specified in a decidable subset of (Timed) Computa-
tion Tree Logic ((T)CTL) [13], and checked by the UPPAAL model checker. UPPAAL
supports verification of liveness and safety properties [14]. The queries that we verify in
this paper are of the form: i) Reachability: E♦p means that there exists a path where p
is satisfied by at least one state of the path, and (ii) Time bounded Leads to: p ≤t q,
which means that whenever p holds, q must hold within at most t time units thereafter.

UPPAAL SMC [5], the extension of UPPAAL for statistical model checking, pro-
vides means to formally analyze stochastic models. A model in UPPAAL SMC consists
of a network of interacting STA (NSTA) that communicate via broadcast channels and
shared variables. In a broadcast synchronization one sender c! can synchronize with an
arbitrary number of receivers c?. In the network, the automata repeatedly race against

149

126 Paper C

each other, that is, they independently and stochastically decide how much to delay be-
fore delivering the output, and what output to broadcast at that moment, with the “win-
ner" being the component that chooses the minimum delay. In addition to the classical
queries supported by UPPAAL, UPPAAL SMC also uses an extension of weighted met-
ric temporal logic (WMTL) [15] to provide probability evaluation Pr(∗x≤Cφ), where
∗ stands for ♦(eventually) or �(always), which calculates the probability that φ is
satisfied within cost x ≤ C, but also hypothesis testing and probability comparison. In
this paper, we will analyze only properties of the type “probability evaluation”.

10.3 A Framework for Formal Analysis of AAL
Systems: Proposed Methedology

In this section, we present in detail the framework that we propose for modeling and
verification of the AAL system architectures. We consider a generic architecture cate-
gory for AAL systems that supports a variety of assisted living functionalities including
health monitoring, home monitoring, fall detection, user interactions, and communica-
tion with family, caregivers. Accordingly, the architecture supports a variety of compo-
nents like sensors, a data collector unit to collect the sensor data, local and cloud pro-
cessing, and intelligent decision support. The system architecture and its requirements
are explained in detail in Section 10.4. This architecture design and the requirements
in natural language form the input to our analysis framework. As depicted in Fig. 10.1,
the framework is composed of the following steps:

Step 1. Create an abstract component-based model of the proposed architecture in
AADL.

This step focuses on specifying the architecture using an architecture description
language. In our case, we have chosen AADL due to its rich semantics and suitability
to model real-time embedded systems. In our approach, we demonstrate the model-
ing of AAL systems as abstract components and show how it can be extended to suit
the specific instantiations (from simpler to more complex configurations, as shown in
Section 10.4). The system modeling in AADL is presented in Section 10.5.

Step 2. Define a semantic encoding of AADL model as an NSTA model.

Following the AADL modeling, in Step 2, we define the semantic anchoring of
the AADL model as NSTA (Section 10.6). We present the semantic anchoring of the
generic model and also show the the above-mentioned instantiations of the latter to var-
ious configurations of increasing complexity. The NSTA model so formulated can be
further analyzed via exhaustive model checking or statistical model-checking, depend-
ing upon the technique’s ability to cope with the model’s complexity. For the simple
architecture configuration, we use exhaustive verification with UPPAAL and for the

126 Paper C

each other, that is, they independently and stochastically decide how much to delay be-
fore delivering the output, and what output to broadcast at that moment, with the “win-
ner" being the component that chooses the minimum delay. In addition to the classical
queries supported by UPPAAL, UPPAAL SMC also uses an extension of weighted met-
ric temporal logic (WMTL) [15] to provide probability evaluation Pr(∗x≤Cφ), where
∗ stands for ♦(eventually) or �(always), which calculates the probability that φ is
satisfied within cost x ≤ C, but also hypothesis testing and probability comparison. In
this paper, we will analyze only properties of the type “probability evaluation”.

10.3 A Framework for Formal Analysis of AAL
Systems: Proposed Methedology

In this section, we present in detail the framework that we propose for modeling and
verification of the AAL system architectures. We consider a generic architecture cate-
gory for AAL systems that supports a variety of assisted living functionalities including
health monitoring, home monitoring, fall detection, user interactions, and communica-
tion with family, caregivers. Accordingly, the architecture supports a variety of compo-
nents like sensors, a data collector unit to collect the sensor data, local and cloud pro-
cessing, and intelligent decision support. The system architecture and its requirements
are explained in detail in Section 10.4. This architecture design and the requirements
in natural language form the input to our analysis framework. As depicted in Fig. 10.1,
the framework is composed of the following steps:

Step 1. Create an abstract component-based model of the proposed architecture in
AADL.

This step focuses on specifying the architecture using an architecture description
language. In our case, we have chosen AADL due to its rich semantics and suitability
to model real-time embedded systems. In our approach, we demonstrate the model-
ing of AAL systems as abstract components and show how it can be extended to suit
the specific instantiations (from simpler to more complex configurations, as shown in
Section 10.4). The system modeling in AADL is presented in Section 10.5.

Step 2. Define a semantic encoding of AADL model as an NSTA model.

Following the AADL modeling, in Step 2, we define the semantic anchoring of
the AADL model as NSTA (Section 10.6). We present the semantic anchoring of the
generic model and also show the the above-mentioned instantiations of the latter to var-
ious configurations of increasing complexity. The NSTA model so formulated can be
further analyzed via exhaustive model checking or statistical model-checking, depend-
ing upon the technique’s ability to cope with the model’s complexity. For the simple
architecture configuration, we use exhaustive verification with UPPAAL and for the

150

10.4 A Generic AAL System Architecture 127

Figure 10.1: Methodology overview.

complex configuration, we use statistical model checking, using the tool UPPPAAL
SMC.

In the subsequent step, the functional and non functional requirements of the archi-
tecture, which are initially specified in natural language are formalized as Timed Com-
putation Tree Logic (TCTL) or Weighted Metric Temporal Logic(WMTL) queries to
enable analysis in the NSTA model, using UPPAAL or UPPPAAL SMC. Thus, Step 3
is formulated as follows:

Step 3. Formalize the system requirements as queries expressed in the input language
of the chosen model-checker.

As the final step, we verify the queries against the NSTA model of the architecture
and gather the results (exact for UPPAAL and statistical for UPPAAL SMC) leading to
Step 4 formulated as below:

Step 4. Verify the queries in the model checker and gather verification results.

If the verification results do not meet the requirements, we feedback information
from the verification (counter example or statistical information) to our design, which
we modify and iterate steps 1, 2, 3 and 4.

10.4 A Generic AAL System Architecture
In this section, we detail the generic AAL system architecture that we propose. In ad-
dition, we also present the design of a novel decision support system for our system
architecture that supports the integration of multiple functionalities and provides effi-
cient decision making by combining multiple artificial-intelligent (AI) techniques as

10.4 A Generic AAL System Architecture 127

Figure 10.1: Methodology overview.

complex configuration, we use statistical model checking, using the tool UPPPAAL
SMC.

In the subsequent step, the functional and non functional requirements of the archi-
tecture, which are initially specified in natural language are formalized as Timed Com-
putation Tree Logic (TCTL) or Weighted Metric Temporal Logic(WMTL) queries to
enable analysis in the NSTA model, using UPPAAL or UPPPAAL SMC. Thus, Step 3
is formulated as follows:

Step 3. Formalize the system requirements as queries expressed in the input language
of the chosen model-checker.

As the final step, we verify the queries against the NSTA model of the architecture
and gather the results (exact for UPPAAL and statistical for UPPAAL SMC) leading to
Step 4 formulated as below:

Step 4. Verify the queries in the model checker and gather verification results.

If the verification results do not meet the requirements, we feedback information
from the verification (counter example or statistical information) to our design, which
we modify and iterate steps 1, 2, 3 and 4.

10.4 A Generic AAL System Architecture
In this section, we detail the generic AAL system architecture that we propose. In ad-
dition, we also present the design of a novel decision support system for our system
architecture that supports the integration of multiple functionalities and provides effi-
cient decision making by combining multiple artificial-intelligent (AI) techniques as

151

128 Paper C

Sensor_A
(W_data)

Sensor_B
(NW_data)

Sensor_C
(W_event)

Sensor_D
(NW_event)

Data
Preprocessing

UI

Cloud DB

Decision Support System

C
o
m
m
u
n
I
c
a
t
I
o
n

Data
Collector

User Message Queue

 Decision
 Support System

Security &
 Privacy module

 Local DB

Cloud

C
o
m
m
u
n
I
c
a
t
I
o
n

C
o
m
m
u
n
I
c
a
t
I
o
n

Local Controller Third-party UI
(Care givers, firefighter, family)

Health platforms and services

Figure 10.2: The generic AAL system architecture.

detailed later in this section. Finally, we present three specific instantiantions of the
generic architecture model that follow the same modeling paradigms, yet vary in their
degree of complexity with respect to integrated functionalities.

The generic AAL system architecture is presented in Fig.10.2, and follows the ar-
chitecture of many commercial AAL systems with various sensors, a data collector,
DSS, security and privacy, database (DB) systems, user interfaces (UI), and cloud com-
puting support. This architecture can act as a base for the development of many inte-
grated AAL system architectures. We classify the sensors in the AAL environment as
follows:

• Wearable sensors that send information as data (W_data), e.g., sensors measur-
ing health parameters like pulse, ECG, etc. They are represented by Sensor_A
category in Fig 10.2;

• Non-wearable sensors measuring ambient parameters and health parameters
(NW_data), e.g., camera sensors, motion sensors, etc., represented by Sensor_B
category;

• Wearable sensors that detect events (W_event), e.g., fall sensors, marked as Sen-
sor_C category;

• Non-wearable sensors detecting events (NW_event), e.g., fire sensors, denoted
by Sensor_D category.

A particular instantiation of the generic architecture can contain n sensors of each
category, respectively, n ∈ N . As depicted in Fig.10.2, the data from the sensors are
collected by the Data Collector unit, which processes the data by assigning labels and

128 Paper C

Sensor_A
(W_data)

Sensor_B
(NW_data)

Sensor_C
(W_event)

Sensor_D
(NW_event)

Data
Preprocessing

UI

Cloud DB

Decision Support System

C
o
m
m
u
n
I
c
a
t
I
o
n

Data
Collector

User Message Queue

 Decision
 Support System

Security &
 Privacy module

 Local DB

Cloud

C
o
m
m
u
n
I
c
a
t
I
o
n

C
o
m
m
u
n
I
c
a
t
I
o
n

Local Controller Third-party UI
(Care givers, firefighter, family)

Health platforms and services

Figure 10.2: The generic AAL system architecture.

detailed later in this section. Finally, we present three specific instantiantions of the
generic architecture model that follow the same modeling paradigms, yet vary in their
degree of complexity with respect to integrated functionalities.

The generic AAL system architecture is presented in Fig.10.2, and follows the ar-
chitecture of many commercial AAL systems with various sensors, a data collector,
DSS, security and privacy, database (DB) systems, user interfaces (UI), and cloud com-
puting support. This architecture can act as a base for the development of many inte-
grated AAL system architectures. We classify the sensors in the AAL environment as
follows:

• Wearable sensors that send information as data (W_data), e.g., sensors measur-
ing health parameters like pulse, ECG, etc. They are represented by Sensor_A
category in Fig 10.2;

• Non-wearable sensors measuring ambient parameters and health parameters
(NW_data), e.g., camera sensors, motion sensors, etc., represented by Sensor_B
category;

• Wearable sensors that detect events (W_event), e.g., fall sensors, marked as Sen-
sor_C category;

• Non-wearable sensors detecting events (NW_event), e.g., fire sensors, denoted
by Sensor_D category.

A particular instantiation of the generic architecture can contain n sensors of each
category, respectively, n ∈ N . As depicted in Fig.10.2, the data from the sensors are
collected by the Data Collector unit, which processes the data by assigning labels and

152

10.4 A Generic AAL System Architecture 129

Figure 10.3: The DSS architecture

Figure 10.4: Internals of the DSS architecture (List of AI techniques)

priorities. The Data Collector sends the data to the message queue in the Local Con-
troller, where it gets sorted according to its priority such that when the DSS processes
the first element in the queue, it processes the message with the highest priority. Our
architecture has both local and cloud-based processing in order to ensure fault tolerance
with respect to the DSS. The components of the architecture can interact via various
communication protocols.

The crux of our AAL system is the intelligent context-aware DSS, shown in
Fig.10.3. The novelty of our architecture stems from the combination of various
AI algorithms, like rule-based reasoning (RBR), fuzzy logic, and case-based reason-
ing(CBR) with context reasoning for efficient decision-making, as detailed below.

Our DSS architecture is inspired by the work of Zhou et al. [16], where the authors
have proposed a context-aware, CBR-based ambient-intelligence system for AAL ap-
plications. CBR reasoning works very well in scenarios that are not specific and need
to adapt accordingly with inputs. For instance, CBR reasoning is suited in a clinical
decision support system that prescribes medicines/treatment, where the treatment, pre-

10.4 A Generic AAL System Architecture 129

Figure 10.3: The DSS architecture

Figure 10.4: Internals of the DSS architecture (List of AI techniques)

priorities. The Data Collector sends the data to the message queue in the Local Con-
troller, where it gets sorted according to its priority such that when the DSS processes
the first element in the queue, it processes the message with the highest priority. Our
architecture has both local and cloud-based processing in order to ensure fault tolerance
with respect to the DSS. The components of the architecture can interact via various
communication protocols.

The crux of our AAL system is the intelligent context-aware DSS, shown in
Fig.10.3. The novelty of our architecture stems from the combination of various
AI algorithms, like rule-based reasoning (RBR), fuzzy logic, and case-based reason-
ing(CBR) with context reasoning for efficient decision-making, as detailed below.

Our DSS architecture is inspired by the work of Zhou et al. [16], where the authors
have proposed a context-aware, CBR-based ambient-intelligence system for AAL ap-
plications. CBR reasoning works very well in scenarios that are not specific and need
to adapt accordingly with inputs. For instance, CBR reasoning is suited in a clinical
decision support system that prescribes medicines/treatment, where the treatment, pre-

153

130 Paper C

Pulse
monitoring

sensor

Fall sensor

M
o
b
i
l
e

Cloud DB

Decision Support
 System

GPRS/
GSM

User
Cloud Controller

Internet
protocols

Data
collector

Bluetooth

Bluetooth

Third-party UI

(caregiver)

Figure 10.5: Category 1: A minimal configuration

scription and medicine dosage vary depending upon individual patients. CBR is an
attractive choice due to its reasoning technique resembling more of human problem-
solving competence, (i.e., trying to reason out a new scenario by looking at the similar
solved cases in the past and adapting them according to the current needs) and less of
knowledge engineering, however there are many scenarios that are specific and involve
domain expertise, where RBR can be employed with more efficiency and ease. For
instance, if a fire occurs at home, the action to be taken by the system is to notify the
firefighters, which can be easily implemented using “if-then-else” rules rather than via
a CBR system that needs to compare across all cases using a case-matching algorithm
to retrieve a matching case and act accordingly. Moreover, RBR systems using fuzzy
logic are very efficient to determine sensor data deviations compared to crisp logic. For
instance, the normal pulse range of a person is between 60-120, and a crisp rule-based-
reasoning system (Boolean logic) will classify a pulse value of 59.5 or 120.5 as an
abnormal range (which in reality is not) and raises a pulse- deviation alarm to the care-
giver. Using fuzzy logic, a degree of membership can be associated to each value, i.e., a
pulse value of 59.5 or 120.5 is strictly not within abnormal or normal boundaries, rather
it is considered 97% within normal range and 3% within abnormal range. Thus, by
replacing the crisp boolean logic with fuzzy logic, a multitude of false pulse deviation
alarms can be avoided. However, RBR (even fuzzy based) cannot work efficiently in
many other ill-defined scenarios that require adaptability, like that of a clinical decision
support system or a system that sends personalized recommendations to its users.

The DSS triggers the various AI algorithms based on a change in context [16].
The context-modeling (CM) and the usage of different AI algorithms are depicted in
Fig. 10.4. As indicated, CM module identifies the context space based on: (i) the
personal profile of the user, e.g., gender, age, disease history etc., (ii) the activity of daily
living (DA) performed by the user, e.g., exercising, sleeping etc., (iii) spatio-temporal
properties, like time, location of the user, etc., (iv) environmental, e.g., temperature,

130 Paper C

Pulse
monitoring

sensor

Fall sensor

M
o
b
i
l
e

Cloud DB

Decision Support
 System

GPRS/
GSM

User
Cloud Controller

Internet
protocols

Data
collector

Bluetooth

Bluetooth

Third-party UI

(caregiver)

Figure 10.5: Category 1: A minimal configuration

scription and medicine dosage vary depending upon individual patients. CBR is an
attractive choice due to its reasoning technique resembling more of human problem-
solving competence, (i.e., trying to reason out a new scenario by looking at the similar
solved cases in the past and adapting them according to the current needs) and less of
knowledge engineering, however there are many scenarios that are specific and involve
domain expertise, where RBR can be employed with more efficiency and ease. For
instance, if a fire occurs at home, the action to be taken by the system is to notify the
firefighters, which can be easily implemented using “if-then-else” rules rather than via
a CBR system that needs to compare across all cases using a case-matching algorithm
to retrieve a matching case and act accordingly. Moreover, RBR systems using fuzzy
logic are very efficient to determine sensor data deviations compared to crisp logic. For
instance, the normal pulse range of a person is between 60-120, and a crisp rule-based-
reasoning system (Boolean logic) will classify a pulse value of 59.5 or 120.5 as an
abnormal range (which in reality is not) and raises a pulse- deviation alarm to the care-
giver. Using fuzzy logic, a degree of membership can be associated to each value, i.e., a
pulse value of 59.5 or 120.5 is strictly not within abnormal or normal boundaries, rather
it is considered 97% within normal range and 3% within abnormal range. Thus, by
replacing the crisp boolean logic with fuzzy logic, a multitude of false pulse deviation
alarms can be avoided. However, RBR (even fuzzy based) cannot work efficiently in
many other ill-defined scenarios that require adaptability, like that of a clinical decision
support system or a system that sends personalized recommendations to its users.

The DSS triggers the various AI algorithms based on a change in context [16].
The context-modeling (CM) and the usage of different AI algorithms are depicted in
Fig. 10.4. As indicated, CM module identifies the context space based on: (i) the
personal profile of the user, e.g., gender, age, disease history etc., (ii) the activity of daily
living (DA) performed by the user, e.g., exercising, sleeping etc., (iii) spatio-temporal
properties, like time, location of the user, etc., (iv) environmental, e.g., temperature,

154

10.4 A Generic AAL System Architecture 131

pressure, fire, etc., and (v) health parameters, for instance, like blood pressure, pulse,
etc. Each of these context-space components can be associated with one of the three
properties - sensed, profiled or predicted. Sensed contexts are those directly derived
from sensor values. However, predicted contexts correspond to the output resulting
from further analysis of sensed inputs, e.g., activity-recognition. Profiled values are
usually descriptive and remain unchanged.

In our DSS, fuzzy reasoning is used for detecting DA [17], and also for determining
sensor-data deviations. For simplicity, we have not considered DA detection using fuzzy
logic in our further modeling and analysis and has often assumed that the user’s DA is
known (although this is not the actual case). To take decisions in various situations, we
employ RBR first, CBR as second paradigm, i.e., upon a change in context, the RBR
triggers first and checks if there exists a rule to handle that particular context, if not, it
allows the CBR system to tackle the context based on its learning from previous sce-
narios. Developing an efficient case base, case matching and formulating the adaptation
rules are the most complex aspects of a CBR system. In our system, each time an RBR
outputs a rule, we save it as a case in the CBR system with the case-id represented by
the DA of the user, the context space represented by the case features, and the triggered
rule represented by the solution for a particular case. The KB stores the context, rules,
and cases. The internal structure of the DSS is represented in Fig.10.4.

The generic architecture, and its DSS can be instantiated to create a family of AAL
architectures that follows the same design principles. In this paper, we present three
such architectures and their DSS instantiations.

• Category 1: A minimal configuration - The minimum configuration architec-
ture consists of the following modules: Two sensors (a fall sensor and a pulse
monitoring sensor), a mobile phone UI, and cloud controller with third-party UI
and DSS system with a minimum context-space information including the health
data (pulse and fall) and DA. The simplified DSS employs only RBR with fuzzy
logic as AI techniques. The minimal configuration is shown in Fig. 10.5.

• Category 2: An intermediate configuration - This instantiation (see Fig. 10.6)
is more complex than the previous one and it contains sensors belonging to all
four categories of the generic architecture (health monitoring sensors that detect
pulse and blood pressure, smart home sensors that detect user movements, a
wearable fall sensor and a set of physical exercise monitoring sensors), as well
as a local controller with inbuilt data collection functionality, which forwards
the data to the cloud controller. The cloud controller has a DSS with context
modeling, fuzzy logic and RBR.

• Category 3: A complex configuration - In this category, we present the most
complex version, the CAMI AAL architecture [2] derived from our generic
model and represented in Fig. 10.7. It supports various sensors (e.g. A mul-
titude of health and home monitoring sensors like the A&D UA-651 BLE blood
pressure sensor [18], Fibaro temperature and motion sensor FGMS-001 [19],
Fitbit bracelet [20], Vibby fall detection sensor [21], etc.), data collector, local

10.4 A Generic AAL System Architecture 131

pressure, fire, etc., and (v) health parameters, for instance, like blood pressure, pulse,
etc. Each of these context-space components can be associated with one of the three
properties - sensed, profiled or predicted. Sensed contexts are those directly derived
from sensor values. However, predicted contexts correspond to the output resulting
from further analysis of sensed inputs, e.g., activity-recognition. Profiled values are
usually descriptive and remain unchanged.

In our DSS, fuzzy reasoning is used for detecting DA [17], and also for determining
sensor-data deviations. For simplicity, we have not considered DA detection using fuzzy
logic in our further modeling and analysis and has often assumed that the user’s DA is
known (although this is not the actual case). To take decisions in various situations, we
employ RBR first, CBR as second paradigm, i.e., upon a change in context, the RBR
triggers first and checks if there exists a rule to handle that particular context, if not, it
allows the CBR system to tackle the context based on its learning from previous sce-
narios. Developing an efficient case base, case matching and formulating the adaptation
rules are the most complex aspects of a CBR system. In our system, each time an RBR
outputs a rule, we save it as a case in the CBR system with the case-id represented by
the DA of the user, the context space represented by the case features, and the triggered
rule represented by the solution for a particular case. The KB stores the context, rules,
and cases. The internal structure of the DSS is represented in Fig.10.4.

The generic architecture, and its DSS can be instantiated to create a family of AAL
architectures that follows the same design principles. In this paper, we present three
such architectures and their DSS instantiations.

• Category 1: A minimal configuration - The minimum configuration architec-
ture consists of the following modules: Two sensors (a fall sensor and a pulse
monitoring sensor), a mobile phone UI, and cloud controller with third-party UI
and DSS system with a minimum context-space information including the health
data (pulse and fall) and DA. The simplified DSS employs only RBR with fuzzy
logic as AI techniques. The minimal configuration is shown in Fig. 10.5.

• Category 2: An intermediate configuration - This instantiation (see Fig. 10.6)
is more complex than the previous one and it contains sensors belonging to all
four categories of the generic architecture (health monitoring sensors that detect
pulse and blood pressure, smart home sensors that detect user movements, a
wearable fall sensor and a set of physical exercise monitoring sensors), as well
as a local controller with inbuilt data collection functionality, which forwards
the data to the cloud controller. The cloud controller has a DSS with context
modeling, fuzzy logic and RBR.

• Category 3: A complex configuration - In this category, we present the most
complex version, the CAMI AAL architecture [2] derived from our generic
model and represented in Fig. 10.7. It supports various sensors (e.g. A mul-
titude of health and home monitoring sensors like the A&D UA-651 BLE blood
pressure sensor [18], Fibaro temperature and motion sensor FGMS-001 [19],
Fitbit bracelet [20], Vibby fall detection sensor [21], etc.), data collector, local

155

132 Paper C

Phone
 Linkwatch
 Data
Collection

PC

Tablet / Laptop

Smart Home
Sensors

Physical Exercise
Sensor

Sensor Unit

Health Sensors

Fall Sensors

CAMI Gateway

Robotic Telepresence

Multimodal User Interface

Voice, Gesture and Touch comands

Message Queue

Health Channel

Home Monitoring Channel

User Notification Channel

Decision System Support

Communication to 3rd Party

Fall Detection + Alerts

Reminder + Dynamic Program Management

Intelligent Health Analysis

MySQL DB

 Cloud

3rd Party
Health Platforms

Linkwatch

User Account Setup Security & Privacy

System Configuration Service

B
LE

Physical Exercise
Analysis Service

OpenHab
Server

Z
-W

av
e

OpenTele

Figure 10.6: Category 2: An intermediate configuration

controller (EXYS9200-SNG [22] referred as CAMI gateway), the CAMI cloud,
and third party health platforms like Open Tele [23] and [24]. There is a set of
UI in CAMI, including robotic platforms (TIAGo [25] and Pepper [26]), mobile
phone and vocal interface to facilitate the interaction with the elderly user. There
is also a local backup of DSS in the CAMI gateway apart from the cloud. The
communication between various modules can employ a variety of communica-
tion protocols, for instance, Bluetooth, Zigbee, Wifi, etc,. The local processor is
called the CAMI gateway and is responsible for all critical functionalities. The
Message Queue is implemented by Rabbit MQ Message Broker [27]. The DSS
is complex and employs context modeling, fuzzy logic, RBR and CBR. There
are also redundant copies of DSS in the local controller and cloud controller.

In the following, we present the modeling and analysis of the simplest architecture
(Category 1), as well as of the most complex one, the CAMI architecture (Category
3). We start by describing the use-case scenarios and system requirements of the two
architecture configurations, in the following section.

10.4.1 Use Case Scenarios and System Requirements
AAL systems should assist the elderly users with a variety of health, home-related func-
tions, as well as social inclusion ones. Let us assume the following critical scenarios
where we can employ systems whose architectures conform to the ones of Categories 1
and 3 described above, respectively.

132 Paper C

Phone
 Linkwatch
 Data
Collection

PC

Tablet / Laptop

Smart Home
Sensors

Physical Exercise
Sensor

Sensor Unit

Health Sensors

Fall Sensors

CAMI Gateway

Robotic Telepresence

Multimodal User Interface

Voice, Gesture and Touch comands

Message Queue

Health Channel

Home Monitoring Channel

User Notification Channel

Decision System Support

Communication to 3rd Party

Fall Detection + Alerts

Reminder + Dynamic Program Management

Intelligent Health Analysis

MySQL DB

 Cloud

3rd Party
Health Platforms

Linkwatch

User Account Setup Security & Privacy

System Configuration Service

B
LE

Physical Exercise
Analysis Service

OpenHab
Server

Z
-W

av
e

OpenTele

Figure 10.6: Category 2: An intermediate configuration

controller (EXYS9200-SNG [22] referred as CAMI gateway), the CAMI cloud,
and third party health platforms like Open Tele [23] and [24]. There is a set of
UI in CAMI, including robotic platforms (TIAGo [25] and Pepper [26]), mobile
phone and vocal interface to facilitate the interaction with the elderly user. There
is also a local backup of DSS in the CAMI gateway apart from the cloud. The
communication between various modules can employ a variety of communica-
tion protocols, for instance, Bluetooth, Zigbee, Wifi, etc,. The local processor is
called the CAMI gateway and is responsible for all critical functionalities. The
Message Queue is implemented by Rabbit MQ Message Broker [27]. The DSS
is complex and employs context modeling, fuzzy logic, RBR and CBR. There
are also redundant copies of DSS in the local controller and cloud controller.

In the following, we present the modeling and analysis of the simplest architecture
(Category 1), as well as of the most complex one, the CAMI architecture (Category
3). We start by describing the use-case scenarios and system requirements of the two
architecture configurations, in the following section.

10.4.1 Use Case Scenarios and System Requirements
AAL systems should assist the elderly users with a variety of health, home-related func-
tions, as well as social inclusion ones. Let us assume the following critical scenarios
where we can employ systems whose architectures conform to the ones of Categories 1
and 3 described above, respectively.

156

10.4 A Generic AAL System Architecture 133

Figure 10.7: Category 3: A complex configuration: The CAMI AAL System
Architecture [2]

Overall Scenario: Jim is an elderly user living alone in his home. Jim suffers from
chronic cardiac disease, slight memory loss, and falls frequently.

If Jim uses the AAL system architecture of category 1, the latter should assist in
fulfilling the scenarios below:

• Scenario 1 - Assistance for detecting health parameter deviations: Jim has sud-
den pulse variations, detected by the pulse monitoring sensor, which are critical
for cardiac patients. If the pulse is low, the DSS alerts the caregiver of a low
pulse. If the pulse is high and the user is currently exercising (if this is the case,
a high pulse is considered as normal) and if not, it sends an alert to the caregiver.

• Scenario 2 - Fall detection: Jim falls heavily while exercising, the fall sensors
detect the fall and the system immediately notifies the fall event to the caregiver.

However, if Jim needs additional functionality support, then he needs to acquire the
CAMI AAL system (Category 3), which can handle additional scenarios besides the
already mentioned ones. The fall detection in CAMI is complex, as it employs a com-
bination of wearable fall sensor (Vibby) and camera sensor for detecting the fall event.

• Scenario 3 - Home-monitoring functionalities: Jim forgets to switch off the
cooker after cooking his dinner, which results in a fire in the house. The fire
detection sensor of CAMI detects the fire and the system alerts the firefighters of
the fire incident in Jim’s house.

• Scenario 4 - Combining various functionalities in case of multiple events occur-
ring together: Jim is cooking his breakfast. He suddenly feels dizzy and falls.

10.4 A Generic AAL System Architecture 133

Figure 10.7: Category 3: A complex configuration: The CAMI AAL System
Architecture [2]

Overall Scenario: Jim is an elderly user living alone in his home. Jim suffers from
chronic cardiac disease, slight memory loss, and falls frequently.

If Jim uses the AAL system architecture of category 1, the latter should assist in
fulfilling the scenarios below:

• Scenario 1 - Assistance for detecting health parameter deviations: Jim has sud-
den pulse variations, detected by the pulse monitoring sensor, which are critical
for cardiac patients. If the pulse is low, the DSS alerts the caregiver of a low
pulse. If the pulse is high and the user is currently exercising (if this is the case,
a high pulse is considered as normal) and if not, it sends an alert to the caregiver.

• Scenario 2 - Fall detection: Jim falls heavily while exercising, the fall sensors
detect the fall and the system immediately notifies the fall event to the caregiver.

However, if Jim needs additional functionality support, then he needs to acquire the
CAMI AAL system (Category 3), which can handle additional scenarios besides the
already mentioned ones. The fall detection in CAMI is complex, as it employs a com-
bination of wearable fall sensor (Vibby) and camera sensor for detecting the fall event.

• Scenario 3 - Home-monitoring functionalities: Jim forgets to switch off the
cooker after cooking his dinner, which results in a fire in the house. The fire
detection sensor of CAMI detects the fire and the system alerts the firefighters of
the fire incident in Jim’s house.

• Scenario 4 - Combining various functionalities in case of multiple events occur-
ring together: Jim is cooking his breakfast. He suddenly feels dizzy and falls.

157

134 Paper C

The gas-based cooker is still on, and eventually starts a fire in Jim’s house. In this
case, the CAMI system detects the simultaneously occurring events, and alerts
the firefighter and caregiver of both the events. As a result, the firefighters and
caregivers can immediately start the rescue without waiting for alarm confirma-
tions, avoiding potentially dangerous consequences [1]. Further, if there are any
health parameter variations detected for Jim along with the fall (for instance, a
low pulse), the fall event can be associated with the low pulse, and the caregiver
notified accordingly, which can help in further diagnosis.

All these scenarios are safety critical and have to be processed in real time. For archi-
tecture 1, we consider verifying the following requirements:

Requirements of the minimal architecture model:
• R1Arch1: If a high pulse is detected by the pulse sensor and the elderly user’s DA

is not exercising, then the DSS sends a notification to caregiver within 20 s. This
requirement relates to Scenario 1.

• R2Arch1: If a fall is detected by the fall sensor, then the DSS sends a notification
to caregiver within 20 s. It is associated with Scenario 2.

Requirements of the CAMI architecture:
For the CAMI architecture, we consider verifying the following functional and quality-
of-service (QoS) attributes, like fault tolerance and data consistency. Such analysis is
beneficial, as the system needs to be prototyped and it offers some assessment of the
system’s dependability.

• R1CAMI: If the fire sensor detects a fire, then the DSS sends a notification to the
firefighters, within 20 s. This requirement corresponds to Scenario 3.

• R2CAMI: If a fall is detected by the wearable or the camera sensor, then the DSS
sends a notification to the caregiver, within 20 s. This requirement relates to
Scenario 2.

• R3CAMI: If there is a pulse data deviation indicating high pulse, the DA is “not
exercising”, and the user has a disease history of a cardiac patient, then the DSS
sends a notification to the caregiver, within 20 s. This relates to Scenario 1.

• R4CAMI: If fire and fall are detected simultaneously by the respective sensors,
then the DSS should detect the presence of the simultaneous events and send
notifications to both the firefighters and the caregiver indicating the presence of
both events, within 20 s. This relates to Scenario 4.

134 Paper C

The gas-based cooker is still on, and eventually starts a fire in Jim’s house. In this
case, the CAMI system detects the simultaneously occurring events, and alerts
the firefighter and caregiver of both the events. As a result, the firefighters and
caregivers can immediately start the rescue without waiting for alarm confirma-
tions, avoiding potentially dangerous consequences [1]. Further, if there are any
health parameter variations detected for Jim along with the fall (for instance, a
low pulse), the fall event can be associated with the low pulse, and the caregiver
notified accordingly, which can help in further diagnosis.

All these scenarios are safety critical and have to be processed in real time. For archi-
tecture 1, we consider verifying the following requirements:

Requirements of the minimal architecture model:
• R1Arch1: If a high pulse is detected by the pulse sensor and the elderly user’s DA

is not exercising, then the DSS sends a notification to caregiver within 20 s. This
requirement relates to Scenario 1.

• R2Arch1: If a fall is detected by the fall sensor, then the DSS sends a notification
to caregiver within 20 s. It is associated with Scenario 2.

Requirements of the CAMI architecture:
For the CAMI architecture, we consider verifying the following functional and quality-
of-service (QoS) attributes, like fault tolerance and data consistency. Such analysis is
beneficial, as the system needs to be prototyped and it offers some assessment of the
system’s dependability.

• R1CAMI: If the fire sensor detects a fire, then the DSS sends a notification to the
firefighters, within 20 s. This requirement corresponds to Scenario 3.

• R2CAMI: If a fall is detected by the wearable or the camera sensor, then the DSS
sends a notification to the caregiver, within 20 s. This requirement relates to
Scenario 2.

• R3CAMI: If there is a pulse data deviation indicating high pulse, the DA is “not
exercising”, and the user has a disease history of a cardiac patient, then the DSS
sends a notification to the caregiver, within 20 s. This relates to Scenario 1.

• R4CAMI: If fire and fall are detected simultaneously by the respective sensors,
then the DSS should detect the presence of the simultaneous events and send
notifications to both the firefighters and the caregiver indicating the presence of
both events, within 20 s. This relates to Scenario 4.

158

10.5 System Modelling in AADL 135

• R5CAMI: The decisions taken by the local DSS are updated in the cloud DSS
such that they are eventually synchronized. This requirement relates to the
data-consistency requirement of CAMI.

• R6CAMI: If the local DSS fails, then the cloud DSS eventually becomes active.
It corresponds to the fault-tolerance aspect of the CAMI system.

The overall goal is to analyze the satisfaction of the above requirements by the
respective architectures. We achieve this by first specifying the architectures in AADL,
and then by semantically mapping the specification into a (network of) STA (N(STA))
that we model check with UPPAAL (for architecture category 1) or statistically model
check with UPPAAL SMC (for CAMI).

10.5 System Modelling in AADL
The generic architecture, depicted in Fig. 10.2 can be modeled in AADL as a set of
interacting components. All the components are modeled as abstract, and can be eas-
ily extended to suit particular run-time representations appropriate for specific require-
ments.

In order to develop the AADL model, we classify the AADL components as:

1. Atomic Components (AC): Components that do not have hierarchy in terms of
sub-components with port interfaces, but might contain sub-components without
port interfaces.

2. Composite Components (CC): Hierarchical components that contain sub-
components with and without interfaces. For example, data is a sub-component
without interface and it can be part of an AC or CC hierarchy.

The system architecture itself can be considered a CC with other AC or CC as its
sub-components. In order to encode the complex modeling aspects and the reasoning
with functional behavior and errors, we propose a modeling format for both AC and CC
as defined below.

AAL Atomic Components: An AC is defined by its component type, implemen-
tation, behaviour annex (BA), and error annex (EA). The component type definition
specifies its name, category (i.e., “abstract”) and interfaces. We can also specify par-
ticular component properties and flows in the type definitions1. The implementation of

1While defining the component properties, we chose to include thread-related properties like
the Dispatch Protocol, Component Execution Time etc., which later aid us in reasoning. All these
thread-related properties need to be instantiated by a value and hence we chose it to be instantiated
with some values specific to our architecture chosen. If the reader wishes to use the AADL model

10.5 System Modelling in AADL 135

• R5CAMI: The decisions taken by the local DSS are updated in the cloud DSS
such that they are eventually synchronized. This requirement relates to the
data-consistency requirement of CAMI.

• R6CAMI: If the local DSS fails, then the cloud DSS eventually becomes active.
It corresponds to the fault-tolerance aspect of the CAMI system.

The overall goal is to analyze the satisfaction of the above requirements by the
respective architectures. We achieve this by first specifying the architectures in AADL,
and then by semantically mapping the specification into a (network of) STA (N(STA))
that we model check with UPPAAL (for architecture category 1) or statistically model
check with UPPAAL SMC (for CAMI).

10.5 System Modelling in AADL
The generic architecture, depicted in Fig. 10.2 can be modeled in AADL as a set of
interacting components. All the components are modeled as abstract, and can be eas-
ily extended to suit particular run-time representations appropriate for specific require-
ments.

In order to develop the AADL model, we classify the AADL components as:

1. Atomic Components (AC): Components that do not have hierarchy in terms of
sub-components with port interfaces, but might contain sub-components without
port interfaces.

2. Composite Components (CC): Hierarchical components that contain sub-
components with and without interfaces. For example, data is a sub-component
without interface and it can be part of an AC or CC hierarchy.

The system architecture itself can be considered a CC with other AC or CC as its
sub-components. In order to encode the complex modeling aspects and the reasoning
with functional behavior and errors, we propose a modeling format for both AC and CC
as defined below.

AAL Atomic Components: An AC is defined by its component type, implemen-
tation, behaviour annex (BA), and error annex (EA). The component type definition
specifies its name, category (i.e., “abstract”) and interfaces. We can also specify par-
ticular component properties and flows in the type definitions1. The implementation of

1While defining the component properties, we chose to include thread-related properties like
the Dispatch Protocol, Component Execution Time etc., which later aid us in reasoning. All these
thread-related properties need to be instantiated by a value and hence we chose it to be instantiated
with some values specific to our architecture chosen. If the reader wishes to use the AADL model

159

136 Paper C

an AC defines the data sub-components. The AC’s BA has two states, Waiting and Op-
erational. Waiting represents the initial state where the component waits for an input,
and Operational represents the state to which a component switches upon receiving the
input (if it has not failed). The AC’s EA uses four states to represent failure: Failed
Transient, LReset, Failed Permanent, and Failed ep. The state Failed Transient mod-
els transient failures, from which a recovery is possible via a reset event. Since reset
is modeled as an internal event that occurs with respect to a probabilistic distribution,
we model an additional location LReset to encode a component’s reset action upon the
successful generation of the reset event. Failed Permanent models a permanent failure
of the RBR, from which the component cannot recover. Failed ep models a failure due
to error propagation from its predecessor components.

An example of an AC in the architecture is the RBR component of the CAMI DSS.
In this paper, we illustrate the RBR for R3CAMI (Scenario 1), described in Section 10.4.1.
The RBR component type, implementation, BA, and EA are shown in Listing 10.1. The
component type definition specifies its name, category (i.e., “abstract”) and interfaces
(Lines 2-15). The RBR component type describes that it gets activated aperiodically,
has an execution time of 1 s, and illustrates the data flows between the respective input
and output ports. The implementation definition of RBR (Lines 16-20) defines the data
sub-components like the fuzzy data output, personal information and daily activity of
the user, which forms the context-space of Scenario 1.

In the BA (Lines 22-28), Waiting represents the initial state where the component
waits for an input from the pulse sensor. In the Operational state, the system monitors
the fuzzy logic output to identify any pulse variations. The fuzzy reasoning is not shown
in Listing 10.1 as it is part of the context-reasoning module and not RBR, however we
present the underlying reasoning in a nutshell. First of all, fuzzy data memberships are
assigned to the range of pulse data values : Low [40 70], Normal [55 135], and High
[110 300], where the numbers represent heart beats per minute. The pulse data input
from the sensor are classified as Low, Normal or High. If a high pulse is detected by the
RBR, then the user context is tracked by checking the elderly’s activity of daily living
and disease history. If the activity is “not exercising" and user has a cardiac disease
history, a notification alert is raised and sent to the caregiver. The information is encoded
as a rule in the BA depicted in Listing 10.1. Upon triggering a particular rule, the RBR
output is stored in the DB as a case input for CBR, where the case-id is represented by
DA, case features are the context space and the case solution is the RBR output (see
Fig. 10.4). The RBR output is also synchronized with Cloud DSS such that the data
consistency is maintained. In the EA (Lines 30-49), we show the states - Waiting and
Failed Transient, Failed Permanent, LReset and Failed ep plus their transitions based
on a TF event (event that causes transient failures), PF (event that causes permanent
failure) and resetevent. If a TF or PF event occurs when the component starts, the latter
moves to the Failed Transient state or Failed Permanent state respectively. From Failed

for a specific architecture of choice, we recommend to extend the abstract models and manually
update the property values under consideration or add/delete properties.

136 Paper C

an AC defines the data sub-components. The AC’s BA has two states, Waiting and Op-
erational. Waiting represents the initial state where the component waits for an input,
and Operational represents the state to which a component switches upon receiving the
input (if it has not failed). The AC’s EA uses four states to represent failure: Failed
Transient, LReset, Failed Permanent, and Failed ep. The state Failed Transient mod-
els transient failures, from which a recovery is possible via a reset event. Since reset
is modeled as an internal event that occurs with respect to a probabilistic distribution,
we model an additional location LReset to encode a component’s reset action upon the
successful generation of the reset event. Failed Permanent models a permanent failure
of the RBR, from which the component cannot recover. Failed ep models a failure due
to error propagation from its predecessor components.

An example of an AC in the architecture is the RBR component of the CAMI DSS.
In this paper, we illustrate the RBR for R3CAMI (Scenario 1), described in Section 10.4.1.
The RBR component type, implementation, BA, and EA are shown in Listing 10.1. The
component type definition specifies its name, category (i.e., “abstract”) and interfaces
(Lines 2-15). The RBR component type describes that it gets activated aperiodically,
has an execution time of 1 s, and illustrates the data flows between the respective input
and output ports. The implementation definition of RBR (Lines 16-20) defines the data
sub-components like the fuzzy data output, personal information and daily activity of
the user, which forms the context-space of Scenario 1.

In the BA (Lines 22-28), Waiting represents the initial state where the component
waits for an input from the pulse sensor. In the Operational state, the system monitors
the fuzzy logic output to identify any pulse variations. The fuzzy reasoning is not shown
in Listing 10.1 as it is part of the context-reasoning module and not RBR, however we
present the underlying reasoning in a nutshell. First of all, fuzzy data memberships are
assigned to the range of pulse data values : Low [40 70], Normal [55 135], and High
[110 300], where the numbers represent heart beats per minute. The pulse data input
from the sensor are classified as Low, Normal or High. If a high pulse is detected by the
RBR, then the user context is tracked by checking the elderly’s activity of daily living
and disease history. If the activity is “not exercising" and user has a cardiac disease
history, a notification alert is raised and sent to the caregiver. The information is encoded
as a rule in the BA depicted in Listing 10.1. Upon triggering a particular rule, the RBR
output is stored in the DB as a case input for CBR, where the case-id is represented by
DA, case features are the context space and the case solution is the RBR output (see
Fig. 10.4). The RBR output is also synchronized with Cloud DSS such that the data
consistency is maintained. In the EA (Lines 30-49), we show the states - Waiting and
Failed Transient, Failed Permanent, LReset and Failed ep plus their transitions based
on a TF event (event that causes transient failures), PF (event that causes permanent
failure) and resetevent. If a TF or PF event occurs when the component starts, the latter
moves to the Failed Transient state or Failed Permanent state respectively. From Failed

for a specific architecture of choice, we recommend to extend the abstract models and manually
update the property values under consideration or add/delete properties.

160

10.5 System Modelling in AADL 137

Transient, the system can generate a reset event with occurrence probability of 0.9 and
moves to LReset. If the recovery is successful with the reset event, the system moves to
Waiting state with probability 0.8, else it moves to Failed Permanent with probability
0.2. In this work, we have considered the Waiting state in the EA and BA to be similar.
For a full description of the RBR model in AADL, the user can refer to the Appendix
A.

Listing 10.1: An excerpt from the RBR component in AADL for CAMI
1 −−−RBR (Component Type + I m p l e m e n t a t i o n)−−−
2 a b s t r a c t RBR
3 f e a t u r e s
4 i n p u t : i n e v e n t d a t a p o r t ;
5 o u t p u t : o u t e v e n t d a t a p o r t ;
6 f l o w s
7 F1 : f low p a t h i n p u t −> o u t p u t ;
8 p r o p e r t i e s
9 D i s p a t c h _ P r o t o c o l => A p e r i o d i c ;

10 p r o p e r t y _ e v e n t g e n e r a t i o n : : A p e r i o d i c E v e n t G e n e r a t i o n = >1 .0 ;
11 p r o p e r t y e v e n t g e n e r a t i o n : : D i s t r i b u t i o n => E x p o n e n t i a l ;
12 p r o p e r t y _ f a i l u r e _ r e c o v e r y : : F a i l u r e R e c o v e r y R a t e = >1 .0 ;
13 p r o p e r t y _ f a i l u r e _ r e c o v e r y : : D i s t r i b u t i o n => E x p o n e n t i a l ;
14 Compute_Execut ion_Time =>1 s . . 1 s ;
15 end RBR;
16 a b s t r a c t i m p l e m e n t a t i o n RBR. impl
17 f u z z y _ o u t _ p u l s e : d a t a f u z z i f i e d _ d a t a _ p u l s e ;
18 DA: d a t a ADL;
19 u _ p r o f i l e : d a t a u s e r ;
20 end RBR. impl
21 −−BA−−
22 s t a t e s
23 Wai t ing : i n i t i a l c o m p l e t e f i n a l s t a t e ;
24 O p e r a t i o n a l : s t a t e ;
25 t r a n s i t i o n s
26 Wai t ing −[on d i s p a t c h i n p u t]−> O p e r a t i o n a l
27 { i f (f u z z y o _ p u l s e = h igh and DA!= e x e r c i s i n g and u _ p r o f = c a r d i a c _ p a t i e n t)
28 { o u t p u t := n o t _ c a r e g i v e r _ h i g h p u l s e }
29 −−EA−−
30 s t a t e s
31 Wai t ing : i n i t i a l s t a t e ;
32 F a i l e d _ T r a n s i e n t : s t a t e ;
33 F a i l e d _ P e r m a n e n t : s t a t e ;
34 LRese t : s t a t e ;
35 F a i l e d _ e p : s t a t e ;
36 e v e n t s
37 R e s e t : r e c o v e r e v e n t ;
38 TF : e r r o r e v e n t ;
39 PF : e r r o r e v e n t ;
40 T r a n s i t i o n s
41 t 1 : Wai t i ng −[PF]−> F a i l e d _ P e r m a n e n t
42 t 2 : Wai t i ng −[TF]−> F a i l e d _ T r a n s i e n t ;
43 t 3 : F a i l e d _ T r a n s i e n t −[R e s e t]−> { LReset w i th 0 . 9 ,
44 F a i l e d _ P e r m a n e n t w i th 0 . 1 } ;
45 t 4 : LReset−[]−>{ Wai t i ng wi th 0 . 8 , F a i l e d _ P e r m a n e n t wi th 0 . 2 }
46 p r o p e r t i e s
47 EMV2 : : D u r a t i o n D i s t r i b u t i o n => [D u r a t i o n => 1 s . . 2 s ; a p p l i e s t o R e s e t ;

10.5 System Modelling in AADL 137

Transient, the system can generate a reset event with occurrence probability of 0.9 and
moves to LReset. If the recovery is successful with the reset event, the system moves to
Waiting state with probability 0.8, else it moves to Failed Permanent with probability
0.2. In this work, we have considered the Waiting state in the EA and BA to be similar.
For a full description of the RBR model in AADL, the user can refer to the Appendix
A.

Listing 10.1: An excerpt from the RBR component in AADL for CAMI
1 −−−RBR (Component Type + I m p l e m e n t a t i o n)−−−
2 a b s t r a c t RBR
3 f e a t u r e s
4 i n p u t : i n e v e n t d a t a p o r t ;
5 o u t p u t : o u t e v e n t d a t a p o r t ;
6 f l o w s
7 F1 : f low p a t h i n p u t −> o u t p u t ;
8 p r o p e r t i e s
9 D i s p a t c h _ P r o t o c o l => A p e r i o d i c ;

10 p r o p e r t y _ e v e n t g e n e r a t i o n : : A p e r i o d i c E v e n t G e n e r a t i o n = >1 .0 ;
11 p r o p e r t y e v e n t g e n e r a t i o n : : D i s t r i b u t i o n => E x p o n e n t i a l ;
12 p r o p e r t y _ f a i l u r e _ r e c o v e r y : : F a i l u r e R e c o v e r y R a t e = >1 .0 ;
13 p r o p e r t y _ f a i l u r e _ r e c o v e r y : : D i s t r i b u t i o n => E x p o n e n t i a l ;
14 Compute_Execut ion_Time =>1 s . . 1 s ;
15 end RBR;
16 a b s t r a c t i m p l e m e n t a t i o n RBR. impl
17 f u z z y _ o u t _ p u l s e : d a t a f u z z i f i e d _ d a t a _ p u l s e ;
18 DA: d a t a ADL;
19 u _ p r o f i l e : d a t a u s e r ;
20 end RBR. impl
21 −−BA−−
22 s t a t e s
23 Wai t ing : i n i t i a l c o m p l e t e f i n a l s t a t e ;
24 O p e r a t i o n a l : s t a t e ;
25 t r a n s i t i o n s
26 Wai t ing −[on d i s p a t c h i n p u t]−> O p e r a t i o n a l
27 { i f (f u z z y o _ p u l s e = h igh and DA!= e x e r c i s i n g and u _ p r o f = c a r d i a c _ p a t i e n t)
28 { o u t p u t := n o t _ c a r e g i v e r _ h i g h p u l s e }
29 −−EA−−
30 s t a t e s
31 Wai t ing : i n i t i a l s t a t e ;
32 F a i l e d _ T r a n s i e n t : s t a t e ;
33 F a i l e d _ P e r m a n e n t : s t a t e ;
34 LRese t : s t a t e ;
35 F a i l e d _ e p : s t a t e ;
36 e v e n t s
37 R e s e t : r e c o v e r e v e n t ;
38 TF : e r r o r e v e n t ;
39 PF : e r r o r e v e n t ;
40 T r a n s i t i o n s
41 t 1 : Wai t i ng −[PF]−> F a i l e d _ P e r m a n e n t
42 t 2 : Wai t i ng −[TF]−> F a i l e d _ T r a n s i e n t ;
43 t 3 : F a i l e d _ T r a n s i e n t −[R e s e t]−> { LReset w i th 0 . 9 ,
44 F a i l e d _ P e r m a n e n t w i th 0 . 1 } ;
45 t 4 : LReset−[]−>{ Wai t i ng wi th 0 . 8 , F a i l e d _ P e r m a n e n t wi th 0 . 2 }
46 p r o p e r t i e s
47 EMV2 : : D u r a t i o n D i s t r i b u t i o n => [D u r a t i o n => 1 s . . 2 s ; a p p l i e s t o R e s e t ;

161

138 Paper C

48 EMV2 : : O c c u r r e n c e D i s t r i b u t i o n = >[P r o b a b i l i t y V a l u e => 0 . 9 ;
49 D i s t r i b u t i o n => Fixed ;] a p p l i e s t o R e s e t ;

AAL Composite Components: A CC is defined in a similar way as that of AC,
except that its BA is not explicitly defined (We assume that the behaviour of the CC
is already encoded by its sub-components). Also, the EA definition of CC shows the
failure behaviour of its sub-components. In Listing 10.2, we present an excerpt of
the DSS component, as an example of CC. The component type definition (Lines 2-
12) is similar to that of an AC, except that we do not define explicitly properties like
execution time of a CC (it is considered based on the execution time of each component,
respectively). However, component implementation (Lines 13-26) shows the prototypes
used to define sub-components and connections between them. The EA (Lines 28-39)
shows the composite error behavior of DSS and shows that the DSS moves to Failed
Transient or Failed Permanent, if each of its sub-components move to these states,
respectively. No BA is created for the DSS since the behavior is defined by the BA of
the sub-components.

Listing 10.2: An excerpt from the DSS component in AADL for CAMI
1 −−DSS Component Type + I m p l e m e n t a t i o n−−
2 a b s t r a c t DSS
3 f e a t u r e s
4 i n p u t : i n e v e n t d a t a p o r t ;
5 d e c i s i o n _ o u t : o u t e v e n t d a t a p o r t ;
6 p r o p e r t i e s
7 D i s p a t c h _ P r o t o c o l => A p e r i o d i c ;
8 p r o p e r t y _ e v e n t g e n e r a t i o n : : A p e r i o d i c E v e n t G e n e r a t i o n = >10 .0 ;
9 p r o p e r t y e v e n t g e n e r a t i o n : : D i s t r i b u t i o n => E x p o n e n t i a l ;

10 p r o p e r t y _ f a i l u r e _ r e c o v e r y : : F a i l u r e R e c o v e r y R a t e = >1 .0 ;
11 p r o p e r t y _ f a i l u r e _ r e c o v e r y : : D i s t r i b u t i o n => E x p o n e n t i a l ;
12 end DSS ;
13 a b s t r a c t i m p l e m e n t a t i o n DSS . impl
14 p r o t o t y p e s
15 RBR_DSS : a b s t r a c t RBR;
16 CBR_DSS : a b s t r a c t CBR;
17 CM_DSS: a b s t r a c t c o n t e x t _ m o d e l ;
18 subcomponents
19 RBR: a b s t r a c t RBR_DSS ;
20 CBR: a b s t r a c t CBR_DSS ;
21 CM: a b s t r a c t CM_DSS;
22 c o n n e c t i o n s
23 C1 : p o r t i n p u t −> CM. i n p u t ;
24 C2 : p o r t CM. o u t p u t−> RBR. i n p u t ;
25 C3 : p o r t RBR. o u t p u t−> CBR. i n p u t ;
26 C4 : p o r t CBR. o u t p u t−> d e c i s i o n _ o u t ;
27 −−DSS EA−−
28 annex EMV2{∗∗
29 c o m p o s i t e e r r o r b e h a v i o r
30 [RBR. F a i l e d _ P e r m a n e n t and CBR. F a i l e d _ P e r m a n e n t and
31 CM. F a i l e d _ P e r m a n e n t] −> F a i l e d _ P e r m a n e n t ;
32 [RBR. F a i l e d _ T r a n s i e n t and CBR. F a i l e d _ T r a n s i e n t and
33 CM. F a i l e d _ T r a n s i e n t] −> F a i l e d _ T r a n s i e n t ;

138 Paper C

48 EMV2 : : O c c u r r e n c e D i s t r i b u t i o n = >[P r o b a b i l i t y V a l u e => 0 . 9 ;
49 D i s t r i b u t i o n => Fixed ;] a p p l i e s t o R e s e t ;

AAL Composite Components: A CC is defined in a similar way as that of AC,
except that its BA is not explicitly defined (We assume that the behaviour of the CC
is already encoded by its sub-components). Also, the EA definition of CC shows the
failure behaviour of its sub-components. In Listing 10.2, we present an excerpt of
the DSS component, as an example of CC. The component type definition (Lines 2-
12) is similar to that of an AC, except that we do not define explicitly properties like
execution time of a CC (it is considered based on the execution time of each component,
respectively). However, component implementation (Lines 13-26) shows the prototypes
used to define sub-components and connections between them. The EA (Lines 28-39)
shows the composite error behavior of DSS and shows that the DSS moves to Failed
Transient or Failed Permanent, if each of its sub-components move to these states,
respectively. No BA is created for the DSS since the behavior is defined by the BA of
the sub-components.

Listing 10.2: An excerpt from the DSS component in AADL for CAMI
1 −−DSS Component Type + I m p l e m e n t a t i o n−−
2 a b s t r a c t DSS
3 f e a t u r e s
4 i n p u t : i n e v e n t d a t a p o r t ;
5 d e c i s i o n _ o u t : o u t e v e n t d a t a p o r t ;
6 p r o p e r t i e s
7 D i s p a t c h _ P r o t o c o l => A p e r i o d i c ;
8 p r o p e r t y _ e v e n t g e n e r a t i o n : : A p e r i o d i c E v e n t G e n e r a t i o n = >10 .0 ;
9 p r o p e r t y e v e n t g e n e r a t i o n : : D i s t r i b u t i o n => E x p o n e n t i a l ;

10 p r o p e r t y _ f a i l u r e _ r e c o v e r y : : F a i l u r e R e c o v e r y R a t e = >1 .0 ;
11 p r o p e r t y _ f a i l u r e _ r e c o v e r y : : D i s t r i b u t i o n => E x p o n e n t i a l ;
12 end DSS ;
13 a b s t r a c t i m p l e m e n t a t i o n DSS . impl
14 p r o t o t y p e s
15 RBR_DSS : a b s t r a c t RBR;
16 CBR_DSS : a b s t r a c t CBR;
17 CM_DSS: a b s t r a c t c o n t e x t _ m o d e l ;
18 subcomponents
19 RBR: a b s t r a c t RBR_DSS ;
20 CBR: a b s t r a c t CBR_DSS ;
21 CM: a b s t r a c t CM_DSS;
22 c o n n e c t i o n s
23 C1 : p o r t i n p u t −> CM. i n p u t ;
24 C2 : p o r t CM. o u t p u t−> RBR. i n p u t ;
25 C3 : p o r t RBR. o u t p u t−> CBR. i n p u t ;
26 C4 : p o r t CBR. o u t p u t−> d e c i s i o n _ o u t ;
27 −−DSS EA−−
28 annex EMV2{∗∗
29 c o m p o s i t e e r r o r b e h a v i o r
30 [RBR. F a i l e d _ P e r m a n e n t and CBR . F a i l e d _ P e r m a n e n t and
31 CM. F a i l e d _ P e r m a n e n t] −> F a i l e d _ P e r m a n e n t ;
32 [RBR. F a i l e d _ T r a n s i e n t and CBR . F a i l e d _ T r a n s i e n t and
33 CM. F a i l e d _ T r a n s i e n t] −> F a i l e d _ T r a n s i e n t ;

162

10.6 Semantics of AAL- Relevant AADL Components 139

34 [RBR. O p e r a t i o n a l o r CBR. O p e r a t i o n a l o r
35 CM. O p e r a t i o n a l]−> Wait ;
36 EMV2 : : O c c u r r e n c e D i s t r i b u t i o n = >[P r o b a b i l i t y V a l u e => 1 0 ;
37 D i s t r i b u t i o n => E x p o n e n t i a l ;] a p p l i e s t o F a i l e d _ P e r m a n e n t ,
38 F a i l e d _ T r a n s i e n t , Wait ;
39 end c o m p o s i t e ;∗∗} ;

The assumptions made in the AADL model are: (i) all the system components
have a reliability of 99.98%, (ii) the sensors have a periodic activation, (iii) all the
system components interact via ports without any delay of communication, and (iv) the
output is produced in the Operational state and there is no loss of information during
transmission.

10.6 Semantics of AAL- Relevant AADL
Components

AADL is a “semi-formal” language and in order to formally verify our AAL systems
specified in AADL, we give formal semantics to AADL components (of the type used in
this paper) in terms of stochastic timed automata, to be able to encode annex behaviors
also. First, we provide the tuple definition of AADL components (Section 10.6.1), after
which we perform a semantic anchoring of the AADL component tuple via a mapping
between the elements of the AADL and the elements of the STA (Section 10.6.2).

10.6.1 Definition of AADL Components for AAL
An AADL component that we employ in this paper can be defined as a tuple:

AADLComp = 〈Comptype, Compimp, EA,BA〉, (10.3)

where Comptype represents the component type, and Compimp represents the compo-
nent implementation, BA the behavioral annex specification, and EA the error annex,
as follows:

• Comptype is defined as a tuple: Comptype = 〈Features, F lowspec, P rop〉,
where:

– Features = IN p ∪ OUT p, where IN p, OUT p represent the sets of
input ports and output ports respectively, and IN p, OUT p ∈ {data-
ports, event-ports, event-data-ports};

– Flowspec = 〈Flowso, F lowp, F lowsi〉, where Flowso, Flowp, Flowsi

represent flow sources, flow paths and flow sinks respectively. Let F s0 :
Flowso → OUT p be a function that associates certain OUT p to Flowso

with Flowso ⊆ OUT p, F p : Flowp → OUT p × IN p be a function that
associates and an input and an output to a flow, and F si : Flowsi → IN p

10.6 Semantics of AAL- Relevant AADL Components 139

34 [RBR. O p e r a t i o n a l o r CBR. O p e r a t i o n a l o r
35 CM. O p e r a t i o n a l]−> Wait ;
36 EMV2 : : O c c u r r e n c e D i s t r i b u t i o n = >[P r o b a b i l i t y V a l u e => 1 0 ;
37 D i s t r i b u t i o n => E x p o n e n t i a l ;] a p p l i e s t o F a i l e d _ P e r m a n e n t ,
38 F a i l e d _ T r a n s i e n t , Wait ;
39 end c o m p o s i t e ;∗∗} ;

The assumptions made in the AADL model are: (i) all the system components
have a reliability of 99.98%, (ii) the sensors have a periodic activation, (iii) all the
system components interact via ports without any delay of communication, and (iv) the
output is produced in the Operational state and there is no loss of information during
transmission.

10.6 Semantics of AAL- Relevant AADL
Components

AADL is a “semi-formal” language and in order to formally verify our AAL systems
specified in AADL, we give formal semantics to AADL components (of the type used in
this paper) in terms of stochastic timed automata, to be able to encode annex behaviors
also. First, we provide the tuple definition of AADL components (Section 10.6.1), after
which we perform a semantic anchoring of the AADL component tuple via a mapping
between the elements of the AADL and the elements of the STA (Section 10.6.2).

10.6.1 Definition of AADL Components for AAL
An AADL component that we employ in this paper can be defined as a tuple:

AADLComp = 〈Comptype, Compimp, EA,BA〉, (10.3)

where Comptype represents the component type, and Compimp represents the compo-
nent implementation, BA the behavioral annex specification, and EA the error annex,
as follows:

• Comptype is defined as a tuple: Comptype = 〈Features, F lowspec, P rop〉,
where:

– Features = IN p ∪ OUT p, where IN p, OUT p represent the sets of
input ports and output ports respectively, and IN p, OUT p ∈ {data-
ports, event-ports, event-data-ports};

– Flowspec = 〈Flowso, F lowp, F lowsi〉, where Flowso, Flowp, Flowsi

represent flow sources, flow paths and flow sinks respectively. Let F s0 :
Flowso → OUT p be a function that associates certain OUT p to Flowso

with Flowso ⊆ OUT p, F p : Flowp → OUT p × IN p be a function that
associates and an input and an output to a flow, and F si : Flowsi → IN p

163

140 Paper C

be a function that associates certain IN p to Flowsi, with Flowsi ⊆ IN p.
For instance, in our AAL architecture, we can define Flowspec for fall
events by defining the output port of the fall sensor as Flowso, the input
port of the cloud DSS as Flowsi, and the input and output ports of all the
intermediate components defining the Flowp;

– Prop is the set of associated properties of the component, like
Deployment, Communication, T iming, Thread-related
properties, user- defined properties, etc. [11]. In this work,
we only consider a subset of T iming, Thread-related properties
and user- defined properties that are represented as follows:
Prop = {T p, T e, Dispatch protocol, Userprop} where T p and
T e represent the period and execution-time of the component, re-
spectively, T p, T e∈ T iming properties, Dispatch protocol ∈
{P,AP}2, where P represents a Periodic and AP represents an
Aperiodic protocol, and P,AP ∈ Thread-related properties, and
Userprop ∈ {event_gen_dist, failure_recovery_dist} defines
the set of user-defined properties used for specifying the occurrence
distribution of aperiodic events (event_gen_dist) and failure recovery
(failure_recovery_dist).

• Compimp is defined as Compimp = 〈SC, P t, Con,MSM,F lowimp, ETF 〉,
where:

– SC represents the set of sub-components of the system with port interfaces
(SC i) and without port interfaces (SCData), i.e., SC = SCData ∪ SC i;

– P t denotes the set of Prototypes used to define SC via Fp : P t → SC i ×
SCData, a function that associates SC to a P t, respectively;

– Con represents the set of connections. F con : Con → Features is a
function that assigns Features to Con;

– MSM is the mode state machine that is modeled by a tuple, as follows:
MSM = 〈M s,→〉, whereM s is the set of states, and→⊆M s×ev×M s

is the transition relation (with ev being the set of events, such that Fe :
event-ports → ev, event-ports ∈ Features). We write s e−→ s′ as
short for (s, e, s′) ∈→, where s, s′ ∈Ms, and e ∈ ev. The set of Con is
defined with respect to MSM , if present;

– Flowimp are the flow implementations, represented as Flowimp : SC →
Flowspec;

2The dispatch protocol property of a thread determines when the thread is executed. A periodic
thread is activated at time intervals of the specified period T; an aperiodic thread is activated when
an event arrives at a port of the thread.

140 Paper C

be a function that associates certain IN p to Flowsi, with Flowsi ⊆ IN p.
For instance, in our AAL architecture, we can define Flowspec for fall
events by defining the output port of the fall sensor as Flowso, the input
port of the cloud DSS as Flowsi, and the input and output ports of all the
intermediate components defining the Flowp;

– Prop is the set of associated properties of the component, like
Deployment, Communication, T iming, Thread-related
properties, user- defined properties, etc. [11]. In this work,
we only consider a subset of T iming, Thread-related properties
and user- defined properties that are represented as follows:
Prop = {T p, T e, Dispatch protocol, Userprop} where T p and
T e represent the period and execution-time of the component, re-
spectively, T p, T e∈ T iming properties, Dispatch protocol ∈
{P,AP}2, where P represents a Periodic and AP represents an
Aperiodic protocol, and P,AP ∈ Thread-related properties, and
Userprop ∈ {event_gen_dist, failure_recovery_dist} defines
the set of user-defined properties used for specifying the occurrence
distribution of aperiodic events (event_gen_dist) and failure recovery
(failure_recovery_dist).

• Compimp is defined as Compimp = 〈SC, P t, Con,MSM,F lowimp, ETF 〉,
where:

– SC represents the set of sub-components of the system with port interfaces
(SC i) and without port interfaces (SCData), i.e., SC = SCData ∪ SC i;

– P t denotes the set of Prototypes used to define SC via Fp : P t → SC i ×
SCData, a function that associates SC to a P t, respectively;

– Con represents the set of connections. F con : Con → Features is a
function that assigns Features to Con;

– MSM is the mode state machine that is modeled by a tuple, as follows:
MSM = 〈M s,→〉, whereM s is the set of states, and→⊆M s×ev×M s

is the transition relation (with ev being the set of events, such that Fe :
event-ports → ev, event-ports ∈ Features). We write s e−→ s′ as
short for (s, e, s′) ∈→, where s, s′ ∈Ms, and e ∈ ev. The set of Con is
defined with respect to MSM , if present;

– Flowimp are the flow implementations, represented as Flowimp : SC →
Flowspec;

2The dispatch protocol property of a thread determines when the thread is executed. A periodic
thread is activated at time intervals of the specified period T; an aperiodic thread is activated when
an event arrives at a port of the thread.

164

10.6 Semantics of AAL- Relevant AADL Components 141

– ETF represents the set of end-to-end flows as complete flow paths from
a starting SC i to the final SC i, respectively.

• The error annex EA is defined as the tuple: EA = 〈Eflows, Ebeh, Eprop〉, where:

– Eflows denotes the error flows, Eflows = 〈Epp, Errso, Errp, Errsi〉, where
Epp describes error propagations, and Errso, Errp, Errsi represents error
sources, error paths, and error sinks, respectively; F e1 : Errso → OUT p

is a function that associates certain output ports with error sources, F e2 :
Errp → IN p×OUT p is a function that associates input and output ports
viaErrp, F e3 : Errsi → IN p is a function that assigns certain input ports
as error sinks;

– Ebeh represents error behavior,Ebeh = 〈Es,→ e, Ee, EMComp〉, whereEs

represents the set of error states,→ e denotes an error transition relation,
→ e ⊆ Es× Ee× Es, with Ee, the set of error events. For a CC, the error
behavior is represented as EMComp (error-model for a CC) with respect to
the failure of its SC i. Let se and se

′ be two error states, se, se
′ ∈ Es, and

→ e the transition between them due to an error event ee ∈Ee, then se
ee−→

e se
′. We represent initial state as s0e ∈ Es. FEpp : Epp→ IN p×OUT p

is a function that associates input and output ports to error propagations;

– Eprop denotes the error properties. In our work, we focus only on two
error properties: Duration distribution (Durdist), and Occurrence dis-
tribution (Occurdist), which aid in our error analysis, thus Eprop =
{Durdist, Occurdist}.

• The Behaviour Annex, BA is defined as: BA = 〈Bv, Bs,→ b〉, where Bv, Bs,
represent the set of variables, and the states ofBA, respectively and→ b is a BA
transition relation. Let sb and s′b be two states ofBA, sb, s

′
b ∈ Bs, and→ b the

transition between them,→ b ⊆ Bs×Bv×SCData×Bs, with SCData being the
set of data subcomponents. We denote by s0b ∈ Bs the initial state of a BA path.

Formally, we distinguish the Atomic Component from the Composite Component
as follows:

• AC ∈ AADLComp, where CompImplAC= {SCData}, EAAC 6= ∅, where Ebeh ∈
EAAC = {Es,→ e, Ee}, BAAC 6= ∅,

• CC ∈ AADLComp, where CompImplCC= {P t, SC i, SCData, Con,MSM,
F lowimp, ETF}, EACC 6= ∅, where Ebeh ∈ EACC = {EMComp}, BACC = ∅.
A CC represents the system-level view of the architecture.

Next, we present an instantiated example of an AC and a CC from the CAMI archi-
tecture. The RBR component of DSS is an AC and it is defined by its type, implemen-
tation, BA, and EA (Listing 10.1). In formal semantics, we define it as follows:

RBRAADL = 〈Comptype RBR, Compimp RBR, EARBR, BARBR, 〉 (10.4)

10.6 Semantics of AAL- Relevant AADL Components 141

– ETF represents the set of end-to-end flows as complete flow paths from
a starting SC i to the final SC i, respectively.

• The error annex EA is defined as the tuple: EA = 〈Eflows, Ebeh, Eprop〉, where:

– Eflows denotes the error flows, Eflows = 〈Epp, Errso, Errp, Errsi〉, where
Epp describes error propagations, and Errso, Errp, Errsi represents error
sources, error paths, and error sinks, respectively; F e1 : Errso → OUT p

is a function that associates certain output ports with error sources, F e2 :
Errp → IN p×OUT p is a function that associates input and output ports
viaErrp, F e3 : Errsi → IN p is a function that assigns certain input ports
as error sinks;

– Ebeh represents error behavior,Ebeh = 〈Es,→ e, Ee, EMComp〉, whereEs

represents the set of error states,→ e denotes an error transition relation,
→ e ⊆ Es× Ee× Es, with Ee, the set of error events. For a CC, the error
behavior is represented as EMComp (error-model for a CC) with respect to
the failure of its SC i. Let se and se

′ be two error states, se, se
′ ∈ Es, and

→ e the transition between them due to an error event ee ∈Ee, then se
ee−→

e se
′. We represent initial state as s0e ∈ Es. FEpp : Epp→ IN p×OUT p

is a function that associates input and output ports to error propagations;

– Eprop denotes the error properties. In our work, we focus only on two
error properties: Duration distribution (Durdist), and Occurrence dis-
tribution (Occurdist), which aid in our error analysis, thus Eprop =
{Durdist, Occurdist}.

• The Behaviour Annex, BA is defined as: BA = 〈Bv, Bs,→ b〉, where Bv, Bs,
represent the set of variables, and the states ofBA, respectively and→ b is a BA
transition relation. Let sb and s′b be two states ofBA, sb, s

′
b ∈ Bs, and→ b the

transition between them,→ b ⊆ Bs×Bv×SCData×Bs, with SCData being the
set of data subcomponents. We denote by s0b ∈ Bs the initial state of a BA path.

Formally, we distinguish the Atomic Component from the Composite Component
as follows:

• AC ∈ AADLComp, where CompImplAC= {SCData}, EAAC 6= ∅, where Ebeh ∈
EAAC = {Es,→ e, Ee}, BAAC 6= ∅,

• CC ∈ AADLComp, where CompImplCC= {P t, SC i, SCData, Con,MSM,
F lowimp, ETF}, EACC 6= ∅, where Ebeh ∈ EACC = {EMComp}, BACC = ∅.
A CC represents the system-level view of the architecture.

Next, we present an instantiated example of an AC and a CC from the CAMI archi-
tecture. The RBR component of DSS is an AC and it is defined by its type, implemen-
tation, BA, and EA (Listing 10.1). In formal semantics, we define it as follows:

RBRAADL = 〈Comptype RBR, Compimp RBR, EARBR, BARBR, 〉 (10.4)

165

142 Paper C

where the elements are defined as follows:

• Comptype RBR = 〈FeaturesRBR, F lowspec RBR, P ropRBR〉, with:

– FeaturesRBR =IN p ∪ OUT p, and IN p, OUT p ∈ { event-data-ports},

– Flowspec RBR = 〈Flowp〉,

– PropRBR = {T e, AP, event_gen_dist, failure_recovery_dist}.

• Compimp RBR = 〈SCDataRBR〉

• EARBR ={Epp, Errp, Es,→ e, Ee, Durdist, Occurdist}

• BARBR= {Bs,→ b}

On the other hand, the DSS in our CAMI architecture is a CC, with multiple sub-
components and hence it is defined by its type, implementation and EA (no BA) as
shown in Listing 10.2. Formally, it can be represented as follows:

DSSAADL = 〈Comptype DSS, Compimp DSS, EADSS〉 (10.5)

where the elements are defined as follows:

• Comptype DSS ={FeaturesDSS, Flowspec DSS, PropDSS}, where:

– FeaturesDSS =IN p ∪ OUT p, and IN p, OUT p ∈ {event-data-ports},

– Flowspec DSS = 〈Flowp〉,

– PropDSS = {AP, event_gen_dist, failure_recovery_dist}.

• Compimp DSS={SCDSS, PtDSS, ConDSS, Flowimp DSS}, where:

– SCDSS = {CM,RBR,CBR},

– PtDSS ={CM,RBR,CBR},

– ConDSS ={IN pDSS → IN pCM, OUT pCM → IN pRBR, OUT pRBR →
IN pCBR, OUT pCBR → OUT pDSS},

– Flowimp DSS={CM → Flowp, RBR→ Flowp, CBR→ Flowp}.

• EADSS = {EMComp}

In the next sub-section, we present our semantic encoding of atomic and composite
components, in terms of NSTA.

142 Paper C

where the elements are defined as follows:

• Comptype RBR = 〈FeaturesRBR, F lowspec RBR, P ropRBR〉, with:

– FeaturesRBR =IN p ∪ OUT p, and IN p, OUT p ∈ { event-data-ports},

– Flowspec RBR = 〈Flowp〉,

– PropRBR = {T e, AP, event_gen_dist, failure_recovery_dist}.

• Compimp RBR = 〈SCDataRBR〉

• EARBR ={Epp, Errp, Es,→ e, Ee, Durdist, Occurdist}

• BARBR= {Bs,→ b}

On the other hand, the DSS in our CAMI architecture is a CC, with multiple sub-
components and hence it is defined by its type, implementation and EA (no BA) as
shown in Listing 10.2. Formally, it can be represented as follows:

DSSAADL = 〈Comptype DSS, Compimp DSS, EADSS〉 (10.5)

where the elements are defined as follows:

• Comptype DSS ={FeaturesDSS, Flowspec DSS, PropDSS}, where:

– FeaturesDSS =IN p ∪ OUT p, and IN p, OUT p ∈ {event-data-ports},

– Flowspec DSS = 〈Flowp〉,

– PropDSS = {AP, event_gen_dist, failure_recovery_dist}.

• Compimp DSS={SCDSS, PtDSS, ConDSS, Flowimp DSS}, where:

– SCDSS = {CM,RBR,CBR},

– PtDSS ={CM,RBR,CBR},

– ConDSS ={IN pDSS → IN pCM, OUT pCM → IN pRBR, OUT pRBR →
IN pCBR, OUT pCBR → OUT pDSS},

– Flowimp DSS={CM → Flowp, RBR→ Flowp, CBR→ Flowp}.

• EADSS = {EMComp}

In the next sub-section, we present our semantic encoding of atomic and composite
components, in terms of NSTA.

166

10.6 Semantics of AAL- Relevant AADL Components 143

10.6.2 Formal Encoding of AADL Components as NSTA
Using the definition of AADL components given in Section 10.6.1, the formal definition
of STA as STA = 〈L, l0, A, V, C,E, I, µ, γ〉, and of NSTA = ||iSTAi (see Section
10.2.2), we define a semantic encoding of the AADL components, respectively, in terms
of NSTA.

Definition 1 (Formal Encoding of AC). Any atomic component in AADL, defined by:
AC = 〈ComptypeAC, CompimplAC, EAAC, BAAC〉 is encoded as an NSTA as follows:
AC NSTAAC = AC iSTA||ACaSTA, where AC iSTA is the so-called “Interface STA”
of AC, which corresponds to ComptypeAC and CompimplAC, whereas ACaSTA is the “Be-
havioral STA” that encodes the EA and BA of an AC.

• The ACiSTA is defined according to a template STA (see Fig. 10.8) with L ∈
{Idle,Op, Fail, start, stop}, l0 = Idle, Op corresponds to the Operational
state of the RBR, start, stop represent the locations to initiate the synchro-
nizations with ACaSTA and E = {Idle −→ start, start −→ Op,Op −→
stop, stop −→ Idle,Op −→ Fail, Fail −→ Idle}. This template is anno-
tated with the following information:

– V = out_port ∪ in_port ∪ {PF, TF} ∪ SCData , where out_port
and in_port represent the set of output and input ports ∈ {data-ports,
event-ports, event-data-ports}, respectively, and the Boolean vari-
ables, PF, TF , represent the error events associated with the transient
failure and permanent failure of AC, plus the variable associated with
SCData ∈ Comp_imp;

– C = {x} is the set of clocks that models the period and execution time of
AC;

– A = {start_ACi?, start_AC!, stop_AC!, stop_ACi!} ∪ {x = 0},
where A is the set of synchronization channels associated with input-
output ports ∈ {event-data-ports, event-ports}, that is, channels
start_AC!, stop_AC!, and the synchronization channels for the interface
of the corresponding CC, that is, start_ACi?, stop_ACi! and the reset
actions on x;

– E = {Idle
start_ACi?∧x==T p−−−−−−−−−−−−−→ start, start

start_AC!,x=0−−−−−−−−−→ Op,

Op
TF _AC==1∨PF _AC==1−−−−−−−−−−−−−−−−−→ Fail, Op

x==T e,stop_AC!−−−−−−−−−−−→ stop,

stop
stop_ACi!−−−−−−→ Idle, Fail

TF _AC==0∧PF _AC==0−−−−−−−−−−−−−−−−−→ Idle,

Fail
TF _AC==1∧PF _AC==1−−−−−−−−−−−−−−−−−→ Fail}, where E is defined by the template

populated with A and guards that ensure the correctness of transitions.

– I(Idle)=(x ≤ T p), if the dispatch protocol associated with AC is peri-
odic, and I(Op) = (x ≤ T e), where T p and T e represent the period and
execution-time of AC;

10.6 Semantics of AAL- Relevant AADL Components 143

10.6.2 Formal Encoding of AADL Components as NSTA
Using the definition of AADL components given in Section 10.6.1, the formal definition
of STA as STA = 〈L, l0, A, V, C,E, I, µ, γ〉, and of NSTA = ||iSTAi (see Section
10.2.2), we define a semantic encoding of the AADL components, respectively, in terms
of NSTA.

Definition 1 (Formal Encoding of AC). Any atomic component in AADL, defined by:
AC = 〈ComptypeAC, CompimplAC, EAAC, BAAC〉 is encoded as an NSTA as follows:
AC NSTAAC = AC iSTA||ACaSTA, where AC iSTA is the so-called “Interface STA”
of AC, which corresponds to ComptypeAC and CompimplAC, whereas ACaSTA is the “Be-
havioral STA” that encodes the EA and BA of an AC.

• The ACiSTA is defined according to a template STA (see Fig. 10.8) with L ∈
{Idle,Op, Fail, start, stop}, l0 = Idle, Op corresponds to the Operational
state of the RBR, start, stop represent the locations to initiate the synchro-
nizations with ACaSTA and E = {Idle −→ start, start −→ Op,Op −→
stop, stop −→ Idle,Op −→ Fail, Fail −→ Idle}. This template is anno-
tated with the following information:

– V = out_port ∪ in_port ∪ {PF, TF} ∪ SCData , where out_port
and in_port represent the set of output and input ports ∈ {data-ports,
event-ports, event-data-ports}, respectively, and the Boolean vari-
ables, PF, TF , represent the error events associated with the transient
failure and permanent failure of AC, plus the variable associated with
SCData ∈ Comp_imp;

– C = {x} is the set of clocks that models the period and execution time of
AC;

– A = {start_ACi?, start_AC!, stop_AC!, stop_ACi!} ∪ {x = 0},
where A is the set of synchronization channels associated with input-
output ports ∈ {event-data-ports, event-ports}, that is, channels
start_AC!, stop_AC!, and the synchronization channels for the interface
of the corresponding CC, that is, start_ACi?, stop_ACi! and the reset
actions on x;

– E = {Idle
start_ACi?∧x==T p−−−−−−−−−−−−−→ start, start

start_AC!,x=0−−−−−−−−−→ Op,

Op
TF _AC==1∨PF _AC==1−−−−−−−−−−−−−−−−−→ Fail, Op

x==T e,stop_AC!−−−−−−−−−−−→ stop,

stop
stop_ACi!−−−−−−→ Idle, Fail

TF _AC==0∧PF _AC==0−−−−−−−−−−−−−−−−−→ Idle,

Fail
TF _AC==1∧PF _AC==1−−−−−−−−−−−−−−−−−→ Fail}, where E is defined by the template

populated with A and guards that ensure the correctness of transitions.

– I(Idle)=(x ≤ T p), if the dispatch protocol associated with AC is peri-
odic, and I(Op) = (x ≤ T e), where T p and T e represent the period and
execution-time of AC;

167

144 Paper C

Declarations:
broadcast chan start_AC,
stop_AC, start_Aci, stop_ACi;
bool TF_AC=0, PF_AC=0;
int in, out, data1, data2;

Declarations
Clock x;

Declarations
Clock x;

STA1: Template TA STA2: STA1+Ports STA3: STA2+Trig.1+Exec.time

STA4: STA2+Trig.2+Exec.time

Figure 10.8: Step-by-step formulation of AC iSTA

– P (Idle) = µ1, and P (Fail) = µ2, where P (Idle) = µ1 represents the
occurrence distribution of aperiodic event (if the dispatch protocol associ-
ated with AC is aperiodic), and P (Fail) = µ2 represents the probability
of leaving location Fail;

• The ACaSTA is created in a similar way with:

– L = {Wait,Op, TrF, PrF, Fail_ep, LReset, L1, L2}, l0 = Wait,
where L comprises the set of states in EA and BA (Wait, Operational
(Op), Transient Failure (TrF), Permanent Failure (PrF), Failed due to
error propagation (Fail_ep), and reset location (LReset), plus additional
committed locations (L1, L2) that ensure that receiving is deterministic in
UPPAAL SMC;

– A = {start_AC?, stop_AC?} ∪ {actionBA,EA(), TF = 0, TF_AC =
1, PF_AC = 1, reset_AC = 0, reset_AC = 1, err_pAC =
0, err_pAC = 1, err_p = 1, y = 0}, whereA is composed of the actions
defined in BA and EA (actionBA,EA()), plus the synchronizations channels to
concord with AC iSTA (start_AC?, stop_AC?), and the reset of clock y;

– V = {PF_AC, TF_AC, reset_AC, err_pAC}, where V consists of
the set of error events defined in the EA, that is, PF_AC : Permanent Fail-
ure of AC, TF_AC: Transient Failure of AC, reset_AC: Reset of AC, err_-
pAC: error propagation of AC;

144 Paper C

Declarations:
broadcast chan start_AC,
stop_AC, start_Aci, stop_ACi;
bool TF_AC=0, PF_AC=0;
int in, out, data1, data2;

Declarations
Clock x;

Declarations
Clock x;

STA1: Template TA STA2: STA1+Ports STA3: STA2+Trig.1+Exec.time

STA4: STA2+Trig.2+Exec.time

Figure 10.8: Step-by-step formulation of AC iSTA

– P (Idle) = µ1, and P (Fail) = µ2, where P (Idle) = µ1 represents the
occurrence distribution of aperiodic event (if the dispatch protocol associ-
ated with AC is aperiodic), and P (Fail) = µ2 represents the probability
of leaving location Fail;

• The ACaSTA is created in a similar way with:

– L = {Wait,Op, TrF, PrF, Fail_ep, LReset, L1, L2}, l0 = Wait,
where L comprises the set of states in EA and BA (Wait, Operational
(Op), Transient Failure (TrF), Permanent Failure (PrF), Failed due to
error propagation (Fail_ep), and reset location (LReset), plus additional
committed locations (L1, L2) that ensure that receiving is deterministic in
UPPAAL SMC;

– A = {start_AC?, stop_AC?} ∪ {actionBA,EA(), TF = 0, TF_AC =
1, PF_AC = 1, reset_AC = 0, reset_AC = 1, err_pAC =
0, err_pAC = 1, err_p = 1, y = 0}, whereA is composed of the actions
defined in BA and EA (actionBA,EA()), plus the synchronizations channels to
concord with AC iSTA (start_AC?, stop_AC?), and the reset of clock y;

– V = {PF_AC, TF_AC, reset_AC, err_pAC}, where V consists of
the set of error events defined in the EA, that is, PF_AC : Permanent Fail-
ure of AC, TF_AC: Transient Failure of AC, reset_AC: Reset of AC, err_-
pAC: error propagation of AC;

168

10.6 Semantics of AAL- Relevant AADL Components 145

– C = {y} is the clock that measures the time elapsed for reset action of a
particular component;

– E = {Wait
start_AC?−−−−−−−→ L1, L1

TF _AC=1,err_pAC=1−−−−−−−−−−−−−−→ TrF ,

L1
PF _AC=1,err_pAC=1−−−−−−−−−−−−−−−→ PrF,L1 −→ L2, L2 −→ Op,

Op
stop_AC?,actionBA, EA()
−−−−−−−−−−−−−−−→Wait, T rF

reset_AC=1,y=0−−−−−−−−−−−→ LReset,

T rF
PF _AC=1,err_pAC=1,reset_AC=0−−−−−−−−−−−−−−−−−−−−−−−→ PrF,

LReset
TF _RBR=0,err_pAC=0,reset_AC=0−−−−−−−−−−−−−−−−−−−−−−−−→Wait,

LReset
PF _AC=1,err_pAC=1,reset_AC=0−−−−−−−−−−−−−−−−−−−−−−−→ PrF,

Wait
err_p==1−−−−−−→ Fail_ep}, whereE consists of the transitions in EA, BA

and those between L1 and L2;

– I(LReset)= (y ≤ Durdist(Reset));

– P (Wait) = µ, that is the occurrence-distribution of Wait;

– L1
γ1−→ L2, L1

γ2−→ TrF , L1
γ3−→ PrF, where γ1, γ2, γ3, are defined

according to the occurrence-distribution of the error events.

Definition 2 (Formal Encoding of CC). The formal encoding of a CC defined by the
tuple: CC = 〈ComptypeCC, CompimplCC, EACC〉 is also a network of two synchronized
STA, CCNSTA = CC iSTA||CCaSTA, where CC iSTA is the “interface” STA of the CC com-
ponent, and CCaSTA is the “annex” STA that encodes the information from the error
annex in AADL.

• The CCiSTA is defined by formally encoding (ComptypeCC, CompimplCC), as fol-
lows:

– L = {Wait, Fail}
n⋃
i=1

{LiSync}
n⋃
i=1

{SC i}, where L contains one loca-

tion for each sub-component defined by SC, one additional location for
each sub-component that ensures the correct synchronization, location
Fail to model the component failure, and Wait to model the initial lo-
cation;

– E is defined according to Con. For each connection in Con, we define
2 edges, l −→ LiSync and LiSync −→ l′, where l, l’∈ L are loca-
tions created based on the sub-components for which the connections are
defined, and LiSync ∈ L is a location created for synchronization;

– V = out_port ∪ in_port ∪ {PF, TF} ∪ SCData , where out_port and
in_port represent the set of output and input port variables ∈ {data-
ports, event-ports, event-data-ports}, respectively, and the Boolean
variables, PF, TF , represent the error events associated with the tran-
sient failure and permanent failure of CC, plus the variable associated
with SCData ∈ Comp_imp;

10.6 Semantics of AAL- Relevant AADL Components 145

– C = {y} is the clock that measures the time elapsed for reset action of a
particular component;

– E = {Wait
start_AC?−−−−−−−→ L1, L1

TF _AC=1,err_pAC=1−−−−−−−−−−−−−−→ TrF ,

L1
PF _AC=1,err_pAC=1−−−−−−−−−−−−−−−→ PrF,L1 −→ L2, L2 −→ Op,

Op
stop_AC?,actionBA, EA()
−−−−−−−−−−−−−−−→Wait, T rF

reset_AC=1,y=0−−−−−−−−−−−→ LReset,

T rF
PF _AC=1,err_pAC=1,reset_AC=0−−−−−−−−−−−−−−−−−−−−−−−→ PrF,

LReset
TF _RBR=0,err_pAC=0,reset_AC=0−−−−−−−−−−−−−−−−−−−−−−−−→Wait,

LReset
PF _AC=1,err_pAC=1,reset_AC=0−−−−−−−−−−−−−−−−−−−−−−−→ PrF,

Wait
err_p==1−−−−−−→ Fail_ep}, whereE consists of the transitions in EA, BA

and those between L1 and L2;

– I(LReset)= (y ≤ Durdist(Reset));

– P (Wait) = µ, that is the occurrence-distribution of Wait;

– L1
γ1−→ L2, L1

γ2−→ TrF , L1
γ3−→ PrF, where γ1, γ2, γ3, are defined

according to the occurrence-distribution of the error events.

Definition 2 (Formal Encoding of CC). The formal encoding of a CC defined by the
tuple: CC = 〈ComptypeCC, CompimplCC, EACC〉 is also a network of two synchronized
STA, CCNSTA = CC iSTA||CCaSTA, where CC iSTA is the “interface” STA of the CC com-
ponent, and CCaSTA is the “annex” STA that encodes the information from the error
annex in AADL.

• The CCiSTA is defined by formally encoding (ComptypeCC, CompimplCC), as fol-
lows:

– L = {Wait, Fail}
n⋃
i=1

{LiSync}
n⋃
i=1

{SC i}, where L contains one loca-

tion for each sub-component defined by SC, one additional location for
each sub-component that ensures the correct synchronization, location
Fail to model the component failure, and Wait to model the initial lo-
cation;

– E is defined according to Con. For each connection in Con, we define
2 edges, l −→ LiSync and LiSync −→ l′, where l, l’∈ L are loca-
tions created based on the sub-components for which the connections are
defined, and LiSync ∈ L is a location created for synchronization;

– V = out_port ∪ in_port ∪ {PF, TF} ∪ SCData , where out_port and
in_port represent the set of output and input port variables ∈ {data-
ports, event-ports, event-data-ports}, respectively, and the Boolean
variables, PF, TF , represent the error events associated with the tran-
sient failure and permanent failure of CC, plus the variable associated
with SCData ∈ Comp_imp;

169

146 Paper C

– C = {x} if T p 6= ∅;
– A is defined based on the updates defined by MSM , the updates defined

by Flowimp, the synchronizations defined by Con, the synchronization
with CCaSTA, ACaSTA, and in case C is not void, we add the clock reset of
the clock(s) in C;

– I(Wait)=(x ≤ T p) if T p 6= ∅;
– P (l) = µ, where l ∈ L and µ is defined by Prop.

• CCaSTA is defined as follows:

– L = Es ∈ EA, l0 = s0e ∈ Es, where Es is the set of states of EA;

– E =→ e;

– A = {TF_CC = 1, TF_CC = 0, PF_CC = 1};
– V is represented by the global variables defined in CC iSTA;

– C = ∅;
– P (l) = µ, where l ∈ L and µ is defined by Occurdist ∈ Eprop.

All the other CC elements are transformed based on the encoding EA of AC.

Next, we show the rules instantiated on our previously selected AADL components
of CAMI, that is, RBR and DSS, as examples of transforming AC and CC into cor-
responding STA. There are also some additional transitions defined which are not the
direct result of applying the rules, but are needed due to the requirements of our model-
ing tool, UPPAAL SMC.

The RBRAADL defined by Eq.(10.4), is mapped into an NSTA (RBRNSTA) follow-
ing the Definition 1: RBRNSTA=RBRiSTA||RBRaSTA (Fig. 10.9), where RBRiSTA

is the so-called “Interface STA” of RBR which corresponds to Comptype RBR and
Compimpl RBR, whereas RBRaSTA is the “Annex STA" of RBR that encodes its EA and
BA.

• The RBRiSTA is formally represented as a tuple, where:

– L = {Idle, Start, Op, Fail}, l0 = {Idle}
– A = {start_RBRi?, start_RBR!, stop_RBR?} ∪ {x = 1}
– V = {out_port, in_port, PF_RBR, TF_RBR}
– C = {x}

– E = {Idle start_RBRi?−−−−−−−−→ start, start
start_RBR!,x=0−−−−−−−−−−−→ Op,

Op
TF _RBR==1∨PF _RBR==1−−−−−−−−−−−−−−−−−−−→ Fail, Op

x==1,stop_RBR!−−−−−−−−−−−→ Idle, Fail
TF _RBR==0∧PF _RBR==0−−−−−−−−−−−−−−−−−−−→ Idle, Fail

TF _RBR==1∧PF _RBR==1−−−−−−−−−−−−−−−−−−−→
Fail}

146 Paper C

– C = {x} if T p 6= ∅;
– A is defined based on the updates defined by MSM , the updates defined

by Flowimp, the synchronizations defined by Con, the synchronization
with CCaSTA, ACaSTA, and in case C is not void, we add the clock reset of
the clock(s) in C;

– I(Wait)=(x ≤ T p) if T p 6= ∅;
– P (l) = µ, where l ∈ L and µ is defined by Prop.

• CCaSTA is defined as follows:

– L = Es ∈ EA, l0 = s0e ∈ Es, where Es is the set of states of EA;

– E =→ e;

– A = {TF_CC = 1, TF_CC = 0, PF_CC = 1};
– V is represented by the global variables defined in CC iSTA;

– C = ∅;
– P (l) = µ, where l ∈ L and µ is defined by Occurdist ∈ Eprop.

All the other CC elements are transformed based on the encoding EA of AC.

Next, we show the rules instantiated on our previously selected AADL components
of CAMI, that is, RBR and DSS, as examples of transforming AC and CC into cor-
responding STA. There are also some additional transitions defined which are not the
direct result of applying the rules, but are needed due to the requirements of our model-
ing tool, UPPAAL SMC.

The RBRAADL defined by Eq.(10.4), is mapped into an NSTA (RBRNSTA) follow-
ing the Definition 1: RBRNSTA=RBRiSTA||RBRaSTA (Fig. 10.9), where RBRiSTA

is the so-called “Interface STA” of RBR which corresponds to Comptype RBR and
Compimpl RBR, whereas RBRaSTA is the “Annex STA" of RBR that encodes its EA and
BA.

• The RBRiSTA is formally represented as a tuple, where:

– L = {Idle, Start, Op, Fail}, l0 = {Idle}
– A = {start_RBRi?, start_RBR!, stop_RBR?} ∪ {x = 1}
– V = {out_port, in_port, PF_RBR, TF_RBR}
– C = {x}

– E = {Idle start_RBRi?−−−−−−−−→ start, start
start_RBR!,x=0−−−−−−−−−−−→ Op,

Op
TF _RBR==1∨PF _RBR==1−−−−−−−−−−−−−−−−−−−→ Fail, Op

x==1,stop_RBR!−−−−−−−−−−−→ Idle, Fail
TF _RBR==0∧PF _RBR==0−−−−−−−−−−−−−−−−−−−→ Idle, Fail

TF _RBR==1∧PF _RBR==1−−−−−−−−−−−−−−−−−−−→
Fail}

170

10.6 Semantics of AAL- Relevant AADL Components 147

(a) Interface STA (RBRiSTA) (b) Annex STA (RBRaSTA)

Figure 10.9: The STA for the RBR

– I(Op)=(x ≤ 1)

– P (Idle) = 1, P (Fail) = 1, given by µ

• RBRaSTA is defined in a similar way:

– L = {Wait,Op, TrF, PrF, Fail_ep, LReset, L1, L2, LSync}, {l0 =
Wait}

– A={start_RBR?, stop_RBR?, stop_RBRi!}
∪{rules(), TF_RBR = {0, 1}

– V = {PF_RBR, TF_RBR, reset_RBR, err_pRBR, errp}

– C = {y}

– E= {Wait
start_RBR?−−−−−−−−→ L1, L1

TF _RBR=1,err_pRBR=1−−−−−−−−−−−−−−−−−→ TrF ,

L1
PF _RBR=1,err_pRBR=1−−−−−−−−−−−−−−−−−→ PrF , L1 −→ L2, L2 −→ Op,

Op
stop_RBR?,rules()−−−−−−−−−−−−→ Lsync, Lsync

stop_RBRi!−−−−−−−→Wait,
TrF

reset_RBR=1,y=0−−−−−−−−−−−−→ LReset,
TrF

PF _RBR=1,err_pRBR=1,reset_RBR=0−−−−−−−−−−−−−−−−−−−−−−−−−−→ PrF ,
LReset

TF _RBR=0,err_pRBR=0,reset_RBR=0−−−−−−−−−−−−−−−−−−−−−−−−−−→Wait,
LReset

PF _RBR=1,err_pRBR=1,reset_RBR=0−−−−−−−−−−−−−−−−−−−−−−−−−−→ PrF , Wait
err_p==1−−−−−−→

Fail_ep}

– I(LReset) = (y ≤ 2)

– P (Wait) = 10, given by µ

10.6 Semantics of AAL- Relevant AADL Components 147

(a) Interface STA (RBRiSTA) (b) Annex STA (RBRaSTA)

Figure 10.9: The STA for the RBR

– I(Op)=(x ≤ 1)

– P (Idle) = 1, P (Fail) = 1, given by µ

• RBRaSTA is defined in a similar way:

– L = {Wait,Op, TrF, PrF, Fail_ep, LReset, L1, L2, LSync}, {l0 =
Wait}

– A={start_RBR?, stop_RBR?, stop_RBRi!}
∪{rules(), TF_RBR = {0, 1}

– V = {PF_RBR, TF_RBR, reset_RBR, err_pRBR, errp}

– C = {y}

– E= {Wait
start_RBR?−−−−−−−−→ L1, L1

TF _RBR=1,err_pRBR=1−−−−−−−−−−−−−−−−−→ TrF ,

L1
PF _RBR=1,err_pRBR=1−−−−−−−−−−−−−−−−−→ PrF , L1 −→ L2, L2 −→ Op,

Op
stop_RBR?,rules()−−−−−−−−−−−−→ Lsync, Lsync

stop_RBRi!−−−−−−−→Wait,
TrF

reset_RBR=1,y=0−−−−−−−−−−−−→ LReset,
TrF

PF _RBR=1,err_pRBR=1,reset_RBR=0−−−−−−−−−−−−−−−−−−−−−−−−−−→ PrF ,
LReset

TF _RBR=0,err_pRBR=0,reset_RBR=0−−−−−−−−−−−−−−−−−−−−−−−−−−→Wait,
LReset

PF _RBR=1,err_pRBR=1,reset_RBR=0−−−−−−−−−−−−−−−−−−−−−−−−−−→ PrF , Wait
err_p==1−−−−−−→

Fail_ep}

– I(LReset) = (y ≤ 2)

– P (Wait) = 10, given by µ

171

148 Paper C

(a) Interface STA (DSSiSTA) (b) Annex STA (DSSaSTA)

Figure 10.10: The STA for the DSS

– L1
0.9998−−−−→ L2, L1

0.001−−−→ TrF , L1
0.001−−−→ PrF, assigned by γ

Similarly, the DSSAADL, shown in Listing 10.2, and represented by Eq.(10.5),
is mapped into an NSTA: DSSAADL DSSNSTA=DSS iSTA||DSSaSTA (Fig. 10.10),
where DSS iSTA is the so-called “Interface STA” of DSS, which corresponds to
Comptype DSS and Compimpl DSS, whereas DSSaSTA is the “Annex STA” that encodes
the EA of CC.

• The tuple elements of DSS iSTA are as follows:

– L = {Wait, CM,RBR,CBR,Fail, L1Sync, L2Sync, L3Sync, L4Sync},
l0 = {Wait}

– A = {start_DSSLC, start_CMi!, stop_CMi?, start_RBRi!, stop_RBRi?,
start_CBRi!, stop_CBRi?, stop_DSSLC!, start_DSSCC!} ∪
{iCM_in = iDSSLC_in, iRBR_in = iCM_out, iCBR_in =
iRBR_out, iDSSLC_out
=iCBR_out, iDSSCC_in = iDSSLC_out}

– V = {iDSSLC_in, iCM_in, iRBR_in, iCBR_in, iDSSCC_in, iDSSLC
_out, iCM_out, iRBR_out, iCBR_out, iDSSLC_out, PF_DSS, TF_DSS}

– E = {Wait
start_DSSLC?−−−−−−−−−−→ L1Sync, L1Sync

start_CMi!,iCM_in=iDSSLC_in−−−−−−−−−−−−−−−−−−−−−−→
CM,CM

stop_CMi?−−−−−−−→ L2Sync, L2Sync
start_RBRi!,iRBR_in=iCM_out−−−−−−−−−−−−−−−−−−−−−→

RBR,RBR
stop_RBRi?−−−−−−−−→ L3Sync, L3Sync

start_CBRi!,iCBR_in=iRBR_out−−−−−−−−−−−−−−−−−−−−−−→
CBR,CBR

stop_CBRi?−−−−−−−−→ L4Sync, L4Sync
stop_DSSLC!,iDSSLC_out=iCBR_out,iDSSCC_in=iDSSLC_out−−−→

148 Paper C

(a) Interface STA (DSSiSTA) (b) Annex STA (DSSaSTA)

Figure 10.10: The STA for the DSS

– L1
0.9998−−−−→ L2, L1

0.001−−−→ TrF , L1
0.001−−−→ PrF, assigned by γ

Similarly, the DSSAADL, shown in Listing 10.2, and represented by Eq.(10.5),
is mapped into an NSTA: DSSAADL DSSNSTA=DSS iSTA||DSSaSTA (Fig. 10.10),
where DSS iSTA is the so-called “Interface STA” of DSS, which corresponds to
Comptype DSS and Compimpl DSS, whereas DSSaSTA is the “Annex STA” that encodes
the EA of CC.

• The tuple elements of DSS iSTA are as follows:

– L = {Wait, CM,RBR,CBR,Fail, L1Sync, L2Sync, L3Sync, L4Sync},
l0 = {Wait}

– A = {start_DSSLC, start_CMi!, stop_CMi?, start_RBRi!, stop_RBRi?,
start_CBRi!, stop_CBRi?, stop_DSSLC!, start_DSSCC!} ∪
{iCM_in = iDSSLC_in, iRBR_in = iCM_out, iCBR_in =
iRBR_out, iDSSLC_out
=iCBR_out, iDSSCC_in = iDSSLC_out}

– V = {iDSSLC_in, iCM_in, iRBR_in, iCBR_in, iDSSCC_in, iDSSLC
_out, iCM_out, iRBR_out, iCBR_out, iDSSLC_out, PF_DSS, TF_DSS}

– E = {Wait
start_DSSLC?−−−−−−−−−−→ L1Sync, L1Sync

start_CMi!,iCM_in=iDSSLC_in−−−−−−−−−−−−−−−−−−−−−−→
CM,CM

stop_CMi?−−−−−−−→ L2Sync, L2Sync
start_RBRi!,iRBR_in=iCM_out−−−−−−−−−−−−−−−−−−−−−→

RBR,RBR
stop_RBRi?−−−−−−−−→ L3Sync, L3Sync

start_CBRi!,iCBR_in=iRBR_out−−−−−−−−−−−−−−−−−−−−−−→
CBR,CBR

stop_CBRi?−−−−−−−−→ L4Sync, L4Sync
stop_DSSLC!,iDSSLC_out=iCBR_out,iDSSCC_in=iDSSLC_out−−−→

172

10.6 Semantics of AAL- Relevant AADL Components 149

Wait, CM
(TF _DSS=1∨PF _DSS=1),start_DSSCC!−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Fail, RBR

(TF _DSS=1∨PF _DSS=1),start_DSSCC!−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Fail, CBR
(TF _DSS=1∨PF _DSS=1),start_DSSCC!−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Fail, Fail
(TF _DSS==1∨PF _DSS==1)−−−−−−−−−−−−−−−−−−−→ Fail, Fail

(TF _DSS==0∧PF _DSS==0)−−−−−−−−−−−−−−−−−−−→
Wait}

– P (Wait)=10, P (CM)=10, P (RBR)=10, P (CBR)=10, P (Fail)=1

EACC DSSaSTA

• DSSaSTA has the following syntactic elements:

– L = {Wait, T rF, PrF}, l0 = {Wait}
– A = {TF_DSS = {0, 1}, PF_DSS = {1}}
– V = {TF_DSS, TF_CM,TF_RBR, TF_CBR,PF_CM,PF_RBR,
PF_CBR,PF_DSS}

– E = {Wait
TF _CM==1∧TF _RBR==1∧TF _CBR==1,TF _DSS=1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ TrF,

Wait
PF _CM==1∧PF _RBR==1∧PF _CBR==1,PF _DSS=1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ PrF, PrF

PF _DSS==1−−−−−−−−−→ PrF, TrF
TF _CM==0∨TF _RBR==0∨TF _CBR==0,TF _DSS=0−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Wait}
– P (Wait) = 10, P (TrF) = 10, P (PrF) = 10

In addition to the above description, for the reader to have a deeper understand-
ing of modeling the AI algorithms in the respective STA, we show an excerpt of the
variable declarations and functions encoding that we have used to describe our DSS AI
algorithms in Listing 10.3. We show the context modeling, fuzzy reasoning and RBR
in the following and also show how the successful RBR outputs are stored as cases for
CBR.

In the context modeling, we describe our data structures that we have defined for
specifying user profile, spatio-temporal properties, activity of daily living of the user,
health and ambient data. The context information changes based on the sensed data
and events. In the fuzzy reasoning module, we show how the pulse data of the user is
fuzzified into low, normal and high values and the corresponding update of the context
information. The RBR takes the input from the context modeling module and is repre-
sented by various if-then-else rules as shown. We also demonstrate how the RBR output
is stored as a case in the case-base of the CBR module.

Listing 10.3: DSS model in STA in detail
−−−C o n t e x t model ing−−−
t y p e d e f s t r u c t {
i n t user_name ; / / 1 Jim
i n t age ; / / Age =65 y e a r s
i n t d i s e a s e _ h i s t o r y ; //3−H e a r t d i s e a s e

10.6 Semantics of AAL- Relevant AADL Components 149

Wait, CM
(TF _DSS=1∨PF _DSS=1),start_DSSCC!−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Fail, RBR

(TF _DSS=1∨PF _DSS=1),start_DSSCC!−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Fail, CBR
(TF _DSS=1∨PF _DSS=1),start_DSSCC!−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Fail, Fail
(TF _DSS==1∨PF _DSS==1)−−−−−−−−−−−−−−−−−−−→ Fail, Fail

(TF _DSS==0∧PF _DSS==0)−−−−−−−−−−−−−−−−−−−→
Wait}

– P (Wait)=10, P (CM)=10, P (RBR)=10, P (CBR)=10, P (Fail)=1

EACC DSSaSTA

• DSSaSTA has the following syntactic elements:

– L = {Wait, T rF, PrF}, l0 = {Wait}
– A = {TF_DSS = {0, 1}, PF_DSS = {1}}
– V = {TF_DSS, TF_CM,TF_RBR, TF_CBR,PF_CM,PF_RBR,
PF_CBR,PF_DSS}

– E = {Wait
TF _CM==1∧TF _RBR==1∧TF _CBR==1,TF _DSS=1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ TrF,

Wait
PF _CM==1∧PF _RBR==1∧PF _CBR==1,PF _DSS=1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ PrF, PrF

PF _DSS==1−−−−−−−−−→ PrF, TrF
TF _CM==0∨TF _RBR==0∨TF _CBR==0,TF _DSS=0−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Wait}
– P (Wait) = 10, P (TrF) = 10, P (PrF) = 10

In addition to the above description, for the reader to have a deeper understand-
ing of modeling the AI algorithms in the respective STA, we show an excerpt of the
variable declarations and functions encoding that we have used to describe our DSS AI
algorithms in Listing 10.3. We show the context modeling, fuzzy reasoning and RBR
in the following and also show how the successful RBR outputs are stored as cases for
CBR.

In the context modeling, we describe our data structures that we have defined for
specifying user profile, spatio-temporal properties, activity of daily living of the user,
health and ambient data. The context information changes based on the sensed data
and events. In the fuzzy reasoning module, we show how the pulse data of the user is
fuzzified into low, normal and high values and the corresponding update of the context
information. The RBR takes the input from the context modeling module and is repre-
sented by various if-then-else rules as shown. We also demonstrate how the RBR output
is stored as a case in the case-base of the CBR module.

Listing 10.3: DSS model in STA in detail
−−−C o n t e x t model ing−−−
t y p e d e f s t r u c t {
i n t user_name ; / / 1 Jim
i n t age ; / / Age =65 y e a r s
i n t d i s e a s e _ h i s t o r y ; //3−H e a r t d i s e a s e

173

150 Paper C

} u s e r _ p r o f i l e ;
u s e r _ p r o f i l e up ;
t y p e d e f s t r u c t {
i n t p o s i t i o n ;
/ / 1 = i n s i d e home , 0 −o u t i s i d e home
} s t e m p o r a l _ p r o p e r t i e s ;
t y p e d e f s t r u c t {
i n t p u l s e ;
i n t f a l l _ w ;
i n t f a l l _ c ;
} h e a l t h _ p a r a m e t e r s ;
t y p e d e f i n t uADL ; u s e r _ p r o f i l e p r o f i l e ;
uADL ADL; //2− e x e r c i s i n g , 1− r e s t i n g
s t e m p o r a l _ p r o p e r t i e s s_temp ;
h e a l t h _ p a r a m e t e r s h e a l t h ;
a m b i e n t _ p a r a m e t e r s ambien t ;
t y p e d e f s t r u c t {
u s e r _ p r o f i l e p r o f i l e ;
uADL ADL;
s t e m p o r a l _ p r o p e r t i e s s_temp ;
h e a l t h _ p a r a m e t e r s h e a l t h ;
a m b i e n t _ p a r a m e t e r s ambien t ;
} c o n t e x t _ m o d e l ;
−−−Fuzzy Logic Reasoning−−−
vo id f u z z i f y ()
{
i f (i F I S _ i n . d a t a _ v a l >=55 and i F I S _ i n . d a t a _ v a l <=135)
{ FIS_ou t . h e a l t h . p u l s e =2; }
e l s e i f (i F I S _ i n . d a t a _ v a l >=40 and i F I S _ i n . d a t a _ v a l <=70)
{ FIS_ou t . h e a l t h . p u l s e =1 ;}
e l s e i f (i F I S _ i n . d a t a _ v a l <=300 and i F I S _ i n . d a t a _ v a l >=110)
{ FIS_ou t . h e a l t h . p u l s e =3 ;}
FIS_ou t . h e a l t h . p u l s e = f u z z y o u t _ p u l s e ;
F IS_ou t . p r o f i l e . user_name= upro . p r o f i l e . user_name ;
F IS_ou t . p r o f i l e . age= upro . p r o f i l e . age ;
F IS_ou t . p r o f i l e . d i s e a s e _ h i s t o r y = upro . p r o f i l e . d i s e a s e _ h i s t o r y ;
F IS_ou t .ADL = upro .ADL;
FIS_ou t . s_temp . p o s i t i o n = upro . s_temp . p o s i t i o n ;
}
vo id u p d a t e _ c o n t e x t E U ()
{

F I S _ o u t s a v e . ambien t . f i r e = EU_out . ambien t . f i r e ;
F I S _ o u t s a v e . h e a l t h . f a l l _ c = EU_out . h e a l t h . f a l l _ c ;
F I S _ o u t s a v e . h e a l t h . f a l l _ w = EU_out . h e a l t h . f a l l _ w ;

}
−−−RBR −−−
vo id r u l e s ()
i f ((iRBR_in . h e a l t h . f a l l _ w ==1 or iRBR_in . h e a l t h . f a l l _ c ==1)
and iRBR_in . ambien t . f i r e ==1)
{ r u l e . n o t i f i c a t i o n s _ c a r e g i v e r =2 ;
r u l e . n o t i f i c a t i o n s _ f i r e f i g h t e r =2 ;}
e l s e i f (iRBR_in . h e a l t h . p u l s e ==3 and iRBR_in .ADL==1
and iRBR_in . p r o f i l e . d i s e a s e _ h i s t o r y ==3)
{ r u l e . n o t i f i c a t i o n s _ c a r e g i v e r =1 ;}

e l s e i f (iRBR_in . h e a l t h . p u l s e ==1 and iRBR_in .ADL==1
and iRBR_in . p r o f i l e . d i s e a s e _ h i s t o r y ==3)
{ r u l e . n o t i f i c a t i o n s _ c a r e g i v e r =3 ;

150 Paper C

} u s e r _ p r o f i l e ;
u s e r _ p r o f i l e up ;
t y p e d e f s t r u c t {
i n t p o s i t i o n ;
/ / 1 = i n s i d e home , 0 −o u t i s i d e home
} s t e m p o r a l _ p r o p e r t i e s ;
t y p e d e f s t r u c t {
i n t p u l s e ;
i n t f a l l _ w ;
i n t f a l l _ c ;
} h e a l t h _ p a r a m e t e r s ;
t y p e d e f i n t uADL ; u s e r _ p r o f i l e p r o f i l e ;
uADL ADL; //2− e x e r c i s i n g , 1− r e s t i n g
s t e m p o r a l _ p r o p e r t i e s s_temp ;
h e a l t h _ p a r a m e t e r s h e a l t h ;
a m b i e n t _ p a r a m e t e r s ambien t ;
t y p e d e f s t r u c t {
u s e r _ p r o f i l e p r o f i l e ;
uADL ADL;
s t e m p o r a l _ p r o p e r t i e s s_temp ;
h e a l t h _ p a r a m e t e r s h e a l t h ;
a m b i e n t _ p a r a m e t e r s ambien t ;
} c o n t e x t _ m o d e l ;
−−−Fuzzy Logic Reasoning−−−
vo id f u z z i f y ()
{
i f (i F I S _ i n . d a t a _ v a l >=55 and i F I S _ i n . d a t a _ v a l <=135)
{ FIS_ou t . h e a l t h . p u l s e =2; }
e l s e i f (i F I S _ i n . d a t a _ v a l >=40 and i F I S _ i n . d a t a _ v a l <=70)
{ FIS_ou t . h e a l t h . p u l s e =1 ;}
e l s e i f (i F I S _ i n . d a t a _ v a l <=300 and i F I S _ i n . d a t a _ v a l >=110)
{ FIS_ou t . h e a l t h . p u l s e =3 ;}
FIS_ou t . h e a l t h . p u l s e = f u z z y o u t _ p u l s e ;
F IS_ou t . p r o f i l e . user_name= upro . p r o f i l e . user_name ;
F IS_ou t . p r o f i l e . age= upro . p r o f i l e . age ;
F IS_ou t . p r o f i l e . d i s e a s e _ h i s t o r y = upro . p r o f i l e . d i s e a s e _ h i s t o r y ;
F IS_ou t .ADL = upro .ADL;
FIS_ou t . s_temp . p o s i t i o n = upro . s_temp . p o s i t i o n ;
}
vo id u p d a t e _ c o n t e x t E U ()
{

F I S _ o u t s a v e . ambien t . f i r e = EU_out . ambien t . f i r e ;
F I S _ o u t s a v e . h e a l t h . f a l l _ c = EU_out . h e a l t h . f a l l _ c ;
F I S _ o u t s a v e . h e a l t h . f a l l _ w = EU_out . h e a l t h . f a l l _ w ;

}
−−−RBR −−−
vo id r u l e s ()
i f ((iRBR_in . h e a l t h . f a l l _ w ==1 or iRBR_in . h e a l t h . f a l l _ c ==1)
and iRBR_in . ambien t . f i r e ==1)
{ r u l e . n o t i f i c a t i o n s _ c a r e g i v e r =2 ;
r u l e . n o t i f i c a t i o n s _ f i r e f i g h t e r =2 ;}
e l s e i f (iRBR_in . h e a l t h . p u l s e ==3 and iRBR_in .ADL==1
and iRBR_in . p r o f i l e . d i s e a s e _ h i s t o r y ==3)
{ r u l e . n o t i f i c a t i o n s _ c a r e g i v e r =1 ;}

e l s e i f (iRBR_in . h e a l t h . p u l s e ==1 and iRBR_in .ADL==1
and iRBR_in . p r o f i l e . d i s e a s e _ h i s t o r y ==3)
{ r u l e . n o t i f i c a t i o n s _ c a r e g i v e r =3 ;

174

10.7 AAL Architecture Verification and Discussion 151

}
e l s e i f (iRBR_in . ambien t . f i r e ==1)
{ r u l e . n o t i f i c a t i o n s _ f i r e f i g h t e r =1 ;}
e l s e i f (iRBR_in . h e a l t h . f a l l _ c ==1 or
iRBR_in . h e a l t h . f a l l _ w ==1)
{ r u l e . n o t i f i c a t i o n s _ c a r e g i v e r =7 ;}
RBR_o . c a s e = upro .ADL;
RBR_o . c a s e _ f e a t u r e s =iCM_out ;
RBR_o . r u l e = r u l e ;
}

It should be noted that the CAMI architecture, the semantic encoding of its com-
ponents are restricted to the scope of the verification, and hence the components like
the Database, UI, Security and Privacy are not encoded as STA. The semantic encoding
produces a complex NSTA comprising 32 STA, out of which 18 STA are produced by
encoding the 10 AC of CAMI (4 sensors: one for detecting pulse data deviation, two
for fall detection and one for fire detection, data collector, MQ, RBR, CBR, daily ac-
tivity detection, fuzzy logic) and the remaining 12 by encoding 6 CC (Local Processor,
Cloud Processor, DSS (Local and Cloud), Context modeling in DSS(Local and Cloud)
of the AADL model of CAMI. On the other hand, the NSTA model of the minimum
architecture configuration comprises of only 18 STAs and is shown to be scalable with
exhaustive analysis.

10.7 AAL Architecture Verification and
Discussion

In this section, we verify if the minimum configuration architecture, and the most com-
plex one, the CAMI architecture introduced in Section 10.4, satisfy their requirements
as described in the same section, respectively. We apply exhaustive model checking for
the first case and statistical model checking in the second case.

Exhaustive verification of the minimum configuration using UPPAAL. The re-
sults of the exhaustive verification of the minimum configuration architecture using
UPPAAL model checker are tabulated in Table 10.1. To check that our system meets its
requirements, we employ a monitor STA that monitors the sensor values, the respective
DSS output, and the corresponding clock. The monitor automaton for R1Arch1 is shown
in Fig. 10.11. As described, we start the monitoring clock s1 when the pulse sensor
produces the data, marked by transition to L2 triggered by the synchronization channel
and we stop the clock when a decision is produced by the cloud DSS. Similar monitors
have been employed for R2Arch1. We have used queries of the form A leads to B for
our analysis and therefore a pre-check of each corresponding “A", being reachable is
first carried out. Moreover, since our model is an STA model where each component
has associated failure probabilities and failure of a component does not yield the in-
tended results during exhaustive verification, we verify the properties considering all

10.7 AAL Architecture Verification and Discussion 151

}
e l s e i f (iRBR_in . ambien t . f i r e ==1)
{ r u l e . n o t i f i c a t i o n s _ f i r e f i g h t e r =1 ;}
e l s e i f (iRBR_in . h e a l t h . f a l l _ c ==1 or
iRBR_in . h e a l t h . f a l l _ w ==1)
{ r u l e . n o t i f i c a t i o n s _ c a r e g i v e r =7 ;}
RBR_o . c a s e = upro .ADL;
RBR_o . c a s e _ f e a t u r e s =iCM_out ;
RBR_o . r u l e = r u l e ;
}

It should be noted that the CAMI architecture, the semantic encoding of its com-
ponents are restricted to the scope of the verification, and hence the components like
the Database, UI, Security and Privacy are not encoded as STA. The semantic encoding
produces a complex NSTA comprising 32 STA, out of which 18 STA are produced by
encoding the 10 AC of CAMI (4 sensors: one for detecting pulse data deviation, two
for fall detection and one for fire detection, data collector, MQ, RBR, CBR, daily ac-
tivity detection, fuzzy logic) and the remaining 12 by encoding 6 CC (Local Processor,
Cloud Processor, DSS (Local and Cloud), Context modeling in DSS(Local and Cloud)
of the AADL model of CAMI. On the other hand, the NSTA model of the minimum
architecture configuration comprises of only 18 STAs and is shown to be scalable with
exhaustive analysis.

10.7 AAL Architecture Verification and
Discussion

In this section, we verify if the minimum configuration architecture, and the most com-
plex one, the CAMI architecture introduced in Section 10.4, satisfy their requirements
as described in the same section, respectively. We apply exhaustive model checking for
the first case and statistical model checking in the second case.

Exhaustive verification of the minimum configuration using UPPAAL. The re-
sults of the exhaustive verification of the minimum configuration architecture using
UPPAAL model checker are tabulated in Table 10.1. To check that our system meets its
requirements, we employ a monitor STA that monitors the sensor values, the respective
DSS output, and the corresponding clock. The monitor automaton for R1Arch1 is shown
in Fig. 10.11. As described, we start the monitoring clock s1 when the pulse sensor
produces the data, marked by transition to L2 triggered by the synchronization channel
and we stop the clock when a decision is produced by the cloud DSS. Similar monitors
have been employed for R2Arch1. We have used queries of the form A leads to B for
our analysis and therefore a pre-check of each corresponding “A", being reachable is
first carried out. Moreover, since our model is an STA model where each component
has associated failure probabilities and failure of a component does not yield the in-
tended results during exhaustive verification, we verify the properties considering all

175

152 Paper C

Figure 10.11: The monitor automaton for requirement R1Arch1.

Table 10.1 UPPAAL analysis results for the minimum configuration architec-
ture

Req. Query Result

R1Arch1

(110 ≤ sd_w.data_val ≤ 300 and ADL = 1 and

M_pulse.FIS_out == 3 and op_DC == 1
and op_fuzzy == 1 and op_RBR == 1)

→M_pulse.pulse_not == 3 andM_pulse.s1 ≤ 20 Pass
E <> (110 ≤ sd_w.data_val ≤ 300 and and ADL = 1

M_pulse.FIS_out == 3 and op_DC == 1

and op_fuzzy == 1 and op_RBR == 1) Pass

R2Arch1

(se_w.fall == 1 and op_DC == 1

and op_EU == 1 and op_RBR == 1)
→M_fall.fall_not == 7 andM_fall.s1 ≤ 20 Pass
E <> (se_w.fall == 1 and op_DC == 1

and op_EU == 1 and op_RBR == 1) Pass

the components are operational. R1Arch1 requires that if the pulse is high and the user
is not exercising, then an abnormal pulse alert is raised to the caregiver within 20 s. In
R2Arch1, we verify that if the fall sensor detects a fall event, then a fall alert is raised
to the caregiver within 20 s. The aforementioned requirements are safety requirements
of the system and it is shown that these requirements are met provided all the system
components are operational.

Statistical Verification of the CAMI architecture using UPPAAL SMC. In case
of CAMI architecture, which is the most complex instantiation of our proposed generic
architecture, exhaustive verification does not scale and hence we chose to verify the
CAMI system requirements using UPPAAL SMC [5], the statistical extension of UP-
PAAL model checker to perform probabilistic analysis. To verify the functional require-
ments, we employ monitor STA to monitor the sensor values, the respective DSS output
and the corresponding clock. For instance, an example of monitor STA for R1CAMI is
given in Fig. 10.12. As shown, we start the monitoring clock s1 when the fire sensor

152 Paper C

Figure 10.11: The monitor automaton for requirement R1Arch1.

Table 10.1 UPPAAL analysis results for the minimum configuration architec-
ture

Req. Query Result

R1Arch1

(110 ≤ sd_w.data_val ≤ 300 and ADL = 1 and

M_pulse.FIS_out == 3 and op_DC == 1
and op_fuzzy == 1 and op_RBR == 1)

→M_pulse.pulse_not == 3 andM_pulse.s1 ≤ 20 Pass
E <> (110 ≤ sd_w.data_val ≤ 300 and and ADL = 1

M_pulse.FIS_out == 3 and op_DC == 1

and op_fuzzy == 1 and op_RBR == 1) Pass

R2Arch1

(se_w.fall == 1 and op_DC == 1

and op_EU == 1 and op_RBR == 1)
→M_fall.fall_not == 7 andM_fall.s1 ≤ 20 Pass
E <> (se_w.fall == 1 and op_DC == 1

and op_EU == 1 and op_RBR == 1) Pass

the components are operational. R1Arch1 requires that if the pulse is high and the user
is not exercising, then an abnormal pulse alert is raised to the caregiver within 20 s. In
R2Arch1, we verify that if the fall sensor detects a fall event, then a fall alert is raised
to the caregiver within 20 s. The aforementioned requirements are safety requirements
of the system and it is shown that these requirements are met provided all the system
components are operational.

Statistical Verification of the CAMI architecture using UPPAAL SMC. In case
of CAMI architecture, which is the most complex instantiation of our proposed generic
architecture, exhaustive verification does not scale and hence we chose to verify the
CAMI system requirements using UPPAAL SMC [5], the statistical extension of UP-
PAAL model checker to perform probabilistic analysis. To verify the functional require-
ments, we employ monitor STA to monitor the sensor values, the respective DSS output
and the corresponding clock. For instance, an example of monitor STA for R1CAMI is
given in Fig. 10.12. As shown, we start the monitoring clock s1 when the fire sensor

176

10.7 AAL Architecture Verification and Discussion 153

Figure 10.12: The monitor automaton for requirement R1CAMI.
produces the data, marked by transition to L2 triggered by the synchronization channel
and we stop the clock when a decision is produced by local DSS or the cloud DSS.
Similar monitors are employed for R2CAMI, R3CAMI, R4CAMI andR5CAMI.

The verification results are tabulated in Table 1. The CAMI architecture model
satisfies all the requirements with probabilities close to 1 with a high confidence within
4 minutes until a result is returned. As in the other case, since most queries contain
terms of the formA imply B, we first check the reachability of A. From the analysis, it
follows that the probability of the cloud DSS to get activated ((R6CAMI) is [0.01, 0.04].
This is justified that it becomes active only when the local DSS has failed and the failure
probability of local DSS is between [0.01, 0.04] for a simulation over 1000 time units,
which is a safe value to assume for safety-critical systems.

Discussion. The approach presented in this paper paves the way for the development
of formally assured future intelligent AAL solutions that integrate multiple function-
alities. Our approach can be applied at earlier design stages to capture potential er-
rors that can propagate across the development stages, which may result in significant
re-engineering costs. Our architecture description framework (AADL) has a commer-
cially available tool support, OSATE [28] for automated modeling, and provides some
preliminary architecture-level analysis. It also allows us to model the behavior of the
architecture components via behavior annex and encode the probabilities of failures of
various components, via the error annex. However, AADL also has its limitations of
expressing complex behaviors of algorithms such as CBR, which we have omitted in
this work.

There are two analysis approaches presented in this paper: (1) using exhaustive
model checking (2) using stochastic model checking, both automated automated via a
commercial tools UPPAAL and UPPAAL SMC. The analysis approaches are chosen
based on the system complexity. If the architecture model is scalable with exhaustive
model-checjing, then it can be applied. Although the exhautive verification resulst are
accurate, one cannot take into account the probabilistic behaviour of our systems. In
case of complex models that needs to be analyzed for stochastic behaviours, the user
can opt for simulation-based approaches, although it does not yield 100% accuracy.
The verification results shown in this ppaper are specific to our architecture models
defined, however one can use the approach to verify any set of requirements for various
architecture types defined by the generic architectural model defined in this work. In

10.7 AAL Architecture Verification and Discussion 153

Figure 10.12: The monitor automaton for requirement R1CAMI.
produces the data, marked by transition to L2 triggered by the synchronization channel
and we stop the clock when a decision is produced by local DSS or the cloud DSS.
Similar monitors are employed for R2CAMI, R3CAMI, R4CAMI andR5CAMI.

The verification results are tabulated in Table 1. The CAMI architecture model
satisfies all the requirements with probabilities close to 1 with a high confidence within
4 minutes until a result is returned. As in the other case, since most queries contain
terms of the formA imply B, we first check the reachability of A. From the analysis, it
follows that the probability of the cloud DSS to get activated ((R6CAMI) is [0.01, 0.04].
This is justified that it becomes active only when the local DSS has failed and the failure
probability of local DSS is between [0.01, 0.04] for a simulation over 1000 time units,
which is a safe value to assume for safety-critical systems.

Discussion. The approach presented in this paper paves the way for the development
of formally assured future intelligent AAL solutions that integrate multiple function-
alities. Our approach can be applied at earlier design stages to capture potential er-
rors that can propagate across the development stages, which may result in significant
re-engineering costs. Our architecture description framework (AADL) has a commer-
cially available tool support, OSATE [28] for automated modeling, and provides some
preliminary architecture-level analysis. It also allows us to model the behavior of the
architecture components via behavior annex and encode the probabilities of failures of
various components, via the error annex. However, AADL also has its limitations of
expressing complex behaviors of algorithms such as CBR, which we have omitted in
this work.

There are two analysis approaches presented in this paper: (1) using exhaustive
model checking (2) using stochastic model checking, both automated automated via a
commercial tools UPPAAL and UPPAAL SMC. The analysis approaches are chosen
based on the system complexity. If the architecture model is scalable with exhaustive
model-checjing, then it can be applied. Although the exhautive verification resulst are
accurate, one cannot take into account the probabilistic behaviour of our systems. In
case of complex models that needs to be analyzed for stochastic behaviours, the user
can opt for simulation-based approaches, although it does not yield 100% accuracy.
The verification results shown in this ppaper are specific to our architecture models
defined, however one can use the approach to verify any set of requirements for various
architecture types defined by the generic architectural model defined in this work. In

177

154 Paper C

case of exhaustive model-checking, the resulst are derived assuming that all components
are operational such that we devoid the system of its probabilistic failure behaviour.
Also, for the case of statiscal model checking, it is worth mentioning that the results are
derived assuming high reliability of individual architecture components and considering
specific values for the periods and execution times. However, taking into account the
wide variety of available sensors and other components, we can easily adapt the values
to account for requirements of any specific architecture.

In addition, the approach presented in this paper is generic and easily extensible.
Our modeling methodology based on AADL abstract components is easily extensible
to suit particular run-time representations of the system. The AADL semantics as net-
works of STA is also generic and can be extended to accommodate other AADL prop-
erties that we have not accounted for in this work. We expect that similar results can be
reproduced if the approach followed in this paper is used in other instances of integrated
AAL solutions

154 Paper C

case of exhaustive model-checking, the resulst are derived assuming that all components
are operational such that we devoid the system of its probabilistic failure behaviour.
Also, for the case of statiscal model checking, it is worth mentioning that the results are
derived assuming high reliability of individual architecture components and considering
specific values for the periods and execution times. However, taking into account the
wide variety of available sensors and other components, we can easily adapt the values
to account for requirements of any specific architecture.

In addition, the approach presented in this paper is generic and easily extensible.
Our modeling methodology based on AADL abstract components is easily extensible
to suit particular run-time representations of the system. The AADL semantics as net-
works of STA is also generic and can be extended to accommodate other AADL prop-
erties that we have not accounted for in this work. We expect that similar results can be
reproduced if the approach followed in this paper is used in other instances of integrated
AAL solutions

178

10.7 AAL Architecture Verification and Discussion 155

Table 10.2 UPPAAL SMC Analysis Results for CAMI.
Req. Query Result Runs

R1

Pr[<= 1000]([]((M_fire.fire_alarm
== 1) imply (se_nw.fire == 1

and M_fire.s1 <= 20)))
Pr [0.99975,1]

confidence 0.998 3868
Pr[<= 1000](<> (M_fire.

fire_alarm == 1))
Pr [0.99975,1]

confidence 0.998 4901

R2

Pr[<= 1000]([]((M_fall.fall_not
== 7) imply ((se_w.fall == 1

or sd_nw.data_val == 1)

and(M_fall.s1 <= 20))))
Pr [0.99975,1]

confidence 0.998 3868
Pr[<= 1000](<> (M_fall.

fall_not == 7))
Pr [0.99975,1]

confidence 0.998 4901

R3

Pr[<= 1000]([]((M_pulse.pulse_not
== 3) imply

(110 <= sd_w.data_val <= 300 and

M_pulse.FIS_out == 3 and
ADL == 1 and

upro.disease_history == 3

and M_pulse.s1 <= 20))
Pr [0.99975,1]

confidence 0.998 3868
Pr[<= 1000](<> (M_pulse.

pulse_not == 3))
Pr [0.99975,1]

confidence 0.998 3868

R4

Pr[<= 1000]([](M_firefall.fire_not
== 2 and

M_firefall.fall_not == 2 imply

((se_w.fall == 1 or sd_nw.data_val == 1)

and se_nw.fire == 1

and M_firefall.s1 <= 20))
Pr [0.99975,1]

confidence 0.998 3868
Pr[<= 1000](<> (Pr[<= 100](<>

(M_firefall.fall_not == 2

and M_firefall.fire_not == 2))
Pr [0.99975,1]

confidence 0.998 7905

R5
Pr[<= 1000]([](M_consistency.stop
imply (RBR_om == iCBRCCm)))

Pr [0.99975,1]
confidence 0.998 3868

Pr[<= 1000](<> (M_consistency.stop))
Pr [0.99975,1]

confidence 0.998 5777

R6
Pr[<= 1000]([](INT_CC.DSSCC

imply PF_DSS == 1))
Pr [0.99975,1]

confidence 0.998 3868

Pr[<= 1000](<> (INT_CC.DSSCC))
Pr [0.01,0.04]

confidence 0.998 2885

10.7 AAL Architecture Verification and Discussion 155

Table 10.2 UPPAAL SMC Analysis Results for CAMI.
Req. Query Result Runs

R1

Pr[<= 1000]([]((M_fire.fire_alarm
== 1) imply (se_nw.fire == 1

and M_fire.s1 <= 20)))
Pr [0.99975,1]

confidence 0.998 3868
Pr[<= 1000](<> (M_fire.

fire_alarm == 1))
Pr [0.99975,1]

confidence 0.998 4901

R2

Pr[<= 1000]([]((M_fall.fall_not
== 7) imply ((se_w.fall == 1

or sd_nw.data_val == 1)

and(M_fall.s1 <= 20))))
Pr [0.99975,1]

confidence 0.998 3868
Pr[<= 1000](<> (M_fall.

fall_not == 7))
Pr [0.99975,1]

confidence 0.998 4901

R3

Pr[<= 1000]([]((M_pulse.pulse_not
== 3) imply

(110 <= sd_w.data_val <= 300 and

M_pulse.FIS_out == 3 and
ADL == 1 and

upro.disease_history == 3

and M_pulse.s1 <= 20))
Pr [0.99975,1]

confidence 0.998 3868
Pr[<= 1000](<> (M_pulse.

pulse_not == 3))
Pr [0.99975,1]

confidence 0.998 3868

R4

Pr[<= 1000]([](M_firefall.fire_not
== 2 and

M_firefall.fall_not == 2 imply

((se_w.fall == 1 or sd_nw.data_val == 1)

and se_nw.fire == 1

and M_firefall.s1 <= 20))
Pr [0.99975,1]

confidence 0.998 3868
Pr[<= 1000](<> (Pr[<= 100](<>

(M_firefall.fall_not == 2

and M_firefall.fire_not == 2))
Pr [0.99975,1]

confidence 0.998 7905

R5
Pr[<= 1000]([](M_consistency.stop
imply (RBR_om == iCBRCCm)))

Pr [0.99975,1]
confidence 0.998 3868

Pr[<= 1000](<> (M_consistency.stop))
Pr [0.99975,1]

confidence 0.998 5777

R6
Pr[<= 1000]([](INT_CC.DSSCC

imply PF_DSS == 1))
Pr [0.99975,1]

confidence 0.998 3868

Pr[<= 1000](<> (INT_CC.DSSCC))
Pr [0.01,0.04]

confidence 0.998 2885

179

156 Paper C

10.8 Related Work
In recent years, there has been a lot of work in the area of AAL due to the need of sup-
porting an increased elderly population [29]. Moreover, many functionalities that need
to be tackled by AAL solutions are of a safety-critical nature, e.g., health emergencies
like cardiac arrest, fall of the elderly, and home emergencies like fire at home, etc. [30],
therefore work on their modeling and analysis is fully justified.

A study on existing AAL architectures shows that there are certain architecture
types that address the construction of integrative AAL applications, some of the com-
mon ones being : Multi-Agent System (MAS) [31, 32, 33], Cloud-based [34, 35] and
Internet-of-Things (IoT) centric [36].

• Agent-based architectures: These are the most commonly used architectures
for AAL applications owing to its flexibility, autonomy, adaptability, better re-
sponse and service continuity due to its distributed nature . Some examples of
health care frameworks that relies on a distributed agent architecture are [37],
[31]. However, the agent based architectures also have some drawbacks (i) Re-
stricted communication protocols for agent communication and the delay over-
head in taking a collective decision and (ii) maintaining the consistency of the
framework .

• Cloud-based AAL solutions: AAL solutions that leverage the potential of cloud
computing for context modeling, intelligent decision making and use it as a data
storeAlthough cloud based solutions are scalable, cost-effective, reusable, adapt-
able, and extendable, the sole processing with cloud cannot guarantee strict hard
real-time properties and the system fails completely in the absence of Internet.

• IoT architectures: IoT technology is now getting widely getting utilized in the
filed of AAL owing to its technological advancements. The IoT concept of com-
munication between smart objects and people and people are widely exploited in
the field of AAL, thereby providing connectivity, context-awareness and adaptiv-
ity. . There are also approaches to integrate the autonomous behavior of agent-
based systems with IoT technology [38, 39]. Although AAL systems based on
IoT offer high flexibility, adaptability, the system depends only on the availabil-
ity of the Internet for operation; which can lead to a complete failure of such
systems in places where Internet connectivity is meager. Our architecture fol-
lows the design paradigms of Cloud-based AAL solutions, where the cloud is
utilized for intelligent, context-aware decision making and as a data store, and is
also augmented with local processing schemes to guarantee real-time properties.
In many situations, cloud services cannot guarantee hard-real time properties and
hence we adopted a local processing scheme as well in our model, and the cloud
is a back-up which activates only when the primary has failed.

The formal assurance of AAL systems has been the focus of some related research in
the recent years. Parente et al. provide a list of various formal methods that can be

156 Paper C

10.8 Related Work
In recent years, there has been a lot of work in the area of AAL due to the need of sup-
porting an increased elderly population [29]. Moreover, many functionalities that need
to be tackled by AAL solutions are of a safety-critical nature, e.g., health emergencies
like cardiac arrest, fall of the elderly, and home emergencies like fire at home, etc. [30],
therefore work on their modeling and analysis is fully justified.

A study on existing AAL architectures shows that there are certain architecture
types that address the construction of integrative AAL applications, some of the com-
mon ones being : Multi-Agent System (MAS) [31, 32, 33], Cloud-based [34, 35] and
Internet-of-Things (IoT) centric [36].

• Agent-based architectures: These are the most commonly used architectures
for AAL applications owing to its flexibility, autonomy, adaptability, better re-
sponse and service continuity due to its distributed nature . Some examples of
health care frameworks that relies on a distributed agent architecture are [37],
[31]. However, the agent based architectures also have some drawbacks (i) Re-
stricted communication protocols for agent communication and the delay over-
head in taking a collective decision and (ii) maintaining the consistency of the
framework .

• Cloud-based AAL solutions: AAL solutions that leverage the potential of cloud
computing for context modeling, intelligent decision making and use it as a data
storeAlthough cloud based solutions are scalable, cost-effective, reusable, adapt-
able, and extendable, the sole processing with cloud cannot guarantee strict hard
real-time properties and the system fails completely in the absence of Internet.

• IoT architectures: IoT technology is now getting widely getting utilized in the
filed of AAL owing to its technological advancements. The IoT concept of com-
munication between smart objects and people and people are widely exploited in
the field of AAL, thereby providing connectivity, context-awareness and adaptiv-
ity. . There are also approaches to integrate the autonomous behavior of agent-
based systems with IoT technology [38, 39]. Although AAL systems based on
IoT offer high flexibility, adaptability, the system depends only on the availabil-
ity of the Internet for operation; which can lead to a complete failure of such
systems in places where Internet connectivity is meager. Our architecture fol-
lows the design paradigms of Cloud-based AAL solutions, where the cloud is
utilized for intelligent, context-aware decision making and as a data store, and is
also augmented with local processing schemes to guarantee real-time properties.
In many situations, cloud services cannot guarantee hard-real time properties and
hence we adopted a local processing scheme as well in our model, and the cloud
is a back-up which activates only when the primary has failed.

The formal assurance of AAL systems has been the focus of some related research in
the recent years. Parente et al. provide a list of various formal methods that can be

180

10.8 Related Work 157

used for AAL systems [40]. In another interesting work, Rodrigues et al. [4] perform a
dependability analysis of AAL architectures using UML and PRISM. Other interesting
research work uses temporal reasoning [3, 41] and Markov Decision Processes to for-
mally verify the reliability of AAL systems [42]. Although these approaches target the
formal analysis of AAL systems, most of the above work addresses only simple sce-
narios and are not used to analyze complex behaviors resulting from integrating critical
AAL functions (e.g. fire and fall), as well as their decision making. In addition, these
approaches do not aim to develop an overall framework for the verification of AAL
systems, starting from an integrated architectural design, their design specifications,
followed by a verification strategy, as proposed in this paper.

The use of Architecture Description Languages (ADL) to specify AAL designs has
not been exercised previously, yet this is common when designing automotive or au-
tomation systems. There have also been approaches to formally verify AADL designs
in other domains. The transformation approach from AADL to TA or variants has been
already addressed by related work [43, 44, 45]. Although these approaches are auto-
mated verification techniques, there is a lack of focus on abstract components/patterns
with stochastic properties. In addition, these approaches also suffer from state-space
explosion, therefore they might not scale well to complex AAL designs. Nevertheless,
there is interesting research that deals with stochastic properties and statistical model
checking for the analysis of extended AADL models. One such example is in the work
of Bruintjes et al. [46], where the authors have used SMC approach for timed reachabil-
ity analysis of extended AADL designs. Although our approach also focuses on linear
systems, it is different from the mentioned work in the fact that we focus on abstract
components, and also introduce BA modeling for capturing the functional behavior of
our modules, specifically for modeling the behavior of intelligent DSS. In their work,
Bruintjes et al. use the SLIM Language, which is strongly based on AADL and is
specific to avionics and automotive industry, including the error behavior and modes.
However, we use the AADL core language with its standardized annex sets (EA and
BA) for the architecture specification, thereby enabling us to represent the functional
and error behaviour with the architecture model. The abstract component based mod-
eling also brings exensiblity and reusability to our approach. Moreover, the authors
only consider the event occurrences or delay variations using uniform or exponential
distributions, whereas by employing our user-defined properties, we can also specify
other distributions. Furthermore, the approach of Bruintjes et al. only deals with evalu-
ation of time-bounded queries, however we also evaluate properties like reliability, data
consistency, etc., along with timeliness. Another interesting work [6], possibly car-
ried out in parallel with our work, employs statistical model checking using UPPAAL
SMC to evaluate the performance of nonlinear hybrid models with uncertainty mod-
eled in extended AADL. Although the approach is not specific to the AAL domain, it
is promising to specify complex CPS systems considering uncertainties from physical
environment. Unlike our model, the authors use Priced Timed Automata (PTA) models.
In comparison, our approach considers only linear models that evolve continuously (yet

10.8 Related Work 157

used for AAL systems [40]. In another interesting work, Rodrigues et al. [4] perform a
dependability analysis of AAL architectures using UML and PRISM. Other interesting
research work uses temporal reasoning [3, 41] and Markov Decision Processes to for-
mally verify the reliability of AAL systems [42]. Although these approaches target the
formal analysis of AAL systems, most of the above work addresses only simple sce-
narios and are not used to analyze complex behaviors resulting from integrating critical
AAL functions (e.g. fire and fall), as well as their decision making. In addition, these
approaches do not aim to develop an overall framework for the verification of AAL
systems, starting from an integrated architectural design, their design specifications,
followed by a verification strategy, as proposed in this paper.

The use of Architecture Description Languages (ADL) to specify AAL designs has
not been exercised previously, yet this is common when designing automotive or au-
tomation systems. There have also been approaches to formally verify AADL designs
in other domains. The transformation approach from AADL to TA or variants has been
already addressed by related work [43, 44, 45]. Although these approaches are auto-
mated verification techniques, there is a lack of focus on abstract components/patterns
with stochastic properties. In addition, these approaches also suffer from state-space
explosion, therefore they might not scale well to complex AAL designs. Nevertheless,
there is interesting research that deals with stochastic properties and statistical model
checking for the analysis of extended AADL models. One such example is in the work
of Bruintjes et al. [46], where the authors have used SMC approach for timed reachabil-
ity analysis of extended AADL designs. Although our approach also focuses on linear
systems, it is different from the mentioned work in the fact that we focus on abstract
components, and also introduce BA modeling for capturing the functional behavior of
our modules, specifically for modeling the behavior of intelligent DSS. In their work,
Bruintjes et al. use the SLIM Language, which is strongly based on AADL and is
specific to avionics and automotive industry, including the error behavior and modes.
However, we use the AADL core language with its standardized annex sets (EA and
BA) for the architecture specification, thereby enabling us to represent the functional
and error behaviour with the architecture model. The abstract component based mod-
eling also brings exensiblity and reusability to our approach. Moreover, the authors
only consider the event occurrences or delay variations using uniform or exponential
distributions, whereas by employing our user-defined properties, we can also specify
other distributions. Furthermore, the approach of Bruintjes et al. only deals with evalu-
ation of time-bounded queries, however we also evaluate properties like reliability, data
consistency, etc., along with timeliness. Another interesting work [6], possibly car-
ried out in parallel with our work, employs statistical model checking using UPPAAL
SMC to evaluate the performance of nonlinear hybrid models with uncertainty mod-
eled in extended AADL. Although the approach is not specific to the AAL domain, it
is promising to specify complex CPS systems considering uncertainties from physical
environment. Unlike our model, the authors use Priced Timed Automata (PTA) models.
In comparison, our approach considers only linear models that evolve continuously (yet

181

158 Paper C

the analysis is carried out in discrete time due to sampling of continuous data). In brief,
the two approaches resemble, yet our approach is all contained in the core language of
AADL (as different from the mentioned work where the authors resort to other annexes
integrated in OSATE), is tailored to systems that contain AI components, and assumes
the random failure of various components, which is not considered in the related work.

10.9 Conclusions and Future Work
In this paper, we have proposed a generic AAL architecture and its intelligent Decision
Support System that can tackle a multitude of functionalities by analyzing the inter-
dependencies between simultaneously occurring events. We have also presented three
specific instantiantions of the generic model, following an increasing order of complex-
ity. In addition, we have also presented a framework for modeling and verification of
our specific integrated AAL system architectures. To provide formal analysis for the
AAL systems, we have semantically encoded the AADL model as NSTA model. These
formal models has been shown to be analyzable exhaustively with UPPAAL or statis-
tically with UPPAAL SMC, (chosen based on system complexity), to ensure that the
required functional behavior is met. Our contribution is generic and paves the way for
the development of formally assured intelligent AAL system architectures.

The framework is intended to augment existing AAL solutions with formal analysis
support and provide analysis prior to implementation. Such an analysis is crucial in
domains such as AAL, which are real-time, safety-critical, and require high levels of
dependability. Due to the heterogeneity of components available in the AAL domain,
the component failure probabilities, periods and execution times are not chosen w.r.t to
any specific components, nevertheless the results presented in the paper are promising
because the abstract components that have been proposed can be refined further.

In the future, we plan to enhance our DSS model with more rules for RBR and full
functionality support of CBR and activity recognition, thereby providing an extensive
analysis of AAL systems behaviors in possible critical scenarios. Another interesting
direction to proceed with is providing automated tool support for the semantic map-
ping. We are also currently investigating on a distributed version of the integrated ar-
chitectures for AAL, especially the one that supports multiple intelligent agents and its
analysis.

Appendix A: AADL Model of RBR

1 a b s t r a c t RBR
2 f e a t u r e s
3 i n p u t : i n e v e n t d a t a p o r t ;
4 o u t p u t : o u t e v e n t d a t a p o r t ;
5 f l o w s

158 Paper C

the analysis is carried out in discrete time due to sampling of continuous data). In brief,
the two approaches resemble, yet our approach is all contained in the core language of
AADL (as different from the mentioned work where the authors resort to other annexes
integrated in OSATE), is tailored to systems that contain AI components, and assumes
the random failure of various components, which is not considered in the related work.

10.9 Conclusions and Future Work
In this paper, we have proposed a generic AAL architecture and its intelligent Decision
Support System that can tackle a multitude of functionalities by analyzing the inter-
dependencies between simultaneously occurring events. We have also presented three
specific instantiantions of the generic model, following an increasing order of complex-
ity. In addition, we have also presented a framework for modeling and verification of
our specific integrated AAL system architectures. To provide formal analysis for the
AAL systems, we have semantically encoded the AADL model as NSTA model. These
formal models has been shown to be analyzable exhaustively with UPPAAL or statis-
tically with UPPAAL SMC, (chosen based on system complexity), to ensure that the
required functional behavior is met. Our contribution is generic and paves the way for
the development of formally assured intelligent AAL system architectures.

The framework is intended to augment existing AAL solutions with formal analysis
support and provide analysis prior to implementation. Such an analysis is crucial in
domains such as AAL, which are real-time, safety-critical, and require high levels of
dependability. Due to the heterogeneity of components available in the AAL domain,
the component failure probabilities, periods and execution times are not chosen w.r.t to
any specific components, nevertheless the results presented in the paper are promising
because the abstract components that have been proposed can be refined further.

In the future, we plan to enhance our DSS model with more rules for RBR and full
functionality support of CBR and activity recognition, thereby providing an extensive
analysis of AAL systems behaviors in possible critical scenarios. Another interesting
direction to proceed with is providing automated tool support for the semantic map-
ping. We are also currently investigating on a distributed version of the integrated ar-
chitectures for AAL, especially the one that supports multiple intelligent agents and its
analysis.

Appendix A: AADL Model of RBR

1 a b s t r a c t RBR
2 f e a t u r e s
3 i n p u t : i n e v e n t d a t a p o r t ;
4 o u t p u t : o u t e v e n t d a t a p o r t ;
5 f l o w s

182

10.9 Conclusions and Future Work 159

6 F1 : f low p a t h i n p u t −> o u t p u t ;
7 p r o p e r t i e s
8 D i s p a t c h _ P r o t o c o l => A p e r i o d i c ;
9 Compute_Execut ion_Time =>1 s . . 1 s ;

10 end RBR;
11
12 a b s t r a c t i m p l e m e n t a t i o n RBR. impl
13 subcomponents
14 AAL_event : d a t a System_Data_model : : e v e n t s ;
15 DA: d a t a System_Data_model : U s e r _ a c t i v i t y ;
16 u _ p r o f i l e : d a t a System_Data_model : U s e r _ p r o f i l e ;
17 f u z z y _ o u t 1 : d a t a System_Data_model : : f u z z i f i e d _ d a t a _ h e a l t h ;
18 f u z z y _ o u t 2 : d a t a sys tem_Data_model : : f u z z i f i e d _ d a t a _ c a m e r a ;
19 annex EMV2{∗∗
20 use t y p e s e r r o r _ m o d e l ;
21 use b e h a v i o r e r r o r _ m o d e l : : s i m p l e ;
22 e r r o r p r o p a g a t i o n s
23 i n p u t : i n p r o p a g a t i o n { NoValue } ;
24 o u t p u t : o u t p r o p a g a t i o n { Novalue } ;
25 f l o w s
26 e f 0 : e r r o r p a t h i n p u t { NoValue}−> o u t p u t { NoValue } ;
27 component e r r o r b e h a v i o r
28 e v e n t s
29 R e s e t : r e c o v e r e v e n t ;
30 TF : e r r o r e v e n t ;
31 PF : e r r o r e v e n t ;
32 e r r _ p : e r r o r e v e n t ;
33 t r a n s i t i o n s
34 t 0 : O p e r a t i o n a l −[TF]−> F a i l e d _ t r a n s i e n t ;
35 t 1 : F a i l e d _ t r a n s i e n t −[R e s e t]−>Wai t ing wi th 0 . 8 ,
36 F a i l e d _ P e r m a n e n t w i th 0 . 2 ;
37 t 2 : O p e r a t i o n a l −[PF]−> F a i l e d _ P e r m a n e n t ;
38 t 3 : O p e r a t i o n a l −[e r r _ p]−> F a i l e d _ p ;
39 t 4 : F a i l e d _ p −[i n p u t]−> O p e r a t i o n a l ;
40 end component ;
41 p r o p e r t i e s
42 EMV2 : : D u r a t i o n D i s t r i b u t i o n => [D u r a t i o n => 1ms . . 2 ms ;
43 D i s t r i b u t i o n => Fixed ;] a p p l i e s t o r e s e t ;
44 EMV2 : : O c c u r r e n c e D i s t r i b u t i o n = >[P r o b a b i l i t y V a l u e => 0 . 2 ;
45 D i s t r i b u t i o n => Fixed ;] a p p l i e s t o F a i l u r e _ T r a n s i e n t ;
46 EMV2 : : O c c u r r e n c e D i s t r i b u t i o n = >[P r o b a b i l i t y V a l u e => 0 . 1 ;
47 D i s t r i b u t i o n => Fixed ;] a p p l i e s t o F a i l u r e _ P e r m a n e n t ;
48 ∗∗};
49 annex b e h a v i o r _ s p e c i f i c a t i o n {∗∗
50 s t a t e s
51 Wai t ing : i n i t i a l c o m p l e t e f i n a l s t a t e ;
52 O p e r a t i o n a l : s t a t e ;
53 t r a n s i t i o n s
54 Wai t ing −[on d i s p a t c h i n p u t]−> O p e r a t i o n a l { i f
55 (AAL_event =" f i r e ") { o u t p u t : = " n o t i f i c a t i o n _ f i r e f i g h t e r f i r e "}
56 e l s i f (f u z z y _ o u t 1 = " P u l s e _ h i g h " and DA!=" e x e r c i s i n g " and
57 u _ p r o f i l e =" c a r d i a c _ p a t i e n t ")
58 { o u t p u t := " n o t i f i c a t i o n _ c a r e g i v e r _ h i g h p u l s e "}
59 e l s i f (AAL_event = " f a l l " o r f u z z y _ o u t 2 = " F a l l _ h i g h ")
60 { o u t p u t := " n o t i f i c a t i o n _ c a r e g i v e r f a l l "}
61 e l s i f (f u z z y _ o u t 1 = " p u l s e−abnormal_low ")
62 { o u t p u t := " n o t i f i c a t i o n _ c a r e g i v e r "}
63 e l s i f (AAL_event = " f a l l " and f u z z y _ o u t 2 = " F a l l _ h i g h " and

10.9 Conclusions and Future Work 159

6 F1 : f low p a t h i n p u t −> o u t p u t ;
7 p r o p e r t i e s
8 D i s p a t c h _ P r o t o c o l => A p e r i o d i c ;
9 Compute_Execut ion_Time =>1 s . . 1 s ;

10 end RBR;
11
12 a b s t r a c t i m p l e m e n t a t i o n RBR. impl
13 subcomponents
14 AAL_event : d a t a System_Data_model : : e v e n t s ;
15 DA: d a t a System_Data_model : U s e r _ a c t i v i t y ;
16 u _ p r o f i l e : d a t a System_Data_model : U s e r _ p r o f i l e ;
17 f u z z y _ o u t 1 : d a t a System_Data_model : : f u z z i f i e d _ d a t a _ h e a l t h ;
18 f u z z y _ o u t 2 : d a t a sys tem_Data_model : : f u z z i f i e d _ d a t a _ c a m e r a ;
19 annex EMV2{∗∗
20 use t y p e s e r r o r _ m o d e l ;
21 use b e h a v i o r e r r o r _ m o d e l : : s i m p l e ;
22 e r r o r p r o p a g a t i o n s
23 i n p u t : i n p r o p a g a t i o n { NoValue } ;
24 o u t p u t : o u t p r o p a g a t i o n { Novalue } ;
25 f l o w s
26 e f 0 : e r r o r p a t h i n p u t { NoValue}−> o u t p u t { NoValue } ;
27 component e r r o r b e h a v i o r
28 e v e n t s
29 R e s e t : r e c o v e r e v e n t ;
30 TF : e r r o r e v e n t ;
31 PF : e r r o r e v e n t ;
32 e r r _ p : e r r o r e v e n t ;
33 t r a n s i t i o n s
34 t 0 : O p e r a t i o n a l −[TF]−> F a i l e d _ t r a n s i e n t ;
35 t 1 : F a i l e d _ t r a n s i e n t −[R e s e t]−>Wai t ing w i th 0 . 8 ,
36 F a i l e d _ P e r m a n e n t w i th 0 . 2 ;
37 t 2 : O p e r a t i o n a l −[PF]−> F a i l e d _ P e r m a n e n t ;
38 t 3 : O p e r a t i o n a l −[e r r _ p]−> F a i l e d _ p ;
39 t 4 : F a i l e d _ p −[i n p u t]−> O p e r a t i o n a l ;
40 end component ;
41 p r o p e r t i e s
42 EMV2 : : D u r a t i o n D i s t r i b u t i o n => [D u r a t i o n => 1ms . . 2 ms ;
43 D i s t r i b u t i o n => Fixed ;] a p p l i e s t o r e s e t ;
44 EMV2 : : O c c u r r e n c e D i s t r i b u t i o n = >[P r o b a b i l i t y V a l u e => 0 . 2 ;
45 D i s t r i b u t i o n => Fixed ;] a p p l i e s t o F a i l u r e _ T r a n s i e n t ;
46 EMV2 : : O c c u r r e n c e D i s t r i b u t i o n = >[P r o b a b i l i t y V a l u e => 0 . 1 ;
47 D i s t r i b u t i o n => Fixed ;] a p p l i e s t o F a i l u r e _ P e r m a n e n t ;
48 ∗∗};
49 annex b e h a v i o r _ s p e c i f i c a t i o n {∗∗
50 s t a t e s
51 Wai t ing : i n i t i a l c o m p l e t e f i n a l s t a t e ;
52 O p e r a t i o n a l : s t a t e ;
53 t r a n s i t i o n s
54 Wai t ing −[on d i s p a t c h i n p u t]−> O p e r a t i o n a l { i f
55 (AAL_event =" f i r e ") { o u t p u t : = " n o t i f i c a t i o n _ f i r e f i g h t e r f i r e "}
56 e l s i f (f u z z y _ o u t 1 = " P u l s e _ h i g h " and DA!=" e x e r c i s i n g " and
57 u _ p r o f i l e =" c a r d i a c _ p a t i e n t ")
58 { o u t p u t := " n o t i f i c a t i o n _ c a r e g i v e r _ h i g h p u l s e "}
59 e l s i f (AAL_event = " f a l l " o r f u z z y _ o u t 2 = " F a l l _ h i g h ")
60 { o u t p u t := " n o t i f i c a t i o n _ c a r e g i v e r f a l l "}
61 e l s i f (f u z z y _ o u t 1 = " p u l s e−abnormal_low ")
62 { o u t p u t := " n o t i f i c a t i o n _ c a r e g i v e r "}
63 e l s i f (AAL_event = " f a l l " and f u z z y _ o u t 2 = " F a l l _ h i g h " and

183

160 Paper C

64 AAL_event =" f i r e " and f u z z y _ o u t 1 = " p u l s e−abnormal_low ")
65 { o u t p u t := " n o t i f i c a t i o n _ c a r e g i v e r f a l l , f i r e , p u l s e _ l o w and
66 n o t i f i c a t i o n _ f i r e f i g h t e r f a l l , f i r e , p u l s e−abnormal−low "}
67 end i f } ;
68 ∗∗};
69 end RBR. impl ;

Acknowledgement
This work has been supported by the joint EU/Vinnova project grant CAMI, AAL-2014-
1-087, which is gratefully acknowledged.

160 Paper C

64 AAL_event =" f i r e " and f u z z y _ o u t 1 = " p u l s e−abnormal_low ")
65 { o u t p u t := " n o t i f i c a t i o n _ c a r e g i v e r f a l l , f i r e , p u l s e _ l o w and
66 n o t i f i c a t i o n _ f i r e f i g h t e r f a l l , f i r e , p u l s e−abnormal−low "}
67 end i f } ;
68 ∗∗};
69 end RBR. impl ;

Acknowledgement
This work has been supported by the joint EU/Vinnova project grant CAMI, AAL-2014-
1-087, which is gratefully acknowledged.

184

Bibliography

[1] Ashalatha Kunnappilly, Cristina Seceleanu, and Maria Lindén. Do We Need an
Integrated Framework for Ambient Assisted Living? In Ubiquitous Computing
and Ambient Intelligence: 10th International Conference, UCAmI 2016, San Bar-
tolomé de Tirajana, Gran Canaria, Spain, November 29–December 2, 2016, Part
II 10, pages 52–63. Springer, 2016.

[2] Ashalatha Kunnappilly, Alexandru Sorici, Imad Alex Awada, Irina Mocanu,
Cristina Seceleanu, and Adina Madga Florea. A Novel Integrated Architecture for
Ambient Assisted Living Systems. In Computer Software and Applications Con-
ference (COMPSAC), 2017 IEEE 41st Annual, volume 1, pages 465–472. IEEE,
2017.

[3] Juan C Augusto and Chris D Nugent. The use of temporal reasoning and man-
agement of complex events in smart homes. In Proceedings of the 16th European
Conference on Artificial Intelligence, pages 778–782. IOS Press, 2004.

[4] Genaína Nunes Rodrigues, Vander Alves, Renato Silveira, and Luiz A Laranjeira.
Dependability analysis in the ambient assisted living domain: An exploratory case
study. Journal of Systems and Software, 85(1):112–131, 2012.

[5] Alexandre David, Kim G Larsen, Axel Legay, Marius Mikučionis, and
Danny Bøgsted Poulsen. Uppaal SMC tutorial. International Journal on Soft-
ware Tools for Technology Transfer, 17(4):397–415, 2015.

[6] Yongxiang Bao, Mingsong Chen, Qi Zhu, Tongquan Wei, Frederic Mallet, and
Tingliang Zhou. Quantitative performance evaluation of uncertainty-aware hybrid
AADL designs using statistical model checking. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 36(12):1989–2002, 2017.

[7] Axel Legay, Benoît Delahaye, and Saddek Bensalem. Statistical model checking:
An overview. In International conference on runtime verification, pages 122–135.
Springer, 2010.

[8] Peter H Feiler, Bruce Lewis, Steve Vestal, and Ed Colbert. An overview of
the SAE architecture analysis & design language (AADL) standard: a basis for

161

Bibliography

[1] Ashalatha Kunnappilly, Cristina Seceleanu, and Maria Lindén. Do We Need an
Integrated Framework for Ambient Assisted Living? In Ubiquitous Computing
and Ambient Intelligence: 10th International Conference, UCAmI 2016, San Bar-
tolomé de Tirajana, Gran Canaria, Spain, November 29–December 2, 2016, Part
II 10, pages 52–63. Springer, 2016.

[2] Ashalatha Kunnappilly, Alexandru Sorici, Imad Alex Awada, Irina Mocanu,
Cristina Seceleanu, and Adina Madga Florea. A Novel Integrated Architecture for
Ambient Assisted Living Systems. In Computer Software and Applications Con-
ference (COMPSAC), 2017 IEEE 41st Annual, volume 1, pages 465–472. IEEE,
2017.

[3] Juan C Augusto and Chris D Nugent. The use of temporal reasoning and man-
agement of complex events in smart homes. In Proceedings of the 16th European
Conference on Artificial Intelligence, pages 778–782. IOS Press, 2004.

[4] Genaína Nunes Rodrigues, Vander Alves, Renato Silveira, and Luiz A Laranjeira.
Dependability analysis in the ambient assisted living domain: An exploratory case
study. Journal of Systems and Software, 85(1):112–131, 2012.

[5] Alexandre David, Kim G Larsen, Axel Legay, Marius Mikučionis, and
Danny Bøgsted Poulsen. Uppaal SMC tutorial. International Journal on Soft-
ware Tools for Technology Transfer, 17(4):397–415, 2015.

[6] Yongxiang Bao, Mingsong Chen, Qi Zhu, Tongquan Wei, Frederic Mallet, and
Tingliang Zhou. Quantitative performance evaluation of uncertainty-aware hybrid
AADL designs using statistical model checking. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 36(12):1989–2002, 2017.

[7] Axel Legay, Benoît Delahaye, and Saddek Bensalem. Statistical model checking:
An overview. In International conference on runtime verification, pages 122–135.
Springer, 2010.

[8] Peter H Feiler, Bruce Lewis, Steve Vestal, and Ed Colbert. An overview of
the SAE architecture analysis & design language (AADL) standard: a basis for

161

185

162 Bibliography

model-based architecture-driven embedded systems engineering. In Architecture
Description Languages, pages 3–15. Springer, 2005.

[9] RB Frana, J-P Bodeveix, Mamoun Filali, and J-F Rolland. The AADL behaviour
annex–experiments and roadmap. In Engineering Complex Computer Systems,
2007. 12th IEEE International Conference on, pages 377–382. IEEE, 2007.

[10] Julien Delange and Peter Feiler. Architecture fault modeling with the AADL error-
model annex. In Software Engineering and Advanced Applications (SEAA), 2014
40th EUROMICRO Conference on, pages 361–368. IEEE, 2014.

[11] Model-based engineering with AADL: an introduction to the SAE architecture
analysis & design language.

[12] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in dense real-
time. Information and computation, 104(1):2–34, 1993.

[13] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for real-time
systems. In Logic in Computer Science, 1990. LICS’90, Proceedings., Fifth An-
nual IEEE Symposium, pages 414–425. IEEE, 1990.

[14] Kim G Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. Interna-
tional journal on software tools for technology transfer, 1(1-2):134–152, 1997.

[15] Peter E Bulychev, Alexandre David, Kim G Larsen, Axel Legay, Guangyuan
Li, and Danny Bøgsted Poulsen. Rewrite-Based Statistical Model Checking of
WMTL. RV, 7687:260–275, 2012.

[16] Feng Zhou, Jianxin Roger Jiao, Songlin Chen, and Daqing Zhang. A case-driven
ambient intelligence system for elderly in-home assistance applications. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Re-
views), 41(2):179–189, 2011.

[17] Hamid Medjahed, Dan Istrate, Jerome Boudy, and Bernadette Dorizzi. Human
activities of daily living recognition using fuzzy logic for elderly home monitor-
ing. In 2009 IEEE International Conference on Fuzzy Systems, pages 2001–2006.
IEEE, 2009.

[18] UA651 BP sensor. http://www.andmedical.com.au/
products-service/value-ua-651. Accessed: 2019-03-16.

[19] Fibaro motion sensor. https://manuals.fibaro.com/content/
manuals/en/FGMS-001/FGMS-001-EN-T-v2.0.pdf. Accessed:
2019-03-16.

[20] Fitbit. https://www.fitbit.com/se/home. Accessed: 2019-03-16.

[21] Vibby fall detection sensors. http://www.vitalbase.co.uk. Accessed:
2019-03-16.

[22] CAMI Gateway. https://eclexys.com/wp-content/uploads/
2019/01/Exys9200-SNG-Brochure.pdf. Accessed: 2019-03-16.

162 Bibliography

model-based architecture-driven embedded systems engineering. In Architecture
Description Languages, pages 3–15. Springer, 2005.

[9] RB Frana, J-P Bodeveix, Mamoun Filali, and J-F Rolland. The AADL behaviour
annex–experiments and roadmap. In Engineering Complex Computer Systems,
2007. 12th IEEE International Conference on, pages 377–382. IEEE, 2007.

[10] Julien Delange and Peter Feiler. Architecture fault modeling with the AADL error-
model annex. In Software Engineering and Advanced Applications (SEAA), 2014
40th EUROMICRO Conference on, pages 361–368. IEEE, 2014.

[11] Model-based engineering with AADL: an introduction to the SAE architecture
analysis & design language.

[12] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in dense real-
time. Information and computation, 104(1):2–34, 1993.

[13] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for real-time
systems. In Logic in Computer Science, 1990. LICS’90, Proceedings., Fifth An-
nual IEEE Symposium, pages 414–425. IEEE, 1990.

[14] Kim G Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. Interna-
tional journal on software tools for technology transfer, 1(1-2):134–152, 1997.

[15] Peter E Bulychev, Alexandre David, Kim G Larsen, Axel Legay, Guangyuan
Li, and Danny Bøgsted Poulsen. Rewrite-Based Statistical Model Checking of
WMTL. RV, 7687:260–275, 2012.

[16] Feng Zhou, Jianxin Roger Jiao, Songlin Chen, and Daqing Zhang. A case-driven
ambient intelligence system for elderly in-home assistance applications. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Re-
views), 41(2):179–189, 2011.

[17] Hamid Medjahed, Dan Istrate, Jerome Boudy, and Bernadette Dorizzi. Human
activities of daily living recognition using fuzzy logic for elderly home monitor-
ing. In 2009 IEEE International Conference on Fuzzy Systems, pages 2001–2006.
IEEE, 2009.

[18] UA651 BP sensor. http://www.andmedical.com.au/
products-service/value-ua-651. Accessed: 2019-03-16.

[19] Fibaro motion sensor. https://manuals.fibaro.com/content/
manuals/en/FGMS-001/FGMS-001-EN-T-v2.0.pdf. Accessed:
2019-03-16.

[20] Fitbit. https://www.fitbit.com/se/home. Accessed: 2019-03-16.

[21] Vibby fall detection sensors. http://www.vitalbase.co.uk. Accessed:
2019-03-16.

[22] CAMI Gateway. https://eclexys.com/wp-content/uploads/
2019/01/Exys9200-SNG-Brochure.pdf. Accessed: 2019-03-16.

186

Bibliography 163

[23] Opentele. https://www.opentelehealth.com. Accessed: 2018-01-15.

[24] Linkwatch. https://www.linkwatch.se. Accessed: 2018-01-15.

[25] Tiago robotic platform. http://tiago.pal-robotics.com. Accessed:
2019-03-16.

[26] Pepper robot. https://www.softbankrobotics.com/emea/en/
pepper. Accessed: 2019-03-16.

[27] Rabbit mq message broker. https://www.rabbitmq.com. Accessed: 2019-
03-16.

[28] OSATE-Open Source AADL Test Environment. http://osate.github.
io/. Accessed: 2018-05-15.

[29] Ruijiao Li, Bowen Lu, and Klaus D McDonald-Maier. Cognitive assisted living
ambient system: A survey. Digital Communications and Networks, 1(4):229–252,
2015.

[30] Parisa Rashidi and Alex Mihailidis. A survey on ambient-assisted living tools for
older adults. IEEE journal of biomedical and health informatics, 17(3):579–590,
2013.

[31] Juan De Paz, Sara Rodríguez, Javier Bajo, Juan Corchado, and Emilio Corchado.
OVACARE: A multi-agent system for assistance and health care. Knowledge-
Based and Intelligent Information and Engineering Systems, pages 318–327,
2010.

[32] David Isern, David Sánchez, and Antonio Moreno. Agents applied in health care:
A review. International journal of medical informatics, 79(3):145–166, 2010.

[33] John Nealon and Antonio Moreno. Agent-based applications in health care. Ap-
plications of software agent technology in the health care domain, pages 3–18,
2003.

[34] Mobyen Uddin Ahmed, Mats Björkman, and Maria Lindén. A generic system-
level framework for self-serve health monitoring system through internet of things
(iot). Studies in health technology and informatics, 211:305–307, 2015.

[35] Abdur Forkan, Ibrahim Khalil, and Zahir Tari. CoCaMAAL: A cloud-oriented
context-aware middleware in ambient assisted living. Future Generation Com-
puter Systems, 35:114–127, 2014.

[36] Angelika Dohr, Robert Modre-Osprian, Mario Drobics, Dieter Hayn, and Günter
Schreier. The Internet of Things for Ambient Assisted Living. ITNG, 10:804–809,
2010.

[37] Dante I Tapia, Sara Rodrıguez, and Juan M Corchado. A distributed ambient
intelligence based multi-agent system for Alzheimer health care. In Pervasive
Computing, pages 181–199. Springer, 2009.

Bibliography 163

[23] Opentele. https://www.opentelehealth.com. Accessed: 2018-01-15.

[24] Linkwatch. https://www.linkwatch.se. Accessed: 2018-01-15.

[25] Tiago robotic platform. http://tiago.pal-robotics.com. Accessed:
2019-03-16.

[26] Pepper robot. https://www.softbankrobotics.com/emea/en/
pepper. Accessed: 2019-03-16.

[27] Rabbit mq message broker. https://www.rabbitmq.com. Accessed: 2019-
03-16.

[28] OSATE-Open Source AADL Test Environment. http://osate.github.
io/. Accessed: 2018-05-15.

[29] Ruijiao Li, Bowen Lu, and Klaus D McDonald-Maier. Cognitive assisted living
ambient system: A survey. Digital Communications and Networks, 1(4):229–252,
2015.

[30] Parisa Rashidi and Alex Mihailidis. A survey on ambient-assisted living tools for
older adults. IEEE journal of biomedical and health informatics, 17(3):579–590,
2013.

[31] Juan De Paz, Sara Rodríguez, Javier Bajo, Juan Corchado, and Emilio Corchado.
OVACARE: A multi-agent system for assistance and health care. Knowledge-
Based and Intelligent Information and Engineering Systems, pages 318–327,
2010.

[32] David Isern, David Sánchez, and Antonio Moreno. Agents applied in health care:
A review. International journal of medical informatics, 79(3):145–166, 2010.

[33] John Nealon and Antonio Moreno. Agent-based applications in health care. Ap-
plications of software agent technology in the health care domain, pages 3–18,
2003.

[34] Mobyen Uddin Ahmed, Mats Björkman, and Maria Lindén. A generic system-
level framework for self-serve health monitoring system through internet of things
(iot). Studies in health technology and informatics, 211:305–307, 2015.

[35] Abdur Forkan, Ibrahim Khalil, and Zahir Tari. CoCaMAAL: A cloud-oriented
context-aware middleware in ambient assisted living. Future Generation Com-
puter Systems, 35:114–127, 2014.

[36] Angelika Dohr, Robert Modre-Osprian, Mario Drobics, Dieter Hayn, and Günter
Schreier. The Internet of Things for Ambient Assisted Living. ITNG, 10:804–809,
2010.

[37] Dante I Tapia, Sara Rodrıguez, and Juan M Corchado. A distributed ambient
intelligence based multi-agent system for Alzheimer health care. In Pervasive
Computing, pages 181–199. Springer, 2009.

187

[38] Giancarlo Fortino, Antonio Guerrieri, and Wilma Russo. Agent-oriented smart
objects development. In Computer Supported Cooperative Work in Design
(CSCWD), 2012 IEEE 16th International Conference on, pages 907–912. IEEE,
2012.

[39] Peter Leong and Liming Lu. Multiagent web for the Internet of Things. In In-
formation Science and Applications (ICISA), 2014 International Conference on,
pages 1–4. IEEE, 2014.

[40] Guido Parente, Christopher D Nugent, Xin Hong, Mark P Donnelly, Liming Chen,
and Enrico Vicario. Formal modeling techniques for ambient assisted living. Age-
ing International, 36(2):192–216, 2011.

[41] using temporal logic and model checking in automated recognition of human ac-
tivities for ambient-assisted living.

[42] Yan Liu, Lin Gui, and Yang Liu. MDP-based reliability analysis of an ambient
assisted living system. In International Symposium on Formal Methods, pages
688–702. Springer, 2014.

[43] Loïc Besnard, Thierry Gautier, Paul Le Guernic, Clément Guy, Jean-Pierre Talpin,
Brian Larson, and Etienne Borde. Formal semantics of behavior specifications in
the architecture analysis and design language standard. In Cyber-Physical System
Design from an Architecture Analysis Viewpoint, pages 53–79. Springer, 2017.

[44] Mohamed Elkamel Hamdane, Allaoui Chaoui, and Martin Strecker. From AADL
to timed automaton-A verification approach. International Journal of Software
Engineering and Its Applications, 7(4), 2013.

[45] Andreas Johnsen, Kristina Lundqvist, Paul Pettersson, and Omar Jaradat. Au-
tomated verification of AADL-specifications using UPPAAL. In High-Assurance
Systems Engineering (HASE), 2012 IEEE 14th International Symposium on, pages
130–138. IEEE, 2012.

[46] Harold Bruintjes, Joost-Pieter Katoen, and David Lesens. A statistical approach
for timed reachability in AADL models. In Dependable Systems and Networks
(DSN), 45th Annual IEEE/IFIP International Conference on, pages 81–88. IEEE,
2015.

[38] Giancarlo Fortino, Antonio Guerrieri, and Wilma Russo. Agent-oriented smart
objects development. In Computer Supported Cooperative Work in Design
(CSCWD), 2012 IEEE 16th International Conference on, pages 907–912. IEEE,
2012.

[39] Peter Leong and Liming Lu. Multiagent web for the Internet of Things. In In-
formation Science and Applications (ICISA), 2014 International Conference on,
pages 1–4. IEEE, 2014.

[40] Guido Parente, Christopher D Nugent, Xin Hong, Mark P Donnelly, Liming Chen,
and Enrico Vicario. Formal modeling techniques for ambient assisted living. Age-
ing International, 36(2):192–216, 2011.

[41] using temporal logic and model checking in automated recognition of human ac-
tivities for ambient-assisted living.

[42] Yan Liu, Lin Gui, and Yang Liu. MDP-based reliability analysis of an ambient
assisted living system. In International Symposium on Formal Methods, pages
688–702. Springer, 2014.

[43] Loïc Besnard, Thierry Gautier, Paul Le Guernic, Clément Guy, Jean-Pierre Talpin,
Brian Larson, and Etienne Borde. Formal semantics of behavior specifications in
the architecture analysis and design language standard. In Cyber-Physical System
Design from an Architecture Analysis Viewpoint, pages 53–79. Springer, 2017.

[44] Mohamed Elkamel Hamdane, Allaoui Chaoui, and Martin Strecker. From AADL
to timed automaton-A verification approach. International Journal of Software
Engineering and Its Applications, 7(4), 2013.

[45] Andreas Johnsen, Kristina Lundqvist, Paul Pettersson, and Omar Jaradat. Au-
tomated verification of AADL-specifications using UPPAAL. In High-Assurance
Systems Engineering (HASE), 2012 IEEE 14th International Symposium on, pages
130–138. IEEE, 2012.

[46] Harold Bruintjes, Joost-Pieter Katoen, and David Lesens. A statistical approach
for timed reachability in AADL models. In Dependable Systems and Networks
(DSN), 45th Annual IEEE/IFIP International Conference on, pages 81–88. IEEE,
2015.

188

DPaper D DPaper D

189

190

Chapter 11

Paper D:
Architecture Modelling and
Formal Analysis of
Intelligent Multi-Agent
Systems

Ashalatha Kunnappilly, Simin Cai, Raluca Marinescu, Cristina Seceleanu.
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches
to Software Engineering (ENASE), May, 2019

165

Chapter 11

Paper D:
Architecture Modelling and
Formal Analysis of
Intelligent Multi-Agent
Systems

Ashalatha Kunnappilly, Simin Cai, Raluca Marinescu, Cristina Seceleanu.
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches
to Software Engineering (ENASE), May, 2019

165

191

Abstract

Modern cyber-physical systems usually assume a certain degree of autonomy. Such sys-
tems, like Ambient Assisted Living systems aimed at assisting elderly people in their
daily life, often need to perform safety-critical functions, for instance, fall detection,
health deviation monitoring, communication to caregivers, etc. In many cases, the sys-
tem users have distributed locations, as well as different needs that need to be serviced
intelligently and simultaneously. These features call for intelligent, adaptive, scalable
and fault-tolerant system design solutions, which are well embodied by multi-agent
architectures. Analyzing such complex architectures at design phase, to verify if an ab-
straction of the system satisfies all the critical requirements is beneficial. In this paper,
we start from an agent-based architecture for ambient assisted living systems, inspired
from the literature, which we model in the popular Architecture Analysis and Design
Language. Since the latter lacks the ability to specify autonomous agent behaviours,
which are often intelligent, non deterministic or probabilistic, we extend the architec-
tural language with a sub-language called Agent Annex, which we formally encode as
a Stochastic Transition System. This contribution allows us to specify behaviours of
agents involved in agent-based architectures of cyber-physical systems, which we show
how to exhaustively verify with the state-of-art model checker PRISM. As a final step,
we apply our framework on a distributed ambient assisted living system, whose critical
requirements we verify with PRISM.

Abstract

Modern cyber-physical systems usually assume a certain degree of autonomy. Such sys-
tems, like Ambient Assisted Living systems aimed at assisting elderly people in their
daily life, often need to perform safety-critical functions, for instance, fall detection,
health deviation monitoring, communication to caregivers, etc. In many cases, the sys-
tem users have distributed locations, as well as different needs that need to be serviced
intelligently and simultaneously. These features call for intelligent, adaptive, scalable
and fault-tolerant system design solutions, which are well embodied by multi-agent
architectures. Analyzing such complex architectures at design phase, to verify if an ab-
straction of the system satisfies all the critical requirements is beneficial. In this paper,
we start from an agent-based architecture for ambient assisted living systems, inspired
from the literature, which we model in the popular Architecture Analysis and Design
Language. Since the latter lacks the ability to specify autonomous agent behaviours,
which are often intelligent, non deterministic or probabilistic, we extend the architec-
tural language with a sub-language called Agent Annex, which we formally encode as
a Stochastic Transition System. This contribution allows us to specify behaviours of
agents involved in agent-based architectures of cyber-physical systems, which we show
how to exhaustively verify with the state-of-art model checker PRISM. As a final step,
we apply our framework on a distributed ambient assisted living system, whose critical
requirements we verify with PRISM.

192

11.1 Introduction 167

11.1 Introduction

Equipped with various sensors, actuators and computation units, modern cyber-physical
systems have evolved into increasingly intelligent, autonomous and adaptive systems.
A representative category is Ambient Assisted Living (AAL) systems, which monitor
the conditions of elderly people and their surroundings, in order to provide them with
intelligent and timely assistance, autonomously. Due to such characteristics, as well as
the possibly distributed locations of users and service providers, the multi-agent archi-
tecture is deemed appropriate for designing multi-user AAL systems. In a multi-agent
system (MAS), each agent is an autonomous entity that can perform actions individually
and intelligently, while adapting to the environment. For instance, a pulse agent may
monitor an elderly user’s pulse, and decide whether an alert should be sent to the care-
giver. Multiple agents can be distributed geographically, and cooperate by exchanging
network messages to achieve complex tasks, such as a proper reaction to the fall caused
due to a sudden drop of pulse, via the cooperation of a pulse agent and a fall-detection
agent. In many cases, such system behaviours are often probabilistic due to random
component failures, communication failures, arbitrary service connection requests, user
interactions, etc.

In order to guarantee the system’s safety and achieve the desired quality of service
(QoS), it is beneficial to ensure the correctness of the AAL system design, with respect
to the real-time, fault-tolerant and probabilistic behaviors of agents, both individually
and in cooperation. To achieve this, specification and rigorous analysis of such behav-
iors are necessary, which should go hand-in-hand with the specification and analysis of
the entire architecture in which the agents are integrated. Existing techniques either do
not support the integrated specification and analysis of architecture and agent behaviors,
or lack reasoning capabilities of combined real-time, fault-tolerant and probabilistic be-
haviors that are essential to many AAL systems [1, 2].

In this paper, based on existing solutions [3], we propose a MAS architecture for
AAL, comprising simple reflex agents based on if-then-else rules, and complex intelli-
gent agents with self-learning based on Reinforcement Learning (RL) [4]. As our basis
for specification, we choose a commonly-used architecture specification language, that
is, the Architecture Analysis and Design Language (AADL) [5]. We use the original
AADL constructs to specify the architecture including the agent components, their in-
terfaces and communication. However, since the core AADL language lacks the ability
to specify emergent agent behaviours, which may be both probabilistic and non de-
terministic, we propose an annex extension to the core AADL, referred to as Agent
Annex. Unlike the existing Behaviour Annex specification of AADL [6], usually used
for encoding component behavior, the Agent Annex allows one to describe the com-
bined real-time, fault-tolerant and probabilistic behaviors. We formulate the new annex
by extending the AADL meta model, and define its semantics as a stochastic transition
system. To enable formal verification, we also provide formal semantics to the AADL
architectural model, in terms of Stochastic Transition Systems (STS). We employ the

11.1 Introduction 167

11.1 Introduction

Equipped with various sensors, actuators and computation units, modern cyber-physical
systems have evolved into increasingly intelligent, autonomous and adaptive systems.
A representative category is Ambient Assisted Living (AAL) systems, which monitor
the conditions of elderly people and their surroundings, in order to provide them with
intelligent and timely assistance, autonomously. Due to such characteristics, as well as
the possibly distributed locations of users and service providers, the multi-agent archi-
tecture is deemed appropriate for designing multi-user AAL systems. In a multi-agent
system (MAS), each agent is an autonomous entity that can perform actions individually
and intelligently, while adapting to the environment. For instance, a pulse agent may
monitor an elderly user’s pulse, and decide whether an alert should be sent to the care-
giver. Multiple agents can be distributed geographically, and cooperate by exchanging
network messages to achieve complex tasks, such as a proper reaction to the fall caused
due to a sudden drop of pulse, via the cooperation of a pulse agent and a fall-detection
agent. In many cases, such system behaviours are often probabilistic due to random
component failures, communication failures, arbitrary service connection requests, user
interactions, etc.

In order to guarantee the system’s safety and achieve the desired quality of service
(QoS), it is beneficial to ensure the correctness of the AAL system design, with respect
to the real-time, fault-tolerant and probabilistic behaviors of agents, both individually
and in cooperation. To achieve this, specification and rigorous analysis of such behav-
iors are necessary, which should go hand-in-hand with the specification and analysis of
the entire architecture in which the agents are integrated. Existing techniques either do
not support the integrated specification and analysis of architecture and agent behaviors,
or lack reasoning capabilities of combined real-time, fault-tolerant and probabilistic be-
haviors that are essential to many AAL systems [1, 2].

In this paper, based on existing solutions [3], we propose a MAS architecture for
AAL, comprising simple reflex agents based on if-then-else rules, and complex intelli-
gent agents with self-learning based on Reinforcement Learning (RL) [4]. As our basis
for specification, we choose a commonly-used architecture specification language, that
is, the Architecture Analysis and Design Language (AADL) [5]. We use the original
AADL constructs to specify the architecture including the agent components, their in-
terfaces and communication. However, since the core AADL language lacks the ability
to specify emergent agent behaviours, which may be both probabilistic and non de-
terministic, we propose an annex extension to the core AADL, referred to as Agent
Annex. Unlike the existing Behaviour Annex specification of AADL [6], usually used
for encoding component behavior, the Agent Annex allows one to describe the com-
bined real-time, fault-tolerant and probabilistic behaviors. We formulate the new annex
by extending the AADL meta model, and define its semantics as a stochastic transition
system. To enable formal verification, we also provide formal semantics to the AADL
architectural model, in terms of Stochastic Transition Systems (STS). We employ the

193

168 Paper D

state-of-the-art probabilistic model checker, PRISM [7], to formally verify a set of cru-
cial functional and quality-of-service properties of an illustrative AAL use case.

The rest of the paper is organized as follows. Section 11.2 overviews the basics
of AADL, STS and PRISM. In Section 11.3, we describe our AAL system architec-
ture based on MAS. We present the AADL modeling constructs and the Agent Annex
extension in Section 11.4. Section 11.5 describes the formal encoding of the AADL
model, and in Section 11.6, we present the verification results applying the PRISM
model-checker on a representative AAL system. Related work is described in Section
11.7. Some discussion points are presented in Section 11.8 and conclusions and future
work in Section 11.9.

11.2 Preliminaries
In this section, we give an overview of AADL, STS and PRISM, in Sections 11.2.1,
11.2.2 and 11.2.3, respectively.

11.2.1 Architecture Analysis and Design Language
The Architecture Analysis and Design Language (AADL) [5] is a textual and graphi-
cal language for modeling and analyzing a real-time system’s hardware and software
architecture as hierarchies of components at various abstraction levels.

AADL component categories like Application Software, Execution Platform and
System are used to represent the run-time architecture of the system, whereas a more
generalized representation is also possible by specifying it as abstract. A component
in AADL can be defined by its type and implementation; the first defines the interface
of the component and its externally-observable attributes, whereas the second defines
its internal structure. AADL allows possible component interactions via ports/features,
shared data, subprograms, and parameter connections, whereas a communication pro-
tocol over a network connection is modeled by a bus. The components can also be
associated with various properties, like period, execution time, and dispatch protocol.
The dispatch protocol specifies if the component trigger is periodic or aperiodic. We
also employ various user-defined properties for representing the probabilistic distribu-
tion of an aperiodic event and the rate at which a component recovers from the failure.
All the AADL declarations are declared in packages and are therefore accessible to
other packages, or they can be declared directly in an AADL specification and not be
accessible to packages.

The AADL core language is designed to be extensible and can be extended via user-
defined properties and annex sub-languages. User-defined properties are relatively sim-
pler extensions, when compared to sub-languages, and can be associated with modeling
elements as simple values, for instance, integers or strings. However, sub-languages
allow more complex structures to be added to an AADL model. A sub-language can

168 Paper D

state-of-the-art probabilistic model checker, PRISM [7], to formally verify a set of cru-
cial functional and quality-of-service properties of an illustrative AAL use case.

The rest of the paper is organized as follows. Section 11.2 overviews the basics
of AADL, STS and PRISM. In Section 11.3, we describe our AAL system architec-
ture based on MAS. We present the AADL modeling constructs and the Agent Annex
extension in Section 11.4. Section 11.5 describes the formal encoding of the AADL
model, and in Section 11.6, we present the verification results applying the PRISM
model-checker on a representative AAL system. Related work is described in Section
11.7. Some discussion points are presented in Section 11.8 and conclusions and future
work in Section 11.9.

11.2 Preliminaries
In this section, we give an overview of AADL, STS and PRISM, in Sections 11.2.1,
11.2.2 and 11.2.3, respectively.

11.2.1 Architecture Analysis and Design Language
The Architecture Analysis and Design Language (AADL) [5] is a textual and graphi-
cal language for modeling and analyzing a real-time system’s hardware and software
architecture as hierarchies of components at various abstraction levels.

AADL component categories like Application Software, Execution Platform and
System are used to represent the run-time architecture of the system, whereas a more
generalized representation is also possible by specifying it as abstract. A component
in AADL can be defined by its type and implementation; the first defines the interface
of the component and its externally-observable attributes, whereas the second defines
its internal structure. AADL allows possible component interactions via ports/features,
shared data, subprograms, and parameter connections, whereas a communication pro-
tocol over a network connection is modeled by a bus. The components can also be
associated with various properties, like period, execution time, and dispatch protocol.
The dispatch protocol specifies if the component trigger is periodic or aperiodic. We
also employ various user-defined properties for representing the probabilistic distribu-
tion of an aperiodic event and the rate at which a component recovers from the failure.
All the AADL declarations are declared in packages and are therefore accessible to
other packages, or they can be declared directly in an AADL specification and not be
accessible to packages.

The AADL core language is designed to be extensible and can be extended via user-
defined properties and annex sub-languages. User-defined properties are relatively sim-
pler extensions, when compared to sub-languages, and can be associated with modeling
elements as simple values, for instance, integers or strings. However, sub-languages
allow more complex structures to be added to an AADL model. A sub-language can

194

11.2 Preliminaries 169

be standardized and published as an AADL annex. Several such annexes have been
defined, for example, the behavior annex to model the component’s behaviour, and the
error annex for modeling the error behaviour of the system. Annex sub-languages are
included into AADL specifications as annex libraries or annex subclauses. An annex
library is used to define classifiers defined in an anonymous namespace, or in a public
or private part of a package. Annex subclauses are inserted into component types and
component implementations and can reference the classifiers declared in the annex li-
brary. In AADL, annexes are considered to be separate from the core AADL, i.e., if we
remove all the annex libraries, subclauses, and annex-related property associations, the
resulting model is a valid core AADL model. For further details, the reader can refer to
the work [5].

11.2.2 Stochastic Transition Systems
Stochastic transition systems (STS) [8] are transition systems that support non determin-
ism, and transitions with unspecified delay distributions, providing concise and compo-
sitional means to represent systems in terms of probability, waiting-time distributions,
non determinism, and fairness.

A stochastic transition system is defined by a tuple S =< V, Θ, T >, where
V = V l ∪ V g, V l is a finite set of local state variables with finite domain, and V g

is the finite set of global variables of the system. In case a subset of V g is used in a
particular module, i.e., V g ∩ V l 6= ∅, implies that V g also contributes to the state-space
of the module. We denote by s[[v]] the value in state s ∈ S of v ∈ V l (the interpretation
of function [[·]] is extended to terms in the obvious way). Θ is an assertion over V l

denoting the set {s ∈ S | s |= Θ} of initial states, and the assertions over V g. T is a
set of transitions. The following quantities are associated with each transition τ ∈ T :

• An assertion ετ over V l, which specifies the set of states {s ∈ S | s |= ετ} on
which τ is enabled.

• A numbermτ of transition modes, where each transition mode i ∈ {1, . . . ,mτ}
corresponds to a possible outcome of τ . Each transition mode i is specified by
V l: (i) a set of assignments {v′ := fτi,v}v∈V l , where each fτi,v is a term over
V l and fτi : S 7→ S is a function that maps every state s ∈ S to a successor
s′ = fτi (s) such that s′[[v]] = s[[fτi,v]] for all v ∈ V l, and (ii) the probability
pτi ∈ [0, 1] with which mode i is chosen, where

∑mτ
i=1 p

τ
i = 1.

The set of transitions T is partitioned into the set of immediate transitions Ti
and the set of delayed transitions Td. Immediate transitions must be taken as
soon as they are enabled, and a subset of these transitions Tf ⊆ Ti is the set of
fair transitions. In turn, the set of delayed transitions is partitioned into: (i) the
set of transitions with exponential delay distribution Te, where for each τ ∈ Te
there is an associated transition rate γτ > 0, and (ii) the set of transitions with
unspecified delay distributions Tu that are taken with non-zero delay, but the prob-

11.2 Preliminaries 169

be standardized and published as an AADL annex. Several such annexes have been
defined, for example, the behavior annex to model the component’s behaviour, and the
error annex for modeling the error behaviour of the system. Annex sub-languages are
included into AADL specifications as annex libraries or annex subclauses. An annex
library is used to define classifiers defined in an anonymous namespace, or in a public
or private part of a package. Annex subclauses are inserted into component types and
component implementations and can reference the classifiers declared in the annex li-
brary. In AADL, annexes are considered to be separate from the core AADL, i.e., if we
remove all the annex libraries, subclauses, and annex-related property associations, the
resulting model is a valid core AADL model. For further details, the reader can refer to
the work [5].

11.2.2 Stochastic Transition Systems
Stochastic transition systems (STS) [8] are transition systems that support non determin-
ism, and transitions with unspecified delay distributions, providing concise and compo-
sitional means to represent systems in terms of probability, waiting-time distributions,
non determinism, and fairness.

A stochastic transition system is defined by a tuple S =< V, Θ, T >, where
V = V l ∪ V g, V l is a finite set of local state variables with finite domain, and V g

is the finite set of global variables of the system. In case a subset of V g is used in a
particular module, i.e., V g ∩ V l 6= ∅, implies that V g also contributes to the state-space
of the module. We denote by s[[v]] the value in state s ∈ S of v ∈ V l (the interpretation
of function [[·]] is extended to terms in the obvious way). Θ is an assertion over V l

denoting the set {s ∈ S | s |= Θ} of initial states, and the assertions over V g. T is a
set of transitions. The following quantities are associated with each transition τ ∈ T :

• An assertion ετ over V l, which specifies the set of states {s ∈ S | s |= ετ} on
which τ is enabled.

• A numbermτ of transition modes, where each transition mode i ∈ {1, . . . ,mτ}
corresponds to a possible outcome of τ . Each transition mode i is specified by
V l: (i) a set of assignments {v′ := fτi,v}v∈V l , where each fτi,v is a term over
V l and fτi : S 7→ S is a function that maps every state s ∈ S to a successor
s′ = fτi (s) such that s′[[v]] = s[[fτi,v]] for all v ∈ V l, and (ii) the probability
pτi ∈ [0, 1] with which mode i is chosen, where

∑mτ
i=1 p

τ
i = 1.

The set of transitions T is partitioned into the set of immediate transitions Ti
and the set of delayed transitions Td. Immediate transitions must be taken as
soon as they are enabled, and a subset of these transitions Tf ⊆ Ti is the set of
fair transitions. In turn, the set of delayed transitions is partitioned into: (i) the
set of transitions with exponential delay distribution Te, where for each τ ∈ Te
there is an associated transition rate γτ > 0, and (ii) the set of transitions with
unspecified delay distributions Tu that are taken with non-zero delay, but the prob-

195

170 Paper D

ability distribution of the delay and the possible dependencies between this distribution
and the system’s state or past history are not specified.

Given a state s ∈ S, we indicate by T (s) = {τ ∈ T | s |= ετ} the set of transitions
enabled by s. To ensure that T (s) 6= ∅ for all s ∈ S, an idle transition τidle is added
to every STS defined by ετidle = true, mτidle = 1, pτidle1 = 1, γτidle = 1 and by the
set of assignments {v′ := v}v∈V .

11.2.3 Probabilistic Timed Automata and PRISM
To analyze our multi-agent systems, in this paper we use the PRISM model checker [7].
Among other supported formal notations, PRISM provides symbolic model checking
of systems modeled as networks of Probabilistic Timed Automata (PTA), which are
semantically described by Timed Probabilistic Systems (TPS)[9]. De Alfaro shows that
an STS can be straightforwardly translated into (fair) TPS, yielding the same state space
[8].

In PRISM, a PTA is represented by a module, which is defined as a tuple M =<
V ar,Clock, C >, in which V ar is a set of local finite-valued variables, Clock is a
set of local clock variables that progress with step of 1, and C is a set of commands.
The state of a PTA is the valuation of V ar ∪ Clock. The commands, which define the
transitions of the system, are specified as guarded probabilistic updates of states in the
following form: [a] g → p1 : u1 + ... + pn : un. Here, guard g is a predicate over
the variables that enable the transition. Variables p1, ..., pn are probabilities within the
interval (0,1], whose values sum up to 1. Each ui is an update of the state by assigning
new values to variables, or by resetting clocks. The update of a variable v is specified as
v′ = n, where n is the new value. A command is enabled if the guard of the command
evaluates to true. If multiple commands are enabled, one command is selected non-
deterministically, and one of its updates is executed probabilistically. In the brackets, a
is a labeled action. Commands with same actions are forced to be taken simultaneously.
We can also augment the model with rewards, which are real values associated with
states or transitions. Rewards can be both positive or negative depending on the system
behaviour.

A system is defined as a network of modules via parallel composition: Sys =
M1||...||Mn. A global state is the valuation of all variables of all modules. A module
can both read and write its own local variables, but only has read access to the local
variables of other modules. Synchronized transitions of modules are identified by the
commands with the same labels.

The property specification language of PRISM for PTA is based on Probabilistic
Computation Tree Logic (PCTL) [10]. The model checker can verify whether the prob-
ability of a path property pp is within a bound b, which is specified as: P b [pp]. Here,
b can be any of >= p, > p, <= p or < p, where p is a double within [0,1]. A path
property pp is a formula that evaluates to either true or false for a single path in the
model, in which one can apply the following operators: X (next), U (until), F (eventu-

170 Paper D

ability distribution of the delay and the possible dependencies between this distribution
and the system’s state or past history are not specified.

Given a state s ∈ S, we indicate by T (s) = {τ ∈ T | s |= ετ} the set of transitions
enabled by s. To ensure that T (s) 6= ∅ for all s ∈ S, an idle transition τidle is added
to every STS defined by ετidle = true, mτidle = 1, pτidle1 = 1, γτidle = 1 and by the
set of assignments {v′ := v}v∈V .

11.2.3 Probabilistic Timed Automata and PRISM
To analyze our multi-agent systems, in this paper we use the PRISM model checker [7].
Among other supported formal notations, PRISM provides symbolic model checking
of systems modeled as networks of Probabilistic Timed Automata (PTA), which are
semantically described by Timed Probabilistic Systems (TPS)[9]. De Alfaro shows that
an STS can be straightforwardly translated into (fair) TPS, yielding the same state space
[8].

In PRISM, a PTA is represented by a module, which is defined as a tuple M =<
V ar,Clock, C >, in which V ar is a set of local finite-valued variables, Clock is a
set of local clock variables that progress with step of 1, and C is a set of commands.
The state of a PTA is the valuation of V ar ∪ Clock. The commands, which define the
transitions of the system, are specified as guarded probabilistic updates of states in the
following form: [a] g → p1 : u1 + ... + pn : un. Here, guard g is a predicate over
the variables that enable the transition. Variables p1, ..., pn are probabilities within the
interval (0,1], whose values sum up to 1. Each ui is an update of the state by assigning
new values to variables, or by resetting clocks. The update of a variable v is specified as
v′ = n, where n is the new value. A command is enabled if the guard of the command
evaluates to true. If multiple commands are enabled, one command is selected non-
deterministically, and one of its updates is executed probabilistically. In the brackets, a
is a labeled action. Commands with same actions are forced to be taken simultaneously.
We can also augment the model with rewards, which are real values associated with
states or transitions. Rewards can be both positive or negative depending on the system
behaviour.

A system is defined as a network of modules via parallel composition: Sys =
M1||...||Mn. A global state is the valuation of all variables of all modules. A module
can both read and write its own local variables, but only has read access to the local
variables of other modules. Synchronized transitions of modules are identified by the
commands with the same labels.

The property specification language of PRISM for PTA is based on Probabilistic
Computation Tree Logic (PCTL) [10]. The model checker can verify whether the prob-
ability of a path property pp is within a bound b, which is specified as: P b [pp]. Here,
b can be any of >= p, > p, <= p or < p, where p is a double within [0,1]. A path
property pp is a formula that evaluates to either true or false for a single path in the
model, in which one can apply the following operators: X (next), U (until), F (eventu-

196

11.3 A Multi-Agent System Architecture for AAL 171

ally), G (always), W (weak until), R (release). PRISM can also compute the minimum
and maximum probabilities of a path property, in the form of: Pmin =? [pp], and
Pmax =? [pp], respectively. In order to check a path property for paths that start from
multiple states, filters are used to identify the starting states. For instance, the “forall”
filter returns true if the property is true for all states satisfying the filter.

In the following section, we present a multi-agent system (MAS) architecture for
the AAL domain.

11.3 A Multi-Agent System Architecture for AAL
Our proposed architecture consists of multiple agents, and ensures improved fault-
tolerance, scalability and adaptability, compared to centralized architectures in the do-
main, such as CAMI [11]. The architecture is inspired from similar existing architec-
tures in literature [3]. However, existing solutions usually suffer from additional over-
head encountered during agent synchronization for collective decision-making and data
consistency maintenance. This overhead can sometimes hamper the real-time behavior
of the system. Hence, we investigate how we can use these systems for developing
integrated solutions that ensure a safe trade off between autonomous behavior and con-
sistency overheads. This is challenging since agents are interdependent, and have only
a limited view of the environment. Concretely, the agent-based solution should ensure
a consistent view of the environment, in terms of processed data and events, as well as
an inter-agent communication overhead that should not result in breaching the real-time
system demands. We ensure this by allowing each agent to cater for a particular func-
tionality, respectively; for instance, a health-monitoring agent detects health-parameter
variations and raises a notification to caregiver. However, in order for the agents to
cooperate in real time, each agent maintains the dependencies it can have with other
agents, in a list that can change at run time 1.

The architecture is described briefly in the following, and is shown in Fig. 11.1. It
consists of the following components:

• Agents: In our solution, each agent tackles a particular functionality, in response
to the sensor data, that is, the fire agent deals with detecting fire events from fire
sensors and sends a notification to firefighters, the pulse agent detects the pulse
data variations and sends a notification to the caregiver, the fall agent detects the
user fall and alerts the caregiver, the exercise agent schedules and monitors the
exercise session of the user, etc. These agents can belong to different categories,
ranging from simple reflex agents to complex intelligent agents. In our case,
we use the exercise agent as an example of an intelligent agent with embedded
reinforcement learning (RL) algorithms. This provides an optimized exercise

1This claim is based on the simulation of the AADL model of the architecture for end-to-
end latency according to the process detailed here: https://github.com/ashalatha-0504/Real-time-
behvaiour-of-MAS

11.3 A Multi-Agent System Architecture for AAL 171

ally), G (always), W (weak until), R (release). PRISM can also compute the minimum
and maximum probabilities of a path property, in the form of: Pmin =? [pp], and
Pmax =? [pp], respectively. In order to check a path property for paths that start from
multiple states, filters are used to identify the starting states. For instance, the “forall”
filter returns true if the property is true for all states satisfying the filter.

In the following section, we present a multi-agent system (MAS) architecture for
the AAL domain.

11.3 A Multi-Agent System Architecture for AAL
Our proposed architecture consists of multiple agents, and ensures improved fault-
tolerance, scalability and adaptability, compared to centralized architectures in the do-
main, such as CAMI [11]. The architecture is inspired from similar existing architec-
tures in literature [3]. However, existing solutions usually suffer from additional over-
head encountered during agent synchronization for collective decision-making and data
consistency maintenance. This overhead can sometimes hamper the real-time behavior
of the system. Hence, we investigate how we can use these systems for developing
integrated solutions that ensure a safe trade off between autonomous behavior and con-
sistency overheads. This is challenging since agents are interdependent, and have only
a limited view of the environment. Concretely, the agent-based solution should ensure
a consistent view of the environment, in terms of processed data and events, as well as
an inter-agent communication overhead that should not result in breaching the real-time
system demands. We ensure this by allowing each agent to cater for a particular func-
tionality, respectively; for instance, a health-monitoring agent detects health-parameter
variations and raises a notification to caregiver. However, in order for the agents to
cooperate in real time, each agent maintains the dependencies it can have with other
agents, in a list that can change at run time 1.

The architecture is described briefly in the following, and is shown in Fig. 11.1. It
consists of the following components:

• Agents: In our solution, each agent tackles a particular functionality, in response
to the sensor data, that is, the fire agent deals with detecting fire events from fire
sensors and sends a notification to firefighters, the pulse agent detects the pulse
data variations and sends a notification to the caregiver, the fall agent detects the
user fall and alerts the caregiver, the exercise agent schedules and monitors the
exercise session of the user, etc. These agents can belong to different categories,
ranging from simple reflex agents to complex intelligent agents. In our case,
we use the exercise agent as an example of an intelligent agent with embedded
reinforcement learning (RL) algorithms. This provides an optimized exercise

1This claim is based on the simulation of the AADL model of the architecture for end-to-
end latency according to the process detailed here: https://github.com/ashalatha-0504/Real-time-
behvaiour-of-MAS

197

172 Paper D

Figure 11.1: A MAS Architecture for AAL

session for the user, taking into account his/her health condition, preferences and
exercise trends. All other agents are modelled as reflex agents encoded using
“if-then-else” rules to handle the particular scenario. To be able to cooperate
efficiently in real time (by reducing extra overheads), each agent is equipped
with a list of possible dependencies with other agents. For instance, a fall agent
has a dependency relation with a pulse agent. If a heavy fall occurs, the fall is
first communicated to the caregiver, and then the fall agent synchronizes with
the pulse agent to see if there are any pulse deviations (like a low pulse). If
a low pulse is detected, the fall agent updates its notification to the caregiver
indicating that the fall may be due to a low pulse. Each agent also maintains a
small local database to store the individual data and keep track of the processed
events and the decisions taken. The dependency lists are also maintained in the
local database.

• Tracker: The system has a tracker that keeps the record of the IP addresses of
all the agents in the system. The user’s connections to the agents are established
via the tracker. If the tracker fails at any point in time, the system continues to
function via direct connections between user requests and agents. As shown in
Fig 11.1, we have multiple agents of each category, which can accept requests
from multiple users, arbitrarily, based on availability.

• Cloud Database: We also maintain a large-scale database in the cloud. All the
local databases of the agents eventually synchronize with this cloud database.
The cloud database also maintains the domain information about the user, like
age, disease history, user preferences, etc.

172 Paper D

Figure 11.1: A MAS Architecture for AAL

session for the user, taking into account his/her health condition, preferences and
exercise trends. All other agents are modelled as reflex agents encoded using
“if-then-else” rules to handle the particular scenario. To be able to cooperate
efficiently in real time (by reducing extra overheads), each agent is equipped
with a list of possible dependencies with other agents. For instance, a fall agent
has a dependency relation with a pulse agent. If a heavy fall occurs, the fall is
first communicated to the caregiver, and then the fall agent synchronizes with
the pulse agent to see if there are any pulse deviations (like a low pulse). If
a low pulse is detected, the fall agent updates its notification to the caregiver
indicating that the fall may be due to a low pulse. Each agent also maintains a
small local database to store the individual data and keep track of the processed
events and the decisions taken. The dependency lists are also maintained in the
local database.

• Tracker: The system has a tracker that keeps the record of the IP addresses of
all the agents in the system. The user’s connections to the agents are established
via the tracker. If the tracker fails at any point in time, the system continues to
function via direct connections between user requests and agents. As shown in
Fig 11.1, we have multiple agents of each category, which can accept requests
from multiple users, arbitrarily, based on availability.

• Cloud Database: We also maintain a large-scale database in the cloud. All the
local databases of the agents eventually synchronize with this cloud database.
The cloud database also maintains the domain information about the user, like
age, disease history, user preferences, etc.

198

11.3 A Multi-Agent System Architecture for AAL 173

• End users of the system: There are two types of users, elderly users and the
service providers (caregivers, firefighters, etc.).
We assume the following: (i) Each of the agents can accept a maximum of m
connections, and there is a maximum of n users of the system, (ii) The number
of accepted connections is always smaller than or equal to the number of users,
that is, m ≤ n, (iii) The system components communicate via various network
protocols, (iv) The communication between agents is mediated by the tracker
and is assumed instantaneous; however, if the tracker fails, then the agents can
communicate to each other with an assumed delay.

11.3.1 Reinforcement Learning in Exercise Agents
The interaction between the exercise agent and its environment is modeled as an RL
problem as follows: An exercise agent proposes 2 kind of exercise categories for its
user - Low-intensity, and Medium-intensity, specifically tailored for cardiac patients,
and normal users, respectively. Each category has a set of individual exercises. If a
calendar notification is raised for the start of the exercise session, the exercise agent
becomes operational and communicates with the health agent to see if the user has a
normal pulse range. If the pulse level is normal, the health agent is ready to propose
an optimized exercise session for the user. At any point in time, the exercise agent has
2 choices to make: a) choose an exercise category out of the 2 options, and b) suggest
an exercise duration. The choice is made initially by considering user preferences and
health condition. For simplicity, we assume that both options for exercise sessions
are initially set to 10 minutes. The exercise duration is subdivided into intervals of 5
minutes. In these sub-intervals, the user gets an exercise recommendation of the same
category. If the user quits in between (or not satisfied), the exercise category is re-
adjusted in the next sub-interval. For each of the action that the agent suggests, it gets
a reward back, based on the utility of the suggested action. The utility is calculated
as a weighted sum of the following parameters: (i) user satisfaction for the prescribed
exercise (u_st), based on a user feedback recorded and (ii) session completion, that is,
if the user has completed the prescribed exercise duration (ss_com):

Utility = w1 ∗ (u_st) + w2 ∗ (ss_com), (11.1)

where w1, w2 are the respective weights, where w1>w2. In this case, we assume that
these weights are assigned to 0.6 and 0.4.

u_st =

{
1 if user satisfied
−1 if user not satisfied

(11.2)

ss_com =

{
1 if exercise duration completed
−1 if exercise duration not completed

(11.3)

11.3 A Multi-Agent System Architecture for AAL 173

• End users of the system: There are two types of users, elderly users and the
service providers (caregivers, firefighters, etc.).
We assume the following: (i) Each of the agents can accept a maximum of m
connections, and there is a maximum of n users of the system, (ii) The number
of accepted connections is always smaller than or equal to the number of users,
that is, m ≤ n, (iii) The system components communicate via various network
protocols, (iv) The communication between agents is mediated by the tracker
and is assumed instantaneous; however, if the tracker fails, then the agents can
communicate to each other with an assumed delay.

11.3.1 Reinforcement Learning in Exercise Agents
The interaction between the exercise agent and its environment is modeled as an RL
problem as follows: An exercise agent proposes 2 kind of exercise categories for its
user - Low-intensity, and Medium-intensity, specifically tailored for cardiac patients,
and normal users, respectively. Each category has a set of individual exercises. If a
calendar notification is raised for the start of the exercise session, the exercise agent
becomes operational and communicates with the health agent to see if the user has a
normal pulse range. If the pulse level is normal, the health agent is ready to propose
an optimized exercise session for the user. At any point in time, the exercise agent has
2 choices to make: a) choose an exercise category out of the 2 options, and b) suggest
an exercise duration. The choice is made initially by considering user preferences and
health condition. For simplicity, we assume that both options for exercise sessions
are initially set to 10 minutes. The exercise duration is subdivided into intervals of 5
minutes. In these sub-intervals, the user gets an exercise recommendation of the same
category. If the user quits in between (or not satisfied), the exercise category is re-
adjusted in the next sub-interval. For each of the action that the agent suggests, it gets
a reward back, based on the utility of the suggested action. The utility is calculated
as a weighted sum of the following parameters: (i) user satisfaction for the prescribed
exercise (u_st), based on a user feedback recorded and (ii) session completion, that is,
if the user has completed the prescribed exercise duration (ss_com):

Utility = w1 ∗ (u_st) + w2 ∗ (ss_com), (11.1)

where w1, w2 are the respective weights, where w1>w2. In this case, we assume that
these weights are assigned to 0.6 and 0.4.

u_st =

{
1 if user satisfied
−1 if user not satisfied

(11.2)

ss_com =

{
1 if exercise duration completed
−1 if exercise duration not completed

(11.3)

199

174 Paper D

In this paper, we consider that the reward signal is directly proportional to system
utility, i.e, we get a higher reward for taking an action with higher utility. For this
purpose, the initial system reward is calculated as its utility. After this, we always
add up the successive reward values to determine the cumulative reward. In our case,
we calculate the cumulative reward for each of the chosen exercise category, and the
best action is considered as the one that has the maximum cumulative reward at any
time point. In addition to the reward function, we also take into account the domain
knowledge to make the choice of the exercise. The domain knowledge in our case
consists of the user disease history, and preferences. It should be noted that the initial
choice of exercise is made based on domain knowledge and thereafter, the choice is
made by comparison of the reward variables., i.e., an exercise of a higher reward is
always weighted over the other choice.

11.3.2 Use-Case Scenarios and System Requirements
In this paper, we consider a MAS consisting of a pulse agent, a fire agent, a fall agent,
and an exercise agent, each with its replica, respectively. Each agent can accept a maxi-
mum of 2 connections, while the system is simultaneously utilized by two elderly adults,
say Jim and Mary, living independently in their respective homes. Jim is also a cardiac
patient. We consider the following two scenarios where the AAL system assists its
users.
• Scenario 1: Fall due to a low pulse: The pulse-detection sensor worn by Jim

detects the low pulse, and the wearable fall-sensor detects the fall. The sensors
forward the sensed data to the tracker, which assigns a pulse agent and a fall
agent to user 1 (arbitrarily, based on availability). The agents communicate with
each other and reach the conclusion that the fall is due to a low pulse, and send a
notification alert to the caregiver.

• Scenario 2: Fire and Fall occurring simultaneously: Mary is cooking dinner,
and suddenly she feels dizzy and falls. The cooker is still on, starting a fire at
home. In this case, the sensors alert the tracker of the respective events, and the
former assigns a fire agent and a fall agent to Mary. The agents communicate
with each other, synchronize the simultaneous occurrences of both events, and
alert both the firefighter and the caregiver.

• Scenario 3: Health abnormality during the exercise session: Jim gets a calendar
notification to start the exercise session. The tracker then assigns an exercise
agent to Jim to schedule and monitor the exercise session. The exercise agent
communicates with the health agent and identifies that Jim’s health is normal
and suggests the medium-complexity exercise for cardiac patients based on his
preferences and health condition. In the middle of the exercise session, Jim’s
health agent indicates a sudden increase in pulse and hence the exercise agent
suggests an exercise of lower complexity in the next sub-interval. The following
system requirements are formulated for the above scenarios:

174 Paper D

In this paper, we consider that the reward signal is directly proportional to system
utility, i.e, we get a higher reward for taking an action with higher utility. For this
purpose, the initial system reward is calculated as its utility. After this, we always
add up the successive reward values to determine the cumulative reward. In our case,
we calculate the cumulative reward for each of the chosen exercise category, and the
best action is considered as the one that has the maximum cumulative reward at any
time point. In addition to the reward function, we also take into account the domain
knowledge to make the choice of the exercise. The domain knowledge in our case
consists of the user disease history, and preferences. It should be noted that the initial
choice of exercise is made based on domain knowledge and thereafter, the choice is
made by comparison of the reward variables., i.e., an exercise of a higher reward is
always weighted over the other choice.

11.3.2 Use-Case Scenarios and System Requirements
In this paper, we consider a MAS consisting of a pulse agent, a fire agent, a fall agent,
and an exercise agent, each with its replica, respectively. Each agent can accept a maxi-
mum of 2 connections, while the system is simultaneously utilized by two elderly adults,
say Jim and Mary, living independently in their respective homes. Jim is also a cardiac
patient. We consider the following two scenarios where the AAL system assists its
users.
• Scenario 1: Fall due to a low pulse: The pulse-detection sensor worn by Jim

detects the low pulse, and the wearable fall-sensor detects the fall. The sensors
forward the sensed data to the tracker, which assigns a pulse agent and a fall
agent to user 1 (arbitrarily, based on availability). The agents communicate with
each other and reach the conclusion that the fall is due to a low pulse, and send a
notification alert to the caregiver.

• Scenario 2: Fire and Fall occurring simultaneously: Mary is cooking dinner,
and suddenly she feels dizzy and falls. The cooker is still on, starting a fire at
home. In this case, the sensors alert the tracker of the respective events, and the
former assigns a fire agent and a fall agent to Mary. The agents communicate
with each other, synchronize the simultaneous occurrences of both events, and
alert both the firefighter and the caregiver.

• Scenario 3: Health abnormality during the exercise session: Jim gets a calendar
notification to start the exercise session. The tracker then assigns an exercise
agent to Jim to schedule and monitor the exercise session. The exercise agent
communicates with the health agent and identifies that Jim’s health is normal
and suggests the medium-complexity exercise for cardiac patients based on his
preferences and health condition. In the middle of the exercise session, Jim’s
health agent indicates a sudden increase in pulse and hence the exercise agent
suggests an exercise of lower complexity in the next sub-interval. The following
system requirements are formulated for the above scenarios:

200

11.4 Modeling Multi-Agent Systems in AADL 175

– R1: If a fall occurs due to low pulse, then raise an alert to caregiver indi-
cating fall due to low pulse within 20 s. It relates to Scenario 1.

– R2: If a fire and a fall event occur simultaneously, then raise an alert to both
caregiver and firefighter indicating the issue, within 20 s. This requirement
relates to Scenario 2.

– R3: The exercise session is scheduled only if the health agent indicates a
normal pulse.

– R4: The initially suggested exercise is based on user preferences and
health condition.

– R5: If any health abnormality is detected in the first sub-session of the
exercise, a different set of exercises of lower intensity is prescribed. Re-
quirements R3, R4 and R5 are formulated based on Scenario 3. It should
be noted that R1-R5 are safety-critical requirements.

In addition, the system has quality-of-service (QoS) requirements as follows:

– R6: If the tracker fails, the system continues its functionality.

– R7: If one of the agent fails, its function is carried out by the back-up.

11.4 Modeling Multi-Agent Systems in AADL
In this section, we illustrate the AADL modeling of our MAS, depicted in Fig 11.1.
The components are modeled as follows: the agents and tracker are modeled as abstract
components, which can be extended to suit a hardware or software implementation, at
later stages of design. The sensors are modeled as hardware devices. The databases are
modeled as data components in AADL. All the components have their respective com-
ponent type and implementation defined. The component type defines the component
features and properties. We use bus connections to represent the respective communi-
cation protocols used by the components. The bus access is modeled as a feature of
the component. We restrict to only using properties like dispatch protocol, period, ex-
ecution time and user-defined properties to specify the scope of global variables in the
system. However, based on the requirements, certain user-defined properties can also
be added to specify the rate of occurrence of an aperiodic event or so [1]. In the com-
ponent implementation, we define the sub-components and connections.
Listing 11.1 shows an excerpt of the AADL model of our system with an exercise agent,
and a bus component; the Agent Communication Protocol (ACP) models the commu-
nication protocol between multiple agents. For simplicity, we assume that the com-
munication protocols defined here work via shared variables. The Agent component is
modeled as an abstract component in AADL (Lines 1-8), which can be later refined
towards a particular hardware or software, based on the application. We also show a

11.4 Modeling Multi-Agent Systems in AADL 175

– R1: If a fall occurs due to low pulse, then raise an alert to caregiver indi-
cating fall due to low pulse within 20 s. It relates to Scenario 1.

– R2: If a fire and a fall event occur simultaneously, then raise an alert to both
caregiver and firefighter indicating the issue, within 20 s. This requirement
relates to Scenario 2.

– R3: The exercise session is scheduled only if the health agent indicates a
normal pulse.

– R4: The initially suggested exercise is based on user preferences and
health condition.

– R5: If any health abnormality is detected in the first sub-session of the
exercise, a different set of exercises of lower intensity is prescribed. Re-
quirements R3, R4 and R5 are formulated based on Scenario 3. It should
be noted that R1-R5 are safety-critical requirements.

In addition, the system has quality-of-service (QoS) requirements as follows:

– R6: If the tracker fails, the system continues its functionality.

– R7: If one of the agent fails, its function is carried out by the back-up.

11.4 Modeling Multi-Agent Systems in AADL
In this section, we illustrate the AADL modeling of our MAS, depicted in Fig 11.1.
The components are modeled as follows: the agents and tracker are modeled as abstract
components, which can be extended to suit a hardware or software implementation, at
later stages of design. The sensors are modeled as hardware devices. The databases are
modeled as data components in AADL. All the components have their respective com-
ponent type and implementation defined. The component type defines the component
features and properties. We use bus connections to represent the respective communi-
cation protocols used by the components. The bus access is modeled as a feature of
the component. We restrict to only using properties like dispatch protocol, period, ex-
ecution time and user-defined properties to specify the scope of global variables in the
system. However, based on the requirements, certain user-defined properties can also
be added to specify the rate of occurrence of an aperiodic event or so [1]. In the com-
ponent implementation, we define the sub-components and connections.
Listing 11.1 shows an excerpt of the AADL model of our system with an exercise agent,
and a bus component; the Agent Communication Protocol (ACP) models the commu-
nication protocol between multiple agents. For simplicity, we assume that the com-
munication protocols defined here work via shared variables. The Agent component is
modeled as an abstract component in AADL (Lines 1-8), which can be later refined
towards a particular hardware or software, based on the application. We also show a

201

176 Paper D

system-level representation (Lines 10-26) with its sub-components, user-defined prop-
erties (some of which needs assertion in the respective agent annex, where the property
is applied) and their connections defining the communication.

Listing 11.1: An excerpt of the system modeling in AADL
1 a b s t r a c t Exc_Agent1
2 f e a t u r e s
3 BA1 : r e q u i r e s bus a c c e s s ACP;
4 BA2 : r e q u i r e s bus a c c e s s SA_comm1 ;
5 p r o p e r t i e s
6 D i s p a t c h _ P r o t o c o l => A p e r i o d i c ;
7 Compute_Execu t ion_ t ime => 2ms . . 2 ms ;
8 end Exc_Agent1 ;
9 bus ACP . . . end ACP;

10 sys tem a g e n t _ s y s t e m
11 p r o p e r t i e s
12 m y p r o p e t r i e s : : w1=0 .6 a p p l i e s t o Exc_Agent1 ;
13 m y p r o p e t r i e s : : w2=0 .4 a p p l i e s t o Exc_Agent1 ;
14 m y p r o p e r t i e s : : u t i l i t y => " The v a l u e needs a s s e r t i o n i n annex ! "
15 a p p l i e s t o Exc_Agent1 ;
16 m y p r o p e r t i e s : : r eward =>
17 " The v a l u e needs a s s e r t i o n i n annex ! "
18 a p p l i e s t o Exc_Agent1 ;
19 end a g e n t _ s y s t e m ;
20 sys tem i m p l e m e n t a t i o n a g e n t _ s y s t e m . impl
21 subcomponents
22 A1 : a b s t r a c t Exc_Agent1 ;
23 Agent_Comm_Proto : bus ACP;
24 c o n n e c t i o n s
25 BAsys1 : bus a c c e s s Agent_Comm_Proto <−>A1 . BA1 ;
26 end a g e n t _ s y s t e m . impl ;

After specifying the components and their interfaces, the next step is to specify the
behaviour of the agent system. In the following sub-section, we propose an AADL
annex specification tailored to modeling the autonomous behaviours of multi-agent sys-
tems and their learning algorithms.

11.4.1 Modeling Behaviours of Agents in AADL: Agent
Annex

We present the syntax and semantics of our proposed Agent Annex, the AADL extension
that we introduce in order to encode behaviors of agents.

Metamodel extension of AADL. The structure of our Agent Annex is defined by
extending the AADL metamodel [12], represented as UML2 class diagrams. All classes
in the Agent Annex metamodel are defined as subclasses of class AObject, the root class
of the AADL metamodel. Named objects in the Agent Annex model is a subclass of
the Property Holder class, allowing an object to have a name and associated AADL
properties. Abstract classes in the metamodel are tagged by an “A”. The Agent Model
Annex is formulated by extending the AADL abstract classes, Annex Library and Annex
subclause. All the expressions of the Agent Annex are introduced as subclasses of these

176 Paper D

system-level representation (Lines 10-26) with its sub-components, user-defined prop-
erties (some of which needs assertion in the respective agent annex, where the property
is applied) and their connections defining the communication.

Listing 11.1: An excerpt of the system modeling in AADL
1 a b s t r a c t Exc_Agent1
2 f e a t u r e s
3 BA1 : r e q u i r e s bus a c c e s s ACP ;
4 BA2 : r e q u i r e s bus a c c e s s SA_comm1 ;
5 p r o p e r t i e s
6 D i s p a t c h _ P r o t o c o l => A p e r i o d i c ;
7 Compute_Execu t ion_ t ime => 2ms . . 2 ms ;
8 end Exc_Agent1 ;
9 bus ACP . . . end ACP;

10 sys tem a g e n t _ s y s t e m
11 p r o p e r t i e s
12 m y p r o p e t r i e s : : w1=0 .6 a p p l i e s t o Exc_Agent1 ;
13 m y p r o p e t r i e s : : w2=0 .4 a p p l i e s t o Exc_Agent1 ;
14 m y p r o p e r t i e s : : u t i l i t y => " The v a l u e needs a s s e r t i o n i n annex ! "
15 a p p l i e s t o Exc_Agent1 ;
16 m y p r o p e r t i e s : : r eward =>
17 " The v a l u e needs a s s e r t i o n i n annex ! "
18 a p p l i e s t o Exc_Agent1 ;
19 end a g e n t _ s y s t e m ;
20 sys tem i m p l e m e n t a t i o n a g e n t _ s y s t e m . impl
21 subcomponents
22 A1 : a b s t r a c t Exc_Agent1 ;
23 Agent_Comm_Proto : bus ACP;
24 c o n n e c t i o n s
25 BAsys1 : bus a c c e s s Agent_Comm_Proto <−>A1 . BA1 ;
26 end a g e n t _ s y s t e m . impl ;

After specifying the components and their interfaces, the next step is to specify the
behaviour of the agent system. In the following sub-section, we propose an AADL
annex specification tailored to modeling the autonomous behaviours of multi-agent sys-
tems and their learning algorithms.

11.4.1 Modeling Behaviours of Agents in AADL: Agent
Annex

We present the syntax and semantics of our proposed Agent Annex, the AADL extension
that we introduce in order to encode behaviors of agents.

Metamodel extension of AADL. The structure of our Agent Annex is defined by
extending the AADL metamodel [12], represented as UML2 class diagrams. All classes
in the Agent Annex metamodel are defined as subclasses of class AObject, the root class
of the AADL metamodel. Named objects in the Agent Annex model is a subclass of
the Property Holder class, allowing an object to have a name and associated AADL
properties. Abstract classes in the metamodel are tagged by an “A”. The Agent Model
Annex is formulated by extending the AADL abstract classes, Annex Library and Annex
subclause. All the expressions of the Agent Annex are introduced as subclasses of these

202

11.4 Modeling Multi-Agent Systems in AADL 177

Figure 11.2: Agent Annex Metamodel

abstract classes. The Annex Library is used to declare classifiers of our Agent Annex
in packages. The Annex Library concepts are attached to an AADL model by using the
Annex subclause within a component type or component implementation declaration.
An Annex subclause can refer to items in the Annex Library, and to basic AADL model
elements. The Agent Annex metamodel is presented in Fig. 11.2.

Like all other components, Agent Annex also has a type and an implementation
classifier. The Agent Model feature includes the definitions of annex variables, states
and transitions. Any specific kind of variable, including clocks, can be declared in the
Agent Annex. The state of an Agent Annex can also be associated with an invariant.
The transitions are defined by using guards and updates. The updates support proba-
bilistic choices.

Semantics and Syntax of Agent Annex. The Agent Annex (AA) is formally encoded
as an STS, as follows:

AA = 〈V ar, Init, T t〉 (11.4)

• where: V ar represents the set of local and global variables defined in the AA ;

• Init is the assertion over V ar denoting the set of initial states, formulas and also
specifies association of reward values to a state or transition ;

• Tt is the set of state transitions, defined accordingly as in Section 11.2.3.

An excerpt of the Agent Annex subclause of the exercise agent is defined in Listing
11.2. As shown in Listing 11.2, the annex defines a probabilistic transition system with
7 states - Idle, Op, Comm, Exc_sc, Ex1, Ex2 and Fail, and a clock variable x.

11.4 Modeling Multi-Agent Systems in AADL 177

Figure 11.2: Agent Annex Metamodel

abstract classes. The Annex Library is used to declare classifiers of our Agent Annex
in packages. The Annex Library concepts are attached to an AADL model by using the
Annex subclause within a component type or component implementation declaration.
An Annex subclause can refer to items in the Annex Library, and to basic AADL model
elements. The Agent Annex metamodel is presented in Fig. 11.2.

Like all other components, Agent Annex also has a type and an implementation
classifier. The Agent Model feature includes the definitions of annex variables, states
and transitions. Any specific kind of variable, including clocks, can be declared in the
Agent Annex. The state of an Agent Annex can also be associated with an invariant.
The transitions are defined by using guards and updates. The updates support proba-
bilistic choices.

Semantics and Syntax of Agent Annex. The Agent Annex (AA) is formally encoded
as an STS, as follows:

AA = 〈V ar, Init, T t〉 (11.4)

• where: V ar represents the set of local and global variables defined in the AA ;

• Init is the assertion over V ar denoting the set of initial states, formulas and also
specifies association of reward values to a state or transition ;

• Tt is the set of state transitions, defined accordingly as in Section 11.2.3.

An excerpt of the Agent Annex subclause of the exercise agent is defined in Listing
11.2. As shown in Listing 11.2, the annex defines a probabilistic transition system with
7 states - Idle, Op, Comm, Exc_sc, Ex1, Ex2 and Fail, and a clock variable x.

203

178 Paper D

Idle represents the initial state. It also defines a probabilistic transition from state Idle.
The transition is enabled aperiodically based on the calendar schedule for exercise and
it has a probability of 0.999 to reach the state Op, and of 0.001 to reach the state Fail.
Lines 11-21 define the other transitions specific to exercise agent. For instance, Lines
11-13 define the transitions for initiating communication with the user’s pulse agent. If
the agent reaches the Comm state, it will initiate communication with the pulse agent
and the exercise session starts only if the user pulse is normal. Lines 16-23 illustrate the
exercise recommendation based on RL. Upon reaching the Exc_sc state initially, an
exercise recommendation is made to the user based on the user preferences and disease
history. The exercise duration is 10 min split in 2 intervals of 5 min each. Upon an
initial recommendation (say category 1), the agent moves to the state Exc1 (Lines 14-
16). The agent stays in this state until the completion of split duration of 5 min or until
the user has decided to quit the exercise session. If the exercise split interval is less
than 2 and greater than 0 (assuming the duration is 10 min), the exercise schedule has to
continue and in the next split interval the agent recommends the action with the highest
reward (Lines 20-21). The associated variables and their assertions are defined in the
variables section Lines 22-30. Lines 28-30 indicates that the sys_rew1 is associated
with the state Exc1 depending on user satisfaction or session completion and also with
the transition r1 defined by lines 17-19. Similarly, there is sys_rew2 calculated for
exercise 2, however due to space constraints, we do not show transitions for exercise
category 2.

Listing 11.2: An example of Agent Model Annex Subclause attached to Exer-
cise Agent

1 sys tem i m p l e m e n t a t i o n exc . a g e n t
2 subcomponents
3 e x e r c i s e _ s e n s o r : d e v i c e e x c _ s e n s o r ;
4 annex Agent_Model {∗∗
5 s t a t e s
6 I d l e , Op , Comm, Exc_sc , Exc1 , Exc2 , F a i l ;
7 I d l e : i n i t i a l s t a t e ;
8 t r a n s i t i o n s
9 [] s t a t e = I d l e & c a l _ e x c =1−>0.999:

10 (s t a t e ’= Op & x ’ = 0) + 0 . 0 0 1 : (s t a t e ’= F a i l) ;
11 [] s t a t e =Op & x= exe−> s t a t e ’= Comm & x ’ = 0 ;
12 [] s t a t e = Comm & h _ s t a t = 1 −> s t a t e ’
13 = Exc_sch & x ’ = 0 ;
14 [] s t a t e = Exc_sch & u_pre =1 & d _ h i s =0 &
15 e x c _ s p l i t =0 −> (s t a t e ’= Exc1) & (exc_rec ’ = 1) &
16 & (e x c _ s p l i t ’ = 2) & (x ’ = 0) ;
17 [r1] s t a t e = Exc1 & (x = 5 | u _ q u i t =1) & h _ s t a t =1
18 & e x c _ s p l i t < 2 −> (s3 ’ = 5) & (e x c _ s p l i t ’=
19 e x c _ s p l i t +1) & (x ’ = 0) ;
20 [] s t a t e =Exc_sch & e x c _ s p l i t <2 & e x c _ s p l i t >0
21 &sys_rew1 > (sys_rew2) −> (s t a t e ’= Exc1) ;
22 v a r i a b l e s
23 boo l c a l _ e x c ; boo l u _ q u i t ; boo l ss_com ;
24 i n t e x c _ r e c ; c l o c k x ;
25 f o r m u l a u t i l i t y 1 = w1∗(u _ s t)+w2∗(ss_com) ;

178 Paper D

Idle represents the initial state. It also defines a probabilistic transition from state Idle.
The transition is enabled aperiodically based on the calendar schedule for exercise and
it has a probability of 0.999 to reach the state Op, and of 0.001 to reach the state Fail.
Lines 11-21 define the other transitions specific to exercise agent. For instance, Lines
11-13 define the transitions for initiating communication with the user’s pulse agent. If
the agent reaches the Comm state, it will initiate communication with the pulse agent
and the exercise session starts only if the user pulse is normal. Lines 16-23 illustrate the
exercise recommendation based on RL. Upon reaching the Exc_sc state initially, an
exercise recommendation is made to the user based on the user preferences and disease
history. The exercise duration is 10 min split in 2 intervals of 5 min each. Upon an
initial recommendation (say category 1), the agent moves to the state Exc1 (Lines 14-
16). The agent stays in this state until the completion of split duration of 5 min or until
the user has decided to quit the exercise session. If the exercise split interval is less
than 2 and greater than 0 (assuming the duration is 10 min), the exercise schedule has to
continue and in the next split interval the agent recommends the action with the highest
reward (Lines 20-21). The associated variables and their assertions are defined in the
variables section Lines 22-30. Lines 28-30 indicates that the sys_rew1 is associated
with the state Exc1 depending on user satisfaction or session completion and also with
the transition r1 defined by lines 17-19. Similarly, there is sys_rew2 calculated for
exercise 2, however due to space constraints, we do not show transitions for exercise
category 2.

Listing 11.2: An example of Agent Model Annex Subclause attached to Exer-
cise Agent

1 sys tem i m p l e m e n t a t i o n exc . a g e n t
2 subcomponents
3 e x e r c i s e _ s e n s o r : d e v i c e e x c _ s e n s o r ;
4 annex Agent_Model {∗∗
5 s t a t e s
6 I d l e , Op , Comm, Exc_sc , Exc1 , Exc2 , F a i l ;
7 I d l e : i n i t i a l s t a t e ;
8 t r a n s i t i o n s
9 [] s t a t e = I d l e & c a l _ e x c =1−>0.999:

10 (s t a t e ’= Op & x ’ = 0) + 0 . 0 0 1 : (s t a t e ’= F a i l) ;
11 [] s t a t e =Op & x= exe−> s t a t e ’= Comm & x ’ = 0 ;
12 [] s t a t e = Comm & h _ s t a t = 1 −> s t a t e ’
13 = Exc_sch & x ’ = 0 ;
14 [] s t a t e = Exc_sch & u_pre =1 & d _ h i s =0 &
15 e x c _ s p l i t =0 −> (s t a t e ’= Exc1) & (exc_rec ’ = 1) &
16 & (e x c _ s p l i t ’ = 2) & (x ’ = 0) ;
17 [r1] s t a t e = Exc1 & (x = 5 | u _ q u i t =1) & h _ s t a t =1
18 & e x c _ s p l i t < 2 −> (s3 ’ = 5) & (e x c _ s p l i t ’=
19 e x c _ s p l i t +1) & (x ’ = 0) ;
20 [] s t a t e =Exc_sch & e x c _ s p l i t <2 & e x c _ s p l i t >0
21 &sys_rew1 > (sys_rew2) −> (s t a t e ’= Exc1) ;
22 v a r i a b l e s
23 boo l c a l _ e x c ; boo l u _ q u i t ; b oo l ss_com ;
24 i n t e x c _ r e c ; c l o c k x ;
25 f o r m u l a u t i l i t y 1 = w1∗(u _ s t)+w2∗(ss_com) ;

204

11.5 Formal Encoding of MAS 179

26 f o r m u l a sys_rew1 = u t i l i t y 1 ;
27 f o r m u l a sys_rew1 = sys_rew1 + u t i l i t y 1 ;
28 r e w a r d _ a s s s t a t e =Exc1 & (u _ s a t = 0 | u _ s a t =1) &
29 (ss_com = 1 | ss_com =0) : sys_rew1 ;
30 r e w a r d _ a s s [r1] t r u e : sys_rew1 ; ∗∗};
31 end Exc . a g e n t ;

In the following section, we define the syntax and semantic encoding of a complete
AADL component, consisting of its interface and agent annex, and discuss its semantic
mapping to an STS.

11.5 Formal Encoding of MAS
The first step of encoding our multi-agent architecture formally is to assign formal se-
mantics to the specific AADL components that we utilize for modeling our system. An
AADL component employed in this paper is defined by the following tuple:

AADLComp = 〈Comptype, Compimp, AA〉, (11.5)

where Comptype is the component type, Compimp represents the component implemen-
tation, and AA, the agent annex specification 2.

• Comptype is in turn defined as a tuple: Comptype = 〈Features, Prop〉, where:

– Featuresmodel the bus access that abstracts the communication protocol
utilized by the system.

– Prop lists the associated properties of the component, like Deployment,
Communication, T iming, Thread-related properties, etc. In this
work, we only consider a subset of T iming and Thread-related
properties, as follows: Prop = {T p, T e, Dispatch protocol}, where
T p and T e represent the period and execution-time of the component,
respectively, T p, T e ∈ T iming properties, Dispatch protocol ∈
{P,AP}, where P and AP represents periodic activation and aperiodic
activation, respectively.

• Compimp is defined as Compimp = 〈SC,Con〉, where:

– SC represents the sub-components of the system,

– Con represents the set of connections. The function F con : Con →
Features assigns Features to Con.

• Agent Annex AA follows the semantics defined in Section 11.4.1.

2Although Agent Annex is specifically tailored to represent agent behaviours, it can also specify
the behaviours of other components, like the standard Behaviour Annex.

11.5 Formal Encoding of MAS 179

26 f o r m u l a sys_rew1 = u t i l i t y 1 ;
27 f o r m u l a sys_rew1 = sys_rew1 + u t i l i t y 1 ;
28 r e w a r d _ a s s s t a t e =Exc1 & (u _ s a t = 0 | u _ s a t =1) &
29 (ss_com = 1 | ss_com =0) : sys_rew1 ;
30 r e w a r d _ a s s [r1] t r u e : sys_rew1 ; ∗∗};
31 end Exc . a g e n t ;

In the following section, we define the syntax and semantic encoding of a complete
AADL component, consisting of its interface and agent annex, and discuss its semantic
mapping to an STS.

11.5 Formal Encoding of MAS
The first step of encoding our multi-agent architecture formally is to assign formal se-
mantics to the specific AADL components that we utilize for modeling our system. An
AADL component employed in this paper is defined by the following tuple:

AADLComp = 〈Comptype, Compimp, AA〉, (11.5)

where Comptype is the component type, Compimp represents the component implemen-
tation, and AA, the agent annex specification 2.

• Comptype is in turn defined as a tuple: Comptype = 〈Features, Prop〉, where:

– Featuresmodel the bus access that abstracts the communication protocol
utilized by the system.

– Prop lists the associated properties of the component, like Deployment,
Communication, T iming, Thread-related properties, etc. In this
work, we only consider a subset of T iming and Thread-related
properties, as follows: Prop = {T p, T e, Dispatch protocol}, where
T p and T e represent the period and execution-time of the component,
respectively, T p, T e ∈ T iming properties, Dispatch protocol ∈
{P,AP}, where P and AP represents periodic activation and aperiodic
activation, respectively.

• Compimp is defined as Compimp = 〈SC,Con〉, where:

– SC represents the sub-components of the system,

– Con represents the set of connections. The function F con : Con →
Features assigns Features to Con.

• Agent Annex AA follows the semantics defined in Section 11.4.1.

2Although Agent Annex is specifically tailored to represent agent behaviours, it can also specify
the behaviours of other components, like the standard Behaviour Annex.

205

180 Paper D

Table 11.1 Encoding of AADL as STS.

AADL STS
〈Comptype, Compimp, AA〉 STS

T p Invariant+Gaurd
T e Invariant+Guard
Bus V ariable
Data V ariable

Sub− components STS
AA states V ariables

AA transitions Transitions
AA variables V ariables
System ||ni=0STS

Definition 3. The AADL component defined by Equation (2) is formally encoded as
an STS. The MAS architecture is represented as a parallel composition of all the STS
modules: MAS = ||ni=0STSmodules i, where n is the number of AADL components
of the system, excluding data components and bus components, if defined in the system
(as variables in the AADL component using them). The STS modules elements are as
follows:

• V is the set of states of AA, defined by the values of all variables in AA (assum-
ing that all the required variables including data/events, communication, and
output variables have a local copy maintained in the corresponding AA of the
component), and the reward variables if needed to specify the RL behaviour. The
clock variables values are given by the component’s period and execution-time
properties of Comptype definition.

• Θ denotes the initial states encoded as an assertion over V .

• T represents the set of transitions defined in AA.

The formal encoding is tabulated in Table 11.1. We now present an example of the
above formal encoding, by applying it on a fire agent of our use case. The fire agent is
formally encoded as an STS module, where:

• V : {(s1 = 0, fire = 0, fire_alarm = 0, x = 0), (s1 = 0, fire =
0, fire_alarm = 0, x = 1), (s1 = 1, fire = 1, fire_alarm = 1, x =
0), (s1 = 1, fire = 1, fire_alarm = 1, x = 1), (s1 = 1, fire =
1, fire_alarm = 1, x = 2), (s1 = 2, fire = 1, fire_alarm = 0, x = 0)}

• θ : s |= (s1 = 0 ∧ fire = 0 ∧ fire_alarm = 0 ∧ x = 0)

180 Paper D

Table 11.1 Encoding of AADL as STS.

AADL STS
〈Comptype, Compimp, AA〉 STS

T p Invariant+Gaurd
T e Invariant+Guard
Bus V ariable
Data V ariable

Sub− components STS
AA states V ariables

AA transitions Transitions
AA variables V ariables
System ||ni=0STS

Definition 3. The AADL component defined by Equation (2) is formally encoded as
an STS. The MAS architecture is represented as a parallel composition of all the STS
modules: MAS = ||ni=0STSmodules i, where n is the number of AADL components
of the system, excluding data components and bus components, if defined in the system
(as variables in the AADL component using them). The STS modules elements are as
follows:

• V is the set of states of AA, defined by the values of all variables in AA (assum-
ing that all the required variables including data/events, communication, and
output variables have a local copy maintained in the corresponding AA of the
component), and the reward variables if needed to specify the RL behaviour. The
clock variables values are given by the component’s period and execution-time
properties of Comptype definition.

• Θ denotes the initial states encoded as an assertion over V .

• T represents the set of transitions defined in AA.

The formal encoding is tabulated in Table 11.1. We now present an example of the
above formal encoding, by applying it on a fire agent of our use case. The fire agent is
formally encoded as an STS module, where:

• V : {(s1 = 0, fire = 0, fire_alarm = 0, x = 0), (s1 = 0, fire =
0, fire_alarm = 0, x = 1), (s1 = 1, fire = 1, fire_alarm = 1, x =
0), (s1 = 1, fire = 1, fire_alarm = 1, x = 1), (s1 = 1, fire =
1, fire_alarm = 1, x = 2), (s1 = 2, fire = 1, fire_alarm = 0, x = 0)}

• θ : s |= (s1 = 0 ∧ fire = 0 ∧ fire_alarm = 0 ∧ x = 0)

206

11.6 System Analysis with PRISM 181

• T is defined by the set of transitions as follows:
T : {τ1 : {(s1 = 0∧ fire = 0∧ fire_alarm = 0∧x = period) −→ (s1′ =
0 ∧ fire′ = 0 ∧ fire_alarm′ = 0 ∧ x′ = 0), P = 1},
τ2 : {(s1 = 0 ∧ fire = 1 ∧ fire_alarm = 0 ∧ x = period) −→ (s1′ =
1∧ fire′ = 1∧ fire_alarm′ = 1∧x′ = 0), P = 0.999∪ (s1′ = 2∧ fire′ =
1 ∧ fire_alarm′ = 0 ∧ x′ = 0), P = 0.001},
τ3 : {(s1 = 1∧fire = 1∧fire_alarm = 1∧x = 2) −→ (s1′ = 0∧fire′ =
0 ∧ fire_alarm′ = 0 ∧ x′ = 0), P = 1}}

Similarly, all other AADL components are encoded as STS modules, respectively. In
the next section, we describe our verification approach with PRISM.

11.6 System Analysis with PRISM
The STS modules are encoded as a set of PTA modules in PRISM. The architecture is a
parallel composition of the PTA modules. Each agent can accept at most 2 connections,
and each has a redundant copy. Therefore, in order to ensure parallel processing, we
assume 4 PTA for a single category of agent. Thus, we have 16 agent PTA that deal
with pulse monitoring, fall monitoring, exercise monitoring and fire monitoring. In
addition, we have one tracker PTA, through which connections between the agents are
established. The sensor data and internal databases are modeled as variables, and their
communication is modeled via shared data access. For simplicity, we have not chosen
to model the cloud database.

Listing 11.3 shows an excerpt of exercise agent encoding in PRISM. Since PTA is
a subset of STS, the encoding of STS as PTA modules is a one-to-one mapping, with
the syntax adapted to match the PRISM input language. All the global variables and
their assertions (weights, utility and rewards) are defined outside the module definition
of the exercise agent. Apart from these, the exercise agent module uses a set of local
variables. Variable s represent the state, s = 0 (Idle), s = 1 (Op), s = 2 (Comm),
s = 3 (Exc_sc), s = 4 (Exc1), s = 5 (Exc2), s = 6 (Fail). There are variables that rep-
resent the user’s calendar exercise input (cal_exc_u1: [0..1]), user quit u1_quit: [0..1]),
session completion (ss_comp: [0..1], where 0 indicates that the event has not occurred,
whereas 1 indicates the opposite. There are also variables to represent the exercise split
sessions (exc_split[0..2]), 0 representing the initial value and 1 and 2 representing
the two split sessions respectively, and the exercise recommendations (exc_rec [0..2])
where 0 represent the initial condition and 1 indicating that exercise category 1 is chosen
and 2 indicates that category 2 is chosen. Variable x is a clock variable. The invariant
associated with the states (Lines 15-17) depend on the component’s execution time (de-
fined at the interface of the AADL component’s model). The invariant of state Op is
x ≤ Exec_time. The transitions defined in Lines 18-27 follow the transitions defini-
tion of the Agent Annex specification of the exercise Agent. Finally, in Lines 29-33, we
show the association of rewards to the respective states or transitions. After modeling

11.6 System Analysis with PRISM 181

• T is defined by the set of transitions as follows:
T : {τ1 : {(s1 = 0∧ fire = 0∧ fire_alarm = 0∧x = period) −→ (s1′ =
0 ∧ fire′ = 0 ∧ fire_alarm′ = 0 ∧ x′ = 0), P = 1},
τ2 : {(s1 = 0 ∧ fire = 1 ∧ fire_alarm = 0 ∧ x = period) −→ (s1′ =
1∧ fire′ = 1∧ fire_alarm′ = 1∧x′ = 0), P = 0.999∪ (s1′ = 2∧ fire′ =
1 ∧ fire_alarm′ = 0 ∧ x′ = 0), P = 0.001},
τ3 : {(s1 = 1∧fire = 1∧fire_alarm = 1∧x = 2) −→ (s1′ = 0∧fire′ =
0 ∧ fire_alarm′ = 0 ∧ x′ = 0), P = 1}}

Similarly, all other AADL components are encoded as STS modules, respectively. In
the next section, we describe our verification approach with PRISM.

11.6 System Analysis with PRISM
The STS modules are encoded as a set of PTA modules in PRISM. The architecture is a
parallel composition of the PTA modules. Each agent can accept at most 2 connections,
and each has a redundant copy. Therefore, in order to ensure parallel processing, we
assume 4 PTA for a single category of agent. Thus, we have 16 agent PTA that deal
with pulse monitoring, fall monitoring, exercise monitoring and fire monitoring. In
addition, we have one tracker PTA, through which connections between the agents are
established. The sensor data and internal databases are modeled as variables, and their
communication is modeled via shared data access. For simplicity, we have not chosen
to model the cloud database.

Listing 11.3 shows an excerpt of exercise agent encoding in PRISM. Since PTA is
a subset of STS, the encoding of STS as PTA modules is a one-to-one mapping, with
the syntax adapted to match the PRISM input language. All the global variables and
their assertions (weights, utility and rewards) are defined outside the module definition
of the exercise agent. Apart from these, the exercise agent module uses a set of local
variables. Variable s represent the state, s = 0 (Idle), s = 1 (Op), s = 2 (Comm),
s = 3 (Exc_sc), s = 4 (Exc1), s = 5 (Exc2), s = 6 (Fail). There are variables that rep-
resent the user’s calendar exercise input (cal_exc_u1: [0..1]), user quit u1_quit: [0..1]),
session completion (ss_comp: [0..1], where 0 indicates that the event has not occurred,
whereas 1 indicates the opposite. There are also variables to represent the exercise split
sessions (exc_split[0..2]), 0 representing the initial value and 1 and 2 representing
the two split sessions respectively, and the exercise recommendations (exc_rec [0..2])
where 0 represent the initial condition and 1 indicating that exercise category 1 is chosen
and 2 indicates that category 2 is chosen. Variable x is a clock variable. The invariant
associated with the states (Lines 15-17) depend on the component’s execution time (de-
fined at the interface of the AADL component’s model). The invariant of state Op is
x ≤ Exec_time. The transitions defined in Lines 18-27 follow the transitions defini-
tion of the Agent Annex specification of the exercise Agent. Finally, in Lines 29-33, we
show the association of rewards to the respective states or transitions. After modeling

207

182 Paper D

the respective PTA modules, we can perform exhaustive probabilistic verification of the
model, and generate probabilistic guarantees for the satisfaction of the functional and
QoS requirements listed in Section 11.3.2.

Listing 11.3: An excerpt of the PRISM Model of an Exercise Agent
1 p t a
2 c o n s t d oub l e w1 = 1 . 0 ;
3 c o n s t d oub l e w2 = 1 . 0 ;
4 f o r m u l a u t i l i t y 1 = w1∗(u _ s a t)+w2∗(ss_comp) ;
5 f o r m u l a sys_rew1 = u t i l i t y 1 ;
6 f o r m u l a sys_rew1 = sys_rew1 + u t i l i t y 1 ;
7 module Exc_agen t1
8 s : [0 . . 6] i n i t 0 ;
9 / / s t a t e s 0 −I d l e , 1−Op , 2−Comm, 3−Exc_sc , 4−Ex1 ,

10 5− Ex2 , 6−F a i l
11 c a l _ e x c _ u 1 : [0 . . 1] i n i t 0 ; u 1 _ q u i t : [0 . . 1] i n i t 0 ;
12 ss_com : [0 . . 1] i n i t 0 ; e x c _ s p l i t : [0 . . 2] i n i t 0 ;
13 e x c _ r e c : [0 . . 2] i n i t 0 ;
14 x : c l o c k ;
15 i n v a r i a n t
16 (s =1 => x <=2)
17 e n d i n v a r i a n t
18 [1] s =0 & c a l _ e x c _ u 1 =1 −> 0 . 9 9 9 : (s ’ = 1) & (x ’ = 0) +
19 0 . 0 0 1 : (s ’ = 6) &(x ’ = 0) ;
20 [2] s =1 & x=2 −> (s ’ = 2) & (x ’ = 0) ;
21 [3] s =2 & h _ s t a t _ u 1 =1 −> (s ’ = 3) & (x ’ = 0) ;
22 [4] s =3 & u 1 _ p r e f =1 & u 1 _ d i s _ h i s =1 &e x c _ s p l i t =0
23 −> (s ’ = 4) & (exc_rec ’ = 1) & (e x c _ s p l i t ’ = 2) & (x ’ = 0) ;
24 [r1] s =4 &(x = 5 | u 1 _ q u i t =1) & h _ s t a t _ u 1 =1 & e x c _ s p l i t
25 < 2 −> (s ’ = 3) & (e x c _ s p l i t ’= e x c _ s p l i t +1) & (x ’ = 0) ;
26 [5] s =3 & e x c _ s p l i t >0 & e x c _ s p l i t <2 & sys_rew1 >
27 sys_rew2 −> (s ’ = 3) & (e x c _ s p l i t ’= e x c _ s p l i t +1) & (x ’ = 0) ;
28 endmodule
29 r e w a r d s
30 s =4 & (u 1 _ s a t =0 | u 1 _ s a t =1) &(ss_com = 1 | ss_com = 0) :
31 sys_rew1 ;
32 [r1] t r u e : sys_rew1 ;
33 e n d r e w a r d s

The verification results are tabulated in Table 11.2. The requirements are formulated
as PCTL queries and the model-checking method is Digital Clocks. Since PRISM, by
default, returns the value for the (single) initial state of the model while model check-
ing, we employ filters to verify our properties over all states. Requirement R1 ensures
that if a fall event occurs due to a low pulse for user1 (Jim), and the tracker is op-
erational, then the tracker initiates the communication between the respective fall and
pulse agents associated with user Jim (the request can be assigned to any of the agent
sockets depending on availability), and the probability that one of them sends an alert
to caregiver indicating that there is “fall due to low pulse” is greater than 0.999 pro-
vided that at least one of the sockets of each agent is functional. Assuming that the
communication via tracker takes less time, the requirement is satisfied within 10 time
units. Similarly, for R2, we verify for user2 (Mary) that in case of fire and fall events
occurring simultaneously, an alert indicating both events is raised and sent within 10

182 Paper D

the respective PTA modules, we can perform exhaustive probabilistic verification of the
model, and generate probabilistic guarantees for the satisfaction of the functional and
QoS requirements listed in Section 11.3.2.

Listing 11.3: An excerpt of the PRISM Model of an Exercise Agent
1 p t a
2 c o n s t d oub l e w1 = 1 . 0 ;
3 c o n s t d oub l e w2 = 1 . 0 ;
4 f o r m u l a u t i l i t y 1 = w1∗(u _ s a t)+w2∗(ss_comp) ;
5 f o r m u l a sys_rew1 = u t i l i t y 1 ;
6 f o r m u l a sys_rew1 = sys_rew1 + u t i l i t y 1 ;
7 module Exc_agen t1
8 s : [0 . . 6] i n i t 0 ;
9 / / s t a t e s 0 −I d l e , 1−Op , 2−Comm, 3−Exc_sc , 4−Ex1 ,

10 5− Ex2 , 6−F a i l
11 c a l _ e x c _ u 1 : [0 . . 1] i n i t 0 ; u 1 _ q u i t : [0 . . 1] i n i t 0 ;
12 ss_com : [0 . . 1] i n i t 0 ; e x c _ s p l i t : [0 . . 2] i n i t 0 ;
13 e x c _ r e c : [0 . . 2] i n i t 0 ;
14 x : c l o c k ;
15 i n v a r i a n t
16 (s =1 => x <=2)
17 e n d i n v a r i a n t
18 [1] s =0 & c a l _ e x c _ u 1 =1 −> 0 . 9 9 9 : (s ’ = 1) & (x ’ = 0) +
19 0 . 0 0 1 : (s ’ = 6) &(x ’ = 0) ;
20 [2] s =1 & x=2 −> (s ’ = 2) & (x ’ = 0) ;
21 [3] s =2 & h _ s t a t _ u 1 =1 −> (s ’ = 3) & (x ’ = 0) ;
22 [4] s =3 & u 1 _ p r e f =1 & u 1 _ d i s _ h i s =1 &e x c _ s p l i t =0
23 −> (s ’ = 4) & (exc_rec ’ = 1) & (e x c _ s p l i t ’ = 2) & (x ’ = 0) ;
24 [r1] s =4 &(x = 5 | u 1 _ q u i t =1) & h _ s t a t _ u 1 =1 & e x c _ s p l i t
25 < 2 −> (s ’ = 3) & (e x c _ s p l i t ’= e x c _ s p l i t +1) & (x ’ = 0) ;
26 [5] s =3 & e x c _ s p l i t >0 & e x c _ s p l i t <2 & sys_rew1 >
27 sys_rew2 −> (s ’ = 3) & (e x c _ s p l i t ’= e x c _ s p l i t +1) & (x ’ = 0) ;
28 endmodule
29 r e w a r d s
30 s =4 & (u 1 _ s a t =0 | u 1 _ s a t =1) &(ss_com = 1 | ss_com = 0) :
31 sys_rew1 ;
32 [r1] t r u e : sys_rew1 ;
33 e n d r e w a r d s

The verification results are tabulated in Table 11.2. The requirements are formulated
as PCTL queries and the model-checking method is Digital Clocks. Since PRISM, by
default, returns the value for the (single) initial state of the model while model check-
ing, we employ filters to verify our properties over all states. Requirement R1 ensures
that if a fall event occurs due to a low pulse for user1 (Jim), and the tracker is op-
erational, then the tracker initiates the communication between the respective fall and
pulse agents associated with user Jim (the request can be assigned to any of the agent
sockets depending on availability), and the probability that one of them sends an alert
to caregiver indicating that there is “fall due to low pulse” is greater than 0.999 pro-
vided that at least one of the sockets of each agent is functional. Assuming that the
communication via tracker takes less time, the requirement is satisfied within 10 time
units. Similarly, for R2, we verify for user2 (Mary) that in case of fire and fall events
occurring simultaneously, an alert indicating both events is raised and sent within 10

208

11.6 System Analysis with PRISM 183

time units, provided that the tracker has not failed. In case ofR3,R4 andR5, we verify
the functionality of the exercise agent serving Jim. By R3, we establish that the exer-
cise session is scheduled only if the corresponding health agent indicates that the user’s
pulse level is normal. R4 indicates that the initial exercise category is chosen based on
user preferences and health condition. By verifying R5, we show that if a high pulse
deviation occurs during the exercise sub-session, a low intensity exercise is chosen in
the next sub-session, irrespective of user preferences. In R6, we illustrate a similar
function as in R2, but assuming that the tracker has failed. In this case, the functional-
ity is met by direct communication between the agents, which takes more time than the
communication via tracker (it is shown that this requirement is satisfied within 20 time
units). Next, in R7, we assume a fall event of user2, and one failed fall agent; then,
a fall alert is raised and sent to the caregiver by either one of the redundant fall agents.
PRISM shows that this requirement is satisfied within 20 time units.

Table 11.2 Verification results
Req. Query Result

R1

filter(forall, fall_user1 = 1&pulse_user1 ≤ 50 &

tracker_fail = 0→ P ≥ 0.999 [F ((pulse_alert0_u1 = 3|
pulse_alert1_u1 = 3| pulse_alert2_u1 = 3|pulse_alert3_u1
= 3)& (y ≤ 10)&(fall_fail = 0) &(pulse_fail = 0))] satisfied

R2

filter(forall, fall_user2 = 1&fire_user2 = 1&

tracker_fail = 0→ P ≥ 0.999[F ((firefall_alert0_u2 = 2|
firefall_alert1_u2 = 2| firefall_alert2_u2 = 2|
firefall_alert3_u2 = 2)&(y ≤ 10) &(fall_fail = 0)

&(fire_fail = 0))] satisfied

R3

filter(forall, cal_notexc_user1 = 1&tracker_fail = 0&

(pulse_user1 ≥ 60 &pulse_user1 ≤ 120)→ P ≥ 0.999

[F (exc_sch_u1 = 1))] satisfied

R4
filter(forall, exc_sch_u1 = 1&u1_disease_history = 1

&u1_pref = 2→ P ≥ 0.999 [F (exc_u1_int1 = 2)] satisfied

R5
filter(forall, exc_sch_u1 = 1&interval = 1 &y ≤ 5

&pulse_user1 ≥ 200→ P ≥ 0.999 [F (exc_u1_int2 = 1)] satisfied

R6

filter(forall, fall_user2 = 1&fire_user2 = 1&

tracker_fail = 1→ P ≥ 0.999 [F ((fall_alert0_u2 = 2|
fall_alert1_u2 = 2 | fall_alert2_u2 = 2|fall_alert3_u2

= 2) &(y ≤ 20) & (fall_fail = 0)&(fire_fail = 0))] satisfied

R7

filter(forall, fall_user2 = 1&tracker_fail = 0&

fail1_fall = 1 &fall2_fall = 0→ P ≥ 0.999

[F ((fall_alert2_u2 = 1|fall_alert3_u2 = 1)&y ≤ 20)] satisfied

11.6 System Analysis with PRISM 183

time units, provided that the tracker has not failed. In case ofR3,R4 andR5, we verify
the functionality of the exercise agent serving Jim. By R3, we establish that the exer-
cise session is scheduled only if the corresponding health agent indicates that the user’s
pulse level is normal. R4 indicates that the initial exercise category is chosen based on
user preferences and health condition. By verifying R5, we show that if a high pulse
deviation occurs during the exercise sub-session, a low intensity exercise is chosen in
the next sub-session, irrespective of user preferences. In R6, we illustrate a similar
function as in R2, but assuming that the tracker has failed. In this case, the functional-
ity is met by direct communication between the agents, which takes more time than the
communication via tracker (it is shown that this requirement is satisfied within 20 time
units). Next, in R7, we assume a fall event of user2, and one failed fall agent; then,
a fall alert is raised and sent to the caregiver by either one of the redundant fall agents.
PRISM shows that this requirement is satisfied within 20 time units.

Table 11.2 Verification results
Req. Query Result

R1

filter(forall, fall_user1 = 1&pulse_user1 ≤ 50 &

tracker_fail = 0→ P ≥ 0.999 [F ((pulse_alert0_u1 = 3|
pulse_alert1_u1 = 3| pulse_alert2_u1 = 3|pulse_alert3_u1
= 3)& (y ≤ 10)&(fall_fail = 0) &(pulse_fail = 0))] satisfied

R2

filter(forall, fall_user2 = 1&fire_user2 = 1&

tracker_fail = 0→ P ≥ 0.999[F ((firefall_alert0_u2 = 2|
firefall_alert1_u2 = 2| firefall_alert2_u2 = 2|
firefall_alert3_u2 = 2)&(y ≤ 10) &(fall_fail = 0)

&(fire_fail = 0))] satisfied

R3

filter(forall, cal_notexc_user1 = 1&tracker_fail = 0&

(pulse_user1 ≥ 60 &pulse_user1 ≤ 120)→ P ≥ 0.999

[F (exc_sch_u1 = 1))] satisfied

R4
filter(forall, exc_sch_u1 = 1&u1_disease_history = 1

&u1_pref = 2→ P ≥ 0.999 [F (exc_u1_int1 = 2)] satisfied

R5
filter(forall, exc_sch_u1 = 1&interval = 1 &y ≤ 5

&pulse_user1 ≥ 200→ P ≥ 0.999 [F (exc_u1_int2 = 1)] satisfied

R6

filter(forall, fall_user2 = 1&fire_user2 = 1&

tracker_fail = 1→ P ≥ 0.999 [F ((fall_alert0_u2 = 2|
fall_alert1_u2 = 2 | fall_alert2_u2 = 2|fall_alert3_u2

= 2) &(y ≤ 20) & (fall_fail = 0)&(fire_fail = 0))] satisfied

R7

filter(forall, fall_user2 = 1&tracker_fail = 0&

fail1_fall = 1 &fall2_fall = 0→ P ≥ 0.999

[F ((fall_alert2_u2 = 1|fall_alert3_u2 = 1)&y ≤ 20)] satisfied

209

184 Paper D

11.7 Related Work

The latest research in AAL systems has shown considerable progress in order to meet
the safety and day-to-day requirements of the growing elderly population in the society
[13]. Modern AAL systems are designed to tackle numerous functions, and to cater for
multiple, possibly distributed users, which makes the system design more complex, and
calls for design-time formal analysis.

Some related work is directed towards providing formalisms for agents in terms of
various logics [14, 15]. However, some others have proceeded further to develop spec-
ification languages/methodologies for agent systems. Some examples include CASL
[16], DESCARTES [17], etc. These methodologies employ different formalisms, how-
ever some of them are complex and are not expressive enough, like in case of CASL. For
DESCARTES, tool support for executing the specifications is also provided. Although
the approach is promising, the DESCARTES language is still missing constructs to
specify adaptive capabilities of agents, nor it provides an analysis framework for MAS.
One of the other common approaches, popular in industry also, is the Agent UML [18]
one. The approach does not specify the architectural constructs of the system, and
lacks formal analysis, unlike the framework that we present in this paper. Few works
have considered the specification and formal analysis of agent behavior in architecture
description languages [19]. The AADL-based modeling framework for multi-agent sys-
tems, which we propose in this paper, has the benefit of being integrated into a popular
framework that also provides tool support.

There are also some approaches that focus on the formal verification of AAL sys-
tems. An interesting related work is that of Rodrigues et al. [2], who perform de-
pendability analysis of AAL architectures using UML and PRISM. Other interesting
research work uses temporal reasoning [20] to formally verify the reliability of AAL
systems. However, the above focus only on QoS requirements, and do not look into
the critical functions of AAL systems, which require decision making. Unlike these
approaches, we carry out our analysis on an agent-based AAL system architecture, fo-
cusing on both functional and QoS requirements, and propose a complete modeling
and verification framework for distributed AAL systems that involve real-time, fault-
tolerant and probabilistic behaviours. As an advantage if compared to another work [1],
the verification results obtained with PRISM are exhaustive. In the mentioned work, the
authors have proposed a formal assurance framework for AAL system architectures de-
scribed in AADL, and showed how to verify them in UPPAAL SMC. As different from
the work in this paper, the approach assumes a centralized system architecture, and
the only probabilistic behaviour considered in the system is component failure, which
can occur arbitrarily. In addition, the statistical analysis with UPPAAL SMC, is not
exhaustive, but it relies instead on a finite number of simulations.

184 Paper D

11.7 Related Work

The latest research in AAL systems has shown considerable progress in order to meet
the safety and day-to-day requirements of the growing elderly population in the society
[13]. Modern AAL systems are designed to tackle numerous functions, and to cater for
multiple, possibly distributed users, which makes the system design more complex, and
calls for design-time formal analysis.

Some related work is directed towards providing formalisms for agents in terms of
various logics [14, 15]. However, some others have proceeded further to develop spec-
ification languages/methodologies for agent systems. Some examples include CASL
[16], DESCARTES [17], etc. These methodologies employ different formalisms, how-
ever some of them are complex and are not expressive enough, like in case of CASL. For
DESCARTES, tool support for executing the specifications is also provided. Although
the approach is promising, the DESCARTES language is still missing constructs to
specify adaptive capabilities of agents, nor it provides an analysis framework for MAS.
One of the other common approaches, popular in industry also, is the Agent UML [18]
one. The approach does not specify the architectural constructs of the system, and
lacks formal analysis, unlike the framework that we present in this paper. Few works
have considered the specification and formal analysis of agent behavior in architecture
description languages [19]. The AADL-based modeling framework for multi-agent sys-
tems, which we propose in this paper, has the benefit of being integrated into a popular
framework that also provides tool support.

There are also some approaches that focus on the formal verification of AAL sys-
tems. An interesting related work is that of Rodrigues et al. [2], who perform de-
pendability analysis of AAL architectures using UML and PRISM. Other interesting
research work uses temporal reasoning [20] to formally verify the reliability of AAL
systems. However, the above focus only on QoS requirements, and do not look into
the critical functions of AAL systems, which require decision making. Unlike these
approaches, we carry out our analysis on an agent-based AAL system architecture, fo-
cusing on both functional and QoS requirements, and propose a complete modeling
and verification framework for distributed AAL systems that involve real-time, fault-
tolerant and probabilistic behaviours. As an advantage if compared to another work [1],
the verification results obtained with PRISM are exhaustive. In the mentioned work, the
authors have proposed a formal assurance framework for AAL system architectures de-
scribed in AADL, and showed how to verify them in UPPAAL SMC. As different from
the work in this paper, the approach assumes a centralized system architecture, and
the only probabilistic behaviour considered in the system is component failure, which
can occur arbitrarily. In addition, the statistical analysis with UPPAAL SMC, is not
exhaustive, but it relies instead on a finite number of simulations.

210

11.8 Discussion 185

11.8 Discussion
This paper presents an architecture for MAS, which we model in the architecture lan-
guage AADL that we extend with an agent annex intended to model real-time, fault-
tolerant and probabilistic behavior of agents, in a unified manner. This approach allows
an agent to synchronize only with a limited number of agents in the system (according to
its dependency), unlike the traditional case where each agent has to communicate with
every other agent in the system to achieve a consistent view of the environment before
making a decision [11]. We show the design of our MAS architecture applied to AAL
domain with 2 agent categories- simple reflex agents, that use if-then-else rules and
complex intelligent agents that employ learning techniques, like Reinforcement Learn-
ing. Although we have demonstrated the use-case of Ambient Assisted Living in the
paper, the approach fits well for any other applications employing MAS for handling
multiple safety critical applications in real-time, e.g., those of automotive systems for
which earlier stage analysis is beneficial.

The modeling framework used in this paper is relying on the Architecture Anal-
ysis and Design Language (AADL), one of the best-suited architecture description
languages to describe real-time embedded systems [5]. Although MAS specifications
based on logics and domain specific languages do exist and are popular, they are mostly
limited to specification of properties at the agent level and also do not have tool support
(see Section 11.7). AADL, on the other hand, allows us to focus on the component
level (here agents) and also at the system level (MAS architecture) and can effectively
model agents’ real-time characteristics. With our proposed extension to AADL using
Agent Annex, a user can also specify the intelligent agent behaviours (which are often
probabilistic) and their failures. AADL also supports a graphical plug-in in OSATE
tool to visualizethe model and supports analysis with respect to latency, schedulability,
resource utilization, etc. [21].

In this work, we encode the semantics of the AADL model and its agent annex
as Stochastic Transition Systems. The encoding is suitable due to the probabilistic be-
haviour of such systems and allows it to be model-checked exhaustively by probabilistic
model checkers, like PRISM, or statistically by simulation-based model checkers like
UPPAAL SMC. This paper shows a reduced and abstract architecture with only 4 types
of agents and hence can be verified exhaustively with PRISM.

11.9 Conclusions and Future Work
In this paper, we have proposed an architecture modeling and formal analysis frame-
work for agent-based AAL systems characterized by intelligent, probabilistic, and real-
time behaviours. The intelligence is incorporated by using learning algorithms, in our
case, the Reinforcement Learning algorithm. The modeling framework is based on one
of the well-established architecture description languages for modeling real-time em-

11.8 Discussion 185

11.8 Discussion
This paper presents an architecture for MAS, which we model in the architecture lan-
guage AADL that we extend with an agent annex intended to model real-time, fault-
tolerant and probabilistic behavior of agents, in a unified manner. This approach allows
an agent to synchronize only with a limited number of agents in the system (according to
its dependency), unlike the traditional case where each agent has to communicate with
every other agent in the system to achieve a consistent view of the environment before
making a decision [11]. We show the design of our MAS architecture applied to AAL
domain with 2 agent categories- simple reflex agents, that use if-then-else rules and
complex intelligent agents that employ learning techniques, like Reinforcement Learn-
ing. Although we have demonstrated the use-case of Ambient Assisted Living in the
paper, the approach fits well for any other applications employing MAS for handling
multiple safety critical applications in real-time, e.g., those of automotive systems for
which earlier stage analysis is beneficial.

The modeling framework used in this paper is relying on the Architecture Anal-
ysis and Design Language (AADL), one of the best-suited architecture description
languages to describe real-time embedded systems [5]. Although MAS specifications
based on logics and domain specific languages do exist and are popular, they are mostly
limited to specification of properties at the agent level and also do not have tool support
(see Section 11.7). AADL, on the other hand, allows us to focus on the component
level (here agents) and also at the system level (MAS architecture) and can effectively
model agents’ real-time characteristics. With our proposed extension to AADL using
Agent Annex, a user can also specify the intelligent agent behaviours (which are often
probabilistic) and their failures. AADL also supports a graphical plug-in in OSATE
tool to visualizethe model and supports analysis with respect to latency, schedulability,
resource utilization, etc. [21].

In this work, we encode the semantics of the AADL model and its agent annex
as Stochastic Transition Systems. The encoding is suitable due to the probabilistic be-
haviour of such systems and allows it to be model-checked exhaustively by probabilistic
model checkers, like PRISM, or statistically by simulation-based model checkers like
UPPAAL SMC. This paper shows a reduced and abstract architecture with only 4 types
of agents and hence can be verified exhaustively with PRISM.

11.9 Conclusions and Future Work
In this paper, we have proposed an architecture modeling and formal analysis frame-
work for agent-based AAL systems characterized by intelligent, probabilistic, and real-
time behaviours. The intelligence is incorporated by using learning algorithms, in our
case, the Reinforcement Learning algorithm. The modeling framework is based on one
of the well-established architecture description languages for modeling real-time em-

211

186 Paper D

bedded systems, called AADL. As the core AADL does not suffice to represent the
probabilistic and non-deterministic behavior of our system, we propose an annex ex-
tension to AADL, the so-called Agent Annex that we formally encode as a stochastic
transition system. In order to verify a set of critical functional and QoS requirements
like timeliness, fault-tolerance etc., we use an exhaustive probabilistic model-checking
method, using the state-of-art model checker PRISM.

Our contribution paves the way for the development of formally assured distributed,
adaptable, scalable, fault-tolerant systems, with intelligent behaviours and autonomy.
The scalability of the proposed framework is supported by the semantic definition of
AADL elements that allows an encoding in UPPAAL SMC for instance, for statistical
model checking of models that exceed the boundaries of exhaustive model checking.
As future work, we intend to extend our architecture with multiple categories of agents
and integrate the Agent Annex to the core AADL.

Acknowledgements

This work is supported by the EU Celtic Plus /Vinnova project, Health5G- Future
eHealth powered by 5G, which is gratefully acknowledged.

186 Paper D

bedded systems, called AADL. As the core AADL does not suffice to represent the
probabilistic and non-deterministic behavior of our system, we propose an annex ex-
tension to AADL, the so-called Agent Annex that we formally encode as a stochastic
transition system. In order to verify a set of critical functional and QoS requirements
like timeliness, fault-tolerance etc., we use an exhaustive probabilistic model-checking
method, using the state-of-art model checker PRISM.

Our contribution paves the way for the development of formally assured distributed,
adaptable, scalable, fault-tolerant systems, with intelligent behaviours and autonomy.
The scalability of the proposed framework is supported by the semantic definition of
AADL elements that allows an encoding in UPPAAL SMC for instance, for statistical
model checking of models that exceed the boundaries of exhaustive model checking.
As future work, we intend to extend our architecture with multiple categories of agents
and integrate the Agent Annex to the core AADL.

Acknowledgements

This work is supported by the EU Celtic Plus /Vinnova project, Health5G- Future
eHealth powered by 5G, which is gratefully acknowledged.

212

Bibliography

[1] Ashalatha Kunnappilly et al. Assuring intelligent ambient assisted living solu-
tions by statistical model checking. In International Symposium on Leveraging
Applications of Formal Methods, pages 457–476. Springer, 2018.

[2] Genaína Nunes Rodrigues, Vander Alves, Renato Silveira, and Luiz A Laranjeira.
Dependability analysis in the ambient assisted living domain: An exploratory case
study. Journal of Systems and Software, 85(1):112–131, 2012.

[3] Dante I Tapia et al. An ambient intelligence based multi-agent system for
alzheimer health care. International Journal of Ambient Computing and Intel-
ligence, 1(1):15–26, 2009.

[4] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning.
135, 1998.

[5] Peter H Feiler et al. The architecture analysis & design language (AADL): An
introduction. Technical report, Carnegie-Mellon Univ Software Engineering Inst,
2006.

[6] P Dissaux, Jean-Paul Bodeveix, M Filali, P Gaufillet, and F Vernadat. Aadl be-
havioral annex. In Proceedings of DASIA conference, Berlin, volume 32, 2006.

[7] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: Probabilistic
symbolic model checker. In International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation, pages 200–204. Springer, 2002.

[8] Luca De Alfaro. Stochastic transition systems. In International Conference on
Concurrency Theory, pages 423–438. Springer, 1998.

[9] Gethin Norman et al. Model checking for probabilistic timed automata. Formal
Methods in System Design, 43(2):164–190, 2013.

[10] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability.
Formal aspects of computing, 6(5):512–535, 1994.

[11] Ashalatha Kunnappilly, Alexandru Sorici, Imad Alex Awada, Irina Mocanu,
Cristina Seceleanu, and Adina Madga Florea. A Novel Integrated Architecture for

187

Bibliography

[1] Ashalatha Kunnappilly et al. Assuring intelligent ambient assisted living solu-
tions by statistical model checking. In International Symposium on Leveraging
Applications of Formal Methods, pages 457–476. Springer, 2018.

[2] Genaína Nunes Rodrigues, Vander Alves, Renato Silveira, and Luiz A Laranjeira.
Dependability analysis in the ambient assisted living domain: An exploratory case
study. Journal of Systems and Software, 85(1):112–131, 2012.

[3] Dante I Tapia et al. An ambient intelligence based multi-agent system for
alzheimer health care. International Journal of Ambient Computing and Intel-
ligence, 1(1):15–26, 2009.

[4] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning.
135, 1998.

[5] Peter H Feiler et al. The architecture analysis & design language (AADL): An
introduction. Technical report, Carnegie-Mellon Univ Software Engineering Inst,
2006.

[6] P Dissaux, Jean-Paul Bodeveix, M Filali, P Gaufillet, and F Vernadat. Aadl be-
havioral annex. In Proceedings of DASIA conference, Berlin, volume 32, 2006.

[7] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: Probabilistic
symbolic model checker. In International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation, pages 200–204. Springer, 2002.

[8] Luca De Alfaro. Stochastic transition systems. In International Conference on
Concurrency Theory, pages 423–438. Springer, 1998.

[9] Gethin Norman et al. Model checking for probabilistic timed automata. Formal
Methods in System Design, 43(2):164–190, 2013.

[10] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability.
Formal aspects of computing, 6(5):512–535, 1994.

[11] Ashalatha Kunnappilly, Alexandru Sorici, Imad Alex Awada, Irina Mocanu,
Cristina Seceleanu, and Adina Madga Florea. A Novel Integrated Architecture for

187

213

Ambient Assisted Living Systems. In Computer Software and Applications Con-
ference (COMPSAC), 2017 IEEE 41st Annual, volume 1, pages 465–472. IEEE,
2017.

[12] PA USA Society of Automotive Engineers, Warrendale. AE-AS5506/1, SAE Ar-
chitecture Analysis and Design Language (AADL) Annex Volume 1, Annex C:
AADL Meta-Model and Interchange Formats, 2006.

[13] Parisa Rashidi and Alex Mihailidis. A survey on ambient-assisted living tools for
older adults. IEEE journal of biomedical and health informatics, 17(3):579–590,
2013.

[14] Hai-yan Che et al. A Description Logic Method of Formalizing the Specification
of Multi-Agent System. In Machine Learning and Cybernetics, 2006 Interna-
tional Conference on, pages 61–65. IEEE, 2006.

[15] Jiewen Luo et al. Multi-agent cooperation: A description logic view. In Pacific
Rim International Workshop on Multi-Agents, pages 365–379. Springer, 2005.

[16] Steven Shapiro, Yves Lespérance, and Hector J Levesque. The cognitive agents
specification language and verification environment for multiagent systems. In
Proceedings of the first international joint conference on Autonomous agents and
multiagent systems: part 1, pages 19–26. ACM, 2002.

[17] Michael A Medina et al. An approach to deriving reactive agent designs from
extensions to the Descartes specification language. IEEE, 2007.

[18] Bernhard Bauer, Jörg P Müller, and James Odell. Agent UML: A formalism for
specifying multiagent software systems. International journal of software engi-
neering and knowledge engineering, 11(03):207–230, 2001.

[19] Flavio Oquendo. π-ADL: an Architecture Description Language based on the
higher-order typed π-calculus for specifying dynamic and mobile software archi-
tectures. ACM SIGSOFT Software Engineering Notes, 29(3):1–14, 2004.

[20] using temporal logic and model checking in automated recognition of human ac-
tivities for ambient-assisted living.

[21] Model-based engineering with AADL: an introduction to the SAE architecture
analysis & design language.

Ambient Assisted Living Systems. In Computer Software and Applications Con-
ference (COMPSAC), 2017 IEEE 41st Annual, volume 1, pages 465–472. IEEE,
2017.

[12] PA USA Society of Automotive Engineers, Warrendale. AE-AS5506/1, SAE Ar-
chitecture Analysis and Design Language (AADL) Annex Volume 1, Annex C:
AADL Meta-Model and Interchange Formats, 2006.

[13] Parisa Rashidi and Alex Mihailidis. A survey on ambient-assisted living tools for
older adults. IEEE journal of biomedical and health informatics, 17(3):579–590,
2013.

[14] Hai-yan Che et al. A Description Logic Method of Formalizing the Specification
of Multi-Agent System. In Machine Learning and Cybernetics, 2006 Interna-
tional Conference on, pages 61–65. IEEE, 2006.

[15] Jiewen Luo et al. Multi-agent cooperation: A description logic view. In Pacific
Rim International Workshop on Multi-Agents, pages 365–379. Springer, 2005.

[16] Steven Shapiro, Yves Lespérance, and Hector J Levesque. The cognitive agents
specification language and verification environment for multiagent systems. In
Proceedings of the first international joint conference on Autonomous agents and
multiagent systems: part 1, pages 19–26. ACM, 2002.

[17] Michael A Medina et al. An approach to deriving reactive agent designs from
extensions to the Descartes specification language. IEEE, 2007.

[18] Bernhard Bauer, Jörg P Müller, and James Odell. Agent UML: A formalism for
specifying multiagent software systems. International journal of software engi-
neering and knowledge engineering, 11(03):207–230, 2001.

[19] Flavio Oquendo. π-ADL: an Architecture Description Language based on the
higher-order typed π-calculus for specifying dynamic and mobile software archi-
tectures. ACM SIGSOFT Software Engineering Notes, 29(3):1–14, 2004.

[20] using temporal logic and model checking in automated recognition of human ac-
tivities for ambient-assisted living.

[21] Model-based engineering with AADL: an introduction to the SAE architecture
analysis & design language.

214

EPaper E EPaper E

215

216

Chapter 12

Paper E:
An End-User Perspective on
the CAMI Ambient And
Assisted Living Project

Imad Alex Awada, Oana Cramariuc, Irina Mocanu, Cristina Seceleanu, Ashalatha
Kunnappilly, Adina Magda Florea.
In Proceedings of the 12th Annual International Technology, Education and Develop-
ment Conference (INTED), March 2018, Valencia, Spain.

189

Chapter 12

Paper E:
An End-User Perspective on
the CAMI Ambient And
Assisted Living Project

Imad Alex Awada, Oana Cramariuc, Irina Mocanu, Cristina Seceleanu, Ashalatha
Kunnappilly, Adina Magda Florea.
In Proceedings of the 12th Annual International Technology, Education and Develop-
ment Conference (INTED), March 2018, Valencia, Spain.

189

217

Abstract

In this paper, we present the outcomes and conclusions obtained by involving se-
niors from three countries (Denmark, Poland and Romania) in an innovative project
funded under the European Ambient Assisted Living (ALL) program. CAMI stands for
“ Companion with Autonomously Mobile Interface ” in “ Artificially intelligent ecosys-
tem for self-management and sustainable quality of life in AAL ”. The CAMI solution
enables flexible, scalable and individualised services that support elderly to self-manage
their daily life and prolong their involvement in the society (sharing knowledge, con-
tinue working, etc). This also allows their informal caregivers (family and friends) to
continue working and participating in society while caring for their loved ones. The
solution is designed as an innovative architecture that allows for individualized, intelli-
gent self-management which can be tailored to an individual’s preferences and needs.
A user-centred approach has ranked health monitoring, computer supervised physical
exercises and voice based interaction among the top favoured CAMI functionalities.
Respondents from three countries (Poland, Romania and Denmark) participated in a
multinational survey and a conjoint analysis study.

Abstract

In this paper, we present the outcomes and conclusions obtained by involving se-
niors from three countries (Denmark, Poland and Romania) in an innovative project
funded under the European Ambient Assisted Living (ALL) program. CAMI stands for
“ Companion with Autonomously Mobile Interface ” in “ Artificially intelligent ecosys-
tem for self-management and sustainable quality of life in AAL ”. The CAMI solution
enables flexible, scalable and individualised services that support elderly to self-manage
their daily life and prolong their involvement in the society (sharing knowledge, con-
tinue working, etc). This also allows their informal caregivers (family and friends) to
continue working and participating in society while caring for their loved ones. The
solution is designed as an innovative architecture that allows for individualized, intelli-
gent self-management which can be tailored to an individual’s preferences and needs.
A user-centred approach has ranked health monitoring, computer supervised physical
exercises and voice based interaction among the top favoured CAMI functionalities.
Respondents from three countries (Poland, Romania and Denmark) participated in a
multinational survey and a conjoint analysis study.

218

12.1 Introduction 191

12.1 Introduction

In the context of unprecedented worldwide demographic changes, information and com-
munication technologies (ICT) are increasingly sought for their potential to help aging
adults and seniors to live independently in their home environment. While innovation
in this field is rapidly picking up, the full impact of such technologies can be attained
only through a wide spread adoption of such technologies by the elderly population.
Consequently, several initiatives at both national and cross-national level are actively
supporting the development of AAL ICT through a user-centered approach that is ex-
pected to increase acceptance and reduce learning barriers. In this paper, we present
the outcomes and conclusions obtained by involving seniors from three countries (Den-
mark, Poland and Romania) in a project funded under the European Ambient Assisted
Living (ALL) program. CAMI stands for “ Companion with Autonomously Mobile
Interface” in “ Artificially intelligent ecosystem for self-management and sustainable
quality of life in AAL”[1]. The project consortium comprises eight SME’s and uni-
versities from five European countries which are developing a fully integrated AAL
solution at the overlap of tele- care and health, smart homes and robotics (see Figure
12.1). The CAMI solution enables flexible, scalable and individualized services that
support elderly to self-manage their daily life and prolong their involvement in the soci-
ety (sharing knowledge, continue working, etc) while allowing their informal caregivers
(family and friends) to continue working and participating in society whilst caring for
their loved ones. The solution is designed as an innovative architecture that allows
for individualized, intelligent self-management which can be tailored to an individual’s
preferences, culture, level of comprehension, skill, educational needs and learning style.
A combination of advanced reasoning algorithms with a voice-based interface is eas-
ing the self-management and decision-making process. The decision support module is
an expert system that acts as the central integration point for CAMI. It is a dockerized
container, deployed in the cloud. A user-centred approach has ranked health moni-
toring, computer supervised physical exercises and voice based interaction among the
top favoured CAMI functionalities. Respondents from three countries (Poland, Roma-
nia and Denmark) participated in a multinational survey and a conjoint analysis study.
E-health solutions were perceived as very useful and 59% of the respondents consid-
ered the graphic display of various health measurements (e.g. blood pressure, heart
rate, oxygen levels) as an interesting feature. The ability to share health measurements
with various doctors was perceived as useful by 60% of the respondents. Computer
supervised physical exercises ranked third in the conjoint analysis. All the voice con-
trol functionalities received more than 50% votes which classifies them as promising
features. The physical exercise module is based on exergames with two avatars: the
training avatar and the avatar of the user. The training avatar is performing different
physical exercises which have to be reproduced by the user. The user’s movements are
compared with the movements of the avatar based on algorithms for comparing two
nonlinear series. At the end of the exercise, the user receives a score that reflects the

12.1 Introduction 191

12.1 Introduction

In the context of unprecedented worldwide demographic changes, information and com-
munication technologies (ICT) are increasingly sought for their potential to help aging
adults and seniors to live independently in their home environment. While innovation
in this field is rapidly picking up, the full impact of such technologies can be attained
only through a wide spread adoption of such technologies by the elderly population.
Consequently, several initiatives at both national and cross-national level are actively
supporting the development of AAL ICT through a user-centered approach that is ex-
pected to increase acceptance and reduce learning barriers. In this paper, we present
the outcomes and conclusions obtained by involving seniors from three countries (Den-
mark, Poland and Romania) in a project funded under the European Ambient Assisted
Living (ALL) program. CAMI stands for “ Companion with Autonomously Mobile
Interface” in “ Artificially intelligent ecosystem for self-management and sustainable
quality of life in AAL”[1]. The project consortium comprises eight SME’s and uni-
versities from five European countries which are developing a fully integrated AAL
solution at the overlap of tele- care and health, smart homes and robotics (see Figure
12.1). The CAMI solution enables flexible, scalable and individualized services that
support elderly to self-manage their daily life and prolong their involvement in the soci-
ety (sharing knowledge, continue working, etc) while allowing their informal caregivers
(family and friends) to continue working and participating in society whilst caring for
their loved ones. The solution is designed as an innovative architecture that allows
for individualized, intelligent self-management which can be tailored to an individual’s
preferences, culture, level of comprehension, skill, educational needs and learning style.
A combination of advanced reasoning algorithms with a voice-based interface is eas-
ing the self-management and decision-making process. The decision support module is
an expert system that acts as the central integration point for CAMI. It is a dockerized
container, deployed in the cloud. A user-centred approach has ranked health moni-
toring, computer supervised physical exercises and voice based interaction among the
top favoured CAMI functionalities. Respondents from three countries (Poland, Roma-
nia and Denmark) participated in a multinational survey and a conjoint analysis study.
E-health solutions were perceived as very useful and 59% of the respondents consid-
ered the graphic display of various health measurements (e.g. blood pressure, heart
rate, oxygen levels) as an interesting feature. The ability to share health measurements
with various doctors was perceived as useful by 60% of the respondents. Computer
supervised physical exercises ranked third in the conjoint analysis. All the voice con-
trol functionalities received more than 50% votes which classifies them as promising
features. The physical exercise module is based on exergames with two avatars: the
training avatar and the avatar of the user. The training avatar is performing different
physical exercises which have to be reproduced by the user. The user’s movements are
compared with the movements of the avatar based on algorithms for comparing two
nonlinear series. At the end of the exercise, the user receives a score that reflects the

219

192 Paper E

Figure 12.1: Venn diagram of a fully integrated AAL solution

correctness of the performed exercises. The results are saved in a database, such that
they can be analysed by a caregiver or by a medical specialist. The voice interface is
composed of five main parts: Automatic Speech Recognition, Natural Language Un-
derstanding, Dialog Management module, Natural Language Generation, and Text to
Speech synthesis. Since, the user should always be able to interact with the CAMI
platform, regardless of the status of the internet connection, the vocal interface should
work also offline ensuring basic system functionalities. Therefore, the vocal interface
will have two working modes: (1) an online mode that depends on internet connectivity
and (2) an offline mode (a limited version) that doesn’t depend on internet connection.
A user-centred approach has ranked health monitoring, computer supervised physical
exercises and voice based interaction among the top favoured CAMI functionalities.
Respondents from three countries (Poland, Romania and Denmark) participated in a
multinational survey and a conjoint analysis study. E-health solutions were perceived
as very useful and 59% of the respondents considered the graphic display of various
health measurements (e.g. blood pressure, heart rate, oxygen levels) as an interesting
feature. The ability to share health measurements with various doctors was perceived
as useful by 60% of the respondents. Computer supervised physical exercises ranked
third in the conjoint analysis. All the voice control functionalities received more than
50% votes which classifies them as promising features. The physical exercise module is
based on exergames with two avatars: the training avatar and the avatar of the user. The

192 Paper E

Figure 12.1: Venn diagram of a fully integrated AAL solution

correctness of the performed exercises. The results are saved in a database, such that
they can be analysed by a caregiver or by a medical specialist. The voice interface is
composed of five main parts: Automatic Speech Recognition, Natural Language Un-
derstanding, Dialog Management module, Natural Language Generation, and Text to
Speech synthesis. Since, the user should always be able to interact with the CAMI
platform, regardless of the status of the internet connection, the vocal interface should
work also offline ensuring basic system functionalities. Therefore, the vocal interface
will have two working modes: (1) an online mode that depends on internet connectivity
and (2) an offline mode (a limited version) that doesn’t depend on internet connection.
A user-centred approach has ranked health monitoring, computer supervised physical
exercises and voice based interaction among the top favoured CAMI functionalities.
Respondents from three countries (Poland, Romania and Denmark) participated in a
multinational survey and a conjoint analysis study. E-health solutions were perceived
as very useful and 59% of the respondents considered the graphic display of various
health measurements (e.g. blood pressure, heart rate, oxygen levels) as an interesting
feature. The ability to share health measurements with various doctors was perceived
as useful by 60% of the respondents. Computer supervised physical exercises ranked
third in the conjoint analysis. All the voice control functionalities received more than
50% votes which classifies them as promising features. The physical exercise module is
based on exergames with two avatars: the training avatar and the avatar of the user. The

220

12.2 An Overview of the CAMI Platform Architecture 193

training avatar is performing different physical exercises which have to be reproduced
by the user. The user’s movements are compared with the movements of the avatar
based on algorithms for comparing two nonlinear series. At the end of the exercise, the
user receives a score that reflects the correctness of the performed exercises. The results
are saved in a database, such that they can be analysed by a caregiver or by a medi-
cal specialist. The voice interface is composed of five main parts: Automatic Speech
Recognition, Natural Language Understanding, Dialog Management module, Natural
Language Generation, and Text to Speech synthesis. Since, the user should always be
able to interact with the CAMI platform, regardless of the status of the internet connec-
tion, the vocal interface should work also offline ensuring basic system functionalities.
Therefore, the vocal interface will have two working modes: (1) an online mode that
depends on internet connectivity and (2) an offline mode (a limited version) that do not
depend on internet connection.

12.2 An Overview of the CAMI Platform
Architecture

The architecture of the CAMI system is developed aiming at the seamless integration
of various assisted-living functionalities, like health monitoring, fall detection, home
monitoring, robotic platform support etc., ensuring modularity and re-use. A detailed
description of CAMI architecture was presented in our previous work [2] [3]. In this
paper, we present a smaller implemented version of the system architecture as shown
in Figure 12.2. The integration of various functionalities is achieved by three main
modules: a) CAMI Gateway (running on the SNG-Gateway developed by the Eclexys
Sagl partner, b) CAMI Cloud, and c) CAMI multi-modal user interface (e.g. the 3rd
party health platforms (Linkwatch [4] and OpenTele [5] and vocal interaction with the
CAMI Cloud). The CAMI Gateway connects with a multitude of Bluetooth and Z-Wave
compatible health measurement and home monitoring sensors (e.g. the A&D UA-651
BLE blood pressure meter, the Onyx II Model 9560 oxymeter, Fibaro Temperature and
Motion Sensor FGMS-001, Z-Wave 3 in 1 Sensor (temperature, illumination, door)
PHI_PSM01), Vibby fall detection sensor, etc. The CAMI Cloud allows the system to
perform two other essential integrations:

• From the input perspective: the CAMI Cloud allows access to information from
sensors that publish their data directly to the cloud service (e.g. Fitbit bracelet,
WiFi weight scale, smartwatches etc.)

• From an output/sharing perspective: the CAMI Cloud allows dissemina-
tion/replication of data to other health monitoring platforms (e.g. Linkwatch,
OpenTele). This type of integration allows end-users to monitor the health pa-
rameters collected through the CAMI system via web-accessible graphical inter-
faces.

12.2 An Overview of the CAMI Platform Architecture 193

training avatar is performing different physical exercises which have to be reproduced
by the user. The user’s movements are compared with the movements of the avatar
based on algorithms for comparing two nonlinear series. At the end of the exercise, the
user receives a score that reflects the correctness of the performed exercises. The results
are saved in a database, such that they can be analysed by a caregiver or by a medi-
cal specialist. The voice interface is composed of five main parts: Automatic Speech
Recognition, Natural Language Understanding, Dialog Management module, Natural
Language Generation, and Text to Speech synthesis. Since, the user should always be
able to interact with the CAMI platform, regardless of the status of the internet connec-
tion, the vocal interface should work also offline ensuring basic system functionalities.
Therefore, the vocal interface will have two working modes: (1) an online mode that
depends on internet connectivity and (2) an offline mode (a limited version) that do not
depend on internet connection.

12.2 An Overview of the CAMI Platform
Architecture

The architecture of the CAMI system is developed aiming at the seamless integration
of various assisted-living functionalities, like health monitoring, fall detection, home
monitoring, robotic platform support etc., ensuring modularity and re-use. A detailed
description of CAMI architecture was presented in our previous work [2] [3]. In this
paper, we present a smaller implemented version of the system architecture as shown
in Figure 12.2. The integration of various functionalities is achieved by three main
modules: a) CAMI Gateway (running on the SNG-Gateway developed by the Eclexys
Sagl partner, b) CAMI Cloud, and c) CAMI multi-modal user interface (e.g. the 3rd
party health platforms (Linkwatch [4] and OpenTele [5] and vocal interaction with the
CAMI Cloud). The CAMI Gateway connects with a multitude of Bluetooth and Z-Wave
compatible health measurement and home monitoring sensors (e.g. the A&D UA-651
BLE blood pressure meter, the Onyx II Model 9560 oxymeter, Fibaro Temperature and
Motion Sensor FGMS-001, Z-Wave 3 in 1 Sensor (temperature, illumination, door)
PHI_PSM01), Vibby fall detection sensor, etc. The CAMI Cloud allows the system to
perform two other essential integrations:

• From the input perspective: the CAMI Cloud allows access to information from
sensors that publish their data directly to the cloud service (e.g. Fitbit bracelet,
WiFi weight scale, smartwatches etc.)

• From an output/sharing perspective: the CAMI Cloud allows dissemina-
tion/replication of data to other health monitoring platforms (e.g. Linkwatch,
OpenTele). This type of integration allows end-users to monitor the health pa-
rameters collected through the CAMI system via web-accessible graphical inter-
faces.

221

194 Paper E

Phone
 Linkwatch
 Data
Collection

PC

Tablet / Laptop

Smart Home
Sensors

Physical Exercise
Sensor

Sensor Unit

Health Sensors

Fall Sensors

CAMI Gateway

Robotic Telepresence

Multimodal User Interface

Voice, Gesture and Touch comands

Message Queue

Health Channel

Home Monitoring Channel

User Notification Channel

Decision System Support

Communication to 3rd Party

Fall Detection + Alerts

Reminder + Dynamic Program Management

Intelligent Health Analysis

MySQL DB

 Cloud

3rd Party
Health Platforms

Linkwatch

User Account Setup Security & Privacy

System Configuration Service

BL
E

Physical Exercise
Analysis Service

OpenHab
Server

Z-
W

av
e

OpenTele

Figure 12.2: CAMI architecture block diagram

The CAMI Multi-Modal Interface allows for user interaction with the system. This is
achieved by smartphone application (implemented on iOS) and the CAMI Linkwatch
web interface, and vocal interaction. For each integration aspect, a dedicated micro ser-
vice running in its own Docker container or using its own RESTful API is implemented.

12.3 Results

12.3.1 The CAMI end-user perspective
A total of 105 respondents (55 to 75 years old) from Romania (42), Poland (37) and
Denmark (26) have participated in the multinational survey. These are CAMI’s primary
end-users, that is, older adults and elderly who have benefited from the digital revolution
and are therefore expected to have an increased acceptance of innovative ICT solutions.
Out of the respondents 49 were males and 56 females living in urban and sub-urban
areas (87%). Most of the respondents (46%) had a master degree or higher while 28%
held a post-secondary school qualification. Most of the respondents were married or
in partnership (64%), and almost 30% of them were living alone being widowed or
separated. More than a half of the respondents were retired (55%), while the rest were
still active (employed or running their own business). All respondents were informed
about the anonymity of the survey and have provided an informed consent for their
participation.

Several of the CAMI technologies were already used by the respondents as inde-
pendent devices. For example, 85% of the respondents have 4 or less mobile devices
(smartphone, tablet, etc). The median value of number of possessed devices for Den-
mark is 4, while for Poland and Romania is 3. The number of possessed devices does
not depend on gender and age. Small influence has the level of education and number
of people the respondents live with. In addition, respondents expressed their interest in

194 Paper E

Phone
 Linkwatch
 Data
Collection

PC

Tablet / Laptop

Smart Home
Sensors

Physical Exercise
Sensor

Sensor Unit

Health Sensors

Fall Sensors

CAMI Gateway

Robotic Telepresence

Multimodal User Interface

Voice, Gesture and Touch comands

Message Queue

Health Channel

Home Monitoring Channel

User Notification Channel

Decision System Support

Communication to 3rd Party

Fall Detection + Alerts

Reminder + Dynamic Program Management

Intelligent Health Analysis

MySQL DB

 Cloud

3rd Party
Health Platforms

Linkwatch

User Account Setup Security & Privacy

System Configuration Service

BL
E

Physical Exercise
Analysis Service

OpenHab
Server

Z-
W

av
e

OpenTele

Figure 12.2: CAMI architecture block diagram

The CAMI Multi-Modal Interface allows for user interaction with the system. This is
achieved by smartphone application (implemented on iOS) and the CAMI Linkwatch
web interface, and vocal interaction. For each integration aspect, a dedicated micro ser-
vice running in its own Docker container or using its own RESTful API is implemented.

12.3 Results

12.3.1 The CAMI end-user perspective
A total of 105 respondents (55 to 75 years old) from Romania (42), Poland (37) and
Denmark (26) have participated in the multinational survey. These are CAMI’s primary
end-users, that is, older adults and elderly who have benefited from the digital revolution
and are therefore expected to have an increased acceptance of innovative ICT solutions.
Out of the respondents 49 were males and 56 females living in urban and sub-urban
areas (87%). Most of the respondents (46%) had a master degree or higher while 28%
held a post-secondary school qualification. Most of the respondents were married or
in partnership (64%), and almost 30% of them were living alone being widowed or
separated. More than a half of the respondents were retired (55%), while the rest were
still active (employed or running their own business). All respondents were informed
about the anonymity of the survey and have provided an informed consent for their
participation.

Several of the CAMI technologies were already used by the respondents as inde-
pendent devices. For example, 85% of the respondents have 4 or less mobile devices
(smartphone, tablet, etc). The median value of number of possessed devices for Den-
mark is 4, while for Poland and Romania is 3. The number of possessed devices does
not depend on gender and age. Small influence has the level of education and number
of people the respondents live with. In addition, respondents expressed their interest in

222

12.3 Results 195

Figure 12.3: Summary sketch of CAMI’s envisioned functionalities distributed
hierarchically.

CAMI’s technologies. E-health solutions were well perceived as very useful and 59%
of the respondents considered the graphic display of various health measurements (e.g.
blood pressure, heart rate, oxygen levels) as an interesting feature. The ability to share
health measurements with various doctors was perceived as useful by 60% of the re-
spondents. Physical and mental exercises were of interest for 41% of the respondents.
All the voice control functionalities received more than 50% votes which classifies them
as promising features. Nevertheless, more than half (60%) considered that a mobile de-
vice is an acceptable interface with the system. Robotic platforms were perceived as be-
ing useful for a number of tasks such as house supervision (51%), telepresence (54%),
manipulation of objects (50%), etc. A total of 87% of the respondents were worried
about the price of the CAMI solution. Consequently, a renting scheme was more ap-
pealing to the participants. They were interested to own the health monitoring devices
and rather rent other less personal devices and sensors such as those for home moni-
toring, serious games, robotic platforms, etc. With the multinational survey outlined
above establishing the interest of the CAMI primary users for the targeted technologies,
we proceeded to rank these technologies according to the user’s preference. For this
purpose, we employed the best-worst scaling (BWS) method for a total of 57 elderly

12.3 Results 195

Figure 12.3: Summary sketch of CAMI’s envisioned functionalities distributed
hierarchically.

CAMI’s technologies. E-health solutions were well perceived as very useful and 59%
of the respondents considered the graphic display of various health measurements (e.g.
blood pressure, heart rate, oxygen levels) as an interesting feature. The ability to share
health measurements with various doctors was perceived as useful by 60% of the re-
spondents. Physical and mental exercises were of interest for 41% of the respondents.
All the voice control functionalities received more than 50% votes which classifies them
as promising features. Nevertheless, more than half (60%) considered that a mobile de-
vice is an acceptable interface with the system. Robotic platforms were perceived as be-
ing useful for a number of tasks such as house supervision (51%), telepresence (54%),
manipulation of objects (50%), etc. A total of 87% of the respondents were worried
about the price of the CAMI solution. Consequently, a renting scheme was more ap-
pealing to the participants. They were interested to own the health monitoring devices
and rather rent other less personal devices and sensors such as those for home moni-
toring, serious games, robotic platforms, etc. With the multinational survey outlined
above establishing the interest of the CAMI primary users for the targeted technologies,
we proceeded to rank these technologies according to the user’s preference. For this
purpose, we employed the best-worst scaling (BWS) method for a total of 57 elderly

223

196 Paper E

participants: 25 Romanians (11 female, 14 male), 20 Polish (13 female, 7 male), and
12 Danish (6 female, 6 male) respondents. The BWS belongs to the so-called ‘stated
preferences’ family of method and was first proposed by Louviere in a series of articles,
as an alternative to classical discrete choice experiments [6]. In BWS, respondents were
not asked how much they prefer certain alternatives of the CAMI solutions compared
with each other, but only to choose which options they prefer and which they donâĂŹt.
A list of 22 functionalities was defined as bases for the survey’s combinations pool (see
Figure 12.3).

All relevant functionalities were subject to a randomization algorithm utilized by
the BWS method, whose purpose was to maximize the probability of appearance of each
functionality in a certain choice set. The BWS calculated scores are directly comparable
in terms of strength or magnitude of preferences. More specifically, a functionality with
the computed preference weight of 8 is twice as preferred as a functionality with the
computed preference weight of 4. In our research, the two most preferred functionali-
ties (1 and 2) were twice as preferred as more than half of all preferences (for instance,
4, 18, 12, 10, 17 and so on). As depicted in Figure 12.4, functionalities 1 (basic health
parameters monitoring), 2 (smart house with various sensors, such as smoke, temper-
ature, open doors, etc.) and 14 (computer supervised physical exercise and training
program) were ranked the three most preferred, whereas functionalities 4 (fall detec-
tion alert-able floor), 13 (socialization via forums), and 22 (have the system-acquired
data stored in the cloud) were ranked least preferred. Further discussions within fo-
cus groups organized in all three countries, i.e. Romania, Poland and Denmark, have
revealed that fall detection was ranked low only in implementations requiring substan-
tial changes of the home environment and high investments (alert-able floor). On the
contrary, fall detection through wearable sensors was considered an essential feature,
especially by the caregivers. The focus groups were conducted with 5-8 elderly and
with a large variety of secondary stakeholders such as nurses, IT specialists, insurance
companies, etc. The vocal interface feature, which was greatly overlooked during both
the multinational survey and the BSW analysis was appreciated during the focus groups
and subsequent demonstrations performed during the CAMI project. In the next sec-
tions, we are presenting the implementation of some of the CAMI technologies which
were ranked top by the users participating in the project.

12.3.2 Health monitoring and fall detection
The health monitoring functionality in CAMI is allowing users to perform scheduled
(e.g. according events scheduled in the user’s calendar) monitoring of important health
parameters, i.e. blood pressure, heart rate, blood glucose, weight, blood oxygenation.
The integrated medical devices are transferring the acquired data via Bluetooth to the
CAMI Gateway and then further to the CAMI database. The acquired data is checked
against the user’s profile to identify important deviations from acceptable limits. Devi-
ations trigger alert message to the user and the caregiver. The stored data can be used to

196 Paper E

participants: 25 Romanians (11 female, 14 male), 20 Polish (13 female, 7 male), and
12 Danish (6 female, 6 male) respondents. The BWS belongs to the so-called ‘stated
preferences’ family of method and was first proposed by Louviere in a series of articles,
as an alternative to classical discrete choice experiments [6]. In BWS, respondents were
not asked how much they prefer certain alternatives of the CAMI solutions compared
with each other, but only to choose which options they prefer and which they donâĂŹt.
A list of 22 functionalities was defined as bases for the survey’s combinations pool (see
Figure 12.3).

All relevant functionalities were subject to a randomization algorithm utilized by
the BWS method, whose purpose was to maximize the probability of appearance of each
functionality in a certain choice set. The BWS calculated scores are directly comparable
in terms of strength or magnitude of preferences. More specifically, a functionality with
the computed preference weight of 8 is twice as preferred as a functionality with the
computed preference weight of 4. In our research, the two most preferred functionali-
ties (1 and 2) were twice as preferred as more than half of all preferences (for instance,
4, 18, 12, 10, 17 and so on). As depicted in Figure 12.4, functionalities 1 (basic health
parameters monitoring), 2 (smart house with various sensors, such as smoke, temper-
ature, open doors, etc.) and 14 (computer supervised physical exercise and training
program) were ranked the three most preferred, whereas functionalities 4 (fall detec-
tion alert-able floor), 13 (socialization via forums), and 22 (have the system-acquired
data stored in the cloud) were ranked least preferred. Further discussions within fo-
cus groups organized in all three countries, i.e. Romania, Poland and Denmark, have
revealed that fall detection was ranked low only in implementations requiring substan-
tial changes of the home environment and high investments (alert-able floor). On the
contrary, fall detection through wearable sensors was considered an essential feature,
especially by the caregivers. The focus groups were conducted with 5-8 elderly and
with a large variety of secondary stakeholders such as nurses, IT specialists, insurance
companies, etc. The vocal interface feature, which was greatly overlooked during both
the multinational survey and the BSW analysis was appreciated during the focus groups
and subsequent demonstrations performed during the CAMI project. In the next sec-
tions, we are presenting the implementation of some of the CAMI technologies which
were ranked top by the users participating in the project.

12.3.2 Health monitoring and fall detection
The health monitoring functionality in CAMI is allowing users to perform scheduled
(e.g. according events scheduled in the user’s calendar) monitoring of important health
parameters, i.e. blood pressure, heart rate, blood glucose, weight, blood oxygenation.
The integrated medical devices are transferring the acquired data via Bluetooth to the
CAMI Gateway and then further to the CAMI database. The acquired data is checked
against the user’s profile to identify important deviations from acceptable limits. Devi-
ations trigger alert message to the user and the caregiver. The stored data can be used to

224

12.3 Results 197

Figure 12.4: Preferences hierarchy of all functionalities for all respondents.
Values represent MaxDiff scores.

plot the evolution in time of the physiological parameters. Normal or acceptable limits
for each of the parameters will be plotted together with the recorded data. Falls are
serious threats to elderly people living alone and can even result in life threatening sit-
uations when the fall is critical and not addressed within a specific time. As a result, in
CAMI, the fall detection functionality together with alarm generation on the occurrence
of a serious fall, needed in order to automatically inform caregivers and family is given
due importance. To detect a fall, we employ the Vibby Oak fall detection sensor, along
with its IoT gateway, Vibby Leaf (both produced by Vitalbase). Vibby Oak is a wearable
sensor that can be worn around the wrist like a watch, or as a pendant around the neck.
They are designed to automatically detect dangerous (heavy) falls of the wearer who
lies on the floor. The device also has a manual trigger to push the alarm off, if the user
has recovered successfully. A dangerous fall is detected if: a) a body in standing posi-
tion is followed by: b) a quick and sudden loss of gravity or verticality followed by: c) a
sudden and strong impact on the floor, and d) a lying position on the floor with or with-
out activity. If these four phases have occurred, an automatic alarm is then activated.
The Vibby Oak algorithm reduces the false fall alarms significantly, although it does
not completely remove them. The Vibby Leaf gateway is an ISM 868Mhz transceiver
designed to connect to the Vibby Oak fall detector, with data received by ISM-band
radio communication. To integrate it with the CAMI gateway, we forward the fall event

12.3 Results 197

Figure 12.4: Preferences hierarchy of all functionalities for all respondents.
Values represent MaxDiff scores.

plot the evolution in time of the physiological parameters. Normal or acceptable limits
for each of the parameters will be plotted together with the recorded data. Falls are
serious threats to elderly people living alone and can even result in life threatening sit-
uations when the fall is critical and not addressed within a specific time. As a result, in
CAMI, the fall detection functionality together with alarm generation on the occurrence
of a serious fall, needed in order to automatically inform caregivers and family is given
due importance. To detect a fall, we employ the Vibby Oak fall detection sensor, along
with its IoT gateway, Vibby Leaf (both produced by Vitalbase). Vibby Oak is a wearable
sensor that can be worn around the wrist like a watch, or as a pendant around the neck.
They are designed to automatically detect dangerous (heavy) falls of the wearer who
lies on the floor. The device also has a manual trigger to push the alarm off, if the user
has recovered successfully. A dangerous fall is detected if: a) a body in standing posi-
tion is followed by: b) a quick and sudden loss of gravity or verticality followed by: c) a
sudden and strong impact on the floor, and d) a lying position on the floor with or with-
out activity. If these four phases have occurred, an automatic alarm is then activated.
The Vibby Oak algorithm reduces the false fall alarms significantly, although it does
not completely remove them. The Vibby Leaf gateway is an ISM 868Mhz transceiver
designed to connect to the Vibby Oak fall detector, with data received by ISM-band
radio communication. To integrate it with the CAMI gateway, we forward the fall event

225

198 Paper E

Figure 12.5: Screenshot of the application.

to the CAMI gateway, from where it gets pushed to the Decision Support System (DSS)
placed in the CAMI cloud, which generates a notification for the caregiver regarding
the fall.

12.3.3 Computer supervised physical exercises
This functionality aims to (1) improve the user’s lifestyle by providing regular physical
activity that is consistent with his / her medical condition; (2) monitor the user’s ac-
tivity and provide motivational feedback; provide a personalized exercise program that
can be adapted by a medical specialist, depending on patient progress. The application
is developed using the Unity 3D engine and is based on two avatars: the training avatar
and the avatar of the user. The training avatar is performing different physical exercises
which the user must reproduce. The user’s movements are compared with the move-
ments of the avatar based on algorithms for comparing two nonlinear series. The results
are saved in a database, such that they can be analyzed also at later times. At the end
of the exercise, the user is receiving a score reflecting the correctness of the performed
exercises. A screen shot of the application, with both avatars, is given in Figure 12.5.

The Kinect v2 sensor is used to map the user’s movements to its avatar. The sensor
provides 25 joints for a user at approximately 30 frames per second. For the imple-
mented exercises, only 20 joints are used. For each joint we compute a 3D rotation
using quaternions relative to the parent bone. The application aims to personalize the
exercises according to the medical or physical condition of each user. For this purpose,
we associated weights with each joint in order to reflect the user’s condition. Each
weight has a value in between 0 and 1 which can be personalized for each user. In order
to compare the trainer and user movements, the similarity between the set of quaternion
values for each joint, computed for each frame, is compared using the Dynamic Time
Warping algorithm (DTW) [7]. DTW computes the similarity between two series by

198 Paper E

Figure 12.5: Screenshot of the application.

to the CAMI gateway, from where it gets pushed to the Decision Support System (DSS)
placed in the CAMI cloud, which generates a notification for the caregiver regarding
the fall.

12.3.3 Computer supervised physical exercises
This functionality aims to (1) improve the user’s lifestyle by providing regular physical
activity that is consistent with his / her medical condition; (2) monitor the user’s ac-
tivity and provide motivational feedback; provide a personalized exercise program that
can be adapted by a medical specialist, depending on patient progress. The application
is developed using the Unity 3D engine and is based on two avatars: the training avatar
and the avatar of the user. The training avatar is performing different physical exercises
which the user must reproduce. The user’s movements are compared with the move-
ments of the avatar based on algorithms for comparing two nonlinear series. The results
are saved in a database, such that they can be analyzed also at later times. At the end
of the exercise, the user is receiving a score reflecting the correctness of the performed
exercises. A screen shot of the application, with both avatars, is given in Figure 12.5.

The Kinect v2 sensor is used to map the user’s movements to its avatar. The sensor
provides 25 joints for a user at approximately 30 frames per second. For the imple-
mented exercises, only 20 joints are used. For each joint we compute a 3D rotation
using quaternions relative to the parent bone. The application aims to personalize the
exercises according to the medical or physical condition of each user. For this purpose,
we associated weights with each joint in order to reflect the user’s condition. Each
weight has a value in between 0 and 1 which can be personalized for each user. In order
to compare the trainer and user movements, the similarity between the set of quaternion
values for each joint, computed for each frame, is compared using the Dynamic Time
Warping algorithm (DTW) [7]. DTW computes the similarity between two series by

226

12.3 Results 199

Figure 12.6: Scores obtained by one user.

calculating the minimum distance between them. The Kinect sensor is introducing in-
put noise when collecting the user’s movements. Hence, the result obtained by applying
the DTW algorithm to two sets of frames must be processed in order to obtain a robust
result that reflects the correctness of the user’s movements. The score provided to the
user, reflecting his results is computed using the equation 12.1:

Similarity(f ref, f user) = 1−DTW/refMAX (12.1)

where DTW is the distance between fref and fuser computed using DTW; fref and
fuser are are the set of frames associated to the trainer and to the user; refMAX repre-
sents the highest value obtained by applying the DTW algorithm. The latter is obtained
experimentally based on the user’s performance. The similarity between joints is com-
puted with DTW using the Euclidean distance. Values obtained for joints similarities
are normalized in the range [0, 1] by dividing to the maximum obtained value. If one
value is greater than a fixed threshold (experimentally obtained) then the movement
wasn’t performed correctly based on that joint. We experimented with different dis-
tance metrics for computing the DTW, i.e. inner product, euclidean distance, squared
Euclidean distance and Manhattan distance. Four cases were considered: a) M1 - user
movements are performed similar with the reference exercise; b) M2 - user movements
are performed slower than the reference exercise; c) M3 - user movements are partially
wrong than the reference one and d) M4 - user movements are slower and different than
the reference one. The similarity computed with the squared Euclidean distance and the
inner product distance can differentiate between these 4 type of cases. The other two
considered methods are not able to differentiate between M2 and M3. The user can vi-
sualize the results obtained during a week, as shown in Figure 12.7. One day exercises
can be also selected for visualization.

12.3 Results 199

Figure 12.6: Scores obtained by one user.

calculating the minimum distance between them. The Kinect sensor is introducing in-
put noise when collecting the user’s movements. Hence, the result obtained by applying
the DTW algorithm to two sets of frames must be processed in order to obtain a robust
result that reflects the correctness of the user’s movements. The score provided to the
user, reflecting his results is computed using the equation 12.1:

Similarity(f ref, f user) = 1−DTW/refMAX (12.1)

where DTW is the distance between fref and fuser computed using DTW; fref and
fuser are are the set of frames associated to the trainer and to the user; refMAX repre-
sents the highest value obtained by applying the DTW algorithm. The latter is obtained
experimentally based on the user’s performance. The similarity between joints is com-
puted with DTW using the Euclidean distance. Values obtained for joints similarities
are normalized in the range [0, 1] by dividing to the maximum obtained value. If one
value is greater than a fixed threshold (experimentally obtained) then the movement
wasn’t performed correctly based on that joint. We experimented with different dis-
tance metrics for computing the DTW, i.e. inner product, euclidean distance, squared
Euclidean distance and Manhattan distance. Four cases were considered: a) M1 - user
movements are performed similar with the reference exercise; b) M2 - user movements
are performed slower than the reference exercise; c) M3 - user movements are partially
wrong than the reference one and d) M4 - user movements are slower and different than
the reference one. The similarity computed with the squared Euclidean distance and the
inner product distance can differentiate between these 4 type of cases. The other two
considered methods are not able to differentiate between M2 and M3. The user can vi-
sualize the results obtained during a week, as shown in Figure 12.7. One day exercises
can be also selected for visualization.

227

200 Paper E

Figure 12.7: Scores obtained by one user.

12.3.4 CAMI Vocal Interface
The vocal interface integrated in CAMI allows oral (speech and not speech) interactions
between the user and the system (see Figure 12.7). After analyzing existing solutions
in the field, we developed a vocal interface that is composed of five main modules: Au-
tomatic Speech Recognition (ASR), Natural Language Understanding (NLU), Dialog
Management (DM), Natural Language Generation (NLG), and Text to Speech synthe-
sis (TTS). Since, the user should always be able to interact with the CAMI platform,
regardless of the status of the internet connection, the vocal interface should work also
offline ensuring basic system functionalities. Therefore, the vocal interface has two
working mode: one that depends on the internet connectivity that will be used normally
(online mode) and the other that doesn’t depend on internet connection that will be used
in case of connection lost (offline / limited mode).

Briefly, ASR is the technology that allows a computer to identify the words spoken
by a person into a microphone and to convert them to writing text. We use the Windows
Speech Technology as our ASR solution. It offers a basic speech recognition infrastruc-
ture that digitizes the acoustic signals and recovers words and speech elements from the
audio input. To access and extend this basic speech recognition technology, we use the
“System.Speech.Recognition namespace” and define algorithms for identifying and act-
ing on specific phrases or word patterns. We also manage the runtime behavior of this
infrastructure and we created a grammar that consist of a set of rules and constraints to
define words and phrases that will be recognized as meaningful input. The NLU module
aims to extract the semantic meaning from the text received from the ASR module by
converting the received words to a machine-reading representation. This module is also
responsible to correct any errors made by the ASR module. We use the language Under-
standing Intelligent Service (LUIS) from Microsoft as our NLU solution. By sending

200 Paper E

Figure 12.7: Scores obtained by one user.

12.3.4 CAMI Vocal Interface
The vocal interface integrated in CAMI allows oral (speech and not speech) interactions
between the user and the system (see Figure 12.7). After analyzing existing solutions
in the field, we developed a vocal interface that is composed of five main modules: Au-
tomatic Speech Recognition (ASR), Natural Language Understanding (NLU), Dialog
Management (DM), Natural Language Generation (NLG), and Text to Speech synthe-
sis (TTS). Since, the user should always be able to interact with the CAMI platform,
regardless of the status of the internet connection, the vocal interface should work also
offline ensuring basic system functionalities. Therefore, the vocal interface has two
working mode: one that depends on the internet connectivity that will be used normally
(online mode) and the other that doesn’t depend on internet connection that will be used
in case of connection lost (offline / limited mode).

Briefly, ASR is the technology that allows a computer to identify the words spoken
by a person into a microphone and to convert them to writing text. We use the Windows
Speech Technology as our ASR solution. It offers a basic speech recognition infrastruc-
ture that digitizes the acoustic signals and recovers words and speech elements from the
audio input. To access and extend this basic speech recognition technology, we use the
“System.Speech.Recognition namespace” and define algorithms for identifying and act-
ing on specific phrases or word patterns. We also manage the runtime behavior of this
infrastructure and we created a grammar that consist of a set of rules and constraints to
define words and phrases that will be recognized as meaningful input. The NLU module
aims to extract the semantic meaning from the text received from the ASR module by
converting the received words to a machine-reading representation. This module is also
responsible to correct any errors made by the ASR module. We use the language Under-
standing Intelligent Service (LUIS) from Microsoft as our NLU solution. By sending

228

12.3 Results 201

Table 12.1 Results of the ASR module performance tests.

User’s input Score Quiet Env Score Noisy Env
Who are you 98.51 94.63

How will be the weather today 98.74 95.72
What I have scheduled for today 98.05 94.62

What is my health status 99.73 95.70
Call Bogdan 99.89 96.12

How much have I walked 97.15 94.21
Show my calendar 98.56 94.81

Take a new health measurement 98.16 94.31
I forgot how to use the device 99.15 94.29

Display blood sugar measurement 98.89 94.58

the resulted text from the ASR module to LUIS, the system will receive back relevant,
detailed information regarding the user’s request. For each domain of interaction, we
designed its proper domain-specific language model and tailored it to the need of the
system. The DM module is responsible for the state and flow of the conversation. It
receives as input some relevant information regarding the user’s request that were gen-
erated by the NLU. The output of this module is a semantic representation of a list of
instructions of the dialog system that determines which should be the system’s answer
in response to the user’s processed input. The NLG module is the natural language pro-
cessing task of generating natural language from a machine representation system (such
as a knowledge base or a logical form). It may be viewed as the opposite of the NLU.
We use the Microsoft Bot Framework from Microsoft as a solution that combines the
DM and NLG modules, it is a platform that allows to build, connect, test, and deploy
powerful and intelligent bots. We built the bots from scratch, using the Bot Builder SDK
for .NET and Node.js provided by the Microsoft Bot Framework. The TTS module is
responsible to artificially produce any generated output normal language text into hu-
man speech that will be heard over the speakers of the system. The quality of a speech
synthesizer is judged by its similarity to the human voice and by its ability to be un-
derstood clearly. We use the SpeechSynthesizer Class included in the Windows Speech
Technology. The implementation outlined above is the way in which the modules of
the voice interface work in the online mode. Regarding the offline mode of the voice
interface there is no change at the levels of ASR and TTS modules with the exception
of the number of the recognized commands which are reduced to those that ensure the
basic system functionalities. Regarding the other three modules, we developed an al-
gorithm in which the NLU compares its generated output with an array that contains
all the commands that should be recognized. If no match is found, the system will tell

12.3 Results 201

Table 12.1 Results of the ASR module performance tests.

User’s input Score Quiet Env Score Noisy Env
Who are you 98.51 94.63

How will be the weather today 98.74 95.72
What I have scheduled for today 98.05 94.62

What is my health status 99.73 95.70
Call Bogdan 99.89 96.12

How much have I walked 97.15 94.21
Show my calendar 98.56 94.81

Take a new health measurement 98.16 94.31
I forgot how to use the device 99.15 94.29

Display blood sugar measurement 98.89 94.58

the resulted text from the ASR module to LUIS, the system will receive back relevant,
detailed information regarding the user’s request. For each domain of interaction, we
designed its proper domain-specific language model and tailored it to the need of the
system. The DM module is responsible for the state and flow of the conversation. It
receives as input some relevant information regarding the user’s request that were gen-
erated by the NLU. The output of this module is a semantic representation of a list of
instructions of the dialog system that determines which should be the system’s answer
in response to the user’s processed input. The NLG module is the natural language pro-
cessing task of generating natural language from a machine representation system (such
as a knowledge base or a logical form). It may be viewed as the opposite of the NLU.
We use the Microsoft Bot Framework from Microsoft as a solution that combines the
DM and NLG modules, it is a platform that allows to build, connect, test, and deploy
powerful and intelligent bots. We built the bots from scratch, using the Bot Builder SDK
for .NET and Node.js provided by the Microsoft Bot Framework. The TTS module is
responsible to artificially produce any generated output normal language text into hu-
man speech that will be heard over the speakers of the system. The quality of a speech
synthesizer is judged by its similarity to the human voice and by its ability to be un-
derstood clearly. We use the SpeechSynthesizer Class included in the Windows Speech
Technology. The implementation outlined above is the way in which the modules of
the voice interface work in the online mode. Regarding the offline mode of the voice
interface there is no change at the levels of ASR and TTS modules with the exception
of the number of the recognized commands which are reduced to those that ensure the
basic system functionalities. Regarding the other three modules, we developed an al-
gorithm in which the NLU compares its generated output with an array that contains
all the commands that should be recognized. If no match is found, the system will tell

229

202 Paper E

Table 12.2 Results of TSR module performance testing.

System spoken out Un.QE Un. NE Cl.QE Cl.NE
I am CAMI, your smart

personal assistant How can I
help you? 10.00 9.75 9.50 9.50

Here is the home control
main page. 10.00 9.50 9.50 9.50

What health measurement
do you want to take ? 9.75 8.75 9.00 9.00

Here is your weekly calendar.
Your time is getting filled. 10.00 9.75 9.50 9.50
Here are your blood sugar

variations during past month. 9.75 8.75 9.25 9.25

the user that the command is not recognized, and will ask for a new one. If a match is
found, the system will execute the predefined content and will generate the outputs that
correspond to the match (local variable involved only). We tested our voice interface in
the laboratory. The tests have been done on a set of 200 interactions between 5 different
users and the machine. Each user repeated 20 interactions with the system 2 times using
a Plantronics Voyager 5200 UC Microphone integrated into the system in a quiet then
noisy environment. We tested the solution on an HP ZBook 15 G3 (Core i7 2.60 Ghz, 8
GB RAM, integrated stereo speakers), having Windows 10 - 64 bits operating system.
For the ASR module we used the Levenshtein Distance to calculate the differences be-
tween the speech recognition results and the original texts [8]. Some of the results are
listed in Table 12.1.

For the TTS module we used a questionnaire to find out if the user understood the
spoken output and its degree of the clearness. For each question, the user answered with
a score from 0 to 10 where 10 represents represent full understanding or excellent clear-
ness. Results are listed in Table 12.2. Column 1 describes the system spoken output,
column 2 and 3 specify the user satisfaction in understanding in quiet and noisy envi-
ronment respectively, and column 3 and 4 represent the system satisfaction in clearness
in quiet and noisy environment respectively.

The obtained results are satisfying and are considerably improved when using an
advanced microphone. Furthermore, we expect also the TTS module to exhibit im-
proved results when using high-quality speakers.

202 Paper E

Table 12.2 Results of TSR module performance testing.

System spoken out Un.QE Un. NE Cl.QE Cl.NE
I am CAMI, your smart

personal assistant How can I
help you? 10.00 9.75 9.50 9.50

Here is the home control
main page. 10.00 9.50 9.50 9.50

What health measurement
do you want to take ? 9.75 8.75 9.00 9.00

Here is your weekly calendar.
Your time is getting filled. 10.00 9.75 9.50 9.50
Here are your blood sugar

variations during past month. 9.75 8.75 9.25 9.25

the user that the command is not recognized, and will ask for a new one. If a match is
found, the system will execute the predefined content and will generate the outputs that
correspond to the match (local variable involved only). We tested our voice interface in
the laboratory. The tests have been done on a set of 200 interactions between 5 different
users and the machine. Each user repeated 20 interactions with the system 2 times using
a Plantronics Voyager 5200 UC Microphone integrated into the system in a quiet then
noisy environment. We tested the solution on an HP ZBook 15 G3 (Core i7 2.60 Ghz, 8
GB RAM, integrated stereo speakers), having Windows 10 - 64 bits operating system.
For the ASR module we used the Levenshtein Distance to calculate the differences be-
tween the speech recognition results and the original texts [8]. Some of the results are
listed in Table 12.1.

For the TTS module we used a questionnaire to find out if the user understood the
spoken output and its degree of the clearness. For each question, the user answered with
a score from 0 to 10 where 10 represents represent full understanding or excellent clear-
ness. Results are listed in Table 12.2. Column 1 describes the system spoken output,
column 2 and 3 specify the user satisfaction in understanding in quiet and noisy envi-
ronment respectively, and column 3 and 4 represent the system satisfaction in clearness
in quiet and noisy environment respectively.

The obtained results are satisfying and are considerably improved when using an
advanced microphone. Furthermore, we expect also the TTS module to exhibit im-
proved results when using high-quality speakers.

230

12.4 Conclusions 203

12.4 Conclusions
A user centered design involving participants from Denmark, Poland and Romania was
employed for the development of the CAMI platform in order to best fit the requirements
and needs of elderly people. In addition to a multinational survey, the BWS method was
used to obtain not only a general opinion of the elderly people on the CAMI solution but
also a ranking of the CAMI functionalities. Functionalities related to health monitoring
and prevention, including fall detection and computer supervised exercises, are highly
ranked by the elderly users. Further discussions within focus groups and demonstra-
tion sessions organized in three countries also reveal vocal interaction with the CAMI
platform is considered important when elderly people are involved. The obtained re-
sults helped us propose guidelines for decreasing acceptance barriers of ICT solutions
among the aging population. Moreover, we implemented these in the design and devel-
opment of CAMI’s functionalities. Through the integration of e-health application for
self-monitoring of health parameters (e.g. blood pressure, glucose, heart rate, weight,
etc.) with computer supervised physical exercise the CAMI end-users can learn how
to for maintaining a healthy and independent lifestyle. In addition, fall detection and
alerting is increasing their level of security and confidence. Extensive field trials are
planned to gather user’s assessment of the implementation of the CAMI functionalities
described in this paper.

Acknowledgement
This work was supported by the Active and Assistive Living (AAL) program through
a grant of the Romanian National Authority for Scientific Research and Innovation,
“CAMI- The Artificially intelligent ecosystem for self-management and sustainable
quality of life in AAL”, project number AAL-2014-1-087.

12.4 Conclusions 203

12.4 Conclusions
A user centered design involving participants from Denmark, Poland and Romania was
employed for the development of the CAMI platform in order to best fit the requirements
and needs of elderly people. In addition to a multinational survey, the BWS method was
used to obtain not only a general opinion of the elderly people on the CAMI solution but
also a ranking of the CAMI functionalities. Functionalities related to health monitoring
and prevention, including fall detection and computer supervised exercises, are highly
ranked by the elderly users. Further discussions within focus groups and demonstra-
tion sessions organized in three countries also reveal vocal interaction with the CAMI
platform is considered important when elderly people are involved. The obtained re-
sults helped us propose guidelines for decreasing acceptance barriers of ICT solutions
among the aging population. Moreover, we implemented these in the design and devel-
opment of CAMI’s functionalities. Through the integration of e-health application for
self-monitoring of health parameters (e.g. blood pressure, glucose, heart rate, weight,
etc.) with computer supervised physical exercise the CAMI end-users can learn how
to for maintaining a healthy and independent lifestyle. In addition, fall detection and
alerting is increasing their level of security and confidence. Extensive field trials are
planned to gather user’s assessment of the implementation of the CAMI functionalities
described in this paper.

Acknowledgement
This work was supported by the Active and Assistive Living (AAL) program through
a grant of the Romanian National Authority for Scientific Research and Innovation,
“CAMI- The Artificially intelligent ecosystem for self-management and sustainable
quality of life in AAL”, project number AAL-2014-1-087.

231

232

Bibliography

[1] Active and Assisted Living Programme: CAMI. www.camiproject.eu. Ac-
cessed: 2018-01-15.

[2] Ashalatha Kunnappilly, Alexandru Sorici, Imad Alex Awada, Irina Mocanu,
Cristina Seceleanu, and Adina Madga Florea. A Novel Integrated Architecture for
Ambient Assisted Living Systems. In Computer Software and Applications Con-
ference (COMPSAC), 2017 IEEE 41st Annual, volume 1, pages 465–472. IEEE,
2017.

[3] Alexandru Sorici, Imad Alex Awada, Ashalatha Kunnappilly, Irina Mocanu, Oana
Cramariuc, Lukasz Malicki, Cristina Seceleanu, and A Florea. CAMI-An Inte-
grated Architecture Solution for Improving Quality of Life of the Elderly. In Inter-
national Conference on IoT Technologies for HealthCare, pages 141–144. Springer,
2016.

[4] Linkwatch. https://www.linkwatch.se. Accessed: 2018-01-15.

[5] Opentele. https://www.opentelehealth.com. Accessed: 2018-01-15.

[6] JL Louviere. Conjoint Analysis. Advanced methods of marketing research, pages
223–259, 1994.

[7] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization
for spoken word recognition. IEEE transactions on acoustics, speech, and signal
processing, 26(1):43–49, 1978.

[8] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

Bibliography

[1] Active and Assisted Living Programme: CAMI. www.camiproject.eu. Ac-
cessed: 2018-01-15.

[2] Ashalatha Kunnappilly, Alexandru Sorici, Imad Alex Awada, Irina Mocanu,
Cristina Seceleanu, and Adina Madga Florea. A Novel Integrated Architecture for
Ambient Assisted Living Systems. In Computer Software and Applications Con-
ference (COMPSAC), 2017 IEEE 41st Annual, volume 1, pages 465–472. IEEE,
2017.

[3] Alexandru Sorici, Imad Alex Awada, Ashalatha Kunnappilly, Irina Mocanu, Oana
Cramariuc, Lukasz Malicki, Cristina Seceleanu, and A Florea. CAMI-An Inte-
grated Architecture Solution for Improving Quality of Life of the Elderly. In Inter-
national Conference on IoT Technologies for HealthCare, pages 141–144. Springer,
2016.

[4] Linkwatch. https://www.linkwatch.se. Accessed: 2018-01-15.

[5] Opentele. https://www.opentelehealth.com. Accessed: 2018-01-15.

[6] JL Louviere. Conjoint Analysis. Advanced methods of marketing research, pages
223–259, 1994.

[7] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization
for spoken word recognition. IEEE transactions on acoustics, speech, and signal
processing, 26(1):43–49, 1978.

[8] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

233

234

235

236

A
sh

a
la

th
a

 Ku
n

n
a

p
p

illy FO
R

M
A

LLY A
SSU

R
ED

 IN
TELLIG

EN
T SYSTEM

S FO
R EN

H
A

N
C

ED
 A

M
B

IEN
T A

SSISTED
 LIV

IN
G

 SU
P

P
O

R
T

2019

Mälardalen University Licentiate Thesis 278

Formally Assured Intelligent Systems
for Enhanced Ambient Assisted Living
Support
Ashalatha Kunnappilly

ISBN 978-91-7485-425-1
ISSN 1651-9256

Address: P.O. Box 883, SE-721 23 Västerås. Sweden
Address: P.O. Box 325, SE-631 05 Eskilstuna. Sweden
E-mail: info@mdh.se Web: www.mdh.se

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1180
 323
 None
 Up
 0.0000
 0.0000

 Both
 7
 AllDoc
 8

 CurrentAVDoc

 Smaller
 20.9764
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1180
 323
 None
 Up
 0.0000
 0.0000

 Both
 7
 AllDoc
 8

 CurrentAVDoc

 Smaller
 20.9764
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut top edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1180
 323
 None
 Up
 0.0000
 0.0000

 Both
 7
 AllDoc
 8

 CurrentAVDoc

 Smaller
 20.9764
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 542.55 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1180
 323

 None
 Up
 0.0000
 0.0000

 Both
 7
 AllDoc
 8

 CurrentAVDoc

 Smaller
 542.5512
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryList_V1
 qi2base

