
Demand-Driven Static Backward Slicing for
Unstructured Programs

Husni Khanfar, Björn Lisper, Saad Mubeen

School of Innovation, Design, and Engineering, Mälardalen University,
SE-721 23 Väster̊as, Sweden

husni.khanfar@mdh.se, bjorn.lisper@mdh.se, saad.mubeen@mdh.se

Abstract. Backward program slicing identifies the program parts that
might influence a particular variable at a program point. A program part
(e.g., a statement) can be directly influenced by another part due to its
data or control dependence on the later. The classical program slicing
approaches are designed to find in advance all the data and control de-
pendencies in the program. This design entails a considerable amount of
unnecessary computations because not all the dependencies are required
for computing the slice. Demand-driven program slicing approaches try
to raise the analysis performance by avoiding the unnecessary compu-
tations. However, these approaches cannot address unstructured pro-
grams in a demand-driven fashion. On the other hand, the existing tech-
niques that compute the control dependencies in unstructured programs
are based on fixed-point iterations, which limits their integration to the
demand-driven slicing approaches.
Program slicing based on Predicate Code Block (PCB) is a new demand-
driven slicing approach that can address only structured programs. This
paper presents the first demand-driven technique to compute the control
dependencies in unstructured programs. In this regard, the technique
uses flow information, location-based information and syntactic structure
of the source code. Further, the paper shows how the new technique can
be integrated to the PCB-based slicing approach to address unstructured
programs.

Keywords: Program Analysis, Predicate Control Block, Control De-
pendence, Slicing, Unstructured Programs.

1 Introduction

In program analysis techniques, many problems are characterised as problems
of scale due to the sheer size of some large programs. The size of such programs
could be reduced by using program slicing. This technique reduces program size
concerning a slicing criterion, which is a pair < var, loc >, where var is a variable
at the program point loc. The slicing techniques aim at removing the program
parts that do not affect directly or indirectly the slicing criterion. The remaining
parts constitute a slice, from the original program P , whereby the slice computes
the same values of var at loc to those obtained by P , whenever both P and slice

1

have the same program inputs. The different parts of a program can affect each
other through data or control dependencies. A statement s2 is data dependent
on another statement s1 if s1 assigns a value to a variable that is read by s2.
Similarly, a program statement s is control dependent on predicate b if the value
of b determines whether s is executed. Program slicing has potential use in many
areas such as program debugging, verification, testing and maintenance.

PCB-based slicing [1,2] is a recently developed program slicing approach.
This approach is demand driven in the sense that it computes only necessary
dependencies instead of computing all possible dependencies within a program.
As a result, the PCB-based slicing outperforms the slicing approach that was de-
veloped by Ottenstein and Ottenstein [3], and is based on Program Dependence
Graph (PDG). Further, this approach operates on a new light-weight program
representation that is referred to as the PCB graph. The PCB-graph represents
the program flows. Moreover, the PCB-graph preserves the syntactic structure
of program. This mix of two types of information is contrary to the concept
applied in the state-of-the-art program representation, namely the Control Flow
Graph (CFG), which focuses only on representing the program flows.

The PCB-based slicing approach shown in [1,2] works well with structured
programs, but it does not address unstructured programs. The difference between
slicing the structured and unstructured programs is in computing the control
dependencies in the presence of unstructured jumps (e.g. goto, break) in the case
of latter. This report aims at covering this gap by designing a novel technique
to compute on the fly1 the control dependencies in unstructured programs.

In the state-of-the-art slicing approaches, the control dependence relationship
is obtained from the post-domination facts2. These facts are obtained by some
classical methods [4,5]. These methods are not demand-driven because they are
based on fixed-point iterations, causing the computation of unnecessary infor-
mation.

The main contributions presented in this paper are:

1. developing a new approach based on the PCB-graph to compute the control
dependencies in unstructured programs,

2. extending the PCB-based slicing approach to address unstructured pro-
grams.

The first contribution is based on three theorems. This contribution is carried
out in two phases. The first phase (based on Theorem 1 and Theorem 3) is quick,
safe, but approximate. It quickly removes many control-dependence candidates.
The second phase (based on Theorem 2) is exact but potentially expensive.
The idea is that if the first phase manages to screen many potential control
dependencies, then there will be only a few dependencies left to be investigated
with the second phase. To sketch the three theorems out, given a statement s
that exists inside a conditional statement whose predicate is p:

1 The terms in demand-driven fashion and on-the-fly are used interchangeably here.
2 The post-domination fact is defined in Section 2.3

2

1. Theorem 1 can be implemented to exclude the predicates that certainly do
not control s,

2. Theorem 2 supports a check whether there is a standard control dependency
between a given statement and a given predicate,

3. Theorem 3 supports a check whether s is control dependent on predicates
other than p.

It is worth mentioning that the proposed approach for computing the control
dependencies in unstructured programs mainly targets high-level programs that
are “almost well-structured”. In other words, they have only a few unstructured
jumps, as opposed to completely unstructured programs without structured pro-
gram constructs like binary code with jumps only.

The rest of the paper is organized as follows, Section 2 provides the back-
ground. Section 3 discusses the types of program flows and some behaviors re-
lated to their locations. Section 4 discusses the approach to compute on the
fly the control dependencies. Section 5 optimizes the approach proposed in Sec-
tion 4. Section 6 presents the formal definition of the PCB-graph representation.
Section 7 provides a complete slicing algorithm based on the PCB graph. Sec-
tion 8 presents the related work and Section 9 provides the conclusions.

3

2 Background

This section provides a brief description of the While language, the state-of-the-
art program representation CFG, the post-domination concept and the control
dependencies.

2.1 While Language

The While language [6] is a small model imperative programming language. This
language is used to develop and test new approaches and methods specialized
in the analysis of source codes. Using the While language for such developments
gets rid of tons of details included in the real languages. The details are certainly
not needed in the theoretical development.

A While program is a statement s, which might be an elementary statement
(es), conditional statement (cs) or a composite statement (s1; s2). In [6], every
elementary statement or a predicate has a unique integer label. This report ex-
tends the labeling scheme in [6] by giving a unique label to every conditional
statement. Further, a goto statement is added to the syntax of the While lan-
guage. The statements are labeled in ascending order according to their locations
in the source code, from left to right and from top to bottom. With this labeling
system, all program flows except backward jumps go from statements with lower
labels to statements with higher labels. This work extends the While language
presented in [6] to include the goto statement.

Let a denote arithmetic expressions, and the predicate b denotes boolean
expressions. The abstract syntax of the While language is:

cs ::=if [b]` then s′ | if [b]` then s′ else s′′ | while [b]` do s′

es ::=[x := a]` | [skip]` | [goto `′]`

s ::= es | s′; s′′ | cs

If clear from the context, we will abuse notation and write “predicate p”, or
“statement s” instead of “the label of predicate p” or “the label of statement s”.

2.2 Building a CFG from a While Program

The CFG for a program s is a representation, using graph notation, to model
the entire possible program flows in s. The CFG consists of nodes and edges,
wherein each node represents a predicate or an elementary statement, and each
edge represents a possible program flow. The node is the label. The control flow
edges in the CFG are formed from a pair of labels (i, j), which means that j
might be executed after i.

In building a CFG for a While program, there is a control flow edge from
each elementary statement to its immediate successor. Furthermore, there are
two control flow edges from every conditional statement to its immediate suc-
cessors. The internal flows in every conditional statement are determined based

4

on the internal structure of this conditional statement. If we suppose that cs is
a while conditional statement, cs comprises a predicate and a body. There are
two flows from the predicate of cs, the first is a flow from the predicate to the
first statement in the body of cs and the second is from the predicate of cs to
the immediate successor of cs. In addition, there is a control flow from the last
statement in the body of cs to its predicate. If cs′ is an if conditional state-
ment, cs′ comprises a predicate and a body. There are two control flow edges
from the predicate of cs′. The first edge is from the predicate to the first state-
ment in the body of cs′, and the other is from the predicate to the immediate
successor of cs′. Further, there is another flow from the last statement in the
body of cs′ to the immediate successor of cs′. In assuming that cs′′ is an if-else
conditional statement, cs′′ is composed of a predicate and two bodies. There is
a control flow edge from the predicate of cs′′ to the first statement in each body.
In addition, there is a control flow edge from the last statement in each body
to the immediate successor of cs′′. We refer the reader to the book “Principles
of Program Analysis” [6] for further details about the construction of the CFG
from a While program. The formal definition of building a CFG from a While
program in [6] defines five types of functions: init, final, blocks, labels and flow
to construct a CFG from a While program. In these definitions, Lab refers to
the set of all labels in the program. These definitions are extended to include
goto statements as follows:

init : Stmt→ Lab

which gets the initial label of a statement:

init([x := a]`) = `

init([skip]`) = `

init([goto `′]`) = `

init(S1; S2) = init(S1)

init(if [b]` then S) = `

init(while [b]` do S) = `

init(if[b]` then S1 else S2) = `

final : Stmt→ P(Lab)

5

which gets the set of last labels in a statement:

final([x := a]`) = {`}
final([skip]`) = {`}

final([goto `′]`) = {`}
final(S1; S2) = final(S2)

final(if [b]` then S) = {`} ∪ final(S)

final(while [b]` do S) = {`}
final(if[b]` then S1 else S2) = final(S1) ∪ final(S2)

blocks : Stmt→ P (Blocks)

where Blocks is the set of elementary statements and predicates [6]. It is defined
as follows:

blocks([x := a]`) = {[x := a]`}
blocks([skip]`) = {[skip]`}

blocks([goto `′]`) = {[goto `′]`}
blocks(S1; S2) = blocks(S1) ∪ blocks(S2)

blocks(if [b]` then S) = {[b]`} ∪ blocks(S)

blocks(while [b]` do S) = {[b]`} ∪ blocks(S)

blocks(if[b]` then S1 else S2) = {[b]`} ∪ blocks(S1) ∪ blocks(S2)

labels : Stmt→ ρ(Lab)

labels(S) = {`|[B]` ∈ Blocks(S)}

flow : Stmt→ P(Lab× Lab)

flow([x := a]`) = ∅
flow([skip]`) = ∅

flow([goto `′]`) = (`, `′)

flow(S1; S2) = flow(S1) ∪ flow(S2)

∪ {(`, init(S2))|` ∈ final(S1) ∧ ` is not a label of a goto statement}
flow(if [b]` do S) = flow(S) ∪ {(`, init(S))}

flow(while [b]` do S) = flow(S) ∪ {(`, init(S))} ∪ {(`′, `)|`′ ∈ final(S)}
flow(if[b]` then S1 else S2) = flow(S1) ∪ flow(S2) ∪ {(`, init(S1)), (`, init(S2))}

Definition 1. Control Flow Graph: The Control Flow Graph for an intra-
procedural program s is a 4-tuple (N,E,Entry,End).

1. N is a set of nodes, where each node represents an elementary program
statement in s.

6

2. E is a set of program flows, where each program flow represents a possible
program flow from one node to another. E ⊂ (N ×N).

3. Entry: is a unique start node. Entry ∈ N .
4. End: is a unique exit node. End ∈ N .
5. There is a path from Entry to every n ∈ N .
6. There is a path from every n ∈ N to End.

2.3 Post-domination and Control Dependence

Definition 2. Post-domination: In a CFG G, any node n post-dominates
node y if all the paths from y to Exit contain n.

Definition 3. Strict Post-dominator: In a CFG, a node n strictly post-
dominates node y if n post-dominates y and n is not equal to y.

Definition 4. Immediate Post-dominator: In a CFG, the node n imme-
diately post-dominates another node m if n strictly post-dominates m but does
not strictly post-dominate any node that strictly post-dominates m.

Definition 5. Control Dependence: In accordance to [3], node n is control
dependent on node m in program s if:

1. There exists a non-trivial3 path π from m to n such that every node n′ ∈
(π −m,n) is post-dominated by n; and

2. m is not strictly post-dominated by n.

Example 1 : Fig. 1 depicts the post-domination concept as well as the control
dependency as follows:

1. s7 post-dominates c1.
2. s6 is the immediate post-dominator of c1.

2.4 Strongly Live Variable Dataflow Analysis

Strongly Live Variable (SLV) dataflow analysis computes for each program point,
the set of variables whose values in this program point might influence the values
on other SLVs. Thus, some SLVs have to be injected at some program points
to analyze the program. Based on that, in injecting the slicing criterion as an
SLV, the SLV analysis could be employed to compute the data dependencies in
the slice. The SLV analysis was used in the PCB-based slicing approach in our
previous works [1,2].
The following equations are used in this analysis:

Sentry(n) = (Sexit(n) \ kill(n)) ∪ gen(n),

if kill(n) ⊆ Sexit(n)

Sentry(n) = Sexit(n), otherwise

(1)

3 Path π is non-trivial if it contains at least two nodes [7]

7

Entry

s1s5

End

c1

c2 s4

s2

s3

s6

s7

Fig. 1: a Simple CFG.

where, Sentry(n) and Sexit(n) represent the SLV set before and after the CFG
node n, respectively. In the original formulation of SLV analysis [6], the kill
and gen functions are defined for assignments x := a, conditions c, and skip
statements as follows:

kill(x := a) = {x} gen(x := a) = FV (a)

kill(c) = ∅
kill(skip) = ∅ gen(skip) = ∅

(2)

here, FV (a) denotes the set of program variables that appear in the expression
a.

The SLV dataflow analysis can be used to find the data dependencies in static
backward slicing. In supposing that an SLV var is generated from s′, and killed
in s, this means - in accordance to SLV questions - that s′ is data dependent
on s because s defines var and s′ uses var. Hence, SLV dataflow analysis could
be exploited to find the definitions that might affect a particular variable in a
statement.

8

3 Program Flows

Structured programs make extensive use of structured constructs such as if and
while conditional statements. In these programs, there is no use of unstructured
jumps (e.g. goto in the C language). Conditional statements comprise a predicate
and a body, wherein each predicate evaluates a boolean value which determines
whether the body is executed or not. Each predicate comprises two successors,
wherein one of the successors is executed thrm:thrm3ly if the predicate is true
and the other is executed immediately if the predicate is false. Accordingly, the
predicate of the conditional statement has two program flows. The main feature
of using such blocks is that the flows of the predicates are neither overlapped
nor interleaved4. Therefore, there are no flows from the body of a conditional
statement to the body of another conditional statement. Thus, the structured
organisation makes the writing, debugging and understanding of programs easier
and straightforward. Unstructured programs comprise both structured and un-
structured flows. Consequently, the program may include spaghetti code, where
the computations of control dependencies become increasingly complicated.

3.1 Basic Definitions

This subsection defines the program flow and its denotation. Further, it classifies
the program flows into three categories: normal, structured and jump flows.

Definition 6. The program flow notation (→) refers to the pair of labels
defining a program flow, such as:

`→ `′

where ` is the outgoing side of the program flow (from ` to `′) and `′ is the
ingoing side of this flow.

Definition 7. A Normal Program Flow occurs between two labels a → b
wherein b = a+ 1.

Definition 8. A Jump (Unstructured) Flow is a program flow wherein the
outgoing side is an unstructured jump statement (e.g. goto).

Definition 9. A Structured Flow is a program flow wherein the outgoing side
is a structured jump statement (e.g. if or while).
The structured flows in the conditional statements in the While language are
defined as follows:

1. if-then-else. suppose the code: if bc then S1 else S2; S′.
The flows of [if bc then S1else S2] are:
• c → init(S2): the structured flow.
• c → init(S1).

4 The flows overlapping and interleaving are defined in Section 3.2.

9

• final(S1) → init(S′): a jump flow.
• final(S2) → init(S′).

2. if-then. suppose the code: if bc then S1; S′.
The flows of [if bc then S1] are:
• c → init(S′): the structured flow.
• c → init(S1).
• final(S1) → init(S′): a jump flow.

3. while. suppose the code: while bc then S1; S′

The flows of [while bc then S1] are:
• c → init(S′): the structured flow.
• final(S1) → c: a jump flow.

As mentioned in Def. 1, in representing a program by a CFG, the program
flows are the edges. For the sake of simplicity, these edges could also be denoted
by the notation→, wherein the outgoing node is at the left and the ingoing node
is at the right.

3.2 The Categories of Program-flow Interleaving

Herein, the interleaving of program flows is introduced and classified into two
main categories, namely overlapping and intersecting.

Definition 10. Overlapping Flows: the program flow d → h overlaps c → f
when c > d ≥ f or c < d < f as well as h is either less than c and f or larger
than c and f .

Fig. 2 depicts the concept of overlapping and intersecting flows.

entry exitc d f h

Forward Overlapping

entry exith f d c

Backward Overlapping

entry exitc d f h

Intersection

entry exitc d f h

Mutual Overlapping

Fig. 2: Overlapping and intersecting flows

10

entry exit

entry exit

a b c d e f g h

b c e f g h

Fig. 3: Two sequences of overlapping flows

Definition 11. Sequence of Overlapping Flows (Overlapping Sequence)
refers to a sequence of flows, where each flow overlaps the previous flow.

Fig. 3 shows two sequences of overlapping flows.

Definition 12. Intersecting Flows refer to the intersection between two pro-
gram flows (d → h and c → f) that occurs when c < d < f or c > d > f and
d < c < h or d > c > h.

Definition 13. The Scope of a predicate lies on the structured flow of p
as well as the sequences of overlapping flows where the structured flow of p is
involved.

If we suppose that the structured flow of the predicate p is involved in some
sequences of overlapping flows, then the scope of p is the interval from the least
ingoing or outgoing side in these sequences to the largest ingoing or outgoing
side in these sequences.

Fig. 4 assumes p is a predicate, and its structured flow p → t is involved in
two sequences: [p → t, r → v] and [p → t, s → m, o → k]. Notice that v is the
largest label in these two sequences and k is the least label. Hence, p’s scope is
from k to v.

Definition 14. Bypassing: the program flow j → v bypasses the label t if
either j < t < v or j > t ≥ v.

3.3 Features of Overlapping Jumps

This subsection introduces some facts related to overlapping flows.

11

… j k t m n o p q r s t u v w … END
 The largest ingoingThe least ingoing

p’s scope

Fig. 4: An example of a predicate scope.

The statement which is not bypassed by any program flow is not
controlled by any predicate. When a label i is not bypassed by any program
flow, then all the paths from the labels which are less than i to End shall contain
i. Thus, i post-dominates all the predicates whose labels are less than i and i is
never controlled by such predicates.
On the other side, there is no path from any predicate ahead5 to i, therefore,
and in accordance with Def. 5, no such predicate can control i.

Sequences of overlapping flows can extend the control of predicates.
For the conditional statement cs with a predicate c and structured flow c→ f , c
can control the statements that are not located in the body of cs in accordance
to Def. 5, if another unstructured flow overlaps c→ f .

[h:=1]a;

[x:=1]b;

if[b1]
c then

 [goto h]d;

[h:=h*3]f

[x:=x+1]g

[t:=2]h

………………………

………………………

[End]

(a)

[h:=h*3]a

[x:=x+1]b

if[b1]
c then

 [goto a]d;

[t:=2]f

[h:=h+x+t]g

………………………

………………………

[End]

(b)

Fig. 5: Extending the power of the predicate by an overlapping flow.

5 Predicate ahead means a predicate with a label larger than i

12

Fig. 5-a shows how overlapping flows can extend the power of a predicate.
In Fig. 5-a, the unstructured flow d → h overlaps the structured flow c → f .
As a result, two paths are formed from c: pth1 = [c, f, g, ..., end] and pth2 =
[c, d, h, ..., end]. In investigating the control dependence relation between c and
g, we find in pth1 that all the nodes from c to g are post-dominated by g, which
satisfies the first condition in Def. 5. In looking to pth2, we find that g is not
included. So, the second condition in Def. 5 is also satisfied. Consequently, g
is control dependent on c. In exploring the paths from c in Fig. 5-b, we can
easily conclude that c also controls b in accordance to Def. 5. From the above
two examples, we can see that the overlapping flows can extend the power of
predicates to control statements outside the boundaries of their bodies.

[x:=5]a;

if[b1]
b then

 [x:=4]c;

 [goto g]d

[y:=4]e

[goto c]f

[z:=x-y]g

[End]

Fig. 6: Shrinking the power of the predicate by a program intersection.

Shrinking the power of predicate by an intersection. In contrast to the
overlapping, the intersection between a structured flow and an unstructured flow
might shrink the power of a predicate even inside the boundaries of its body. As
shown in Fig. 6, the predicate b does not control the statements c and d, because
of the intersection between b→ e and f → c.

13

4 On-the-fly Computation of Control Dependencies

This section presents two new theorems that support to compute on the fly and
in an accurate manner the predicates that control the possible execution of a
statement s under analysis. Practically, the two theorems are applied in two
phases. In the first phase, the first theorem is applied to exclude the predicates
that are undoubtedly irrelevant. In the second phase, the implementation of the
second theorem makes a depth-first search to check potential control dependence
relationship between every remaining predicate and s. The theorems rely on the
labeling system explained in Section 2.1.

4.1 First Phase: Excluding Irrelevant Predicates

Lemma 1 Let p be the label of a predicate with scope interval from k to v. Then
v post-dominates p.

Proof.
Since there is no overlapping sequence bypassing v from p, no path can exist
from p to End that does not include v. Since all the paths from p to End include
v, v post-dominates p �

Lemma 2 Let p be a label of a predicate such that p is post-dominated by v, and
there is a path from p to w that includes v. Then w is not control dependent on
p.

Proof.
There are two cases:

1. w does not post-dominate v, so, the first condition in Def. 5 is negated, and
it is not possible to make a control dependent relationship between w and p.

2. w post-dominates v. This causes w to post-dominate p as well. This post-
domination negates the second condition in Def. 5.

Thus, in both cases, w cannot be control dependent on p �

Lemma 3 Let p be a label of a predicate with scope interval from k to v, and
let j be any label smaller than k. Then j cannot be control dependent on p.

Proof.
Creating a forward path pth form p to j is mandatory to let p control the
execution of w. In accordance with Def. 5-1, j must post-dominate all the labels
in pth except p.
Since j < p (the assumption of the lemma), pth is achieved by establishing a
backward unstructured jump flow `→ `′ 6, where `′ ≤ i. We can divide pth into
pth1 and pth2, where the first is from p to `, and the second is from `′ to i. pth1

6 This flow might also be a sequence of overlapping flows with interval from `′ to `.
For the sake of simplicity, we consider it here as a one backward program flow.

14

requires to construct a chain of flows (structured, jump or normal) from p to `.
This chain could be formed by placing ` in one of the two intervals, in p’s scope
where k < ` < v or in v ahead where v ≤ `.

– If ` ≥ v: since v is the maximal label in p’s scope (Lemma assumption)
and v post-dominates p (Lemma 1), all the paths from p to ` include v.
Accordingly, all the paths from p to j includes v and, based on Lemma 2, j
cannot be control dependent on p.

– If k < ` < v: in this case, we get the following facts:

1. ` → `′ indeed overlaps one of the overlapping sequences which p is in-
volved with.

2. To reach j by `→ `′, `′ must be smaller than or equal to j.

From these two conclusions, the interval of p’s scope must start from j and
not k. This is contrast to the assumption of the Lemma which states the
minimal label in p’s scope is k. Therefore, we can state that j could not be
control dependent on p if k < ` < v.

Since placing ` either in p’s scope or ahead of v will not allow p to control the
execution of j, the lemma is proved �

In Fig. 4, to establish a forward path from p to j that does not include v,
we should create a backward flow fb, whose outgoing side is in the interval from
[k, v − 1] and its ingoing side is at j or less than j. In this case, fb bypasses k
and overlaps one of the overlapping sequences including p. As a result, creating
the new backward flow fb will overlap it with one of the overlapping sequences
in Fig. 4. Since the ingoing side of fb is smaller than the smallest label in p’s
scope, p’s scope will be enlarged to include the ingoing side of fb. Enlarging the
p’s scope due to establishing a forward path from p to j proves that it is not
possible to create fb if k is the smallest label in p’s scope.

Lemma 4 Let p be a label of a predicate with a scope whose interval ends at
v, and w is a label, whose value is larger than v. Then w can not be control
dependent on p.

Proof.
By Lemma 1, v post-dominates p. Therefore, w can not be control dependent
on p, because it is in one of the following cases:

1. w does not post-dominate v, so, the first condition in Def. 5 is negated.
Hence, it is not possible to make a control dependent relationship between
w and p.

2. w post-dominates v. While v post-dominates p, this causes w to post-dominate
p as well. This post-domination negates the second condition in Def. 5.

Accordingly, w cannot be control dependent on p. �

15

In Fig. 4, if we need w to be control dependent on p, then a flow from p’s
scope to any label larger than w should be established. Since the outgoing side
of the proposed flow is in p’s scope and its ingoing side is beyond the boundaries
of p’s scope, it will certainly overlap a flow in p’s overlapping sequences. As a
consequence, p’s scope will be enlarged, and v will be no longer the largest label
in p’s scope. Based on that, it is not possible to make any control dependence
relationship between p and any label larger than v.

Theorem 1. Let p be a label of a predicate with a scope interval from k to v.
Then no possible control dependence relationship can be established between p
and a label outside its scope.

Proof.
Lemma 3 states that it is not possible to establish a control dependence rela-
tionship between p and label smaller than k. Lemma 4 states the same thing
with labels larger than v. The two lemmas prove that p can not control labels
that exist outside the boundaries of its scope. �

4.2 Second Phase: Checking a Potential Control Dependence

Theorem 1 states that in order to create a control dependence relationship be-
tween the predicate p and the statement `, ` must be inside the interval of p’s
scope, but not vice versa. This means, some labels in the scope of p might not be
control dependent on p. Therefore, we can say that we use the implementation
of Theorem 1 to filter out many predicates that surely do not control `, but we
must use another technique to check a potential control dependence relationship
between the predicate with any label in its scope interval. The first-depth search
technique [8], which we call Exploring Paths by Stopping or Exploring Paths, can
be employed to examine such relationships. This technique conducts a depth-
first search in a tree of forward paths whose root is an already determined label
`. The search starts at `. Then it moves to visit its immediate successors and
so on. Each new visited label is added to a special collection clctn. The search
does not visit the immediate successors of a special set of labels. These labels
are collected in a special list called the stopping list. To prevent the occurrence
of infinite loops, the search does not add the already visited labels to clctn.

Lemma 5 `′ post-dominates ` if and only if in Exploring Paths from ` (Stopping
List = {`′,End}), the collection clctn of this search does not contain End.

Proof.

1. If `′ post-dominates `, then `′ exists in all the paths from ` to End (Def. 2).
Since the stopping list contains `′, the search that starts from ` will indeed
cut off at `′ and will not continue to End. Consequently, End is never reached
and it is never added to clctn.

2. If `′ does not post-dominate `, then there is a path from ` to End that does
not contain `′ (Def. 2). Hence, Exploring Paths from ` will reach End and
will add it to clctn. �

16

Lemma 6 ` is control dependent on the predicate with label p, if and only if one
of the immediate successors of p is post-dominated by ` and the other immediate
successor of p is not post-dominated by `.

Proof.
p has two immediate successors, each of which has a path to End (Def. 1).
If ` is control dependent on p, Def. 5 states the followings:

– A path from one of p to `, where ` post-dominates every statement in
this path except p. Accordingly, one of p’s immediate successors is post-
dominated by `.

– A path from p to End that does not contain `. As a result, the immediate
successor of p in this path must not be post-dominated by `.

As a result, if ` is control dependent on p, then ` post-dominates one of p’s
immediate successors, and does not post-dominate the other.
On the other side, if both the following occur: (1) An immediate successor of p
is post-dominated by ` (2) An immediate successor of p is not post-dominated
by `, then ` is control dependent on p because (1) satisfies the first condition in
Def. 5. and (2) satisfies the second condition in Def. 5.
From the above, the Lemma is proven. �

Theorem 2. ` is control dependent on the predicate p if and only if in Exploring
the Paths from the two immediate successors of p, where the stopping list for both
explorations is: {`,End}, the collection of one of the explorations will not contain
End where the other includes End.

Proof.
There are two cases as follows:

1. In case that ` is control dependent on the predicate p, Lemma 6 states that
one of the immediate successors of p (suppose `′) is post-dominated by `
and the other successor (suppose `′′) is not post-dominated by `. Whereas,
Lemma 5 states that in exploring the paths from `′, the collection does not
contain End, while the collection obtained from exploring the paths from `′′

shall hold End.
2. In case that ` is not control dependent on the predicate p, then in accordance

to Lemma 6, either ` post-dominates both immediate successors of p or
it does not post-dominate any of them. In accordance to Lemma 5, the
collections of both explorations either contain or not contain End. �

4.3 Proposed Approach

Definition 15. Π(`) is the set of the predicate labels that control the execution
of `.

The predicates of Π(`) are computed on-demand based on the two phases
that are explained in Section 4.1 and 4.2.

17

First Phase: Collecting Potential Controlling Predicates. This phase
implements Theorem 1 to find the predicates that may control the statement
` under analysis. The phase finds every program flow i that bypasses ` and
every sequence of overlapping flows that i is involved in. Afterwards, the flows
in these sequences are collected and stored in a set Flows7. The predicates in
these sequences are collected in a set Predicates. The procedure is as follows:

1. Add to Flows every program flow that bypasses `.
2. Move to 7 if all the items in Flows were fetched before.
3. Fetch the flow i→ m from Flows.
4. Add to Flows every program flow a→ z that overlaps i→ m in accordance

to the condition:

((i < a < m) ∨ (i > a ≥ m)) ∧ (z > i ∧ z > m) ∨ (z < i ∧ z < m)

if z is a predicate, then add it to Predicates.
5. Add to Flows every program flow z → a that is overlapped by i → m in

accordance to the condition:

((a < i < z) ∨ (a > i ≥ z)) ∧ (m > a ∧m > z) ∨ (m < a ∧m < z)

if z is a predicate, then add it to Predicates.
6. Move to 2.
7. Halt the procedure.

Several iterations from 2 to 6 might take place to find all the predicates that
control `. This approach is implemented by Algorithm 1.

Second Phase: Exploring Paths by Stopping Technique. This phase
implements Theorem 2 to check which items in Predicates control the execution
of `. The procedure to achieve this is as follows:

1. If predicates is empty, then move to 8.
2. Fetch p from Predicates.
3. Let `′ and `′′ be the two immediate successors to p.
4. Let clct ′ be the collection produced by exploring the paths from `′. The

stopping list is {`,End}.
5. Let clct ′′ be the collection produced by exploring the paths from `′′. The

stopping list is {`,End}.
6. If either clct ′ or clct ′′ does not contain End and the other collection contains

End, then we conclude that ` is control dependent on p (Theorem 2).
7. The procedure moves to 1.
8. The procedure halts.

This approach is implemented by Algorithm 2.

7 The process of storing and retrieving the flows from Flows are explained in Algo-
rithm 1.

18

[h:=1]
1
;

if[b1]
2 then

 [goto 5]3;

[h:=h*3]
4

[j:=4]
5

if[b2]6 then

 [goto 1]
7

[j:=j+4]
8

[END]
9
;

 jump flow

 structured flow

Entry

2

1

3

4

5

6

8

End

7

Fig. 7: Unstructured program and its CFG

Example 2 Fig. 7 shows an unstructured program. Hereafter, we will show how
the two phases explained in Section 4.3 work together to find the predicates that
control the statement labeled by 4.

1. The first phase shows that 4 is bypassed by two overlapping sequences, which
are [6 → 8, 7 → 1], and [2 → 4, 3 → 5]. The predicates in these sequences
are: 2 and 6.

2. In the second phase:

(a) The second phase for the predicate 2. Since 3 and 4 are the two imme-
diate successors of 2, we have the following collections:
clct ′(3)= {3, 5, 6, 7, 8,END}
clct ′′(4)= {4}
From these two collections, we conclude that 4 is control dependent on
2 (Section 4.3).

19

(b) The second phase for the predicate 6, for which 7 and 8 are its two
immediate successors:
clct ′(7)= {7, 1, 2, 4, 3, 5, 6, 8,END}.
clct ′′(8)= {8,END}
Since END exists in both of the two collections, we conclude that 4 is
not control dependent on 6.

[ASS]
1
;

if[b0]
2 then

 [goto 16]
4
;

else

 [ASS]
5

[ASS]
6

if[b1]
7 then

 [ASS]
8

 if[b2]

9 then

 [goto 16]
10
;

 [ASS]
11

[h:=m*3]
12

if[b3]
13 then

 [ASS]
14
;

 [goto 11]
15
;

[END]
16

ASS Assignment

 jump flow

 structured flow

Fig. 8: An example of an unstructured program

Example 3 The phases for finding the predicates that control 12 in Fig. 8 are:

1. In the first phase, 12 is bypassed by the following overlapping sequences:
[9 → 11, 10 → END], [7 → 12, 10 → END], [13 → 16, 15 → 11], [2 → 6,
4→ END].
From these sequences, we find that the set of predicates which might control
the execution of 11 are: {2, 7, 9, 13}.

20

2. In the second phase, we need to explore the paths from the immediate suc-
cessor of each predicate computed in the first phase. The stopping list for
all the explorations is {12,END}. The explorations are as follows:

(a) The second phase for 2, whose immediate successors are 4 and 5:
clct ′(4) = {4, END}
clct ′′(5) = {5, 6, 7, 12, 13,END}
Since the two collections contain END, 11 is not controlled by 2.

(b) The second phase for 7, whose immediate successors are 8 and 12:
clct ′(8) = {8, 9, 10,END}
clct ′′(12) = {12}
Since END exists in one of the collections and it does not exist in the
other collection, 12 is control dependent on 7.

(c) The second phase for 9, whose immediate successors are 10 and 11:
clct ′(10) = {10,END}
clct ′′(11) = {11, 12}
So, 12 is control dependent on 9.

(d) The second phase for 13, whose immediate successors are 14 and 16:
clct ′(14) = {14, 15, 11, 12}
clct ′′(16) ={END}
So, 12 is control dependent on 13.

4.4 Proposed Algorithms

The following three algorithms cooperate to compute Π(`) (Definition 15). Al-
gorithm 1 applies Theorem 1 to find the predicates which might control d. Al-
gorithm 2 applies exploration by stopping to compute the collection from a
particular label. Algorithm 3 implements Theorem 2 to compute Π(`).

Algorithm 1: GetPredicates. Algorithm 1 obtains the complement of the
predicates that certainly do not control d. The computations are carried out in
conformity with Theorem 1. Algorithm 1 is a direct implementation of the “First
Phase” subsection in Section 4.3.

If the foreach statement in (4) ranges over all the flows in the program, then
this can be a big source of inefficiency. To avoid this inefficiency, the flows are
sorted in ascending order with respect to the minimum side in each flow (the
minimum of m → t is min(m, t) = t if t < m and min(m, t) = m if m < t). In
supposing that we have a program flow m → t and the label of our statement
under analysis is s, there is no use from searching for new flows if the last flow
is m → t and min(m, t) is larger than s. A more intelligent technique8 can be

8 A Divide and Conquer algorithm.

21

Entry

2

1

4

6

7

5

8 9

11

10

END

12

13 14 15

Fig. 9: The CFG of the source code in Fig. 8

applied to avoid starting the search from the beginning. In this technique, we
suppose that the flows are stored in an array data structure Flows and this array
is sorted with respect to the minimum sides of the flows. Let n be the number
of the elements in Flows, and s is bigger than the minimum side of the flow f
which exists at the middle of the array Flows. Then we focus on the second half.
Otherwise, we focus on the first half. This algorithm is performed recursively
until reaching rapidly to the flows bypassing s.

Algorithm 2: ComputeCollection. This algorithm implements the Explor-
ing Paths by Stopping Technique from label i with the stopping list {`, End}.
The algorithm has outer and inner loops. The inner loop (7-18) moves from every
label in the CFG to its immediate successor(15). If the label has two immediate
successors, then it stores one in the worklist stack (16-18). The algorithm assigns
the current visited label to m. If m is not clct, then it is added to clct (9). The
exploration does not continue to m’s successors if m is either in the stopping list
(12,13) or in clct (11). The outer loop (5-19) uses the worklist stack to resume

22

Algorithm 1: The Implementation of Theorem I

1 Procedure GetPredicates(d)
Input:
` : a label for which we need to compute the predicates that control it (Π(`))
Output: Predicates: the predicates that might control the execution of `
Data: Flows: The flows which are involved in overlapping flows that

bypass `
2 Predicates := ∅ ;
3 Flows := ∅ ;
4 foreach a→ z where ((a < ` ∧ z > `) ∨ (a > ` ∧ z ≤ `)) do
5 Flows:= Flows ∪ a→ z ;
6 if a is a predicate then
7 Predicates:= Predicates ∪ {a}
8 foreach a→ z in Flows do
9 foreach i→ m where

((i < a < m) ∨ (i > a ≥ m)) ∧ (z > i ∧ z > m) ∨ (z < i ∧ z < m) do
10 Flows:= Flows ∪ i→ m ;
11 if i is a predicate then
12 Predicates:= Predicates ∪ {i}
13 foreach i→ m where

((a < i < z) ∨ (a > i ≥ z)) ∧ (m > a ∧m > z) ∨ ((m < a ∧m < z)) do
14 Flows:= Flows ∪ i→ m ;
15 if i is a predicate then
16 Predicates:= Predicates ∪ {i}
17 return Predicates;

the searches from the branches which have not been explored (6). The search
stops if it reaches End (13).

Algorithm 3: DetermineControllingPredicates. This algorithm computes
Π(`). It uses Algorithm 1 to exclude all the predicates that certainly do not
control `, and stores the remaining predicates in Predicates (2). Then, it assigns
every label of Predicates to p and obtains the collections of its two successors
(4, 5). From these two collections, Algorithm 3 determines whether ` is control
dependent on p and if it is, the algorithm adds p to Π(`).

23

Algorithm 2: The Implementation of Exploring by Stopping Technique

1 Procedure ComputeCollection(i, `)
Input:
i: The label where exploring the paths search starts
`: The statement that requires checking its control dependencies
Output:
clct : A set of statements and predicates
Data:
worklist : a stack of labels.

2 clct = ∅;
3 worklist = ∅;
4 worklist.push(i);
5 repeat
6 m := worklist.pop();
7 while true do
8 if m 6∈clct then
9 clct :=clct ∪ m;

10 else
11 break;
12 if m = ` then break ;
13 if m is End then return clct ;
14 tmp := m ;

// Fetches the first immediate successor of the label m
15 m:= FirstImmSucc(m);

// Fetches the second immediate successor of the label m
// returns NULL if tmp only has one immediate successor.

16 ss := SecondImmSucc(tmp) ;
17 if ss 6= NULL ∧ ss 6∈ worklist then
18 worklist.push(ss);

19 until size(worklist) = 0 ;
20 return clct ;

24

Algorithm 3: Computing the Control Dependencies in Unstructred Pro-
grams

1 Procedure DetermineControllingPredicates(`)
Input:
`: The statement label that requires finding the predicates controlling it
Output:
Π(`): The set of Predicates that control the execution of `
Data:
Predicates: a set of predicates
clct ′: The first collection of a predicate
clct ′′: The second collection of the same predicate

2 Predicates := GetPredicates(`) ;
3 foreach p ∈ Predicates do
4 clct ′:= ComputeCollection(FirstImmSucc(p),`) ;
5 clct ′′:= ComputeCollection(SecondImmSucc(p),`) ;
6 if (End /∈ clct′∧ End ∈ clct′′) ∨ (End /∈ clct′′∧ End ∈ clct′) then
7 Π(`) := Π(`) ∪ p ;

8 return Π(`)

25

5 Optimization

Section 4 proposed a two-phase approach that finds the set of predicates control-
ling a particular label `, wherein the first stage is approximate but fast, while
the second stage has a high overhead but is exact. This section proposes a new
phase that is applied before the previous two phases. The main feature of the
new phase is that it may determine the control dependencies of ` much faster
than the previous two phases and save a considerable amount of time. Similar
to the demonstration in Section 4, the new phase is formed in a theorem.

The new optimization makes a swift resolution for the statement ` under
analysis. The resolution is based on a specific attribute of the conditional state-
ment where ` stays inside its body. The attribute is realized from comprising
ingoing or outgoing sides of unstructured jump flows. If ` exists inside many
nested conditional statements, then - the new optimization - applies between
` and the innermost conditional statement containing `. In this context, when
we say that the conditional statement cs does not comprise a jump flow, that
means neither cs nor any of its internal conditional statements has an ingoing
or outgoing side of a jump flow.

Definition 16. The Conditional Statement of a Label:
The conditional statement cs of a label i refers to the innermost conditional
statement where i exists.

For instance, the predicate of [ASS]11 in Fig. 10 is 10. It is neither 4 nor 6.
The predicate of [ASS]13 is 4, and the predicate of [b2]6 is 4.

Lemma 7 Let c be a predicate label of a conditional statement cs, which does
not comprise any jump flow (it has neither an ingoing or outgoing side of a jump
flow), and let cs be the conditional statement of the label i. Then, all the paths
from other predicates existing outside cs to i contain c.

Proof.
From the assumptions of the lemma, cs does not comprise the ingoing or outgoing
side of any jump flow, this makes the flows from c to i the only way to reach i
from outside cs. Hence, c is included in all the paths that begin outside cs and
reach i �

Definition 17. The immediate next statement next(cs) of a conditional state-
ment cs is:

– If cs is followed by s (that is, cs;s): next(cs) = init(s).
– If cs is the last statement in the program: next(cs) = End.

Lemma 8 Let s a non-goto elementary statement, or a conditional statement
that does not comprise any jump flow. Then next(s) post-dominates the state-
ment s.

26

Proof.
There are two cases for s; a conditional statement or a non-goto elementary
statement.
Suppose s is a non-goto elementary statement. Then there is a normal flow
(Def. 7) from s to next(s). Since this flow must be included in all the paths
from s to End, next(s) post-dominates s. For the second case. Suppose s is a
conditional statement. There is path from each statement in s to End (Def. 1).
Further, there is a path from next(s) to End (Def. 1). Since there is no jump flow
from inside s, the only flows out from s are final(s) (Section 2.2), and next(s)
is the ingoing side of each of these flows. Therefore, all the paths from the
statements in s to End include next(s). In other words, next(s) post-dominates
all the statements in s.
The lemma is proved for the two cases and this proves the lemma �

Lemma 9 Let i be a label with conditional statement cs, and let c be the pred-
icate of cs. Further, let cs not to comprise jump flows. Then there is always a
path from c to i, and i post-dominates all the statements in this path except i
and c.

Proof.
Without loss of generality, if cs has two bodies S and S′ then we assume that i is
in S. The assumption of the lemma states that i is a label with conditional state-
ment cs. That means, in accordance to Def. 16, cs is the innermost conditional
statement for i and i could not exist inside an internal conditional statement in
S.
The Flow functions (Section 2.2) for the three conditional statements in the
While language show that there is always a flow from c to init(S).
We suppose that S has many statements, and S is a composite statement9 that
consists of many elementary and\or inner conditional statements S = [s1; s2;
...;sn]. Notice that init(S) = init(s1), i = sk where 1 ≤ k ≤ n, and n ≥ 1).
Herein, the interesting part in the proof is [s1; ..; sk]. The definition of the Flow
function (Section 2.2) states that there are program flows from each statement s
in S to its next immediate statement next(s) if cs does not comprise goto state-
ments (the assumption of the lemma provides this). Since every statement s in
S is post-dominated by next(s) (Lemma 8), each statement in S post-dominates
its predecessors in S. Based on that, for the path [c, s1, ..., sk], sk post-dominates
the statements from s1 to sk−1, but it does not post-dominate c because c is the
outgoing side of two flows (c is a predicate). Hence, the lemma is proved �

Theorem 3. Let i be a label with conditional statement cs, and let c be the pred-
icate of the conditional statement cs. Further, assume that cs does not comprise
any jump flow. Then i is control dependent on c, and it is not control dependent
on any other predicate.

9 The composite statement in Section 2.2 is formed from two statements and here -
for the sake of simplicity - we consider that S is formed from many statements.

27

Proof.
For proving this theorem we need to prove the following facts: (1) i is control
dependent on c, (2) i could not be control dependent on predicates outside cs,
and (3) i could not be control dependent on predicates inside cs except c.
Proof of (1)
We have two cases, in the first case cs has one body and in the second case cs
has two bodies:

1. In the case that cs has only one body S (e.g. if c then S), there are two
paths from c:
(a) The first path starts in the flow c → next(cs). This flow bypasses all

the statements in S. Since next(cs) post-dominates all the statements in
cs (Lemma 5), there is a path from next(cs) to End. As a consequence,
there is a path from c to End that does not include i. Hence, the second
condition in the definition of the control dependence (Def. 5) is satisfied.

(b) Lemma 9 states that there is a path from c to i that i post-dominates all
its labels except c. Accordingly, the first condition in Def. 5 is satisfied.

2. cs has two bodies S1 and S2 (e.g. if bc then S1 else S2): if the internal con-
ditional statements in S1 and S2 are addressed as the elementary statements
which have one predecessor and one successor, then there is one path from
c through S1 to next(cs) and further on to End. On the other side, there is
another path from c through S2 to next(cs) and further on to End. The two
paths are as follows:
(a) In the body which contains i, there is a path from c to i, where i post-

dominates each statement in the path except c (Lemma 9). Hence, the
first condition in Def. 5 is satisfied.

(b) There is a path from c to next(cs) through S2. In accordance to the
definition of Flow, this path cannot contain any label in S1. Therefore,
i which is in S1 cannot be in this path. In taking into account that
next(cs) post-dominates all the statements in cs (Lemma 8), the second
condition in Def. 5 is satisfied.

Based on 1a, 1b, 2a, and 2b, i is control dependent on c.
Proof of (2)
Let p be a predicate of a conditional statement outside cs. Since any path from
p to i must include c (Lemma 7), and i does not post-dominate c, there is no
path from p to i where i post-dominate all the statements except p. Based on
that, it is not possible to construct a control dependence relationship between i
and p because the first condition in Def. 5 is violated.
Proof of (3)
Suppose the body S of cs includes an internal conditional statement i as well as
the inner conditional statement cs′ whose predicate is c′. Since the structured
flow of c′ does not bypass i, then c′ could not control i (Thrm 1). Hence, c′ could
not control i and (3) is proved.

From proving (1), (2) and (3), the theorem is proved �

28

Example 4 Figure 10 shows an example. Assume that the predicates control-
ling 12 and 6 are demanded.

– For 12: it is control dependent only on 10, because its conditional statement
does not comprise any jump flow. Accordingly, there is no need to apply
Theorems 1 and 2 for finding the control dependencies that control 12.

– For 6: it is a label inside the conditional statement whose predicate is 4.
Since this conditional statement has an ingoing side of unstructured flow at
5, Theorems 1 and 2 must be applied to find the predicates that control 6.
The phases for finding the predicates that control 6 are as follows:

1. The First Phase: 12 is bypassed by the following overlapping se-
quences: [16 → 5, 15 → END], [2 → 15, 1 → 3] [4 → 13]. From these
sequences, we find that the set of predicates which might control the
execution of 11 are: {1,4,15}.

2. The Second Phase:,the paths from the immediate successor of each
predicate computed in the first phase is explored. The stopping list for
all the explorations is {6,END}.

(a) The Second Phase for 1, whose immediate successors are 2 and 3:
clct ′(4) = {2, 15, END}
clct ′′(3) = {3, 4, 14, 15,END}
Since the two collections contain END, 6 is not control dependent
on 1.

(b) The Second Phase for 4, whose immediate successors are 5 and 14:
clct ′(5) = {5, 6, 13, 14, 15, END}
clct ′′(14) = {14, 15,END}
Since the two collections contain END, 6 is not control dependent
on 4.

(c) The Second Phase for 15, whose immediate successors are 16 and
End:
clct ′(End)={END}
clct ′′(16) = {16, 5, 6}
Since one of the collections contain END, 6 is control dependent on
15.

29

if[b0]
1 then

 [goto 15]2;

[ASS]3;

if[b1]4 then

 [ASS]5;

 if[b2]6
 then

 [ASS]7;

 [h:=3]8;

 if[b3]10 then

 [ASS]11;

 [h:=3]12;

 [ASS]13;

[ASS]14;

if[b0]
15 then

 [goto 5]16;

[END]17;

Fig. 10: Example to demonstrate the application of Theorem 3

30

6 Predicated Code Block (PCB) Graph Representation

Since 1971, the CFG has been acting as the primary and most common program
representation. The CFG focuses on modelling the program flows, but it neglects
the location information such as the hierarchical structure of the nesting condi-
tional statements, the order of the labels inside the conditional statement, and
the original location of each conditional statement. For example, Figure 9 does
not illustrate the relation between the labels 7 and 11, although a quick look at
the source code in Figure 8 reveals that 11 is inside the body of the predicate
7. This example illustrates a limitation in the CFGs because of neglecting the
location information.

To implement Theorem 3 in CFGs, a large amount of annotations should be
added to recognize the labels inside each conditional statement as well as the
hierarchical structure of the child-parent conditional statements. Rather than
adding these annotations to CFGs, a new program representation is presented
in our previous work [1,2] for structured programs. In this report, we extend the
new representation to include unstructured programs. This extension enables us
to use the location information as well as the program structure beside the flow
information for finding the control dependencies in the presence of unstructured
jumps.

6.1 Constructing the PCBs

Our previous work in [1,2] introduced a new program representation that is re-
ferred to as the PCB graph. The main unit in this graph is the PCB, which
represents a conditional statement. The PCB is mainly formed from a sequence
of labels, whose first element points to a predicate of a conditional statement
cs. The remaining elements are labels for the elementary statements and place-
holders inside the body of cs. The placeholders preserve the original places of
the inner conditional statements in cs. Further, the PCB comprises a type flag,
which is L for PCBs originating from linear conditional statements (e.g. if) and
C for PCBs originating from circular statements (e.g. while). The if-then-else
statement is translated into two PCBs, one PCB for each branch.

Informally10, Figure 11 shows how the PCBs could be derived from the con-
ditional statements in the While language. This figure shows a simplified version
of the translation where all the statements inside the body of the conditional
statement are elementary statements (es). Thus, no placeholders exist.

Following [2], in the PCB graph, the original place of each conditional state-
ment is replaced by a placeholder. A skip placeholder supersedes every if or
while statement. The if-then-else conditional statement is replaced by an
in-child placeholder. The PCBs are connected by interfaces, and, every PCB
is connected with the placeholder of the original conditional statement.
The following points should be taken into account while constructing the PCBs.

10 A full and formal definition that shows how the PCB blocks are derived and con-
nected from the program syntax is given in Section 6.2

31

if ca then s`; ...;s`
′
⇒ ([ca, s`, ..., s`

′
], L)a

while ca then s`; ...;s`
′
⇒ ([ca, s`, ..., s`

′
], C)a

if ca,b then s`; ...;s`
′
else sk;...;sz ⇒ ([ca, s`, ..., s`

′
], L)a, ([¬cb, sk, ..., sz], L)b

Fig. 11: Constructing PCBs from conditional statements and the procedure.

– The PCB inherits the predicate label of the conditional statement.
– The conditional statement itself has a label. When constructing a PCB

graph, the placeholder inherits this label.
– Regarding if-then-else statements:

1. Each if-then-else predicate has two distinct labels.
2. A PCB is generated from each branch in the if-then-else statement.
3. Both PCBs are connected to the same in-child placeholder.
4. The predicate of the second PCB is a negation of the if-then-else

predicate.

Figure 12 shows an example of a program represented by a PCB graph. There
are four PCBs, P 0, P 3, P 8, and P 12. Three points should be considered in this
regard. First, there are two labels for each statement or predicate in Fig 12-b,
where the first is a global label. It exists at the right superscript. The second
label is a local index. (e.g. the global label 5 corresponds to P0[3]). Second,
each PCB has a label (e.g. P8) and this label is similar to the predicate label.
Finally, the placeholder inherits the predicate label (e.g. the statement [skip]11

in Figure 12 inherits the global label 11).
In order to apply the above requirements, the syntax of the While language

should be updated to give the predicates for if-then-else statements two labels
instead of one as follows:

cs ::=[if [b]` then s′]`
′
| [if [b]`,`

′
then s′ else s′′]`

′′
| [while [b]` do s′]`

′

es ::=[x := a]` | [skip]` | [goto `′]`

s ::= es | s′; s′′ | cs

6.2 Connecting the PCBs

The second step that comes after constructing the PCBs is to connect them. In
a PCB graph, the PCBs are connected through interfaces. Below, the symbol ε
denotes the set of interfaces in a PCB graph. The interfaces are represented as
a pair of labels (`1, `2) ∈ ε, referred to as `1 ↪→ `2.
Suppose p′ is a child PCB in p, and p[n] is the placeholder of p′ in p, then
interfaces are created in a PCB graph as follows:

32

1. The interface p[n−1] ↪→ p′[0] is constructed if p[n−1] is not a goto statement.
For instance: P0[1] ↪→ P3[0] (Fig. 12). If we suppose that the statement P0[1]
is [goto 6]1, then no interface is constructed between P0[1] and P3[0].

2. If p′ is originated from a while conditional statement, then the following
interface has to be created: p′[0] ↪→ p[n] (e.g. P12[0] ↪→ P0[8] in Figure 12).

3. If p′ is originated from an if conditional statement, and if the last label
in p′ is not a goto statement, then it is connected to p′ placeholder (e.g.
P3[1] ↪→ P0[2] in Fig. 12).

4. The unstructured flow is translated to an interface (e.g.P8[1] ↪→ P0[9] in
Figure 12).

5. If cs is an if-then-else conditional statement, cs exists inside the PCB p,
and is replaced by the placeholder p[n] in the parent PCB p. In this case
cs is translated into two PCBs (p′ and p′′), wherein p′ represents the first
branch, while p′′ represents the else branch. In accordance to the above
assumption, the following interfaces should be created:
(a) p′[0] ↪→ p′′[0].
(b) p′[w] ↪→ p[n] where p′[w] is the last label in p′ and it is not a goto

statement.
(c) p′′[z] ↪→ p[n] where p′′[z] is the last label in p′′ and it is not a goto

statement.

6.3 The Formal Definition for Constructing PCB graphs

Definition 18. A PCB graph is a triple (P, φ, ε), consisting of a set of PCBs
P , a map from global labels to PCBs, φ, and a set of interfaces, ε, represented
as pairs of labels.

The While program is a single statement s that is a composite of inner
elementary and conditional statements [s1, s2, ..., sn]. Figure. 13 shows the formal
definition that constructs a PCB graph from s. These equations translate each
conditional statement cs to a PCB graph (P ′, φ′, ε′)11. P ′ is a union of p and P ,
wherein p is the PCB of cs, and P ′ is the set of PCBs in the PCB graphs of the
internal statements in cs. The interfaces ε′ and label maps φ′ are obtained in a
similar way. To compute P , the equations dig deep into the hierarchical structure
of the nesting statements until reaching the most inner conditional statements.
These statements have only elementary statements. Thus, their PCB graphs are
constructed of single PCBs. However, in starting from the innermost conditional
statements, the PCB graph for each conditional statement is called to build the
PCB graph of the parent conditional statement, and so on until the complete
PCB graph of the whole program is built.

After computing the PCB graph for a particular internal statement s′, this
graph is assigned to λ(s′), which is called later to form the PCB graph for the
parent conditional statement. There are three parameters that are assigned to
or obtained from λs.

11 We point to the notations in Figure 13.

33

[h:=1]
1
;

if[b1]
3 then

 [h:=5]4;

[h:=h*3]
5

[j:=4]
6

if[b2]8 then

 [goto 15]
9

[cnt:=1]
10
;

while[h<1000]12

[ct:=ct+1]

13
;

[h:=h+j]

14
;

[END]
15
;

 P0

0 [true]
0

1 [h:=1]
1

2 [skip]
2

3 [h:=h*3]
5

4 [j:=4]
6

5 [skip]
7

6 [cnt:=1]
10

8 [skip]
11

9 [END]
15
;

P3

[b1]
3
 0

[h:=5]
4
 1

P8

[b2]
8

 0

[goto 15]
9
 1

P12

 [h<1000]
12
 0

[ct:=ct+1]
13
 1

2 [h:=h+j]
14

(A) Source Code (B) The PCB Graph

2

7

11

L

L

C L

Fig. 12: PCB graph for an unstructured program

λf (s′)` = s̊, (P, φ, ε), k (3)

s̊ determines how s is represented in the parent PCB. If s′ is an elementary
statement, then s̊ equals s′. Otherwise, if s′ is a conditional statement, then s̊
is a placeholder. If s′ is a composite statement s1; s2, then s̊ is a sequence of
placeholders and\or elementary statements. k is the last label in s̊. Accordingly,
k holds the label of s̊ if s̊ is an elementary statement or a placeholder. Otherwise,
k holds the last label in s̊ if s̊ is a composite statement.
As an example, λf ([if b` then s]`

′
) is defined as follows:

λf ([if b` then s]`
′
) = [skip]`

′
, (P ′, φ′, ε′), `′ (4)

From this equation, we figure out that [if b` then s]`
′

is replaced by a [skip]`
′

placeholder in its parent PCB. This placeholder inherits its global label `′ from
the if statement. Further, the PCB graph (P ′, φ′, ε′) is computed for this if

statement and assigned to λf ([if b` then s]`
′
). The equations in Figure 13 show

that P ′ is the outcome of the union of p (the PCB of [if b` then s]`
′
) and P ,

which is the set of PCBs in the PCB graph representing s. Finally, the last label
of [if b` then s]`

′
in its parent PCB is `′.

For connecting the PCB with other PCBs, the former label to the placeholder
of the PCB is often required. In Figure 13, this label is denoted by f , and it is
passed to λ by the caller of λ.
The top-level translation of the program starts from:

34

λ(s) = (P ∪ p, φ[0 7→ p], ε)

, where es, (P, φ, ε) = λ0(s), and p = {true0 : es, L}
(5)

In Fig. 13, the symbol ++ stands for concatenation of sequences.
The symbol : stands for the standard cons operator, i.e., b : [es1, · · ·] = [b, es1, · · ·].

35

λf ([x := a]`) = [x := a]`, (∅, ∅, ∅), `
λf ([skip]`) = [skip]`, (∅, ∅, ∅), `

λf ([if b` then s]`
′
) = [skip]`

′
, (P ′, φ′, ε′), `′

where es, (P, φ, ε), k = λ`(s) and φ′ = φ[` 7→ p]

and p = {b` : es, L} and P ′ = P ∪ p
and ε1 = {f ↪→ `} if f is not goto,

ε1 = ∅ if f is goto

and ε2 = {k ↪→ `′} if k is not goto,

ε2 = ∅ if k is goto.

and ε′ = ε ∪ ε1 ∪ ε2
λf ([while b` do s]`

′
) = [skip]`

′
, (P ′, φ′, ε′), `′

where es, (P, φ, ε), k = λ`(s) and φ′ = φ[` 7→ p]

and p = {b` : es, C} and P ′ = P ∪ p
and ε1 = {f ↪→ `} if f is not goto,

ε1 = ∅ if f is goto

and ε′ = ε1 ∪ ε ∪ {` ↪→ `′}

λf ([if b`,`
′
then s else s′]`

′′
) = [in child]`

′′
, (P ′′, φ′′, ε′′), `′′

where es, (P, φ, ε), k = λ`(s) and es′, (P ′, φ′, ε′), k′ = λ`′(s
′)

and φ′′ = (φ ∪ φ′)[` 7→ p, `′ 7→ p′]

and p = {b` : es, L} and p′ = {¬b`
′

: es′, L}
and ε1 = {f ↪→ `, f ↪→ `′} if f is not goto,

ε1 = ∅ if f is goto

and ε2 = {k ↪→ `′′} if k is not goto,

ε2 = ∅ if k is goto

and ε3 = {k′ ↪→ `′′} if k′ is not goto,

ε3 = ∅ if k′ is goto

and ε′ = ε ∪ ε1 ∪ ε2 ∪ ε3
λf (s; s′) = es++ es′, (P ∪ P ′, φ ∪ φ′, ε ∪ ε′), k′

where es, (P, φ, ε), k = λf (s) and es′, (P ′, φ′, ε′), k′ = λk(s′)

λf ([goto `′]`) = [goto `′]`, (∅, ∅, ε′)
where ε′ = {` ↪→ `′}

Fig. 13: Computation of PCB graph for unstructured programs.

36

7 Demand-Driven PCB-Based Slicing for Unstructured
Programs

The main feature of the PCB-based slicing approach is in computing the pro-
gram dependencies concurrently with the program slicing rather than computing
the dependencies in prior. The approach in [1,2] works well with inter-procedural
well-structured programs. This section aims to make non-executable slices for
intra-procedural unstructured programs. The difference in computing the slices
for structured and unstructured programs is in considering the presence of arbi-
trary control flows. Such flows make the computation of the control dependen-
cies more complex. The computation of the control dependencies in unstructured
programs is based on Theorems 1, 2, and 3.

There are two reasons to work with PCB graphs instead of CFGs. First, as
mentioned before, the PCB graph collects the flow information, location infor-
mation and the syntactic structure in one graph. On the other hand, CFGs lack
location information, which is essential to apply Theorem 3. Second, there is no
fully demand-driven slicing approach that is based on the CFG, whereas there
is a demand-driven slicing approach based on the PCB graph. This paper aims
at extending the existing approach to particularly include unstructured cases.

7.1 PCB-based Slicing Approach

This subsection describes the original PCB-based algorithm that works with
only structured flows. This analysis starts by translating the slicing criterion to
SLV queries. Afterward, these queries are propagated backward, which causes
to kill and generate them by the SLV functions kill and gen, respectively (these
functions (for PCB blocks) are defined in Fig. 14). For each statement s in the
program, gen(s) adds SLVs from s, while kill(s) removes some SLVs at s.

Each PCB points to its parent PCB. This encodes a parent-child hierarchy
of the conditional statements in the program. Later, this hierarchy is exploited
to capture the control dependencies in structured programs.

Each PCB P is associated with a special set SP to store its dataflow queries.
Computation of the slice starts from the slicing criterion, which is a set of pairs
< `, v >, where ` is a global label and v is a variable. Initially, the slicing
criterion is converted to a local PCB index in order to add it to the single set of
the PCBs, which contains `. The dataflow queries are used mainly to compute
the data dependencies. The dataflow queries are called SLV queries.

Suppose SP contains < i, v >. When < i, v > is fetched, < i, v > visits the
labels from i− 1 to 0 if P is linear and, in addition, it visits the labels from the
last label in P to i+ 1 if P is circular. Let e stands for the last statement that
< i, v > should visit in P . Hence, e = 0 if P is linear and e = i+ 1 otherwise. If
the current visited statement is denoted by P [j], visiting P [j] by < i, v > causes
one of the following three cases:

case 1: if v 6∈ kill(P [j]) and j 6= e, then SP remains as is.

37

kill([x := a]`) = {x}
gen([x := a]`) = FV (a) where FV (a) is the set of variables appearing in a

kill([b]`) = ∅ where b is a boolean expressoin

gen([b]`) = FV (b) where b is a boolean expressoin

and FV (b) is the set of variables appearing in b

kill([goto]`) = ∅
gen([goto]`) = ∅

kill([in− child]`) = {x|x is a program variable}
gen([in− child]`) = ∅

kill([skip]`) = ∅
gen([skip]`) = ∅

Fig. 14: kill and gen functions of SLV analysis

case 2: if v 6∈ kill(P [j]) then < i, v > is removed from SP and v does not
proceed any further. If P [j] was not sliced before, then the variables used
in P [j] will be generated as SLV queries and added to SP . As well, P [j] is
sliced.

case 3: if v 6∈ kill(P [j]) and j = e, then < i, v > is removed from SP and does
not proceed further.

Suppose the PCBs P and P ′ are connected through the interface P ′[j′] ↪→
P [j]. When the SLV query < i, v > visits P [j] and is not being killed, < i, v >
is reproduced in P ′ as < j′, v >.

There are two types of placeholders; skip and in-child. A skip placeholder
replaces the original place of every if or while conditional statement. The in-
child replaces the original place of every if-else statement. The main difference
is that skip does not kill any visiting SLV, while in-child kills them. The reason
for the different treatment of SLV queries is that for if and while there is a
program flow that bypasses the body of the conditional statement, this does not
happen in the case of if-then-else.

In order to obtain control dependencies for a sliced statement, the predicate
s0 in its PCB has to be sliced if it was not sliced before. This routine has to be
recursively applied to the parent predicate until the outermost PCB is reached.

Suppose P is a child of the PCB P ′. As soon as P [k] is sliced, P [0] should
be sliced if it is not already sliced and the variables used in P [0] are generated
as SLV queries. In addition, P ′[0] is sliced if it is not sliced before and so on.

The algorithms in Section 7.2 to 7.5 provide the extended version of the
PCB-based slicing algorithm that handles unstructured programs. Algorithms
from 4 to 7 are similar to those in our previous work [1,2]. The contribution here
is in adding Algorithm 8.

38

7.2 Algorithm 4: Slice

The procedure Slice calls the SlicePCB procedure for each PCB whose SP

holds some SLV queries. The procedure does not stop until all the single-sets
have become empty. This algorithm is developed to do a new search over all the
single-sets if one of the single-sets is not empty.

Algorithm 4: Processing the SLV Queries in the Single Set of a PCB

1 Procedure Slice(PCB, I))
Data:
Nslc: sliced labels ;
Bool : boolean value ;

2 Nslc := ∅ ;
3 Bool := true ;
4 while Bool do
5 Bool := false ;
6 foreach P ∈ PCB do
7 if Sp of P 6= ∅ then
8 Nslc = SlicePCB(P, I, Nslc) ;
9 Bool := true ;

Result: Nslc

7.3 Algorithm 5: SlicePCB

The procedure SlicePCB is the main procedure in this report that slices a PCB
P with respect to the SLV queries stored in its single set SP . In SlicePCB, there
are outer and inner loops. The outer loop fetches individually each SLV query
from SP and removes it from SP (3), and the inner loop moves each of those
SLV queries in a specific determined internal path in P .
The SLVs are fetched individually from SP (3) until it becomes empty. The last
fetched SLV query < i, v > visits the local statements from i to e. The variable
e refers to the last statement that can be visited by < i, v >, and it is calculated
at (5-6)12. The variable j refers to the index of the current visited statement.
j is calculated from the type of P and the current value of j (8-11). final(P)
equals to 0 in acyclic (linear) PCBs, and equals n in cyclic PCBs, where n is the
largest index in P .
Whenever < i, v > visits P [j], and P [j] does not define v (12), v is reproduced
through the interfaces (16), which P [j] is the outgoing side. Otherwise, if P [j]
defines v (14), P [j] is sliced (16), the predicates controlling the execution of P [j]
are determined and sliced (17), and < i, v > is killed (21, 18). Furthermore, the
variables used in P [j] are generated as SLV queries in SP (18), and reproduced
through the interfaces (20).
Given that the SLV query < i, v > visits P [j], the transfer function f j,e<i,v>(SP)

12 e is calculated from the type of the PCB; Circular (C) or Linear (L). The difference
is explained in Section 6.1.

39

updates the single set SP based on three cases: (1) if P [j] does not define v and
P [j] is that statement which < i, v > can visit, or P [j] defines v, (2) If P [j] is
not the last statement that < i, v > can reach in P and P [j] does not define v,
and (3) if P [j] defines v and P [j] was not sliced before.

Algorithm 5: Processing the SLV Queries in the Single Set of a PCB

1 Procedure SlicePCB(P, I, Nslc))
Input:
P : current PCB.
I: Interfaces
Nslc: sliced labels

2 while SP 6= ∅ do
// Fetch each SLV query from SP and remove it from SP

3 < i, v >:= Select(SP) ;
4 j := −1;
5 if (P is C and i 6= final(P)) then e := i+ 1 ;
6 else e := 0 ;
7 repeat
8 switch j do
9 case j = −1 : j := i; break;

10 case j > 0 : j := j − 1; break;
11 case j = 0 : j := final(P) ;

12 if (v 6∈ kill(P [j])) then
// Reproducing v through the interfaces

13 ReproduceByInterfaces(P [j], Nslc, v, I)

14 else
15 if (P [j] 6∈ Nslc) then
16 Nslc := Nslc ∪ {P [j]};
17 Nslc =CntrlDep(P [j], Nslc, I);

18 SP := f j,e<i,v>(SP) ;

19 foreach x ∈ gen(P [j]) do
// Reproducing x through the interfaces

20 ReproduceByInterfaces(P [j], Nslc, x, I);

21 break; // Fetch new SLV

22 until j = e;

23 return Nslc;

7.4 Algorithm 7: ReproduceByInterfaces

The algorithm ReproduceByInterfaces(P [j], Nslc, v, I)) reproduces the vari-
able v in the outgoing sides (denoted by P •[z]) of the interfaces whose ingoing
sides are P [j].

40

Algorithm 6: The Transfer Function of the PCB P

f j,e
<i,v>(SP) :=

SP \{< i, v >} if (j = e ∧ v 6∈ kill(P [j]) ∨

(v ∈ kill(P [j] ∧ P [j] ∈ Nslc)

SP if j 6= e ∧ v 6∈ kill(P [j])

SP \{< i, v >}∪{(j−1, u)|u ∈ gen(P [j])} if v ∈ kill(P [j]) ∧ P [j] 6∈ Nslc

Algorithm 7: Reproducing an SLV Query through an Interface

1 Procedure ReproduceByInterfaces(P [j], Nslc, v, I)
2 foreach (P •[z] ↪→ P [j] ∈ I) do
3 SP• := SP• ∪ {< z, v >};
4 return;

7.5 Algorithm 8: CntrlDep

The CntrlDep procedure proposes a hybrid technique, which sometimes cap-
tures the control dependencies from the hierarchical child-parent structure (4-9),
and at other times, by using Algorithm 3 (10-17) that determines which of the
two modes suits the label of the statement under analysis. Therefore, we use the
function G to indicate whether the PCB P comprises a jump program flow. If
yes, it is true. Otherwise, it is false. Whether a program flow is a jump program
flow or not is easily found from the syntax of the program. In the second case
(G(P) is false) if j 6= 0 (this case is supported by Theorem 3), then:

1. P [0] is sliced (9).
2. The variables used by P [0] are generated as SLV queries and stored in S(P)

(6).
3. The variables used by P [0] are reproduced through the interfaces (8).
4. The predicates controlling P [0] are obtained and sliced (9).

if j = 0, then the same steps in the above are performed for the parent(P)
predicate.

41

Algorithm 8: Slicing the Predicates Controlling a Statement

1 Procedure CntrlDep(P [j], Nslc, I)
Input: P [j]: The label for which we need to find the predicates that

control it.
Nslc: The set of sliced labels.
I: The set of interfaces.
Output: Nslc: A new set of sliced labels.
Data: Predicates: the set of predicates that control P [j] and be computed

based on Theorems 1 and 2
// The First Mode: Finding the Control Dependencies from

hierarchical child-parent structure

2 k := j ; P ′ := P ;
3 if j = 0 then P ′ = Parent(P) ;
4 if ¬G(P ′) then
5 if (P ′[0] ∈ Nslc) then return;
6 SP := SP ∪ {(0, v)|v ∈ gen(P ′[0])} ;
7 foreach v ∈ gen(P ′[0]) do

// Reproducing v through the interfaces

8 ReproduceByInterfaces(P ′[0], Nslc, v, I);

9 Nslc =CntrlDep(P ′[0], Nslc, I) ;

// The Second Mode. The Theorems I and II are applied

10 else
11 Predicates := DetermineControllingPredicates(P [j]);
12 foreach P ′[k] ∈ predicates do
13 if (P ′[k] 6∈ Nslc) then
14 SP ′ := SP ′ ∪ {< k, v > |v ∈ gen(P ′[k])} ;
15 foreach v ∈ gen(P ′[k]) do
16 ReproduceByInterfaces(P ′[k], Nslc, v, I);
17 Nslc =CntrlDep(P ′[k], Nslc, I) ;

18 return Nslc;

Given that G(P) is true (10), the predicates controlling P [j] should be deter-
mined based on Theorems 1 and 2 by the procedure DetermineControlling-
Predicates13 (11). Those predicates are stored in Predicates set. Afterwards,
each element P ′[k] in Predicates is sliced (17), and its used variables are gener-
ated as SLV queries (14) and reproduced through the interfaces (16). As well,
Π(P ′[k]) is computed (17).

13 Since all the flows in the CFG are represented in the corresponding PCB graph and
the global labels in the CFG remains in the corresponding PCB graph, we consider
that this procedure works with both PCB graphs and CFGs. We think there is no
need to rewrite a special version of this procedure for the PCB graph.

42

8 Related Work

Weiser [9] proposed the backward slicing for debugging purposes. Weiser’s ap-
proach is based on dataflow equations. It suffers from being over-approximated
with inter-procedural cases and it does not include proper relevant goto state-
ments in unstructured programs. Ottenstein and Ottenstein [3] invented the Pro-
gram Dependence Graph (PDG) for finding slices. In such graphs, the program
statements, expressions, inputs, parameters, and global variables are represented
by vertexes, while edges represent control and data dependencies. The PDG-
based slicing is performed by tracking the dependence edges in the PDG that
lead to the vertex under analysis (slicing criterion). This way of using the graph
to solve the slicing problem is referred to as reachability analysis. The PDG-based
slicing is designed to manipulate intra-procedural and well-structured programs,
whereas it could not address inter-procedural and unstructured programs.

Horwitz et al. [10] extended the PDG to System Dependence Graph (SDG),
which can represent and slice inter-procedural programs. Thus, the SDG contains
special types of vertexes and edges that are used to connect the procedures. Sim-
ilar to the PDG-based slicing, the new approach deals with the slicing as a reach-
ability problem. Afterwards, the SDG-based slicing was studied and improved by
various works. Some works focused on improving the performance of the SDG-
based slicing [11,12,13,14]. Binkley [15] studied how to produce executable slices.
In another work, Binkley [16] presented a method for slicing programs contain-
ing aliasing parameters. Livadas, Liang and others [12,17,18] focused on how
to address the passing of the pointers as parameters. Many works balanced the
trade-off between the context sensitivity and the accuracy [19,20,21,22]. Sinha et
al. [23] suggested a method for finding the arbitrary control dependencies which
occur as a result of not returning the procedure to its caller.

In the state-of-the-art slicing techniques, which are based on PDG and SDG,
the control dependencies are obtained and concluded from the post-dominator
tree [3]. Such trees, which organise the post-domination or domination infor-
mation, are computed by many algorithms [24,25,26,27,28,29,30,31]. All these
works require comprehensive analysis along all the nodes in the CFG. They dif-
fer in the time complexity. Lengauer-Tarjan’s [30] algorithm is the best known
and most widely used algorithm for computing the dominance. Cooper et al. [4]
showed a method for computing the control dependencies, which is 2.5 times
faster than Lengauer-Tarjan algorithm on real programs, although the worst-
case time complexity of the Lengauer-Tarjan algorithm is better than Cooper’s
method [4].

One of the main challenges that the scientists faced in program slicing for
about one decade is in moving the control dependencies from the original pro-
gram to the slice in unstructured programs. As known, the control dependence
relationship is formed due to the existence of two paths, one passing the state-
ment under analysis and the second bypassing it. Sometimes, one of the paths
contains one or more goto statements, and in this case, these statements have
to be included in the slice. Weiser [9] could not properly include relevant goto
statements, while Ottenstein [3] did not design the PDG-based slicing to address

43

unstructured programs. This challenge was addressed in many works [32,33,34].
Ball and Horwitz [34] as well as Choi and Ferrentai [33] proposed Augmented
CFG (ACFG) and Augmented PDG (APDG), where the goto statements are
treated as predicates that have two successors. These works suffer from over-
approximation due to including irrelevant or fake predicates [35]. Harman and
Danicic extended Agrawal’s algorithm and made better results by using a re-
fined criterion for slicing the goto statements. This algorithm is imprecise with
switch statements [23]. Sinha et al. [23] discussed inter-procedural control de-
pendencies which prevent the procedures from returning to their call sites (e.g.
halt).

Demand-driven slicing approaches were presented by Kraft [36], Sandberg
et al. [37], Lisper et al. [38], Atkinson and Griswold [39,40,41,42], and Hajnal
and Forgács [43]. The main aim of these works is to find a way for avoiding the
unnecessary computations, but none of these works proposed a way for obtaining
on the fly the control dependencies in unstructured programs.

The most important feature of the contributions in this paper is that it does
not require to compute the post-domination information for all the nodes in order
to find a tiny subset of control dependencies in the entire program. Avoiding the
use of iterative techniques is the main purpose. The time complexities of such
techniques are always linked with the number of nodes or statements in the CFG,
PDG or SDG.

44

9 Discussion and Future Work

This paper presents the first approach that can obtain the control dependen-
cies in unstructured program without making a comprehensive analysis. This
approach determines for a particular statement the set of predicates that con-
trol its execution. Therefore, there is reason to believe that the new approach is
faster than the classical approaches in finding the control dependencies for few
number of statements. The successful key of this approach is in using the syn-
tactic structure and the location-based information (Theorems 1 and 3) besides
the control-flow information (Theorem 2). These two types of data are collected
in one graph by extending the PCB graph to include unstructured cases in un-
structured programs. As a result, we get a more efficient program representation
for unstructured programs. Finally, the paper presents a new two-mode slicing
method which can get the control dependencies from the child-parent hierarchi-
cal structure in the PCB graph or from the implementation of Theorem 1 and
Theorem 2. This two-mode method introduces a novel way to analyze unstruc-
tured codes.
The work in this paper could be extended to slice inter-procedural unstruc-
tured programs. Further, it could be improved to reuse the control dependence
information between the program statements rather than repeating the same
computation for the statements that are controlled by the same predicates. In
moving a control dependence relationship from the original program to a slice,
it is important to move the two paths causing the emerging of this dependence.
In unstructured programs, such paths might include goto statements and such
statements should be sliced also. Another potential work is to study how to find
and include the relevant goto statements. Finally, there is a need to make an
experimental evaluation to compare the performance of this approach with the
state-of-the-art approaches.

45

References

1. Husni Khanfar, Björn Lisper, and Abu Naser Masud. Static backward program
slicing for safety-critical systems. In Ada-Europe International Conference on Re-
liable Software Technologies, pages 50–65. Springer, 2015.

2. Husni Khanfar and Björn Lisper. Enhanced PCB-based slicing. In Fifth Interna-
tional Valentin Turchin Workshop on Metacomputation, page 71, 2016.

3. Karl J Ottenstein and Linda M Ottenstein. The program dependence graph in
a software development environment. In ACM Sigplan Notices, volume 19, pages
177–184. ACM, 1984.

4. Keith D Cooper, Timothy J Harvey, and Ken Kennedy. A simple, fast dominance
algorithm. Software Practice & Experience, 4(1-10):1–8, 2001.

5. Rajiv Gupta. Generalized dominators and post-dominators. In Proceedings of
the 19th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 246–257. ACM, 1992.

6. F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis. Springer
Berlin Heidelberg, 2015.

7. Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee, John Hatcliff,
and Matthew B Dwyer. A new foundation for control dependence and slicing for
modern program structures. ACM Transactions on Programming Languages and
Systems (TOPLAS), 29(5):27, 2007.

8. Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on
computing, 1(2):146–160, 1972.

9. Mark Weiser. Program slicing. In Proceedings of the 5th international conference
on Software engineering, pages 439–449. IEEE Press, 1981.

10. Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using
dependence graphs. ACM Transactions on Programming Languages and Systems
(TOPLAS), 12(1):26–60, 1990.

11. Alessandro Orso, Saurabh Sinha, and Mary Jean Harrold. Incremental slicing based
on data-dependences types. In Proceedings of the IEEE International Conference
on Software Maintenance (ICSM’01), page 158. IEEE Computer Society, 2001.

12. Panos E Livadas and Stephen Croll. System dependence graph construction for
recursive programs. In Computer Software and Applications Conference, 1993.
COMPSAC 93. Proceedings., Seventeenth Annual International, pages 414–420.
IEEE, 1993.

13. Istvan Forgács and Tibor Gyimóthy. An efficient interprocedural slicing method
for large programs. 1996.

14. Panos E Livadas and Stephen Croll. System dependence graphs based on parse
trees and their use in software maintenance. Information Sciences, 76(3-4):197–
232, 1994.

15. David Binkley. Precise executable interprocedural slices. ACM Letters on Pro-
gramming Languages and Systems (LOPLAS), 2(1-4):31–45, 1993.

16. David Binkley. Slicing in the presence of parameter aliasing. In Software Engi-
neering Research Forum, pages 261–268, 1993.

17. Panos E Livadas and Theodore Johnson. An optimal algorithm for the construction
of the system dependence graph. Information Sciences, 125(1-4):99–131, 2000.

18. Donglin Liang and Mary Jean Harrold. Reuse-driven interprocedural slicing in
the presence of pointers and recursions. In International Conference on Software
Maintenance, page 421. IEEE, 1999.

46

19. Gagan Agrawal and Liang Guo. Evaluating explicitly context-sensitive program
slicing. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Pro-
gram analysis for software tools and engineering, pages 6–12. ACM, 2001.

20. David Binkley and Mark Harman. A large-scale empirical study of forward and
backward static slice size and context sensitivity. In Software Maintenance, 2003.
ICSM 2003. Proceedings. International Conference on, pages 44–53. IEEE, 2003.

21. Jens Krinke. Evaluating context-sensitive slicing and chopping. In International
Conference on Software Maintenance, page 0022. IEEE, 2002.

22. Jens Krinke. Context-sensitivity matters, but context does not. In Source Code
Analysis and Manipulation, 2004. Fourth IEEE International Workshop on, pages
29–35. IEEE, 2004.

23. Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel. System-dependence-
graph-based slicing of programs with arbitrary interprocedural control flow. In
Software Engineering, 1999. Proceedings of the 1999 International Conference on,
pages 432–441. IEEE, 1999.

24. Alfred V Aho and Jeffrey D Ullman. Principles of Compiler Design (Addison-
Wesley series in computer science and information processing). Addison-Wesley
Longman Publishing Co., Inc., 1977.

25. Alfred V Aho and Jeffery D Ullman. Lr (k) grammars. In The theory of pars-
ing, translation, and compiling, volume 1, pages 371–379. Prentice-Hall Englewood
Cliffs, NJ, 1972.

26. Stephen Alstrup, Dov Harel, Peter W Lauridsen, and Mikkel Thorup. Dominators
in linear time. SIAM Journal on Computing, 28(6):2117–2132, 1999.

27. Adam L Buchsbaum, Haim Kaplan, Anne Rogers, and Jeffery R Westbrook.
Linear-time pointer-machine algorithms for least common ancestors, mst verifi-
cation, and dominators. In Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 279–288. ACM, 1998.

28. Matthew S Hecht. Flow analysis of computer programs. Elsevier Science Inc., 1977.
29. Matthew S Hecht and Jeffrey D Ullman. A simple algorithm for global data flow

analysis problems. SIAM Journal on Computing, 4(4):519–532, 1975.
30. Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding domina-

tors in a flowgraph. ACM Transactions on Programming Languages and Systems
(TOPLAS), 1(1):121–141, 1979.

31. Paul W Purdom Jr and Edward F Moore. Immediate predominators in a directed
graph [h]. Communications of the ACM, 15(8):777–778, 1972.

32. Hiralal Agrawal. On slicing programs with jump statements. In ACM Sigplan
Notices, volume 29, pages 302–312. ACM, 1994.

33. Jong-Deok Choi and Jeanne Ferrante. Static slicing in the presence of goto state-
ments. ACM Transactions on Programming Languages and Systems (TOPLAS),
16(4):1097–1113, 1994.

34. Thomas Ball and Susan Horwitz. Slicing programs with arbitrary control-flow. In
International Workshop on Automated and Algorithmic Debugging, pages 206–222.
Springer, 1993.

35. Mark Harman and Sebastian Danicic. A new algorithm for slicing unstructured
programs. Journal of Software Maintenance: Research and Practice, 10(6):415–441,
1998.

36. Johan Kraft. Enabling timing analysis of complex embedded software systems. PhD
thesis, Mälardalen University, 2010.

37. Christer Sandberg, Andreas Ermedahl, Jan Gustafsson, and Björn Lisper. Faster
wcet flow analysis by program slicing. In ACM SIGPLAN Notices, volume 41,
pages 103–112. ACM, 2006.

47

38. Björn Lisper, Abu Naser Masud, and Husni Khanfar. Static backward demand-
driven slicing. In Proceedings of the 2015 Workshop on Partial Evaluation and
Program Manipulation, pages 115–126. ACM, 2015.

39. Darren C Atkinson and William G Griswold. Implementation techniques for ef-
ficient data-flow analysis of large programs. In Proceedings of the IEEE Interna-
tional Conference on Software Maintenance (ICSM’01), page 52. IEEE Computer
Society, 2001.

40. Leeann Bent, D Atkinson, and W Griswold. A qualitative study of two whole-
program slicers for c. Technical Report, 2000.

41. Darren C Atkinson and William G Griswold. Effective whole-program analysis in
the presence of pointers. ACM SIGSOFT Software Engineering Notes, 23(6):46–55,
1998.

42. Darren C Atkinson and William G Griswold. The design of whole-program analysis
tools. In Proceedings of the 18th international conference on Software engineering,
pages 16–27. IEEE Computer Society, 1996.

43. Ákos Hajnal and István Forgács. A demand-driven approach to slicing legacy cobol
systems. Journal of software: evolution and process, 24(1):67–82, 2012.

48

