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Abstract

Much has been investigated about software reuse since the software crisis. The

development of software reuse methods, implementation techniques, and cost

models has resulted in a significant amount of research over years. Nevertheless,

the increasing adoption of reuse techniques, many of them subsumed under higher

level software engineering processes, and advanced programming techniques that

ease the way to reuse software assets, have hidden somehow in the recent years

new research trends on the practice of reuse and caused the disappearance of several

reuse conferences. Also, new forms of reuse like open data and feature models have

brought new opportunities for reuse beyond the traditional software components.

From past to present, we summarize in this research the recent history of software

reuse, and we report new research areas and forms of reuse according to current

needs in industry and application domains, as well as promising research trends for

the upcoming years.
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1 | INTRODUCTION

Since the software crisis late in the 1960s and McIlroy‘s idea to envision the reuse of code and software components, it has been a long story

where researchers and practitioners have experimented with different forms of reuse.
1.1 | The birth of software reuse

Software engineering celebrated its 50th anniversary in 2018. It was in 1968 that the NATO Conference was held in Garmisch, Germany where

the term was born.1 The anniversary was commemorated with a special issue in IEEE Software Magazine.2 Consequently, 2018 was also the 50th

anniversary of software reuse, because it was during that same conference that Doug McIlroy made the presentation, called “Mass Produced

Software Components,”3 that is considered to be the genesis of software reuse. The leader of the American delegation to that conference was

Alan Perlis, another pioneer of software reuse who in 1987 coedited withTed Biggerstaff the two‐volume Software Reusability, which effectively

consecrated reuse as a formal discipline.4 Shortly after the publication of Software Reusability, a reference model for reuse known as the “3C

model” was elaborated by a working group.5 It obtained its first broad exposure in a publication in 1991, where it was stated that “...the 3C ref-

erence model has the potential to become the accepted basis for discourse on reusable software components among members of the reuse

community.”

The 3C model described in Figure 1 defines and distinguishes three ideas: concept, content, and context. 5,6
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FIGURE 1 The 3C model contextualizing software reuse
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• In the simplest terms, concept is a reusable component's specification, “what it is.” This has led to formal component specifications and much

more.

• Early on the key idea emerged of separating the specification from the implementation, the Content “how it works.” The iconic example is a

stack implemented variously as an array, a linked list, and so forth.

• Finally, the context indicates “how it is used.” The explosion of the Ariane 5 rocket back in the 1990s was a famous case of a software com-

ponent from the Ariane 4 being reused in the wrong Context.7

It is notable how this simple reference model became a kind of road map for the next 25 years of research in software reuse. Over those years,

researchers made remarkable progress in all three dimensions of the reference model, producing libraries, frameworks, methodologies, generators,

product families‐an entire set of sub‐disciplines that characterize software reuse as we know it today.
1.2 | The death of software reuse

Another pioneer in software reuse was Rubén Prieto‐Diaz, who applied the ideas of faceted classification libraries to reuse repositories

[Ruben1991], and also had significant involvement in the launching the field of domain analysis (DA).8 Approximately 25 years after the seminal

paper of McIlroy, at the Third International Conference on Software Reuse in 1994, Prieto‐Diaz presented a paper entitled The Disappearance of

Software Reuse,9 which began with the statement, “I am looking forward to the day when software reuse is dead.” (The accompanying presentation

included a depiction of a tombstone inscribed with “RIP Software Reuse”). The central argument of the paper was that “...the ultimate success of

software reuse will be marked by its disappearance. This disappearance will not come by elimination but by integration.” This argument was

accompanied by seven predictions:

1. Reuse will become systematic, formal, and integrated with software engineering;

2. Many organizations will establish their corporate reuse programs;

3. Software development environments and CASE tools will support reuse, DA, and domain engineering (DE);

4. A reusable parts industry for specialized domains will emerge;

5. Software development standards will evolve to support reuse within and across domains;

6. DE will be the dominant discipline in software engineering;

7. Software reuse will cease to exist.

It is fair to say (prediction 4) that much large commercial software development now involves large frameworks, as well as component libraries

and connectors that permit the assembly of sophisticated applications in a short amount of time. The major software standards (prediction 5) now

include requirements for reuse (cf. Section 3.4)—albeit cross‐domain reuse somewhat less. The success of product line engineering (prediction 6) is

there for all to see (cf. Section 3.1). This leaves us with the last prediction. The intended sense of Prieto‐Diaz by that prediction has already been

explained above, but in fact, this prediction did imply a death: the death of software reuse research. As the other predictions were gradually real-

ized over the years, the question of whether reuse research would die no longer seemed unreasonable. And sure enough, over the last few years,

there have been more and more people openly questioning whether there was any significant research in software reuse left to do, which is
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directly related to the decline in number of reuse conferences. It is the thesis of this paper that, to paraphrase Mark Twain, “reports of the death of

software reuse research are greatly exaggerated.” On the contrary, there is a whole new set of opportunities that are slowly but surely emerging

for software reuse research. The new opportunities are coming from the growing ambition to practice software reuse in areas in which uncertainty

is a significant defining characteristic.
1.3 | An uncertain world

For the first 25 years of the 3C reference model, there was always the implicit assumption that it was possible to precisely and completely specify

a reusable component; that it was possible to completely understand the implementation of a component; and that it was possible to identify the

complete context in which the component would be reused. This assumption of certainty in all three dimensions was also considered to be a nec-

essary condition for doing reuse. But this assumption has been breaking down, not because of necessity, but because of a growing ambition to

reuse in circumstances where this assumption does not hold where we don't necessarily know for sure what it is; or how it works; or how we will

use it. This is true in all three dimensions of reuse.

The remainder of this paper is as follows. Section 2 describes main trends on software reuse research and practice over the past 30 years while

in Section 3, we report on recent trends related to other software engineering practice areas. In Section 4, we discuss some promising application

domains where software reuse is succeeding, and in Section 5, we report on the results of a survey with reuse practitioners to highlight the role of

software reuse in industry. Finally, Section 6 outlines a research road map for the future of reuse, and we draw conclusions in Section 7.
2 | EARLY FORMS OF SOFTWARE REUSE

For more than 30 years, software reuse was a popular software engineering research field and practice area in industry. From the visionary ideas

of McIlroy up through the 1990s, several forms of reuse were investigated. In this section, we present the major forms of software reuse that were

popular in conferences like the Workshop on Institutionalizing Software Reuse (WISR), Symposium on Software Reusability (SSR), the European

Reuse Workshop (ERW), and the International Conference on Software Reuse (ICSR), as major software reuse research events. Instead of a long

report about past research on software reuse,10 we summarize under the main achievements under the following four major categories.
2.1 | Domain analysis

The role of DA techniques has been crucial for understanding reuse of high‐level abstraction artifacts and knowledge. DA was initially understood

as a technique to identify the set of relevant objects and operations in a particular domain.* Hence, building and reusing software in “unknown” or

complex domains (eg, critical systems), DA was proven as a human and complex technique to understand the terminology, elements, and processes

for building and reusing software systems and, in particular, a way to understand a particular domain by software engineers who must rely on the

domain experts. From early DA methods [Arango 1991] like Prieto‐Díaz's Sandwich method8 where the identification of the relevant objects and

operations were critical for knowledge reuse, the classification of the terms discovered (eg, faceted classification8,11) and the implementation of

the processes and operations for engineering complex systems, many of them with incipient object‐oriented techniques, was crucial for modern

software reuse practice in industry. Over years, several DA processes have been proposed, but most of the authors failed to explain how to carry

out such human and complex manual activities, such as knowledge reuse.12,13 In order to bring DA activities closer to other software engineering

processes, the so‐called DE process14,15 encompasses DA with the development and reuse of different software artifacts in a more systematic

way for producing reusable information. Approaches like Domain Analysis and Reuse Environment (DARE)16 were proposed years later to inte-

grate DA processes under CASE tools and exploit the commonalities and variabilities of software systems and capturing the domain information

from experts, documents, and code. Hence, such commonalities and variabilities are the basis of current feature modeling approaches.

Nevertheless, the importance of capturing the essence of software systems and modeling the problem domain is one of the main reasons why

these techniques still survive nowadays. Although DA practice enables the identification of the relevant domain elements and system features that

can be reused across different applications, the majority of reuse approaches concentrate on the code and architecture rather than domain

models.
2.2 | Generators and transformation models

One complementary way to achieve software reuse in addition to component and code reuse is to employ generative and transformation tech-

niques. For many years, code generators have been widely used to produce executable code based on reusable code that is customized via
*A domain represents an area of knowledge or activity characterized by a set of concepts and terminology understood by practitioners in that area.



4 of 16 CAPILLA ET AL.
templates. Early approaches like DRACO,4,17 a methodology for engineering reusable systems and GenVoca18 (a generator for defining high level

constructs in a high level language) for synthesizing software systems pioneered transformational approaches. A second generation of these tools

produced popular 3GL and 4GL generators (eg, CLIPPER and DATAFLEX) aimed at transforming abstract into concrete programs leveraging code

reuse and speeding up the task of programmers. In addition, significant effort has been expended to create a variety of domain‐specific languages

and code generators using more modern techniques like Model‐driven Engineering (MDE) approaches, which are still used to increase reuse when

transforming code constructs from one programming language to another. However, as writing code generators and transformation rules is diffi-

cult and costly, many of the today's code generators have been replaced by reusable libraries and components. Other generative methods and

tools combined with component‐based development as approaches to leverage code reusability can be found in Czarnecki and Eisenecher.19
2.3 | Components, languages, and code reuse

Several high level artifacts like reusable architectures, software schemas, and abstractions in high and very high level languages (VHLLs) such as

Smalltalk, ML, SETL, or MODEL have been attempted over the years, such as described in Krueger.10 However, code and component reuse has

proven to be easier and more productive than other higher level reusable artifacts.

Code reuse is one of the most primitive forms of reuse as a way to avoid writing duplicate code and committing programming errors. Reusing

code is not a complex practice if done systematically (as opposed to “ad‐hoc” reuse). However, producing reusable code is costly and difficult, as

the quality of the code must be extremely high, with zero programming faults and time‐consuming testing that the reusable code does not fail. In

addition, interoperability issues when connecting the reusable code with other code pieces in the system are a major concern. According to

Biggerstaff and Perlis,4 several code reuse forms were proposed years ago. From subroutine libraries, compilers, and parameterized systems,

the spectrum of reusability has been widening to envision McIlroy's idea. Along with the evolution of programming languages, software reuse

has evolved since the appearance of C++ to provide additional facilities for programmers for reusing code. Therefore, encapsulating larger func-

tionality in code components has changed the paradigm of software technology for programming in the large more complex systems. Reuse tech-

nology has since evolved from reusing small subroutines to large object‐oriented (OO) components encompassing significant functionality that can

be customized for different application types (eg, reusable APIs to create customized interfaces). To make reusability attractive, it becomes nec-

essary to reuse with information hiding where the complexity of large OO components is hidden from the programmer via interfaces and param-

eterized modules to adapt the reusable code to different needs. The story of reusable programming languages is a long one, from older languages

like CLOOS, OBJ, ADA, and Smalltalk to more recent ones like C++, Java, or Python. A retrospective look at several reuse experiences and case

studies can be found at Biggerstaff and Perlis.20

One popular form of reuse used for years was the Commercial Off‐The‐Shelf (COTS) approach, involving the selection and use of COTS com-

ponents as products, which could easily be installed and interoperate with existing software components at a relatively lower cost. Variations of

COTS were also created, such as modifiable off‐the‐shelf (MOTS) components (customizable assets to be adapted to any context). COTS devel-

oped for specific organizations (eg, government off‐the‐shelf and NATO off‐the‐shelf) were also developed and included in product‐line

approaches and service‐oriented architectures.21 Nevertheless, problems associated with integrating COTS from different vendors, as well as

problems with controlling the evolution of COTS based systems due to a lack of support of COTS components, have been major obstacles to

achieving greater market penetration of COTS technology.

With the appearance of object‐oriented programming (OOP), reuse of code artifacts evolved into component reuse and component‐based

software engineering (CBSE) techniques where the reusable code was encapsulated in bigger reusable modules, libraries, and frameworks. From

early OO languages like SIMULA and Smalltalk in the 1960s to C++/C# and VisualBasic in the 1980s and more recently Java, the Microsoft .NET

platform or Python, reusability via software components was achieved through increased modularity, interoperability via standard interfaces, and

robustness. Therefore, the visionary idea of McIlroy3 about software produced massively using reusable software components was realized to the

fullest.
2.4 | Reuse cost models

Given that one of the primary arguments put forward for software reuse has always been economic, it is not surprising that research in this sub‐

discipline began early.22 One of the earliest and most influential attempts at constructing a reuse cost model originated at the Software

Productivity Consortium, which based the cost model on the economic principle of time to payback—that is, the amount of time needed to achieve

a break‐even situation.23 A payoff threshold value was defined based upon estimations of the relative cost of developing a component for reuse

and the relative cost of integrating the component. This cost model was then used to analyze reusable components which varied in complexity and

integration cost, yielding correspondingly varied results in the time to payoff.24 Subsequently, cost models of increasing sophistication were intro-

duced, in particular by Poulin25 who explored the use of standard financial metrics such as the internal rate of return in order to bring software

reuse into a more standard business context. A prominent exponent of this business‐oriented approach was Lim, who introduced the widely
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accepted financial measure of net present value and gave examples of its implementation in a reuse context.26 The alignment of the study of soft-

ware reuse economics with standard business principles brought about an interest in strategic aspects of software reuse—that is, the support that

reuse could give to a company's market strategies. This led in turn to an application of Value Based Management to standard reuse management

theory, and culminated in Value Based Software Reuse Investment, in which the use of real options was investigated for the analysis of the ben-

efits of reuse for supporting strategic flexibility.27 Interestingly, this line of investigation ultimately led a few years later to a broadening of the

application of value‐based principles to the whole of software engineering. 28
2.5 | Summary

Unfortunately, the integration of most of the reuse forms under more modern software engineering practices like component models and soft-

ware product line (SPL) engineering practices brought about the disappearance of the majority of software reuse conferences except for ICSR,

which has been renewing topics and papers to adopt more modern forms of reuse, as we discuss in next section.
3 | CURRENT AND NEW TRENDS IN SOFTWARE REUSE

Today, many software reuse processes have been subsumed or integrated under more modern software development approaches, and today's

application domains for building software have changed. For example, contextual knowledge is widely exploited by autonomous and context‐

aware systems (eg, robots and IoT); open source software systems have emerged as an evolution of COTS systems; and data are driving industry

4.0 solutions (eg, Big Data and Open Data solutions). In this section, we describe four current major trends where reuse is a common goal for mod-

ern development approaches and systems.
3.1 | Product lines, features, and context analysis

Clements and Northop29 define an SPL as “a set of software intensive systems sharing a common, managed set of features that satisfy the specific

needs of a particular market segment or mission and that are developed from a common set of core assets in a prescribed way.” This notion has

been reused in other contexts. For instance, in process engineering, the notion of process line30 and its extension to safety‐critical systems

engineering31 was introduced.

A recent survey32 reveals that most SPLs are built when there are already products. These legacy products are usually, for instance, similar

product variants that were implemented using ad‐hoc reuse techniques such as clone‐and‐own (CaO).33 CaO refers to the practice of reusing soft-

ware by copying and adapting parts from legacy software products to create a new software product. Version control systems, such as SVN and

Git, have contributed to the popularization of CaO by means of their branch and merge functionality.

More and more approaches perform feature location to extract reusable assets. This is the case of approaches for extractive SPL adoption

(ESPLA).34 These approaches initiate the SPL through capitalization on existing software products. In other words, products created under CaO

settings are reengineered into a family of products where reusable assets are formalized.

The public catalog for ESPLA case studies35 reveals that the potential of reuse is not only restricted to source code: Documentation, designs,

models, and components are examples of software artifacts that are also being reused. A recent comparison of ESPLA approaches36 identifies the

following approaches as the ones with support for reusable asset extraction: Pure::variants var. extractor,37 BUT4Reuse,38 and FLiMEA.39,40

The most general definition of the notion of feature was given by Kang et al:41 “a prominent or distinctive user‐visible aspect, quality or char-

acteristic of a software system or systems.” Czarnecki and Eisenecker focus on the SPLs variants: “a system property that is relevant to some

stakeholder and is used to capture commonalities or discriminate among systems in a family.” Finally, Bosch 42 places an emphasis on system

behavior: “a logical unit of behavior that is specified by a set of functional and quality requirements.” Despite these system‐centered definitions,

the notion of feature has been stretched in various ways in order to denote characteristics not necessarily belonging to system software only but

to any other artifact at any abstraction level of system engineering, including the process model describing the system engineering itself.

It is widely recognized that DA is one of the important activities in current SPL practice during the DE phase. However, the need to model

system features and the fact that more and more systems applications are context‐dependent (eg, smart homes, wearable devices, and autono-

mous cars) has brought about the need to model “context properties” as part of the DA process. Hence, some approaches suggest renaming

old DA processes as “context‐oriented DA” or just simply “context analysis” where context properties are modeled alongside with other context

features and reused during the application engineering phase. For instance, in Desmet et al,43 the authors highlight the role of modeling context‐

aware systems and their behavioral variations using a Context‐Oriented Domain Analysis (CODA) approach to understand and model context

requirements in order to support all possible combinations of context adaptations. Recent approaches describe the role and reuse context

features44 for context‐aware applications and how the introduction of these context features (ie, depicted in the same or in separate feature

models) in modern context‐aware systems like the automotive domain45 can increase the reusability of systems features and manage adaptive

behavior at runtime.
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3.2 | Open data reuse

The idea behind open data is to have data freely available to everyone to use. Therefore, under the main umbrella of open‐source software (OSS),

open data, or linked open data (LOD) as a more structured way to publish and query data is becoming an opportunity for government organizations

to publicly share and reuse data. Although the idea of open data is not new, it is appearing now as a new form of software reuse in different appli-

cation domains and applications (eg, government, medical, scientific, and transportation) and increasing collaborative facilities that add value to the

data. Initiatives like the EU Open Data† Portal as a main entry point of access to public data including the European standard DCAT application

profile for data portals (DCAT‐AP) ‡promote open data by default, accessible and usable, and achieving semantic interoperability for public ser-

vices. As reported by the European Data Portal, the potential value of open data reuse will increase in the coming years as more and more open

data providers become active. The open data chain will add value for open data reusers and aggregators of knowledge. Without going into the

technical goals of data formats and applications for achieving semantic interoperability of data sets (ie, using different data formats like CSV,

JSON, or XML), there is a new opportunity to reuse different kinds of artifacts that increase the value of published data and create new research

paths for organizations—for example, developing open data reusability metrics (eg, MELODA§) to assess the degree of homogeneity in published

datasets in six different dimensions.
3.3 | Services and micro‐services

Reusable web services have became very popular since the 1990s for building part of the functionality of the system (ie, often the noncritical

parts) in the form of reusable components invoked using standard Internet mechanisms like SOAP, REST, and WEB‐RTC. The use of common data

formats like XML (eg, WSDL) or JSON to represent the data exchanged by these web components, together with languages like WS‐BPEL to com-

pose services, has facilitated and modernized the reusability of many legacy applications like banking systems. Software companies like Amazon

and Google have popularized the use of these services so developers can invoke Amazon's web (ie, AWS ¶) services and Google APIs (eg, Google

Maps API Web Services #) for creating reusable serverless applications. Therefore, older approaches like JavaBeans (reusable classes encapsulating

many objects into one single object) and its extensions for building enterprise software (ie, Enterprise Java Beans [EJB]) using APIs for modular

construction of more complex systems have been replaced in many cases by web service technologies that promote loosely coupled applications,

higher reusability, and ease of use, and whose lightweight common data formats have facilitated the interoperability of distributed applications.

Today, the trend toward using services continues. Recently, it has evolved toward microservices, whereby for certain systems the size of the

reusable web services has been reduced to just a few lines, leading to a new architectural style called microservice architectures (MSA). As a con-

sequence, monolithic architectures and systems are now engineered (or migrated) as an MSA or pattern ∥, in favor of better deployability, testabil-

ity, extensibility, scalability, and reusability (among other relevant quality properties) and (re)‐using small pieces of code. Well‐known industry

cases like Netflix or eBay are examples of successful MSA that decompose systems according to business capabilities.

Modern software platforms like Docker **enable the deployment of microservices for building large‐scale applications and use, for instance,

Docker containers (ie, a standardized unit of software) to build a microservices architecture. Compared with other traditional reusable compo-

nents, the size of microservices does not actually matter. Rather, what is perceived to be more important when adopting a microservices architec-

ture is modularity, ease of development and test, scalability, and resilience of the solution to architecture erosion.
3.4 | Asset reuse in safety‐critical systems engineering: In search of a pedigree

An asset46 is defined as an item that has been designed for use in multiple contexts. An asset, in the context of this paper, refers to existing soft-

ware. Designing software for multiple contexts is however not an easy task in the context of safety‐critical systems engineering. The failure that in

1996 caused the explosion of Ariane 5 [1] is an example of a faulty design. As known, Ariane 5 contained a piece of code that was appropriate for

its predecessor Ariane 4 but that turned out to be catastrophic for Ariane 5. As observed by Gallina,47 as a consequence of the Ariane 5 accident,

asset reuse in safety‐critical systems engineering has been considered a taboo . On the one hand, the “to‐reinvent or not‐to‐reinvent” dilemma has

been often solved by a tacit acceptance that starting from scratch is safer. On the other hand, standardization bodies have worked hard in order to
†http://data.europa.eu/euodp/en/home

‡https://joinup.ec.europa.eu/solution/dcat-application-profile-data-portals-europe

§MEtric for assessing open DAta sources: https://www.meloda.org/about-meloda/

¶https://aws.amazon.com

#https://developers.google.com/maps/documentation/directions/web-service-best-practices

∥https://microservices.io/patterns/microservices.html

**https://www.docker.com/solutions/microservices

http://data.europa.eu/euodp/en/home
https://joinup.ec.europa.eu/solution/dcat-application-profile-data-portals-europe
https://www.meloda.org/about-meloda/
https://aws.amazon.com
https://developers.google.com/maps/documentation/directions/web-service-best-practices
https://microservices.io/patterns/microservices.html
https://www.docker.com/solutions/microservices
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develop the necessary requirements for guiding (a) the reuse of pre‐existing “pedigree‐less” software, (b) the development of “pedigree‐equipped”

(safely reusable) software, and (c) the development of plug and play platforms.

At the cross‐domain level, the meta‐standard IEC 648 introduced the notion of Software of Unknown Pedigree or Provenance (SOUP).

Concerning the assessment of SOUP, IEC 61508, part 7, states: “In order to assess the safety integrity of the new system incorporating the

pre‐existing software, a body of verification evidence is needed to determine the behavior of the preexisting element. This may be derived (1) from

the element supplier's own documentation and records of the development process of the element, or (2) it may be created or supplemented by

additional qualification activities undertaken by the developer of the new safety related system, or by third parties. This is the Safety Manual for

compliant items that defines the capabilities and limitations of the potentially reusable software element.” IEC 61508 incorporates results devel-

oped by Bishop et al.49

In the medical domain, IEC 650 the standard for life cycle processes for medical device software, refined the notion of SOUP in the context of

medical devices to denote pre‐existing software that has not been developed to be integrated into medical devices, or software with unavailable

or inadequate records of its development processes. IEC 62304 has also introduced guidance to treat SOUP.

In the aerospace domain, Integrated Modular Avionics (IMA)51 consists of a flexible hardware and software platform with core functionality

that can be easily extended and customized to meet specific requirements. An IMA platform is composed of modules, which are designed to

be reusable in order to reduce development costs and occasionally facilitate certification programs. Some modules provide only mechanical func-

tions (eg, cooling); others include core software and associated computing capabilities. IMA enables the use of legacy systems because compo-

nents are interoperable and “plug and play.” In addition to IMA, the Future Airborne Capability Environment (FACE)52 represents a standard for

software computing environments and interfaces designed to support the development of portable components across the general‐purpose,

safety, and security profiles. The standard enables developers to create and deploy a wide catalog of applications for use across the entire spec-

trum of military aviation systems through a common operating environment.

ISO 26262:53 the standard for functional safety within the automotive domain, mentions reuse explicitly in some of its parts: Part 3 (concept

phase), together with part 8 (changemanagement), indicates what should be done in case of a modification of a pre‐existing system in order to deter-

mine the impact on the system‐relatedwork product aswell as in terms of process‐related documentation (how to tailor the life cycle). Part 8 and part

10 introduce novel notions. Specifically, part 8 introduces the notion of proven in use argument for reusing pre‐existing elements, in line with the pre-

vious standards, where guidance for the reuse of pre‐existing software is provided. Part 10 (clause 9) introduces the notion of the Safety Element Out

of Context (SEooC), defined as a safety‐related element that is not developed in the context of a specific item (ie, it is not developed in the context of a

specific road vehicle). Part 10 also recommends corresponding processes for software and hardware element development and integration. These

processes provide, on the one hand, guidance to suppliers on how to develop safely reusable elements, and on the other hand, guidance to integrators

on how to reuse components developed out of context. The notion of SEooC and the corresponding development process have the potential to play a

key role in pedigree‐equipped engineering. SEooC may be thought of as a re‐interpretation of the 3C model in the context of safety‐critical systems

engineering. In the automotive domain, not only the reuse of individual components is of primary interest but also the reuse of the software archi-

tecture. AUTOSAR,54 which stands for AUTomotive Open SystemARchitecture, is a standard that pursues the objective of creating and establishing

an open and standardized software architecture for automotive electronic control units (ECUs), aimed at, among other objectives, achieving a higher

penetration of COTS components across product lines. AUTOSAR is also in search of a pedigree, and several efforts have beenmade to integrate ISO

26262, part 6, requirements in order to make AUTOSAR ISO 26262‐compliant (see previous study55 for the extension of AUTOSAR with safety).

AUTOSAR represents the automotive counterpart of IMA in avionics.

Finally, it is relevant to mention the space domain, which in these decades has learnt its lessons and has aligned itself with some of the pre-

viously mentioned domains. In the space handbook of software reuse,56 existing software embraces different software artifacts since reuse can

take place at different phases of the software life‐cycle. The artifacts are requirements, components, modules, libraries, and source code, as well

as documents, plans, tests, and data. To be able to reuse existing software, also in the space domain a “pedigree,” called product service history, is

considered to be of value and must be carefully analyzed in conjunction with the configuration changes and the process examination, whose

objective is to establish the validity and value of the records of the existing software.
4 | APPLICATION DOMAINS

In this section, we describe some sample application domains exhibiting cases of successful reuse. Although the list is not complete, it provides an

overview of where different forms of reuse are more promising.
4.1 | Reuse in the automotive domain

Reuse in the automotive domain has been largely explored and used, separating the hardware of the ECUs from the software embedded in it.57

Standard core assets and network drivers for the Controller Area Network (CAN) bus have been developed as reusable assets independently of
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the hardware but able to exchange data with the ECUs via a data bus and dedicated interfaces. However, software of modern cars is becoming

more and more complex every day, and the traditional AUTOSAR reference architecture54 must confront new challenges like building software for

autonomous vehicles, night vision systems, pedestrian detection systems, and so forth. Therefore, the challenge for software builders to connect

autonomous and smart vehicles to other cars and road sensors demands not only 5G communications but also open and flexible architectures to

cope with new development challenges and continuous software updates to support the vehicle infrastructure. Companies like Systemite AB

(Sweden) facilitate configuration, traceability, and version control of models by enabling reuse of specific configurations in as many contexts as

needed on behalf of tools like SystemWeaver.†† Therefore, typical reusable assets for this domain are software components, models and SIL (soft-

ware‐in‐the‐loop) code used by MATLAB/Simulink tools for simulation and verification tasks and building control algorithms (eg,58). Atypical but of

increasing relevance is also the reuse of arguments to speed up compliance with ISO 26262, while arguing about safety in the context of safety‐

critical product lines (eg,59).
4.2 | Reuse in the space domain

Despite the calamitous failure of the Ariane 5 rocket described earlier, reuse has long been vigorously pursued in space programs, and its stan-

dards have been updated to handle reuse as discussed in Section 3.4. Space systems have a key architectural characteristic that is essential to

understanding the types of reuse that are pursued in those systems: Most space systems have a space segment—the system that is actually sent

into space—‐and a ground system—the system that controls the operations. The types of reuse pursued in each of these segments can be quite

different. In the space segment, embedded systems with limited memory and CPU power are featured but with extremely high requirements on

reliability and longevity. Reuse is considered an important weapon in the maintenance of the onboard (space) segment of a mission, where by a

standardized onboard reference, architecture is used to allow the creation of software modules that can easily be replaced while the system is in

space. An early example is Favaro et al.60 A more recent example is Panunzio and Vardanega.61 Ground systems, in contrast, contain enormous

amounts of software that is, however, mostly less mission‐critical in its nature. Here, there is very high interest in the reuse of open source soft-

ware on standard platforms (eg, Linux), as well as large components for data display and processing. Finally, since space missions are often similar

to one another, with variations such as destination and experimental purposes, many space Prime Contractors have initiatives to create space pro-

gram families that can be managed like product lines, thereby reducing the amount of new work that must be invested in creating a new mission.

Within the AMASS research project,62 variations in space software systems as well as in processes, used to develop those systems, have been in

focus and family‐oriented solutions have been proposed to manage variants and impact analysis at process as well as system level.63-65 The inter-

national CCSDS, a committee of global space agencies, has named reuse in all of its forms as one of its highest priorities. 66
4.3 | Reuse in the rail domain

The European Railway Traffic Management System (ERTMS)67 is an international standard, which contributes to the improvement of the interop-

erability, performance, reliability, and safety of modern railways. ERTMS relies on the European Train Control System (ETCS), an Automatic Train

Protection system which continuously supervises the train, ensuring that the safety speed and distance are not exceeded. ERTMS/ETCS can be

specified in one out of four main levels of operation, depending on the role of track‐side equipment and on the way the information is transmitted

to/from trains. ERTMS was conceived to enable interoperability among national networks, ie, to enable trains crossing national borders without

requiring time‐consuming and costly locomotive change. Given its different levels and its high degree of variability within each of them,

ERTMS/ETCS constitutes an ecosystem. In the context of the Multiannual Programme of the Shift2Rail Joint Undertaking Initiative,68 which is

the innovation program in the rail sector under which various projects are funded, reuse is also an important implicit objective. Within some of

the funded projects, for instance, product line engineering approaches are being applied,69 and modular platforms are being conceived for future

highly integrated and reconfigurable parameter‐driven architectures, which require high levels of software abstraction with support for incremen-

tal certification, and rely on new advanced networking approaches. 70
4.4 | Reuse in the home appliances domain

In the last decade, the home appliances domain has experienced a fundamental software‐based transformation. More and more everyday home

appliances are being run on software and augmented with online services. For instance, the newest induction hobs feature full cooking surfaces,

where dynamic heating areas are automatically calculated and activated or deactivated depending on the shape, size, and position of the cookware

placed on top. There has been an increase in the type of feedback provided to the user while cooking, such as the exact temperature of the cook-

ware, the temperature of the food being cooked, or even real‐time measurements of the actual consumption of the Induction Hob. All of these

changes are made possible at the cost of increasing the software complexity.
††https://www.systemweaver.se

https://www.systemweaver.se
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In the face of this ever‐growing importance of software in the home appliances domain, industry is reengineering their product firmware into

SPLs. An example of this is the induction division of BSH, the leading manufacturer of home appliances in Europe. BSH produces induction hobs

under the brands of Bosch, Siemens, and Gaggenau (among others), and software is the heart and soul of its induction hobs. Reengineering firm-

ware into SPLs was possible through feature location. These feature location efforts 39,40,71,72 range from Information Retrieval to Machine Learn-

ing, and include the dimension of Search‐based Software Engineering.

Still, this domain faces challenges in the reengineering toward SPLs. Feature location is a challenge in these industrial environments where a

vast amount of firmware is accumulated over the years, and this firmware has been created and maintained by different software engineers. Even

though no single software engineer has a full understanding of the entire firmware, several software engineers can collaborate to complement

each other's (partial) knowledge of the firmware. 73
5 | WHAT DO PRACTITIONERS THINK?

In order to acquire practical insight from reuse practitioners and researchers, we carried out an online survey, which was sent to around 120 peo-

ple involved in different forms of reuse activities. We took inspiration from a similar survey conducted in 1993, which posed 16 questions.74 We

renewed some the questions according to present circumstances and prepared a survey with 14 questions. Despite the low number (16) of

responses, they provide qualitative insight into what practitioners are currently doing with respect to reuse activities. From the demographics,

the 88.2% of the responses belong to Europe, the 5.9% to United States, and 5.9% from Asia. The ages of the respondents vary from 34 to

64 years (not all the participants answered this question), and most of the organizations are large companies or research centers (ie, number of

employees from 10 000 up to 400 000+), along with a few small companies. The number of years of experience as professional software engineers

varies from 5 to 34 years, so all can be considered senior, and the number of years of experience working with software reuse ranges between 3

and 30 years. Figure 2 shows the most popular application domains where reuse seems to be more successful. The “other domains” label belongs

to those responses where the participants did not indicate a specific application domain but rather the type of reusable assets (eg, knowledge) or a

process where reuse is used (eg, product line engineering or safety critical systems). As we can observe from Figure 2, the automotive and the

aerospace domains described in Section 4 are very popular in the responses given by the respondent.

According to the type of reusable assets (Q1), the participants expressed their preferences for source code and components as the most pop-

ular ones; but also requirements, designs, and test cases are frequently reused, as Figure 3 shows. In this figure, a single response from one par-

ticipant can include several assets, so we counted them as a different response. However, we decided to group in a different category subjects

that answered “all assets,” as we are unsure whether they include all the other types.

While the majority of the subjects considered software reuse valuable, a bit more than half of the subjects perceived that the programming

language does not affect reuse (Q2). This is an interesting conclusion, as some programming languages seem to be more suitable than others

for building reusable assets. The variety of programming languages used to engineer reusable assets is broad: The data indicated no language that

seems more popular than others. Languages not only Haskell, C++, C#, Simulink, Java, and Python are commonly used but also others like C,

Angular, or Go lang.
FIGURE 2 Most popular application
domains of current reuse practice
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In addition, almost all the respondents prefer to reuse rather than build from scratch (Q3), and the supporting reasons are wide ranging. Some

of the responses include “Easier to pick something than create something,” “If good design (modular) reuse otherwise build from scratch,” or “more

productivity.” Is it hard to categorize all the diversity of responses in favor of reuse, but the argumentation is along the lines of increasing speed

and productivity and providing good designs as a way to understand better the code. Regarding reuse using open source practice (Q4), 47% of the

respondents indicated they are not involved in reusing OSS components, so it is supposed that commercial solutions are preferred. However, all

the respondents think the use of repositories increases reuse (Q5), such as Gitlab, SVN, or proprietary ones.

With respect to architectural concerns (Q6), the majority of the the respondents agreed that reuse influences the adoption of new architectural

styles and expressed preferences for Web or Cloud based systems. However, 53% of the respondents did not provide any concrete style.

The economic point of view of software reuse practice is quite important for launching a systematic reuse process. Therefore, 82.4% of the

participants think reuse is economically beneficial for their organizations (Q7), but few respondents were able to estimate the upfront investment

cost (eg, ranging from 5% of the total effort to vast amounts) and the potential benefits (eg, “increasing speed,” “at least double the cost,” or “30%

of the investment”). In addition, five of the respondents believed that recognition awards increase reuse in their organizations (Q8).

The respondents indicated also the type of the reuse strategy adopted in their organizations (Q9), so institutionalized practices are the most

preferred ones to systematize reuse but, surprisingly, 47% of the subjects still adopted an ad‐hoc reuse practice, such as shown in Figure 4.

The level of integration of reuse processes in other software engineering activities (Q10) is described in Figure 5. As we can see, 41% of the

subjects said there is a full integration of reuse in their development processes while a subset of the answers reveals some kind of integration.

With regard to other nontechnical concerns, 70% of the subjects think that legal or license problems do not inhibit reuse (Q11), while 59%

believe that standards facilitate reuse practice (Q12). The most popular application domains where the participants think reuse is more promising

(Q13) map with those shown in Figure 2, but some others like embedded systems, critical systems, cyber physical systems, or mechatronics are

highlighted as promising areas. Finally, question (Q14) refers to the quality properties the subjects think are more valuable when adopting a reuse

strategy, and the answers are shown in Figure 6. According to the figure, maintainability and reliability are the most popular properties, but
FIGURE 4 Type of reuse practices adopted by organizations



FIGURE 6 Most popular quality properties
when adopting a reuse strategy

FIGURE 5 Integration level of reuse
processes in software engineering activities
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performance and functional suitability (ie, according to ISO 2500, the degree to which a product or system provides functions that imply needs

when used under specified conditions) seem to be also very relevant.

With respect to Frakes and Fox,74 we provide in Table 1 a comparison of the responses between the old survey and ours for nine questions

that are nearly identical. As we can observe, there are interesting findings along these 26 years that we can summarize. First, the types of reusable

artifacts have changed significantly, due to the evolution of programming languages. Second, half of the developers or software engineers still

think that the programming language affects reuse. However, we observed a big shift from the first survey, where developers prefer to build their

own software, compared with today, where the 76% of the respondents are in favor of reuse. In addition, while the respondents in the 1993 sur-

vey felt that rewards were rare for reuse, only 29% of today's respondents think the same way. Regarding the issue of having a common software

process to promote reuse, the majority of the respondents disagreed. However, 41% of the respondents think today that software reuse must be

fully integrated with other software engineering processes, and 47% expressed that only some integrated in some activities. In both surveys, most

of the subjects think that legal problems inhibit reuse, and so this remains a major barrier for adoption. Surprisingly, another big shift concerns the

use of repositories: fromTable 1, we can observe the significant change since 1993 in favor of using repositories to increase reuse. Finally, as the

variety of domains for reuse practice is great, it is difficult to predict new areas for successful reuse, but we can see that the aerospace domain is

still very important and the increasing importance of software reuse in the automotive domain, mainly caused by the shift toward using ECUs to

replace mechanical control.



TABLE 1 Comparison between two reuse surveys

Question Survey 1993 Response Question Survey 2019 Response

How widely reused are

common assets?

Unix tools, Document templates,

X widgets, Ada math library

Which reusable assets are actually used? Source code, components,

libraries, test cases, designs,

requirements

Does programming

language affect reuse?

Divided Does the programming language affect reuse? Yes (47%)

Do developers prefer to

build from scratch or to

reuse?

Build their own software Do developers prefer to build from scratch or to

reuse?

Reuse (76%)

Does perceived economic

feasibility influence

reuse

High perception of economic

viability correlated with source

code reuse

Is reuse perceived to be economically beneficial for

your organization?

Yes (82%)

Do recognition rewards

increase reuse?

Rewards for reuse are rare Do recognition rewards increase reuse in your

organization?

Yes (29%)

Does a common software

process promote

reuse?

Disagree in most cases To what extent is software reuse integrated into

other software engineering processes in your

organization?

Fully integrated (41%), only some

activities (47%), weakly

integrated (12%)

Do legal problems inhibit

reuse?

Not an impediment for most

respondents

Do legal or license problems inhibit reuse? No (71%)

Does having a reuse

repository improve

code reuse

Having reuse repositories does

not improve levels of code

reuse

Do you think repositories increase reuse? Yes (88%)

Is reuse more common in

certain industries

Software (34%), aerospace (25%),

manufacturing (14%)

In which application types / domains do you think

reuse is more promising?

Automotive (19%), aerospace

(12%), other domains (15
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6 | A RESEARCH ROAD MAP FOR THE FUTURE

Based upon the results of of our survey, the most promising application domains for reuse and the different types of reusable assets of modern

software systems, we summarize in this section some trends that exhibit considerable potential today and contribute toward the creation of a new

road map for future reuse research. All of them represent, in different ways, a stretching of the three dimensions (the 3Cs) to deal with new uncer-

tainties arising in modern applications.
6.1 | Trend 1. Knowledge reuse

The rapid advance of Big Data and Artificial Intelligence noted earlier has led to a trend toward the reuse of artifacts at very high semantic levels of

abstraction, which might be termed “knowledge components.” One concrete application is in the area of business innovation processes. Duggan75

has defined an innovation process based upon the concept of so‐called historical precedents. The process calls for a systematic search for historical

precedents that represent potential solutions to partial aspects of an innovation problem, followed by their creative combination to arrive at a full

solution. The possibility of creating a repository of historical precedents for search and retrieval has been investigated,76 whereby as a first step,

the utilization of semantic Wiki technology77 is postulated. The process poses several major research challenges: the semantic fuzziness of the

representation of the precedents, the fact that the insight contained within a precedent may change according to the specific innovation problem,

and the difficulty of formulating search and retrieval queries. More powerful search and retrieval techniques such as latent semantic indexing are

being investigated in this respect. This is an example of dealing with uncertainty in the Concept dimension of reuse.
6.2 | Trend 2. Reusable system features

The rise of cyber‐software engineering is also relevant to software reuse. More and more, machine learning and computational search techniques

have already been applied to many problems throughout the software engineering life cycle. This is reshaping the role that new approaches for

reusable system feature identification are playing. These approaches are becoming suggestion engines. They are called suggestion engines because

they do not output a single reusable system feature but a ranking of reusable system features. The software engineer is expected to inspect the

ranking and either choose one of the solutions or trigger a different search to produce a new ranking. This is the case of feature location.39 Modern

feature location approaches output suggestions that are in turn refined by software engineers. As a result, software engineering effort is moving



CAPILLA ET AL. 13 of 16
up the abstraction chain to focus on refining the output or inputs of these suggestion engines. This is an example of improving our ability to handle

uncertainty in the Context dimension of reuse.

6.3 | Trend 3. Reusable services

The continuous reengineering of conventional systems into service‐based software with different granularity levels (ie, from web services to

microservices) is still a popular development technique that builds and deploy noncritical functionality as smaller code assets that can be reused using

Internet protocols. Successful examples like Netflix using an MSA and supported by specific platforms like Docker and Kubernetes are paving the way

for web developers to achieve better reuse ratios instead of other source code components and easier to deploy. However, compared with other

reusable assets, the perfect size of such reusable microservices is not well‐defined, as we can find examples of very small functionality engineering

as a micro‐service. Therefore, it is not so easy to create scalable and reusable microservices when these are used by only one other service.

6.4 | Trend 4. Reusable machine learning components

Technologies such as machine learning are not only helping to stretch the boundaries of retrieval techniques but also beginning to be encapsulated

as the primary content of reusable components. An example may be found in the powerful machine vision systems typical of automated vehicles.

The problem is not so much in the specification of the components but in their testing. Given the training data and continual self‐modification of

components based on techniques like deep neural networks, it can be extremely difficult to demonstrate that the component's behavior fully con-

forms to its specification. The major research challenge in this area is adequate testing of these new kinds of reusable components, which may end

up redefining the meaning of specification conformance. This is an example of dealing with uncertainty in the Content dimension of reuse.
7 | CONCLUSION

The results of our practitioner survey have made it abundantly clear that Rubén Prieto‐Diaz was right in his prediction that “software reuse will

cease to exist”: In the 26 years since the original survey was performed, practitioners have learned to integrate software reuse so completely into

their development processes that it is no longer even a matter of discussion. But were the predictions right that software reuse would cease to

exist as an evolving, research‐worthy discipline? Both the vibrant industrial sector reuse communities and the research trends described in this

paper indicate that the answer is emphatically No. Our ambition continues to drive us to harness emerging technologies to pursue reuse research

in new contexts, with new artifacts, and for new, even more powerful search, retrieval, and development processes. In conclusion, we cite one

final prediction, made over 30 years ago by Fred Brooksm,78 that reuse would remain the primary means of confronting the essential complexity

of developing software. The implications of this are clear: No matter where our ambition takes us in the future, uncertain world, reuse will always

be with us, and there will always be new opportunities for software reuse.
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