
The realization of flexible

GPU components in Rubus

Gabriel Campeanu Jan Carlson, Séverine Sentilles
Bombardier Transportation Mälardalen University

Sweden Sweden

June, 2019
revised October, 2019

Abstract

This technical report collects details on the realization of flexible GPU
components in Rubus, including i) the automatically generated code of
adapters, ii) the generated code implementing a component group, and
iii) the generic API providing transparent access to multiple platforms
and OpenCL versions.

1 Introduction and overview

In previous publications [1, 2, 3, 4], we have addressed the lack of support
for GPU development in component models targeting embedded systems, and
proposed a solution based on the concepts of flexible components, component
groups and adapters. This technical report collects details on the realization of
these concepts in the Rubus component model [5]. For a thorough description
of the overall approach and the proposed concepts, see [4].

In the code listings, bold text in angular brackets represent expressions
that are evaluated/expanded as part of the code generation. For example
〈p out.name〉 would be replaced by the name of the port pout .

The report is organized as follows: Section 2 presents the automatically gen-
erated adapter code. Section 3 describes the code that is automatically gener-
ated to define the Rubus component realization of a component group. Finally,
Section 4 presents the generic API providing transparent access to multiple
platforms and OpenCL versions.

2 Automatically generated adapter code

In order to make flexible components platform independent while avoiding un-
necessary data copying between CPU and GPU memory, adapters are automat-

1

Listing 1: Constructor code of adapters

1 /* create memory buffers for the (one) output port */

2 void *result_adp = apiCreateBuffer(settings->contex, CL_MEM_WRITE_ONLY,

<p in.width*p in.height*p in.size>,NULL,NULL);

3

4 /* connect the output port to the created buffers */

5 <p out.name>->data = (unsigned char*) result_adp;

Listing 2: The adapter behavior function

1 clEnqueueWriteBuffer(settings->cmd_queue, result_adp, CL_TRUE, 0,

<p in.width*p in.height*p in.size>, <p in.name>->data, 0, NULL, NULL);

ically generated where needed (i.e., between components with different alloca-
tions) to manage the needed data copying. This section describes the generation
of the adapters’ constituent parts, i.e., constructor, behavior function and de-
structor.

The constructor. The adapter has one input data port p in and one output
data port p out, both of reference type. The adapter’s constructor, presented
in Listing 1, allocates memory (line 2) corresponding to the size of input data,
on the appropriate location, i.e., the device (for inAdapter adapters) or main
memory (for outAdapter adapters). The output port is linked to the location
that holds the copied input data (line 5).

Behavior function. The generated code of this part handles the transfer of
data to or from the GPU memory, according to the allocation of the connected
components. The clEnqueueWriteBuffer is synchronous (i.e., returns the control
after it finishes) due to the usage of CL TRUE flag.

The destructor. Opposite to the adapter’s constructor that allocates memory
space for the input data, the adapter’s destructor releases this memory.

3 Realization of component groups

A component group is realized following the characteristics of a regular Rubus
component, i.e., through an interface, constructor, behavior function and de-
structor, as follows. The generated interface contains all the (input and output)
data ports of the group. The constructor generation initializes the resource re-
quirements of the group, e.g., allocates memory space to hold the results from
all enclosed components. The group behavior executes the functionalities of the

Listing 3: Destructor code of adapters

1 /* Clean up */

2 apiReleaseBuffer(result_adp);

2

Listing 4: Interface code

1 /* device-settings for each flexible component C */

2 <counter = 1>

3 <foreach C in G>

4 typedef struct {

5 int blockDim_x;

6 int blockDim_y;

7 int gridDim_x;

8 int gridDim_y;

9 cl_context context;

10 cl_command_queue cmd_queue;

11 cl_device_id device_id;

12 }settings<counter+=1>;

13 <endforeach>

14

15 /* the group input ports */

16 <counter = 1>

17 typedef struct {

18 <foreach p in IG
in>

19 <p.type> *<p.name>;

20 <endforeach>

21 <foreach C in G>

22 settings<counter> *cfg<counter>;

23 <counter += 1>

24 <endforeach>

25 }IP_SWC_iArgs;

26

27 /* the group output ports */

28 typedef struct {

29 <foreach p in IG
out>

30 <p.type> <p.name>;

31 <endforeach>

32 }OP_SWC_iArgs;

33

34 /* the interface of the group */

35 typedef struct {

36 IP_SWC_iArgs IP;

37 OP_SWC_iArgs *OP;

38 }SWC_Group_iArgs;

grouped components. The destructor releases the group allocated resources.

3.1 The interface

The interface is composed of two parts, the input and the output. In Listing 4,
the SWC Group iArgs interface is defined as a structure (lines 35-38) with two
elements corresponding to the output and input interfaces. The output interface
OP SWC iArgs is constructed as a structure (lines 28-32), where the elements
are the data ports of the group output interface IGout. Similarly, IP SWC iArgs
is a structure that encloses the data ports of the group input interface IGin.

Besides input data ports, the IP SWC iArgs interface contains the so-called
configuration ports. Each flexible component is equipped with a configuration
interface. Through it, the system designer provides appropriate settings regard-

3

ing the number of device threads used to execute the functionality. For example,
a flexible component allocated on GPU could receive, through the configuration
interface, settings to use 2048 GPU threads. In the flexible component realiza-
tion, the configuration interface is generated as a simple input data port in order
to not introduce additional Rubus framework elements. In our generation, we
use the same rational, i.e, the component group is equipped with a configuration
interface consisting of one input data port for each enclosed component (line
22).

The settings received through the configuration interface are inserted in the
GPU settings structure. The first four elements (lines 5-8) refers to the num-
ber of device-threads used by the functionality, while the rest of the elements
(lines 9-11) are settings related to the environment, such as the command queue
mechanism.

3.2 The constructor

The constructor, illustrated in Listing 5, encloses all the information regarding
the group initialization, as follows. The listing starts by allocating memory for
each flexible component from the group. That data received by a component
through the input ports is the input data for the functionality, while the func-
tionality outcomes are sent through the output ports. Therefore, corresponding
to each output data port, we allocate memory to hold the functionality re-
sults. Due to the specifics of OpenCL, a kernel function must store a simple
output value (e.g., integer value) in a one-value memory buffer. Thus, we al-
locate one-value memory buffers for simple output ports (line 4). For data at
reference ports, the memory buffer is allocated with an appropriate size (line
8). Moreover, in line 15, the reference ports that are considered output ports
of the group are linked to the corresponding memory locations. This is done
because these ports will be wired to outside-of-the-group ports, and the system
communication will be accomplished by using the values of the connected ports.

The core part of the constructor defines the group functionality. A string
variable encloses the functionalities of the grouped components, i.e., the kernel
function name (line 21), the arguments (lines 23, 26, 29 and 32) that correspond
to the input and output component ports, and the component functionality
(line 37). The string variable is loaded into a program object (line 43) and
then compiled to create a dynamic library (line 46). In the last part of the
constructor, kernel objects are constructed for all flexible components (line 51),
alongside with the individual settings regarding the number of used device-
threads (line 54 and 55). We mention that these settings are provided by the
system designer, using the configuration interface port.

3.3 The behavior function

The execution of the group functionality is enclosed in the behavior function
(Listing 6) which is performed every time the group is activated. To execute
the functionality using the OpenCL model, the host needs to send to the selected

4

Listing 5: Constructor code

1 /* create memory buffers for each flexible component that is part of a component group */

2 <foreach C in G>

3 <foreach p in IC
sim out>

4 void *result_<p.name> = apiCreateBuffer(settings->contex, CL_MEM_WRITE_ONLY, sizeof(

<p.type>),NULL,NULL);

5 <endforeach>

6

7 <foreach p in IC
ref out>

8 void *result_<p.name> = apiCreateBuffer(settings->contex, CL_MEM_WRITE_ONLY,

<p.width*p.height*p.size>,NULL,NULL);

9 <endforeach>

10 <endforeach>

11

12 /* connect the output ports of the group with the created memory buffers */

13 <foreach C in G>

14 <foreach p in IG
out>

15 <p.name>->data = (unsigned char*) result_<p.name>;

16 <endforeach>

17

18 const char *source_string ="

19 <counter kernel = 1>

20 <foreach C in G>

21 __kernel void flexible_kernel<counter kernel>(

22 <foreach p in IC
sim in>

23 <p.type> <p.name>,

24 <endforeach>

25 <foreach p in IC
sim out>

26 __global <p.type> *result_<p.name>,

27 <endforeach>

28 <foreach p in IC
ref in>

29 __global <p.type> *<p.name>,

30 <endforeach>

31 <foreach p in IC
ref out>

32 __global unsigned char *result_<p.name>,

33 <endforeach>

34){

35

36 <FC>

37 }";

38 <counter kernel += 1>

39 <endforeach>

40

41 /* Create a program from the kernel sources */

42 cl_program program = clCreateProgramWithSource(settings->context, 1, (const char **)&

source_string, NULL, NULL);

43

44 /* Build the program */

45 clBuildProgram(program,1,&(settings->device_id), NULL, NULL, NULL);

46

47 <counter kernel=1>

48 <foreach C in G>

49 /* Create the kernel object */

50 cl_kernel kernel<counter kernel> = clCreateKernel(program, "flexible_kernel

<counter+=1>", NULL);

51

52 /* individual settings - device threads usage */

53 int total_thrd<counter kernel>[2] = {(settings->gridDim_x),(settings->gridDim_y)};

54 int group_thrd<counter kernel>[2] = {(settings->blockDim_x), (settings->blockDim_y};

55 <counter kernel+= 1>

56 <endforeach>

5

Listing 6: Behavior function

1 /*Set the kernel arguments of each enclosed component*/

2 <counter kernel = 1>

3 <counter arg = 0>

4 <foreach C in G>

5 <for each p in IC
sim in>

6 /* for simple input ports of flexible components that are considered input ports of the

group */

7 <if (p in IG
sim in)>

8 apiSetKernelArg(kernel<counter kernel>,<counter arg+=1>, sizeof(<p.type>), (void*)&

<p.name>);

9 /* for simple input ports of flexible components that are not input ports of the group

*/

10 <else>

11 apiSetKernelArg(kernel<counter kernel>,<counter arg+=1>, sizeof(<p.type>), (void*)&

result_<(p.connect).name>);

12 <endif>

13 <counter kernel+= 1>

14 <endforeach>

15 <for each p in IC
sim out>

16 apiSetKernelArg(kernel<counter kernel>,<counter arg>, sizeof(<p.type>), (void*)&

result_<p.name>);

17 <counter+= 1>

18 <endforeach>

19 <foreach p in IC
ref in>

20 /* reference input ports of flexible components that are input ports of the group */

21 <if (p in IG
sim in)>

22 apiSetKernelArg(kernel<counter kernel>,<counter arg>, <p.width*p.height*p.size>, (

void*)&<p.name>);

23 /* reference input ports of flexible components that are not input ports of the group

*/

24 <else>

25 apiSetKernelArg(kernel<counter kernel>,<counter arg>, <p.width*p.height*p.size>, (

void*)&result_<(p.connect).name>);

26 <endif>

27

28 <counter+= 1>

29 <endforeach>

30 <for each p in IC
ref out>

31 apiSetKernelArg(kernel<counter kernel>,<counter arg>, <p.width*p.height*p.size>, (

void*)&result_<p.name>);

32 <endforeach>

33 <counter kernel+=1>

34 <endforeach>

35

36 /* Execute the OpenCL kernels of the flexible components */

37 <counter=1>

38 <foreach C in G>

39 clEnqueueNDRangeKernel(settings->cmd_queue, kernel<counter>, 2, NULL, total_thrd

<counter>, group_thrd<counter>, 0, NULL, NULL);

40 <counter+=1>

41 <endforeach>

42

43 /* copy the simple output(s) to the corresponding simple output port(s) of the group */

44 <foreach C in G>

45 <foreach p in IG
sim out>

46 apiEnqueueReadBuffer(settings->cmd_queue, result_<p.name>, CL_TRUE, 0, sizeof(

<p.type>), &<p.name>, 0, NULL, NULL);

47 <endforeach>

48 <endforeach>

6

Listing 7: Destructor code

1 /* Clean up */

2 <counter kernel = 1>

3 <foreach C in G>

4 clReleaseKernel(kernel<counter kernel>);

5 <counter kernel+=1>

6 <endforeach>

7 clReleaseProgram(program);

8 <foreach C in G>

9 <foreach p in IC
out>

10 apiReleaseBuffer(result_<p.Name>);

11 <endforeach>

12 <endforeach>

device (i.e., CPU or GPU), the execution command of the desired kernel func-
tion. However, before triggering the execution, the input data and locations for
output results need to be specified. Hence, the first part of the behavior function
handles the parameters (i.e., provide the values) of the group enclosed kernels.
Basically, the parameters of a kernel are the input data and output data location
of the corresponding flexible component. For the input ports of the enclosed
components that are not considered the group ports, we provide the values re-
ceived from the connected ports by using the defined connect construct. This
is done by directly providing the allocated memory location corresponding to
the connected ports (lines 11 and 25). In this way, the communication between
kernel functions of different connected components is directly realized inside the
group, at the functionality level.

For (simple and reference) output ports, we provide the data existing in
the corresponding allocated memory (lines 16 and 31). Based on the order of
the grouped set, the functionalities (i.e., the kernel objects) of the enclosed
components are triggered to be executed on the selected hardware (line 39). In
the last part, we copy the computed one-value of the allocated memory buffers,
to the corresponding simple data output ports of the group (line 46). When the
wiring between existing system components and groups will be done, the simple
output ports of the group will provide a simple data (e.g., integer value) instead
of a (one-value) memory buffer (i.e., pointer). In this way, the Rubus rules that
realizes communication between data ports are not interfered.

3.4 The destructor

The destructor (Listing 7) releases the resources allocated by the constructor.
Basically, the kernel objects (line 4), the program object (line 7) and the allo-
cated memory buffers (line 10) are released.

7

Listing 8: The apiCreateBuffer function

1 void *apiCreateBuffer(cl_context context, cl_mem_flags flags, size_t size, void *

host_ptr, cl_int *errcode_ret)

2 { // Create memory buffer on the device

3 #if !defined(CL_VERSION_2_0) && (defined(CL_VERSION_1_2) || defined(CL_VERSION_1_1))

4 //Distinct memory allocation buffer";

5 return ((void *)clCreateBuffer(context, flags, size, host_ptr, errcode_ret));

6 #endif

7

8 #if defined(CL_VERSION_2_0) && defined(CL_VERSION_2_1)

9 //shared virtual memory

10 cl_device_svm_capabilities caps;

11

12 cl_int err_svm = clGetDeviceInfo(deviceID,CL_DEVICE_SVM_CAPABILITIES,sizeof(

cl_device_svm_capabilities),&caps,0);

13 if (err_svm == CL_SUCCESS && (caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM) && (caps &

CL_DEVICE_SVM_ATOMICS)) {

14 // Fine-grained system with atomics

15 return malloc(size);

16 }

17 else if (err_svm == CL_SUCCESS && (caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM)) {

18 // Fine-grained system

19 return malloc(size);

20 }

21 else if (err_svm == CL_SUCCESS && (caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER) && (

caps & CL_DEVICE_SVM_ATOMICS)) {

22 // Fine-grained buffer with atomics

23 return clSVMAlloc(context, flags | CL_MEM_SVM_FINE_GRAIN_BUFFER |

CL_MEM_SVM_ATOMICS, size, 0);

24 }

25 else if (err_svm == CL_SUCCESS && (caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER)) {

26 // Fine-grained buffer

27 return clSVMAlloc(context, flags | CL_MEM_SVM_FINE_GRAIN_BUFFER, size, 0)

;

28 }

29 else if (err_svm == CL_SUCCESS && (caps & CL_DEVICE_SVM_COARSE_GRAIN)) {

30 // Coarse-grained buffer

31 return clSVMAlloc(context, flags, size, unsigned int alignment);

32 }

33 else if (err_svm == CL_INVALID_VALUE) {

34 // No shared-virtual memory

35 return (clCreateBuffer(context, flags, size, host_ptr, errcode_ret));

36 }

37 #endif

38 }

8

Listing 9: The apiSetKernelArg function

1 cl_int apiSetKernelArg(cl_kernel kernel, cl_uint arg_index, size_t arg_size, const void

*arg_value)

2 { // Set the argument of the kernel

3

4 #if !defined(CL_VERSION_2_0) && (defined(CL_VERSION_1_2) || defined(CL_VERSION_1_1))

5 // Distinct memory systems

6 return (clSetKernelArg(kernel, arg_index, arg_size, arg_value));

7 #endif

8

9 #if defined(CL_VERSION_2_0) || defined(CL_VERSION_2_1)

10

11 cl_device_svm_capabilities caps;

12 cl_int err_svm = clGetDeviceInfo(deviceID,CL_DEVICE_SVM_CAPABILITIES,sizeof(

cl_device_svm_capabilities),&caps,0);

13

14 if (err_svm == CL_SUCCESS && ((caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM) || ((

caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER)) || ((caps &

CL_DEVICE_SVM_COARSE_GRAIN)))

15 return clSetKernelArgSVMPointer(kernel, arg_index, arg_value);

16 else return (clSetKernelArg(kernel, arg_index, arg_size, arg_value));

17 #endif

18 }

4 Implementation of generic API functions

To increase the maintainability of the components resulted from the conver-
sion of flexible components to Rubus constructs and to simplify the generation,
we provide a generic API that abstracts the different characteristics of exis-
tent hardware platforms through several functions that transparently call the
OpenCL mechanisms that correspond to the utilized platform. There are four
functions provided by the API, as follows:

• the apiCreateBuffer function allocates GPU memory buffers,

• the apiReleaseBuffer function deallocates existing GPU memory buffers,

• the apiTransferBuffer function transfers data between different memory
systems, and

• apiSetKernelArg to set up the parameters for GPU functions.

The apiCreateBuffer function, presented in Listing 8 inspects the current
OpenCL version (existing on the platform) to determine which mechanism to
request. For the 1.1 and 1.2 OpenCL versions (line 3) that correspond to a
platform with distinct CPU and GPU address spaces, the clCreateBuffer mech-
anism is utilized to create an object directly in the GPU address space (line 5).
For more technological advanced platforms that support 2.0 and 2.1 OpenCL
versions (line 8), it verifies the hardware capabilities, i.e., if it has a full shared
address space or shared virtual memory. Based on the finding, it invokes the
right mechanism (i.e., malloc or clSVMAlloc).

9

The apiSetKernelArg function, presented in Listing 9, abstracts the different
functions that are required to set the kernel arguments, on different type of GPU
architectures. For example, while for platforms with distinct memory systems,
the clSetKernelArg function is needed, on platforms with full shared memory,
clSetKernelArgSVMPointer is required.

The other API functions are structured in the same manner, i.e., inspect-
ing the OpenCL version existing and platform characteristics, and calling the
corresponding mechanisms.

References

[1] G. Campeanu, J. Carlson, S. Sentilles, S. Mubeen, Extending the Rubus
component model with GPU-aware components, in: Component-Based Soft-
ware Engineering (CBSE), 2016 19th International ACM SIGSOFT Sympo-
sium on, IEEE, 2016, pp. 59–68.

[2] G. Campeanu, J. Carlson, S. Sentilles, Developing CPU–GPU embedded
systems using platform-agnostic components, in: 43rd Euromicro Confer-
ence on Software Engineering and Advanced Applications, 2017.

[3] G. Campeanu, J. Carlson, S. Sentilles, Flexible components for development
of embedded systems with GPUs, in: 24th Asia-Pacific Software Engineering
Conference, 2017.

[4] G. Campeanu, GPU support for component-based development of embedded
systems, Ph.D. thesis, Mälardalen University, Sweden (2018).

[5] K. Hänninen, J. Mäki-Turja, M. Nolin, M. Lindberg, J. Lundbäck, K.-L.
Lundbäck, The Rubus component model for resource constrained real-time
systems, in: Industrial Embedded Systems, 2008. SIES 2008. International
Symposium on, IEEE, 2008, pp. 177–183.

10

