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Abstract—The rapid adoption and the diversification of cloud computing technology exacerbate the importance of a sound
experimental methodology for this domain. This work investigates how to measure and report performance in the cloud, and how well
the cloud research community is already doing it. We propose a set of eight important methodological principles that combine
best-practices from nearby fields with concepts applicable only to clouds, and with new ideas about the time-accuracy trade-off. We
show how these principles are applicable using a practical use-case experiment. To this end, we analyze the ability of the newly
released SPEC Cloud IaaS benchmark to follow the principles, and showcase real-world experimental studies in common cloud
environments that meet the principles. Last, we report on a systematic literature review including top conferences and journals in the
field, from 2012 to 2017, analyzing if the practice of reporting cloud performance measurements follows the proposed eight principles.
Worryingly, this systematic survey and the subsequent two-round human reviews, reveal that few of the published studies follow the
eight experimental principles. We conclude that, although these important principles are simple and basic, the cloud community is yet
to adopt them broadly to deliver sound measurement of cloud environments.
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1 INTRODUCTION

E XPERIMENTAL methodology problems are common in
many domains [1]. In computer science research they

seem to appear also due to a lack of agreement on standard
techniques for measuring, reporting, and interpreting per-
formance [2], [3]. A domain that raises new and important
performance evaluation challenges is cloud computing. The
first commercial cloud has opened for the general public
in 2007 (Amazon AWS), and today cloud computing is an
established field that is growing rapidly. Cloud computing
requires advances in performance engineering, computer
systems, and software engineering, which require meaning-
ful experimentation to test, evaluate, and compare systems.
In this relatively new field, experiments focusing on cloud
computing performance raise new methodological chal-
lenges [4] related to technological aspects such as dynamic
environments, on-demand resources and services, diverse
cost models, and new non-functional requirements such as
elasticity [5] or elasticity-correlated metrics [6]. In this work,
we focus on the principles and feasibility of experimental
performance studies in cloud computing settings.
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Sound experimental methodology, and in particular reli-
able, consistent, and meaningful performance evaluation, is
challenging but necessary. Poor experimental design and/or
execution are often the cause for many pitfalls encountered
by well-meaning researchers and practitioners [1], [2]. As
we show here, examples of problems that occur repeatedly,
even for research published in top venues, include: flawed
or no definition of meaningful metrics, inadequate num-
ber of experiment repetitions, unreproducible cloud experi-
ments, simplistic summarization of data from multiple mea-
surements across single or multiple clouds, and inconsisten-
cies between the experimental results and published claims.
Consequently, it is difficult to reproduce experiments, to
make fair comparisons between different techniques of the
same class, or to benchmark fairly across competing prod-
ucts. This situation is particularly undesirable for a service-
based industry such as cloud computing, which operates on
the promise (or guarantee) of performance delivery.

Although many top-level conferences accept cloud com-
puting articles that include performance results obtained ex-
perimentally, this work shows that the domain’s adherence
to sound methodological principles is lacking. Motivated
also by increasing awareness about such principles in other
domains, e.g., software engineering over a decade ago [7]
and high-performance computing in the last few years [2],
we propose to revisit the basic principles that underpin
the performance evaluation of cloud computing artifacts.
Toward this end, this work makes three contributions, with
each contribution structured around a main question of
experimental methodology:
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RQ1 What methodological principles are needed for
sound experimental evaluation of cloud perfor-
mance? (addressed in Section 2)

Reproducibility of experiments is a key part of the sci-
entific method [8]. We focus on technical reproducibility
(defined in Section 2.2), and propose eight methodological
principles that target diverse aspects of experimental evalu-
ation methodology and execution. These include designing
experiments, obtaining and reporting results, and sharing
software artifacts and datasets. Cloud-specific aspects in-
clude reporting cost, based on two classes of pricing models.
RQ2 Can the methodological principles be applied in

common practice? (addressed in Section 3)
Pragmatism is important for the adoption of methodological
principles for experimentation. If the principles are mean-
ingful, but cannot be easily applied in practice or cost too
much to perform, the community will delay or even refuse
to use them. This work provides evidence that the proposed
principles can be used in two common situations: (i) the
commercial benchmark SPEC Cloud IaaS, and (ii) a set of
experiments with common cloud and self-owned infrastruc-
ture conducted by a research team.
RQ3 How are cloud performance results currently ob-

tained and reported?1 (addressed in Section 4)
To understand the state of practice, we conduct a systematic
review [9], [10] of a representative sample of papers on
cloud computing that have been published, between 2012
and 2017, in 16 leading venues. A highlight of this review is
the careful, multi-reviewer examination of these papers for
the most important factors in experimental design and ex-
ecution that may limit technical reproducibility. The review
also focuses on comparative performance evaluation with
competing approaches to the one presented in the paper.

Last, Section 5 compares this work with the body of work
on principles and practice of experimental evaluation, across
four related research communities: cloud computing itself,
performance engineering, computer systems in general, and
software engineering.

2 EXPERIMENT METHODOLOGY

This section addresses the question of how to design and
report cloud performance experiments (RQ1).

In other areas of experimental computing, the scope
of the system under evaluation seems relatively narrow.
For example, both in the evaluation of infrastructure for
High-Performance Computing (HPC) [11], [12], or in the
evaluation of Java Virtual Machines (JVMs) and Just-in-Time
compilers [13], [14], the experimental methodology may
consist of a relatively compact, prescriptive list of artifacts
and factors. In contrast, the open and interconnected nature
of cloud computing introduces too many relevant factors
to be covered exhaustively, of which the HPC systems and
JVMs may be merely some of the evaluated aspects.

The experimental methodology we propose focuses on
emphasizing the selection of suitable metrics and the repro-
ducibility of experimental results. This work presents eight
principles that are particularly relevant for reproducibility
of performance experiments on cloud computing platforms.

1. In various related communities: cloud systems, control systems,
performance engineering, general computer systems.

2.1 Metric Selection
A measurement is the assignment of values to objects or
events, according to a defined procedure. Based on collected
raw measurement data, measures can be computed, each
with the purpose of capturing certain aspects of the ex-
periment outcome [15]. In mathematics, the term metric is
explicitly distinguished from the term measure (the former
referring to a distance function). However, in computer sci-
ence and engineering the terms metric and measure overlap
in meaning, and are often used interchangeably [16]. One
way to distinguish between metric and measure is to regard
a metric as a value that can be derived from some measures
obtained from experimental evaluation. Metrics and mea-
sures may be defined for different scales. There are absolute
scales with a natural unit, ratio scales with a given zero
point, and interval scales with a given distance function [17].

When several metrics have similar value range and dis-
tribution in practical settings, the definition of aggregated
metrics may improve the ability to establish valid claims
about the experimental results. Examples of established ag-
gregation approaches include (i) the arithmetic mean of raw
measurements (but never of rates or percentages [18]) (ii) a
(weighted) geometric mean for speedup ratios compared to
a reference implementation [19], (iii) a pairwise comparison
for closed sets of alternatives, and (iv) an Lp-norm as dis-
tance to the theoretical optimum. More details are provided
in previous works covering metric aggregation and metric
quality attributes [20].

2.2 Reproducibility
Although reproducibility of experiments is one of the pillars
of the scientific method [8], it is rare in practice. In a 2016,
Nature-published survey, Baker finds that 70% of the 1,500
researchers surveyed have tried and failed to reproduce
prior work done by others, and over 50% failed to repro-
duce their own experimental results [21]. Even in computer
science, where the use of open-source code, versioning,
and virtualization are among the obvious techniques that
enhance reproducibility, Collberg and Proebsting showed
in 2016 that more than 50% of the work published in
top venues, including the ACM International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), the ACM Symposium on
Operating Systems Principles (SOSP), and the International
Conference on Very Large Data Bases (VLDB), cannot be
reproduced due to missing or un-compilable code. They
also showed that authors are sometimes unable to reproduce
their own published results [22].

Technical solutions to improve reproducibility have been
proposed. One of the earliest, PlanetLab, provided func-
tional reproducibility of experiments, but could not ensure
reproducible non-functional properties, such as measured
latency and bandwidth, due to uncontrolled resource shar-
ing [23]. Handigol et al. [24] promote the use of containers
for repeatable datacenter networking experiments; systems
such as APT [25], EmuLab [26], and FlexLab [27] aim to
provide environments for repeatable distributed networked
systems research; and frameworks such as DataMill [28]
offer some control over experimental variability. Among
the more extreme examples is the work by Governor et
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al. [29] that provides the means for the reader to reproduce
everything in a paper, including the graphs, by executing
very simple steps. Another example is the work by Cavazos
et al. [30], that yielded an open toolkit2 for portable experi-
ment definition, implementation, execution and evaluation.
Industry solutions, such as the Jupyter Notebook,3 are also
gaining popularity because they ease prototyping, sharing,
and full reproduction of data processing projects.

Alongside the technical solutions to specific repro-
ducibility issues, research communities now try to improve
the review and publication process. The ACM Symposium
on Principles of Database Systems (SIGMOD), a leading
conference on data management and databases, has been
an early leader in championing experiment repeatability—
accepted papers since 2008 are invited to submit code
and data required for third-party experiment reproduction4.
Other leading computer-science venues follow suit [31]. In
performance evaluation, the ACM/SPEC International Con-
ference on Performance Engineering (ICPE) is encouraging
authors to share research artifacts (both code and data) in a
public repository maintained by the SPEC Research Group5.
The conference of the ACM Special Interest Group on Data
Communication (SIGCOMM) is running a workshop dedi-
cated to reproducibility of networking research6. The con-
ference of the ACM Special Interest Group on Programming
Languages (SIGPLAN) is currently requesting feedback
about a best-practices Empirical Evaluation Checklist to
“help [programming languages] authors produce stronger
scholarship, and to help reviewers evaluate such scholarship
more consistently”7. As a publisher, ACM has an artifact
evaluation (AE) process8, used now by conferences such as
the International Conference for High Performance Com-
puting, Networking, Storage, and Analysis (SC) and the
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), which aims to reduce the
expenses of experiment reproduction.

There are many facets of reproducibility that need to
be considered. In cloud benchmarking, the experimental
environment often includes opaque elements of the cloud
infrastructure, external workload over shared resources,
and other complicating factors. An exact reproduction of
measurement results is rarely possible, and typically unnec-
essary [8]. Instead, the focus should be on technical repro-
ducibility, which requires only a description of the technical
artifacts needed for the experiment and a clear description
of what was measured and how it was measured—i.e., the
information needed to repeat the same experiment.

Another important concept is the reproducibility of claims,
which asserts that a reproduction of an experiment should
support the same claims that were derived from the orig-
inal study, despite possible variations in the measurement
results. Claim reproducibility requires not only accounting

2. http://www.cknowledge.org
3. http://jupyter-notebook-beginner-guide.readthedocs.io
4. http://db-reproducibility.seas.harvard.edu/
5. https://icpe.spec.org/artifact-repository.html
6. http://conferences.sigcomm.org/sigcomm/2017/

workshop-reproducibility.html
7. http://sigplan.org/Resources/EmpiricalEvaluation/
8. http://www.acm.org/publications/policies/

artifact-review-badging

for measurement variability, but also awareness and control
for external factors. While tools often address technical re-
producibility factors, the reproducibility of claims depends
on the conditions under which the experiment is executed,
on the computation, and on the interpretation of the experi-
ment results. Claim reproducibility focuses on the generality
of the findings, rather than on the specific technical aspects.

2.3 Methodological Principles

In this section, we propose a set of eight principles that
represent a minimal set of guidelines for performance evalu-
ation in the cloud computing domain. The main purpose
of such principles is to provide guidelines for designing
experiments and reporting results in a sound way, in order
to promote reproducibility, and generality of the conclu-
sions that can be drawn from the experiments. Such a set
of principles must be considered as a core that could be
extended and specified better for given application domains
in cloud computing. The set of principles could also be
seen as a reviewer’s checklist for assessing the quality and
reproducibility of an evaluation in a experimental cloud
research paper.

How to design experiments? One of the core parts of
a performance evaluation process is the experiment design,
i.e., the organization of the experiment to ensure that the
right type of data, and enough of it, is available to answer
the questions of interest as clearly as possible [32]. Each
experiment should be designed to answer a specific set of
questions (see P3). The experiment design will be guided by
factors such as the performance model used by the exper-
imenter, but should also test and quantify how that model
can differ from the real system due to, e.g., interference from
uncontrolled variables (see P1 and P2).

P1: Repeated experiments (statistical). After identifying
the sources of variability, decide how many repetitions
with the same configuration of the experiment should be
run, and then quantify the confidence in the final result.

It is essential to identify sources of variability in mea-
sured performance, because one of the main aims of any
designed experiment is to reduce their effect on the answers
to questions of interest. Cloud computing platforms exhibit
significant performance variability [33], [34], [35], [36]. This
is due to many factors, from multi-tenant workloads sharing
the cloud resources to minute differences in hardware of
individual machine instances. Often, these factors cannot
be explicitly controlled. Instead, performing a sufficient
number of equally configured randomized experiments is
needed to make sure that the results are not due to chance,
and to provide a statistically sound assertion about the
confidence with which the data supports the claims.

A decision on the number of repeated experiments (or
the duration of an experiment when observations are col-
lected continuously) may need to account for factors such
as random or seasonal performance variations, the required
accuracy, and the acceptable probability of an erroneous
conclusion. The number of repetitions can typically be re-
duced when a model that explains or predicts the experi-
mental results is available, e.g., a change in performance can

http://www.cknowledge.org
http://jupyter-notebook-beginner-guide.readthedocs.io
http://db-reproducibility.seas.harvard.edu/
https://icpe.spec.org/artifact-repository.html
http://conferences.sigcomm.org/sigcomm/2017/workshop-reproducibility.html
http://conferences.sigcomm.org/sigcomm/2017/workshop-reproducibility.html
http://sigplan.org/Resources/EmpiricalEvaluation/
http://www.acm.org/publications/policies/artifact-review-badging
http://www.acm.org/publications/policies/artifact-review-badging
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be judged significant depending on whether it reasonably
correlates with changes in other system metrics.

Violation Examples. In our survey (see Section 4), Prin-
ciple 1 is often partially fulfilled by performing certain
number of repetitions or by selecting a long duration for the
continuous experimental run. However, often this choice is
not justified and sometimes not even reported, and is not ex-
plicitly connected to the required accuracy and confidence—
evaluating peers appear to have been content with merely
seeing that some repetitions were done, even when the
number of repetitions is specified ad hoc. This is not suffi-
cient, because it may not be possible to determine whether
sufficient repetitions were done, with only aggregate results.

P2: Workload and configuration coverage. Experiments
should be conducted in different (possibly randomized)
configurations of relevant parameters to cover a repre-
sentative sample of the space of the controlled variables,
such as, the workload, especially parameters that exhibit
stochastic behaviour in real scenarios, and are thus not
completely under control or those that may interact with
the platform in unexpected ways, e.g., workloads can
change from diurnal to bursty. Parameter values should
be randomized according to realistic probabilistic distribu-
tions or using historical data. The confidence in the final
result should be quantified.

In cloud computing, experimental setup often includes
configurable parameters and configurations, e.g., the type
of hardware configuration used, and the amount of re-
sources allocated . However, some parameters that have
significant effect on performance may not be under the
(complete) control of the experimenter due to, e.g., their
stochastic behaviour in real life. While both these types
of parameters can be considered controller variables in
the experiment, the stochastic nature of the system and
workloads can yield significantly different results. One such
example would be when the system is subject to momentar-
ily overload due to, e.g., workload spikes, queuing effects
occur which can highly impact the measured performance. .
Similarly, although the experimenter may select the number
of allocated machine instances, the aggregate computing
power across these instances may fluctuate as typically seen
in public cloud experiments, and with it the observed per-
formance. In addition, some parameters may interact with
the platform unexpectedly. For example, when the allocation
of resources for the experiment happens to perfectly utilize
the underlying host or rack, the observed performance
might be better than in a slightly larger setup that would
require communication between multiple hosts or racks.
Carrying out independent experiments where the relevant
parameters are randomized can provide more robust results.

To avoid affecting the experiment, the choice of param-
eter values should be based on realistic probabilistic distri-
butions , i.e., perform experiments with many realistic con-
figurations. The experimenter should thus start by carefully
noting the controlled variables in the system that can impact
the results, and then choose a random, but realistic, set of
values for these variables. For example, an admission con-
trol algorithm that was designed assuming diurnal patterns
of customer arrival rates should be tested with multiple
different arrival patterns, including more challenging bursty

arrival patterns. In addition, an admission control algorithm
should be tested against multiple different assumptions on
the amount of resources available and their granularity..

Violation Examples. The surveyed papers often partially
address Principle 2 by using multiple workloads, for exam-
ple multiple benchmarks or multiple replay traces, which
stress the system in different ways. Unfortunately, the choice
of workloads appears to be motivated partially by ease
of use. Despite existence of relevant techniques [37], [38],
workload coverage is not considered. Randomization is rare,
in part perhaps because systematic treatment of workload
randomization is relatively recent [39].

How to report experimental data? Reports should in-
clude all information needed to evaluate the quality of the
used data, to assess the soundness and correctness of the
evaluation approach, and to reproduce the results.

P3: Experimental setup description. Description of the
hardware and software setup used to carry out the exper-
iments, and of other relevant environmental parameters,
must be provided. This description should include the
operating system and software versions, and all the infor-
mation related to the configuration of each experiment. In
addition, the description should clearly state the objective
of each experiment.

This principle requires that the conditions under which
the experiments were carried out are described in sufficient
detail to enable technical reproducibility (see Section 2.2).
Some details that are traditionally omitted may have a
significant effect on the experimental results and thus in
the claims derived from the results. Descriptions should
always include: (i) the system under test (SUT), (ii) the
environment under which this system is tested, including
its non-default configuration parameters, i.e., if a customized
configuration has been used, (iii) the workload, possibly as
a reference to a detailed characterization or standardization,
(iv) the monitoring system and how its data is converted
into metrics, either formulas or plain text, but with enough
information if the metrics are not obtained from the mon-
itoring data straightforwardly. (v) The objective of each
experiment before the results are discussed.

In a cloud environment, the exact parameters of the
system under test, e.g., both the host platform of the virtual
machine (VM) and the guest-VM instances, may change.
This type of information must therefore be documented in
the experimental setup. The objective of the experiments,
and the configuration information are important to deter-
mine the number of experiments that is needed to ensure
that the results obtained are not dependent on the VM
instance type.

Violation Examples. Our survey identified some papers
that omit the experimental setup information. However, a
more salient point is that even for papers that provide such
a description, there is much variation in how the setup is
described. Some papers merely list the (marketing) names
of the VM instances, whereas others provide memory sizes
and core counts, and others further provide details such as
kernel versions of the guest-VM. There is a marked lack
of certainty about what information to record and report,
and there is little discussion of whether and how unknown
experimental setup parameters may affect the results.
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As a practical constraint, the page limits applied to
research papers may prevent inclusion of the experimental
setup description in appropriate detail, going beyond the
ACM AE guidelines. We believe a full description can only
be presented in a separate document, e.g., a web page,
an appendix or a technical report in an archival form,
and suggest that publishers provide supplementary archival
resources for the storage of such descriptions.

P4: Open access artifact. At least a representative sub-
set of the developed software and data (e.g., workload
traces, configuration files, experimental protocol, evalu-
ation scripts) used for the experiment should be made
available to the scientific community. The metadata of the
released artifact should uniquely identify the artifact, in-
cluding timestamping and version in a versioning system.

According to the definition provided by ACM9, “by
artifact we mean a digital object that was either created by
the authors to be used as part of the study or generated by
the experiment itself. For example, artifacts can be software
systems, scripts used to run experiments, input datasets,
raw data collected in the experiment, or scripts used to
analyze results.” This principle is related to Principle 3 and,
more generally, to the technical reproducibility of results. A
typical cloud experiment setup is quite complex, possibly
with large third-party components (guest operating system
images, middleware, benchmark applications and workload
generators). It may not be practical to record the relevant
details of such a setup other than by preserving the entire
experiment artifact. The experimenter may also have little
control over what happens in external data centers, e.g., for
experiments run on Amazon S3 the actual machine config-
urations may change from one run to the next. Preserving
the experiment artifact may be the only way to make the
experiment pertinent in quickly developing environments.

Artifacts also have educational value. When made avail-
able, students can build on top of prior results, acquire
training by setting up experiments, reproducing them, and
comparing the results with those in published papers. These
exercises accelerate the acquisition of skills and expertise.

Finally, we should accept that experiment results may be
distorted due to bugs that can only be found through an
external scrutiny of the artifact.10

Violation Examples. Our survey points to a dearth of
published artifacts. Keeping the artifacts private appears to
be the default choice, with no justification offered, when
the opposite should be true—unless public artifacts are the
norm, authors will find it difficult to justify the extra effort
needed to prepare artifacts for publication. On the tech-
nical side, we have encountered examples of artifact web
pages becoming inaccessible after publication, suggesting
that more robust archival options should be used.

Publishing reduced artifacts may be needed to meet
intellectual property and privacy requirements. When pub-
lishing partial data, sampling methods should preserve
Principles 1 and 2, and the general result trends.

9. https://www.acm.org/publications/policies/
artifact-review-badging

10. Several other sciences have taken steps toward this, including
medical sciences [40] and economics [41].

P5: Probabilistic result description of measured perfor-
mance. Report a characterization of the empirical distribu-
tion of the measured performance, including aggregated
values and variations around the aggregation, with the
confidence that the results lend to these values.

Reporting aggregated values, their variations, and the
confidence in these values is useful to understand the
statistical features of the measured performance. However,
aggregations must be suitable to the distribution of the
data points that are aggregated. Averaged values only make
practical sense if the measurements have a distribution clus-
tered around their central tendency, such as the Gaussian
distribution. Variation as a measure of dispersion can mask
the difference between a few big outliers and constantly
fluctuating measurements. It is incumbent on researchers
to carefully examine the distribution of data points and
select appropriate summarization methods. For instance, for
complex distributions use tools such as box plots, violin
plots, and empirical distribution function plots.

Violation Examples. One striking observation in our study
was the focus on analyzing average performance, without
looking at tail performance metrics such as latency quan-
tiles, which are of obvious practical importance. Sometimes,
average values were accompanied in the plots by error bars
whose meaning was not defined, creating an impression
of reporting on measurement variation when in fact little
can be derived from such data. Sometimes, inappropriate
mean computations are also used not in compliance with
discussed guidelines [18], [19].

P6: Statistical evaluation. When making conclusions from
experimental data, provide a statistical evaluation of the
significance of the obtained results.

The results of an experimental evaluation are often not
just reported, but also used to derive conclusions, such
as comparing an artifact against competing approaches. In
these cases, conclusions are made based on an evaluation
that considered a (necessarily) limited number of scenarios
and observations. The likelihood and representativeness of
these scenarios becomes a factor in the (statistical) signif-
icance of the experimental conclusions, and is therefore
essential in establishing the validity of the claims.

When the conclusions involve competing approaches,
the information available on the competing approaches may
not suffice for a robust statistical analysis of the comparative
measurements. The claims should then be carefully worded
to warn about the threats to validity. The statistical evalu-
ation is to be considered in combination with Principles 1
and 2, to provide sufficient backing for the results.

Cloud computing experiments may include numerous
hidden services. This can produce high volumes of data
with particularly artificial statistical properties, such as un-
usual distributions or complex dependencies. Experiments
may also depend on factors that are outside experimenter
control. The methods used for statistical analysis must there-
fore be chosen to reflect the experimental circumstances, the
properties of the data that is collected, and the conclusions
that are made. The choice of methods is not necessarily
portable between studies – for example, although Student’s
or Welch’s t-test are often viable options for data with

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
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a normal distribution, non parametric methods [32] may
be needed in other cases. Rather than recommending a
single evaluation procedure, we therefore provide example
references that may help the reader build an appreciation
for the pitfalls of the cloud computing experiments and
select appropriate statistical methods depending on partic-
ular circumstances. For general advice, the classic work of
Huff [42] is well complemented by a more recent work of
Reinhart [43]. Exploratory data analysis [44] can be com-
bined with bootstrap and similar sampling methods [45] for
increased robustness in non parametric evaluation. Exam-
ples of practical experience illustrate the need to carefully
construct experiments [3], [46], evaluate the accuracy of
employed tools [47], [48], avoid reporting statistics that
mask variability [2], [49], or reflect the variability of the
experimental environment in the reported conclusions [50].
We also find it useful to adopt a self-reflective view of
the experimental evaluation as described in the article by
Blackburn et al. [51].

Violation Examples. Although the experimenters cannot
be unaware of the stochastic nature of their measurements,
statistical evaluation of result significance is rare for cloud
experimentation. In fact, Principle 6 is the one most often
violated in our survey. It is possibly also the most difficult
point to meet because, without robust statistical grounding
of the experiment design around Principles 1 and 2, simple
application of statistical formulas cannot lend support to
claims reported in the surveyed papers.

P7: Measurement units. For all the reported quantities,
report the corresponding unit of measurement.

Although this principle may seem trivial, reporting the
units of measurement of the different reported quantities is
essential to better understand the relevance of the presented
results, to compare with other approaches, and to analyze
the correctness of the mathematical operations involved.

Violation Examples. Although the few cases where a
quantity without units appears are possibly simple omis-
sions, there are cases where wrong or ill-defined units are
used. For example, memory usage can be measured in many
different ways, such as page-level VM-instance metrics vs.
heap occupation by an application with byte granularity—
these two measurements inform about very different quan-
tities despite having the same unit.

P8: Cost. Every cloud experiment should include (i) the
cost model used or assumed for the experiment; (ii) ac-
counted resource usage (per second), independently of the
model; and (iii) charged cost according to the model.

A distinguishing feature of cloud settings is the offer of
services subject to cost, with explicit and implicit guaran-
tees, Service Level Agreements, (SLAs). The charged cost
(reported as item 3 of this principle) is derived from a cost
model (i), provided by the cloud operator and accepted by
the cloud user, and accounted resource usage (ii), provided
by the cloud monitoring system. For point 1, the cost model
and the SLA used in the experiments must be documented
explicitly, especially when they may differ per customer. For

example, TPC11 and LDBC12 require explicit descriptions of
the cost model that a generic client would have to follow
to use the system-under-test over a period of three years,
including licenses and maintenance pricing, and all other
elements relevant for real-world use. In contrast, Amazon’s
EC2 has an explicit cost model, i.e., piece-wise linear ad-
dition of hourly usage intervals (and a per-second billing
model since the end of 201713), and several implicit clauses
explaining the SLA applied to all clients, but also uses other
models, such as advance reservation and spot markets, with
finer but different granularities. All cost elements that still
differ across public cloud operators should be documented.

2.4 The Principles behind the Principles

Although we have presented and analyzed the principles
in turn, many principles are connected. For example, a cloud
experiment that seeks to present general results applicable
across multiple cloud providers must balance between the
need for many experiments across many platforms and
the cost of conducting all those experiments. By following
Principle 6, the experimenter may express the robustness
of the results in specific and quantifiable terms. In turn,
this permits keeping the repetitions required by Principles 1
and 2 to the minimum required to achieve selected result
significance. Additionally, Principle 8 informs the reader
about reproducibility costs, and Principle 4 facilitates doing
so without the need to re-implement the experiment setup.

Our list includes only principles that our experience
shows pose interesting challenges in cloud environments.
However, our list of principles related to cloud computing is
non-exhaustive. For example, from the more general issues
in experiment design and evaluation that we survey in
Section 5, we draw attention to measurement perturbation.

The act of measuring performance in a computing sys-
tem may affect the system behavior, creating perturbations
that affect the measurements [52]. These perturbations in-
crease if the measurements are frequent or if the instrumen-
tation is particularly intrusive [53]. One way to address this
problem is to obtain a model that quantifies the perturbation
effects, and use this model in the analysis of the results, to
remove or reduce the impact of these effects during analy-
sis [53], [54]. In some cases this approach may be impractical
as the configuration of such model is not trivial. For metrics
that are captured by the cloud provider, any perturbations
introduced by the instrumentation are already part of the
variability of the experimental results, because such pertur-
bations are not under the control of the experimenter. For
metrics that are captured optionally or for those where the
benchmark introduces additional instrumentation, careful
implementations can minimize perturbations by limiting
the frequency at which the system is observed and by
leveraging efficient sampling and processing techniques.

11. As defined for all benchmarks, see http://www.tpc.org/pricing/.
For example, TPC-C, Clause 7: http://www.tpc.org/tpc documents
current versions/pdf/tpc-c v5.11.0.pdf

12. In its by-laws, v.1.0, published in 2017.
13. https://aws.amazon.com/de/blogs/aws/

new-per-second-billing-for-ec2-instances-and-ebs-volumes/

http://www.tpc.org/pricing/
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://aws.amazon.com/de/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/
https://aws.amazon.com/de/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/
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3 CAN THE METHODOLOGICAL PRINCIPLES BE
APPLIED IN COMMON PRACTICE?
This section focuses on RQ2, and analyses how the prin-
ciples relate to common practice. Through an example of
each, we analyze: (i) how the principles are embodied by
commercial benchmarks, and (ii) how the principles can be
supported in a common use-case.

3.1 The Use of Principles in Benchmarks
In this section, we describe how the experiment prin-
ciples defined in Section 2.3 are embodied in standard,
commercial, independent industry benchmarks. We discuss
Standard Performance Evaluation Corporation (SPEC) and
Transaction Processing Performance Council (TPC) bench-
marks, with a focus on the SPEC Cloud IaaS 2018 bench-
mark [55].

Kistowski et al. define a benchmark as a “Standard
tool for the competitive evaluation and comparison of
competing systems or components according to specific
characteristics, such as performance, dependability, or secu-
rity” [56]. This definition has several consequences that set
benchmarks apart from other performance experiments. For
example, it implies that benchmarks are designed to be run
by third parties on their systems, without the intervention
of the original developers of the benchmark. In particular,
commercial benchmarks must have clear run-rules and sys-
tem definitions, and define beyond controversy their system
scope, context, reporting rules, and acceptance criteria and
processes for benchmark results. In other words, commercial
benchmarks must ensure a form of technical reproducibility.

P1: Many industry-standard benchmarks define the
number of runs that are required to achieve a valid result.
This number is usually programmed into the benchmark
harness and automatically run by every benchmark user.
For example, the SPEC Cloud IaaS benchmark [55] uses five
separate re-runs for its baseline experiment. Some bench-
marks also allow a varying number of runs, for example,
the SPEC CPU 2017 benchmark [57] allows either two or
three runs.

P2: Many standard industry benchmarks use multiple
workloads that are run independently. The SPEC Cloud
IaaS 2018 benchmark runs a transaction workload using
Apache Cassandra, and a K-Means MapReduce workload.
The SPEC CPU benchmark is based on nearly twenty integer
and floating point programs. For research purposes, addi-
tional workloads have been created for the SPEC CPU 2017
suite [58]. In addition to their workload collections, the stan-
dard benchmarks usually feature rules on the order of work-
load execution, workload durations, sequences, and even
potential pauses, such as the 10-second idle pause between
each workload execution phase in the SPECpower ssj2008
benchmark [59].

P3: Standard industry benchmarks feature a set of re-
porting rules that specify how to report the characteristics
of the SUT for benchmark acceptance. Reports are reviewed
by a committee or auditor. The reviewers evaluate whether
the report ensures technical reproducibility by third-parties.

P4: Typically, industry-standard benchmarks document
their methodology and execution in great detail, enabling
deep understanding of their internal workings. The SPEC

Cloud IaaS 2018 benchmark, in particular, integrates a
benchmarking harness cbtool as an Apache-licensed open-
source artifact.

P5: Standard benchmarks report average performance
values, with some exceptions. The SPEC CPU 2017 bench-
mark reports the median value of three runs, or the min-
imum (worse) value if only two runs were executed. The
SPEC Cloud IaaS 2018 benchmark reports the average of the
99th percentile measured for latency. The SPEC SERT 2 suite
reports the coefficient of variation (CV) for performance.

P6: is usually out of scope for released standard bench-
marks. The variance of result scores is usually checked
thoroughly prior to a release by a committee. Evaluation
of multiple results consists simply of comparing the final
metric score. Notably, the SPEC SERT 2 suite sets CV-
thresholds above which a test result is considered invalid.

P7: All benchmarks report their unit of measurement,
which is usually throughput, response time and some addi-
tional metrics, e.g., the number of application instances in
the SPEC Cloud IaaS 2018 benchmark.

P8: Benchmarks may use a cost component as part of
their metric, depending on domain. The TPC requests a
monetary pricing element and details the rules for speci-
fying it. The SPEC Cloud IaaS 2018 benchmark counts ap-
plication instances as its cost component, and benchmarks
focused on power consumption report Watts. Some bench-
mark reports (e.g., TPC-C) include a price-per-performance
metric. The mentioned benchmarks rate individual cloud
services. In the case, a cloud benchmark assesses a compo-
sition of cloud services, a cost breakdown per component
would be part of a transparent result report.

3.2 Applying the Principles
We now show, by example, how all principles proposed in
Section 2.3 can be applied and reported in common practice.
The case study in this section investigates the hypothesis H :
The scaling behavior of a standard, reactive, CPU utilization-rule-
based auto-scaler depends on its environment. Measurements
are presented in accordance to Principles 1–8. The case
study uses an auto-scaler for a CPU-intensive application—
an implementation of the LU (lower-upper decomposition
of a n × n matrix) worklet from the SPEC SERT 2 suite—
that is used as a benchmark in three different environments:
(i) a CloudStack-based private cloud (CSPC), (ii) AWS EC2,
and (iii) the DAS-4 IaaS cloud of a medium-scale multi-clus-
ter experimental environment (MMEE) used for computer
science [60].

To reject or accept the hypothesis, we use an anal-
ysis of variance (ANOVA) test to determine if the per-
formance of the auto-scaler depends on the environment.
For these experiments, we use the open-source framework
BUNGEE [61] adopting its measurement methodology and
metrics for auto-scaler evaluations14. Other measurement
and load testing frameworks could replace our choice here.
The performance of the auto-scaler can be described with
a set of system- and user-oriented metrics. The system-
oriented metrics are elasticity metrics endorsed by the SPEC
Research Group [5]. The under/(over)-provisioning accuracy

14. BUNGEE Elasticity Measurement Framework: https://descartes.
tools/bungee

https://descartes.tools/bungee
https://descartes.tools/bungee
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Fig. 1. The number of VMs allocated by the Reactive auto-scaler, in the Private, EC2, and MMEE IaaS Cloud experiments.

θU (θO) is the amount of missing (superfluous) resources
required to meet the SLO in relation to the current de-
mand normalized by the experiment time. The under/(over)-
provisioning time share τU (τO) is the time relative to the
measurement duration, in which the system has insuffi-
cient resources (resources in excess). A precise definition of
each system-oriented metric can be found in earlier related
works [20], [62]. Knowing the load intensity over time from
the replayed trace, the ideal resource supply is derived from
repeated and systematic load tests for each scaling level
of each environment as part of the BUNGEE measurement
methodology [61].

The implemented auto-scaler [63] and experiment data
are online available15. We use the authentic, time-varying
trace of the FIFA championship 1998.16(→ Principle 4 (open
access artifact) is fulfilled because all the experiment
software and data are open-access, online.)

We choose a sub-trace containing three similar days for
internal repetitions, and run each trace in each environment.
To cover setups with background noise, the application is
deployed in both the public AWS EC2 IaaS cloud and in an
OpenNebula17-based IaaS cloud of a medium-scale multi-
cluster experimental environment (MMEE) used exclusively
for these experiments. (→ The use of different environ-
ments fulfills Principle 2 (workload and configuration
coverage).) To have long, representative experiments, each
experiment lasts 9.5 hours—a duration that includes the
main concerns, e.g., the daily peaks. Due to the scope of this
work and space constraint, we skip the analysis of different
worklets or applications, including other load traces. (→
The combination of long-time experiments with internal
repetitions fulfills Principle 1 (repeated experiments).)

In the CSPC scenario, the application is deployed in a
private Apache CloudStack18 cloud that manages 8 identical
virtualized Xen-Server (v6.5) hosts (HP DL160 Gen9 with
8 physical cores @2.4Ghz (Intel E5-2630v3)). We deactivate
hyper-threading to limit VM overbooking and rely on a
constantly stable performance per VM. Dynamic frequency
scaling is enabled as default and also further CPU-oriented
features are not changed. The hosts have each 2 × 16GB
RAM (DIMM DDR4 RAM operated @ 1866 MHz) deployed.
The specification of each VM in all setups is listed in Table 1.
For all scenarios, Tomcat 7 is the application server. As the

15. Auto-scaler and experiment data: https://doi.org/10.5281/
zenodo.1169900

16. FIFA Source: http://ita.ee.lbl.gov/html/contrib/WorldCup.html
17. OpenNebula: https://opennebula.org/
18. Apache CloudStack: https://cloudstack.apache.org/
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Fig. 2. Distribution of response times, per experiment.

LU worklet of the SERT 2 suite is CPU-bound, we do not
have relevant disk I/O during the experiments and only low
utilisation on the Gigabit Ethernet of the hosts. In all three
deployments, the auto-scaler is configured identically to up-
scale VMs when an average CPU utilization threshold of
90% is exceeded for 1 minute and to scale VMs down when
the average CPU utilization falls below 60% for 1 minute.
CPU utilization is measured inside the VMs using the top19

command and averaged across all VMs currently running.
(→ This experimental description fulfills Principle 3 (ex-
perimental setup description).)

Figure 1 shows the scaling behavior of the auto-scaler,
for each environment. The horizontal axis shows the time
of the measurement, in minutes, since the beginning of the
experiment; the vertical axis shows the number of concur-
rently running VMs; the blue curve shows the ideal number
of supplied VMs. The green, dashed line represents the
supplied VMs in MMEE; the red line shows the supplied
VMs in EC2; and the black, dashed curve the shows the
supplied VMs in CSPC. Figure 2 depicts the distributions
of the response times per day and Figure 3 shows the
distribution of allocated VMs per day. In both figures, the
dotted black curve represents the first day, the dashed
red curve the second day, and the solid green curve the
last day. Whereas the distributions of each day in CSPC
and EC2 are similar, they differ from MMEE distributions.
This can be explained by the scaling behavior depicted in
Figure 1: during the first day, the auto-scaler allocates too
few instances, during the second day the auto-scaler almost
satisfies the demand, and during the third day the auto-
scaler over-provisions the system. Table 2 shows the average
metrics and their standard deviation. Furthermore, Table 3
shows the used instance hours and the charged instance
hours. EC2 uses an hourly-based pricing scheme, whereas
for CSPC and MMEE we have applied a minute-based
pricing scheme. (→ The presentation of the results fulfills
Principles 5 (probabilistic result description of measured
performance), 7 (measurement units), and 8 (Cost).)

19. top command manual: http://man7.org/linux/man-pages/
man1/top.1.html

https://doi.org/10.5281/zenodo.1169900
https://doi.org/10.5281/zenodo.1169900
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
https://opennebula.org/
https://cloudstack.apache.org/
http://man7.org/linux/man-pages/man1/top.1.html
http://man7.org/linux/man-pages/man1/top.1.html
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Fig. 3. Distribution of allocated VMs, per experiment.

TABLE 1
Specification of the VMs.

Component CSPC EC2 (m4.large) MMEE

Operating System CentOS 6.5 CentOS 6.5 Debian 8
vCPU 2 cores 2 cores 2 cores
Memory 4GB 8GB 2GB

To investigate the hypothesis ”The scaling behavior of
a standard, reactive, CPU utilization-rule-based auto-scaler de-
pends on the environment”, we formulate the null hypothesis
H0: ”The elasticity metrics do not depend on the environment”.
We conducted an ANOVA test with the confidence set to the
strict value of 1%. Table 4 shows the proportion of variance
and p-value (Pr(> F )) for each elasticity metric subject to
the environment. The proportion of variance is the variance
of each elasticity metric caused by the environment. As each
Pr(> F ) is less than 1% together, and a high proportion of
variance is due to the environment, we can reject the null
hypothesis. This confirms our claim is statistically correct.
(→ The hypothesis analysis fulfills Principle 6 (statistical
evaluation).)

This example has the main purpose of illustrating how
the presented principles can be used in a practical case, and
that the adoption of the proposed principles can improve the
presentation of the results without significantly affecting the
length of the paper.

4 HOW ARE CLOUD PERFORMANCE CURRENTLY
OBTAINED AND REPORTED?
This section addresses RQ3, by analysing the current sta-
tus of published academic research and industrial practice
in cloud computing. Concretely, we analyse the adher-
ence to our methodological principles of papers focusing
on cloud computing. We adopt a systematic literature-
review approach [9], covering papers published in 16 top-
level international conferences and journals, between 2012
and 2017. In particular, the selected conferences and jour-
nals are: IEEE International Conference on Cloud Com-
puting (IEEECloud), IEEE/ACM International Conference
on Utility and Cloud Computing (UCC), IEEE/ACM In-
ternational Symposium in Cluster, Cloud, and Grid Com-
puting (CCGrid), IEEE Transactions on Parallel and Dis-
tributed Systems (TPDS), IEEE International Conference on
Cloud Engineering (IC2E), IEEE International Conference
on Cloud Computing Technology and Science (CloudCom),
IEEE International Conference on Autonomic Computing
(ICAC), ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE), IEEE Transactions on Cloud
Computing (TCC), ACM Symposium on Cloud Comput-
ing (SoCC), ACM Symposium on High-Performance Par-
allel and Distributed Computing (HPDC), ACM Interna-

TABLE 2
Average metric (and standard deviation) for a day in each scenario.

Metric CSPC EC2 MMEE

θU (accuracyU )[%] 2.39 (1.54) 14.05 (1.82) 19.42 (5.04)
θO (accuracyO)[%] 43.22 (4.38) 10.09 (1.75) 54.98 (11.87)
τU (time shareU )[%] 9.76 (4.77) 57.20 (2.60) 42.16 (1.76)
τO (time shareO)[%] 82.95 (5.46) 27.53 (4.42) 53.06 (3.08)

ψ (SLO violations)[%] 2.70 (3.68) 49.30 (1.71) 53.02 (7.11)
Avg. response time [s] 0.60 (0.17) 2.68 (0.08) 2.32 (0.68)
#Adaptations 25.67 (1.88) 80.66 (3.40) 39.67 (7.54)
Avg. #VMs [VMs] 10.53 (0.44) 8.84 (0.07) 11.01 (0.12)

TABLE 3
Cost overview of the experiments.

Instance hours CSPC EC2 MMEE

Used [h] 121.0 83.4 93.8
Charged [h] 121.0 131.0 93.8

tional Conference on Measurement and Modeling of Com-
puter Systems (SIGMETRICS), Future Generation Computer
Systems (FGCS), European Conference on Computer Sys-
tems (EuroSys), International Conference for High Perfor-
mance Computing, Networking, Storage, and Analysis (SC),
USENIX Symposium on Networked Systems Design and
Implementation (NSDI).

4.1 Systematic Literature Review

The systematic literature review [9] is a structured method
to provide an overview of a research area. In this work, we
follow the guidelines discussed by Peterson et al. [10], [64].
Figure 4 summarizes our workflow:

Specify Research Questions (RQs). The RQs that we
considered are RQ1–RQ3 defined in Section 1. The system-
atic literature review process focuses mostly in answering
RQ2. The answers to these questions provide an overview
of the existing studies including the number of publications,
and the distribution of publications over publication venues
and years in the cloud-computing research area.

Specify Search String. After defining the RQs, the next
step is to specify the search string that is used to search
for relevant publications. The search string is based on the
keywords and their alternative words that are in line with
the main research goal of the paper. We use the Boolean
operators OR and AND to join the keywords and their
synonyms in the search string. We did not explicitly include
‘performance’ as a keyword, since (1) if it is introduced with
the AND operator, it narrows down the scope of the query
to a subset of the analyzed papers, and (2) if it is introduced
with the OR operator, the results of the query would include
papers that deal with performance engineering, but not nec-
essarily related to the cloud domain. The following string is

TABLE 4
ANOVA results per metric.

Statistic θU θO τU τO

Pr(> F ) 0.006 0.001 0.003 0.003
Prop. of Var. due to Env. [%] 82 84 98 97
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TABLE 5
Matching keywords per venue, per year.

Venue Total 2017 2016 2015 2014 2013 2012

IEEECloud 96 0 24 24 14 15 19
UCC 68 0 6 14 30 13 5
CCGrid 31 10 4 0 11 0 6
TPDS 31 8 6 6 4 5 2
IC2E 22 0 5 0 12 5 0
CloudCom 20 2 7 5 6 0 0
ICAC 18 3 3 6 4 1 1
ICPE 18 4 1 3 4 5 1
TCC 15 4 6 3 1 1 0
SoCC 11 0 0 3 4 3 1
HPDC 9 0 3 1 0 2 3
SIGMETRICS 6 1 0 0 2 1 2
FGCS 5 1 1 0 3 0 0
EuroSys 3 0 1 1 0 0 1
SC 3 0 0 0 1 2 0
NSDI 2 0 0 0 1 1 0

Total 358 33 67 66 97 54 41

therefore used to search relevant publications in the known
databases:

"cloud" AND "management"
AND NOT("security") AND (YEAR>=2012)

Identify Publication Sources/Databases. We selected
16 venues where cloud computing papers are published;
they are in our view the top-level conferences in the field.
We query the DBLP computer science bibliography [65] to
obtain bibliographic information on all the papers published
in the selected venues and years. For each paper, we obtain
the link to Semantic Scholar20, a comprehensive database
that allows to easily automate the extraction of publication
metadata. Using the Scrapy web crawling framework and
the Splash JavaScript rendering service, we obtain and parse
the metadata of each paper, including title and abstract.
Finally, we check if the title or abstract contain the specified
search string, and remove duplicates. Table 5 summarizes
the results for the query through Semantic Scholar.

Study Selection Criteria The search results from the pre-
vious step provide a pool of 358 research publications which
constitute the current body of knowledge in experimental
evaluation in cloud computing. This analysis includes pa-
pers that either had an impact in the scientific community OR
that have been published recently. We quantified the impact
with the number of citations on Google Scholar, requiring
it to be greater or equal to 15, and the published recently by

20. https://www.semanticscholar.org/

selecting all the papers published since 2016 (i.e., in the last
two years). After this step, 191 papers remain for analysis.

Data Analysis. The relevance of each paper is manually
classified, as:
• Relevant (R) – Papers that include experimental results

obtained in a real (or realistic) environment, and the
paper is not based exclusively on simulation results.

• Not Relevant (NR) – Papers that do not include any ex-
perimental result, or that include only simulation results.
The relevant (R) papers are then manually analyzed, to

identify, for every principle in Section 2.3, if they are:
• Present (Y) – The evaluated principle is fully met.
• Partially present (P) – The evaluated principle is present,

but does not completely match the described criteria.
• Not present (N) – The evaluated principle is not present.

To account for the bias of manual classification and anal-
ysis, we have conducted a two-step review process. Simi-
larly to a conference-review process, we have assembled a
team of 9 expert reviewers in the field of cloud computing,
performance engineering, and related topics. Because each
expert can review any paper for use of our principles, we
have randomly assigned them to the papers. Every paper
was reviewed by exactly two different reviewers. In the first
step, two reviewers were assigned to each publication, and
they had to evaluate independently both if the paper is R or
NR, and, if the paper was considered to be R, to what extent
the principles described in Section 2.3 are fulfilled in the
paper. In the second step, the two reviewers have access to
the information of the other reviewer, and can discuss to
reach an agreement (i.e., on the relevance of the paper, and
on the principle evaluation). As in typical conferences, full
agreement was not required, and reviewers could change
their first-round decisions (i.e., on the fulfillment of each
principle, and even on the relevance of the paper).

At the end of the two-round reviewing process, of the
191 papers, 98 were considered relevant by both reviewers,
there was a disagreement on 2 papers, and the remaining 91
papers were considered not relevant by both reviewers. We
next discuss these results in detail.

4.2 Analysis of Reviewer Agreement
To assess the level of agreement between reviewers, we
performed a statistical evaluation for the relevance anal-
ysis and for the principle analysis. We use the Fleiss’
Kappa analysis [66], [67] and the weighted Cohen’s Kappa
analysis [68] to measure the degree of agreement between
reviewers who rate a sample of a cohort; in our work, the
cohort is the complete set of papers in the reviewing pro-
cess. The Fleiss’ Kappa analysis computes a value κ, which
quantifies the level of agreement and factors out agreement
due to chance. According to [69], κ < 0 corresponds to poor
agreement, κ ∈ [0.01, 0.2] corresponds to slight agreement,
κ ∈ (0.2, 0.4] corresponds to fair agreement, κ ∈ (0.4, 0.6]
corresponds to moderate agreement, κ ∈ (0.6, 0.8] corre-
sponds to substantial agreement, and, last, κ ∈ (0.8, 1]
corresponds to almost perfect agreement.

The weighted Cohen’s Kappa computes a value κw, that
has an analogous interpretation to κ, with the difference
that its computation accounts for differences in the type of
disagreement with more than one category (in our case Y,

https://www.semanticscholar.org/
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TABLE 6
Results of the agreement analysis.

Rel. P1 P2 P3 P4 P5 P6 P7 P8

%A 99.0% 94.9% 88.8% 91.8% 92.9% 92.9% 94.9% 99.0% 90.8%
κ 0.98 0.90 0.82 0.86 0.83 0.86 0.59 0.96 0.82
κw 0.98 0.91 0.83 0.88 0.87 0.86 0.61 0.97 0.85

P, and N). For example, if the two reviewers disagreed with
a Y/N evaluation, its weight is higher than a disagreement
with Y/P or P/N.

Finally, we also evaluate the percentage of agree-
ment (%A), computed as the number of agreed values over
the total number of decisions.

Table 6 quantifies the reviewer agreement in terms of
percentage of agreement (%A), and in terms of the κ and κw
statistics. Reviewers reached an almost perfect agreement
(κw ≥ κ > 0.8) for P1–5 and for P7-8. For the remaining
P6, “Statistical evaluation”, the κ value of 0.59, and the κw
value of 0.61 indicate moderate agreement. However, the
percentage of agreement for P6 is high, at 94.9%. For P6, the
low value of κ and κw is due to some disagreement in the
evaluation: 5 papers out of 98 were evaluated differently by
the two reviewers. This result is mainly due to two factors:
(i) as discussed in the next section, in most (> 92%) of the
papers, the principle has been assessed by the reviewers as
not present. This affects the probability distribution of the
evaluation, and therefore, even small disagreement between
the reviewers significantly decreases the κ and κw values,
and (ii) this result may be due to the wide scope of the defi-
nition, which can leave room for different interpretations.

Since the percentage of agreement is very high, we argue
that factor (i) is more likely to have led to a low value of κ
and of κw, and keep the definition of P6 as stated.

Although the level of agreement of the reviewers is very
high, it is not perfect. This highlights that even experts can
find it difficult to assess consistently the proposed princi-
ples. Cases where such difficulty was apparent include:

P1: It is not clear how the experiments were repeated,
and if they had the same configuration across repetitions.

P2: It is not clear how to define the “configuration”,
especially if it needs to change contextually.

P3: For the experimental setup, too few details are given,
especially for (opaque) commercial cloud infrastructures.

P4: It is unclear if the principle is met when the paper
links to the code/data, but it is not currently accessible.

P5: The measure of variance appears only in the graph,
and in particular is not quantified or discussed in text.

P6: Though statistical evaluation methods are used, they
are not the most appropriate, and/or important hypotheses
are not tested (e.g., normality of data, equal variance).

P7: Only one ‘Y vs. P’ (strong) disagreement appeared,
related to incomplete measurement units in graphs.

P8: Some experiments may not directly relate to cost
model, because they focus on the more technical aspects.

For this study, the two-step reviewing process used
formulated principles to evaluate cloud experiments—when
in doubt, the reviewers can read again the principles. This
led to reduced presence of subjective judgment, as results
in this section indicate. For current peer-reviewing process
in conferences and journals, common knowledge about the
principles presented here should be helpful for peers to
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Fig. 5. Evaluation of P1–8, one sub-plot per principles. Columns R1 and
R2 summarize results by 1st/2nd reviewer.

agree about their application. We envision that, in the future,
automated tools could facilitate following the principles.

4.3 Evaluation of Principle Application
This section analyses how the principles are currently ap-
plied, using the results of the two-step review process.
Figure 5 shows the numerical results of the analysis over the
eight identified principles. Overall, we find that most of the
principles are not followed in the analyzed papers, which
is an important result because some of the principles seem
easy to verify. This finding is further worrying due to the
quality of the publications we study, implied by the selection
process (see Section 4.1) for which: (i) we have selected
some of the top venues in the area of cloud computing, and,
(ii) among the found papers, we have selected either papers
with a high number of citations or very recent.

P1 highlights that more than two-thirds of the analyzed
papers do not execute any repeated experiments or long
runs (label N in Figure 5, sub-plot P1), and only 21% do
both. Such information is inferred by the experimental setup
description provided in the papers, and by the provided ex-
perimental results. This can significantly impact the general-
ization of the obtained results, because there are a number of
factors that can affect the results even without any changes
to the controlled configuration of the tested cloud-systems.

P2 shows that less than 47% of the analyzed papers
include a complete performance evaluation with multiple
configurations. Varying configurations can be challenging
in some scenarios, due to timing, cost of cloud service, and
other factors. However, from a scientific perspective, differ-
ent configurations may significantly impact the overall per-
formance and more extensive evaluations are needed [50].

P3 discusses the experimental setup description. Even
though more than 52% of the analyzed papers fully cover
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this principle, a substantial number of papers do not or
only partially describe the experimental setup in which
the performance evaluation is conducted. This significantly
impacts the technical reproducibility of the results.

P4 partly complements P3, as it considers the acces-
sibility of the datasets used in the analysis and whether
the authors have released the source code. In more than
70% of the cases, the code of the assessed technique is not
publicly released and the datasets used for the evaluation
are not publicly available. Reproducibility seems impossible
in this situation. The joint effect of not having a complete
experimental setup description (P3), and not having the
code and datasets used for the evaluation (P4) makes it
also difficult for future experimental evaluations of novel
techniques to compare with the published approach.

P5 focuses on how results are reported. Although many
of the authors of the papers we study argue themselves that
uncertainty and stochastic processes are common in cloud
computing, and use this as motivation for their work, more
than 63% of the papers do not report their measurement
variances and limit their reporting to averages.

P6 analyzes if a statistical evaluation has been per-
formed, to include some (statistical) confidence in the re-
sults. This principle is the most disregarded by the papers
we study, with N > 90%. Statistical evaluations are prac-
tically the standard practice in other fields (e.g., medicine,
physics, biology, and in computing science database systems
and software engineering), but according to this result, the
field of cloud computing has paid less attention to this
aspect. This may be due to the low rates of fulfillment of
P3 and P4, which complicates the comparison of different
approaches, and also it can be related to the fast evolution
of cloud technologies. In the long run P6 should be much
more carefully considered, and assessed for by reviewers.

P7 refers to the presence of the units of measurement
throughout the paper. We find P7 is the principle with the
highest fulfillment, with Y > 85%. Only about 12% of the
papers do not or only partially include all the units of
measurement. Even though the percentage of “P or N” is
low, its non-zero value justifies why P7 remains relevant.

P8 is not present in more than 63% of the considered
papers. A cost model may be sometimes difficult to in-
clude in the performance evaluation of the system at hand,
but it quantifies the economic advantages of adopting one
technique rather than another. The lack of standardized
benchmarks in cloud computing is partly justifying the
scarce discussion of cost models in scientific papers.

The analysis shows that the proposed principles have
not yet been extensively adopted in the cloud computing
community. Their usage would improve the reproducibility
of results and enable more comparative studies in the future.

5 RELATED WORK

Dealing with uncertainty in experimental evaluation is a
common issue in many scientific disciplines. NIST and
ISO have standards and guidelines to evaluate, express,
and report the uncertainty in measurements [70], [71]. An
increasing body of work focuses on the methodological
principles of experimental performance evaluation, in com-
munities focused on high performance computing, perfor-
mance engineering, security, and general computer science.

We survey the body of knowledge closest to our work,
grouped by community. In contrast to this body of work, our
work focuses on cloud computing environments, for which
we raise distinctive challenges due to closed and opaque
environments (affects P1–P3, and occasionally P4 for closed-
source stacks), dynamic (elastic) resources and services (P5–
P6), and use of explicit cost models for operation (P8).

Cloud community: Closest to our work, Folkerts et
al. [72] and Iosup et al. [4] identify challenges in cloud
benchmarking; some of the principles in this work formulate
an approach to address these challenges. Also close to
this work, Schwartzkopf et al. [73] propose a set of seven
principles, of which the second and the sixth apply to cloud
computing and roughly overlap with our principles P5 and
P6. They do not survey published work in the community.
The examples they propose (their own) do not or only
partially meet 5 of our principles and 5 of their own.

Performance engineering community: Much attention
is paid to the ability to reproduce experiments with rea-
sonable effort. Frameworks like the Collective Knowledge
Framework [74] aim at systematic recording of individual
experiment steps that permits independent reproduction
and contribution of additional results. As unexpected effects
can appear during performance evaluation due to relatively
unexpected properties of the experimental platform [3], [75],
environments such as DataMill [46] can randomize selected
environmental conditions and thus improve the ability to
generalize from particular measurements. Also, works such
as [13], [14] provide guidelines how to avoid most common
experimental evaluation pitfalls on specific platforms.

Computer Systems community: the high-performance
computing community has proposed and updated its guide-
lines for conducting experiments and for benchmarking.
Closest to our work, and most recently, Hoefler and Belli [2]
summarize and propose 12 rules that enable interpretability,
which they define as “a weaker form of reproducibility”.
Their rules are consistent with our principles but apply to
supercomputing environments. As main differences from
the cloud community: the supercomputing community fo-
cuses on speedup as primary metric (this is slowly changing,
witness several keynotes and award-lectures at SC17), uses
primarily kernel-based benchmarks and not entire work-
loads to experiment with (our P4), much of the tested soft-
ware is difficult to compile and run in other environments
(invalidates the meaning of shared software in our P4), does
not report operational costs (in contrast to our P8), etc.

Frachtenberg and Feitleson [76] focus on scheduling in
large-scale computing systems, in particular supercomput-
ing facilities, for which they provide a framework with
32 pitfalls, each combining practical principles and re-
search challenges. Their seminal work combines general and
domain-specific issues, and even proposes a rate of severity
for each pitfall, but is not validated against real-world
publications and does not provide examples of experiments
that avoid the pitfalls. Iosup et al. [77] focus on domain-
specific issues, and propose principles of metrics and work-
load characteristics to use in grid-computing experiments.
Mytkowitz et al. [3] and Zhang et al. [78] identify technology
counterparts to our principles: sources of measurement bias
in experimental work corresponding to large-scale systems.

For networked systems, Krishnamurthy et al. [79] pro-
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vide 12 activities that researchers can use to check their
experiments; 5 of these overlap roughly with 5 of our
principles. They draw observations about the application of
the proposed activities in several of their articles, and in one
hundred articles experimenting with a particular dataset.
They do not conduct a systematic survey such as ours, or a
single experiment that follows all proposed activities.

Closely related to this work, Vitek and Kalibera discuss
common mistakes made by researchers that decrease the
value of their work [80]. Examples are proprietary data
(our P4), weak statistics (our P5 and P6), and meaningless
measurements. A case study is performed to illustrate such
mistakes. Several recommendations are provided to im-
prove quality with respect to the use of statistical methods
(our P5 and P6), documentation, repetition (our P1 and P2),
reproducibility, and benchmarks.

Others have discussed the status of the performance
evaluation of computer systems, including the characteriza-
tion of “sins” of reasoning when performing experimental
evaluations or reporting its results [51].

Software engineering community: One of the fields of
computing science to first use systematic literature reviews
is software engineering [81]. The decade-long longitudinal
study of Sjøberg et al. [7] surveys the use of controlled
experiments in software engineering conferences; our work
complements theirs with focus on explicit, fine-grained
principles. The seminal study of Zannier et al. [82] ad-
dresses in particular hypothesis-driven experimentation in
software engineering; this approach is not common today
in computer systems research, in part because the field may
not lend itself to the correct yet succinct formulation of
meaningful hypotheses. Pieterse and Flater discuss several
aspects of software performance including CPU utilization,
memory usage, and power consumption [83]. Collberg et
al. [22] focus on sharing of software, but conduct a study
which methodologically overlaps with ours: they conduct
a large study of over 600 articles, published in 2012 in
over 10 top-quality publication venues covering several
areas in software engineering, but also in computer systems,
database systems, security systems, and computer archi-
tecture. Similarly to our study, they conduct a systematic
analysis of all articles published in the target-venues, but
their study is only for 2012 and is thus not also longitudinal.

6 CONCLUSION

This paper presents a first attempt to define fundamental
methodological principles to allow for reproducible perfor-
mance evaluation in cloud environments. The main goal
of this work is to establish and analyze a minimal set of
principles that could be adopted by the cloud computing
community to improve the way performance evaluation is
conducted. We identified eight principles, combining best-
practices from nearby fields, concepts applicable only to
the cloud computing domain, but we do not claim that
such principles are complete, but this paper represents a
first attempt to formulate methodological aspects for the
performance evaluation in the cloud community.

We showed how such principles can be used in a prac-
tical scenario, and we surveyed some of the main venues
of the cloud community analyzing to what extent such

principles are considered in the papers published in the last
6 years. One of the main results of this study is showing that
most of the principles are not or only partially considered
in the analyzed papers. The principles are rather simple and
basic, yet we are still far from seeing a broad adoption of
sound measurement principles for cloud environments.

We strongly believe that, as a community, adopting
and possibly complementing these important principles will
both improve the quality of our research, and the repro-
ducibility of the results in the cloud community, setting a
sound basis for future work.
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Jóakim von Kistowski is a researcher at the
chair of software engineering at the University
of Würzburg, Germany. He serves as the Chair
of the SPEC Research Power Group and as a
contributor to the SPEC OSG Power Commit-
tee. His research is focused on measurement,
analysis, and modelling of energy efficiency of
computing systems, as well as computing sys-
tem performance modelling and management.

Ahmed Ali-Eldin has a joint position as a Re-
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