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Abstract—In time-constrained vehicular systems, optimisation

of the system architectures with respect to the system resources

has a significant impact on the development cost, performance,

and reliability of the systems. This paper adapts the state-of-

the-art methods to derive optimised system architectures in the

vehicular industrial settings, while taking real-time constraints,

resource requirements, communication dependencies, and design

choices into account. In this regard, the paper describes and

evaluates an industrial use case wherein the proposed method

is applied to derive an optimised allocation of the system

architecture. The paper also presents evidence and validations

that suggest the viability of the method and its applicability in

the vehicle industry.

I. INTRODUCTION

Recently there has been a noticeable strive towards au-
tomation within the vehicle industry to develop advanced and
efficient vehicles [1]. The push for automation does not only
consider highly automated vehicles capable of manoeuvring
in complex urban environments, but also to develop various
driver assistance functionalities that can assess and alleviate
risks and increase driver comfort. In the past, such function-
alities would each have been allocated onto their own com-
puter, in what is called a federated architecture [2]. However,
with the availability of increasingly powerful processors, and
the growing demand on communication induced partly by
additional and more precise sensors, such schemes can no
longer be justified. Therefore, in recent years, many vehicle
developers have started moving to what is commonly denoted
integrated architectures [2], [3], where one computer can
accommodate multiple functionalities at any given time, as
opposed to one functionality per hardware platform. Integrated
architectures have many advantages over their federated coun-
terparts, such as reduced system complexity and cost, lower
demands on communication, and increased dependability [4].

Integrated architectures may be centralised or decentralised,
in terms of the topology of the network that connects the
system components. In the centralised topology, a master com-
ponent communicates with the other components and deals
with the distribution of functionality. A decentralised topology
lacks this central component, and delegates the distribution of
functionality between components to all nodes connected to
the network. Some important aspects of the system architec-
ture that can benefit from decentralisation are the real-time
characteristics of the system. Parameters such as task response
times and processor utilisation can be improved by optimised
division of responsibility among the processors. Another major
benefit of decentralised systems is the induced executional
independence and ease of continued development. A new or

updated subsystem can be verified and tested independently
from the remainder of the system, reducing the complexity
and scope. The integrated and decentralised vehicular system
architecture is the main focus of this paper.

A. Problem Statement

There are several challenges in developing and supporting
decentralised system architectures in vehicular computing sys-
tems. The architecture should remain integrated in terms of
not isolating the hardware platforms from one another [2],
and, how to identify the implications of decentralisation are
two such challenges that must be dealt with. Knowing such
information in an automation system can be crucial, especially
in the segment of construction vehicles, where there are
specific requirements on standardisation [5], [6] and produc-
tiveness from the manufacturer [7]. The system architecture
and resource allocation requirements can be more constrained
in this segment compared to the segment of high-end cars. For
example, the number of Electronics Control Units (ECUs) in
construction vehicles is around 10 depending on the size of the
vehicle, whereas this number can be up to 100 in the segment
of high-end cars [8]. Furthermore, certifying safety-critical
parts of a system is a costly process and thus the implemen-
tational independence of safety-critical functionality is also
important in this regard, especially considering cost. Making
these design decisions and later providing the evidence needed
for certification can be partly solved by using an automated
optimisation method. If the high-level design requirements of
a system architecture can be accurately defined and fed to one
such method, the method itself could be used as evidence of
the system architecture meeting such requirements.

As such, a robust method for architectural design, from
which an adequate amount of computational platforms can be
decided upon, and an optimal functional distribution across the
platform, is needed. The method must be able to sufficiently
address the real-time, safety and fault tolerance requirements
set by the vehicle autonomy. There is no industry standard
for solutions within this practice, and many solutions for
automation are not benefited by pre-autonomous experiences.
There are, however, various recently developed approaches
that can be considered as guidelines when deriving optimised
allocation of vehicular system architectures [9], [10], [11].

B. Paper Contribution

This paper adapts the state-of-the-art allocation methods [9],
[10], [11] for vehicular system architectures with real-time



constraints, exerting special attention to the construction vehi-
cle domain. The paper incorporates an industrial use case in
cooperation with an established Original Equipment Manufac-
turer (OEM) of construction vehicles. The use case not only
serves to compile some of the state-of-practice requirements
related to the architectural design, but also provides a proof
of concept for the method.

C. Paper Layout
The rest of this paper is organised as follows. Section II dis-

cusses the background and related work. Section III presents
the method for the allocation of the system architectures. Sec-
tion IV discusses the implementation of the method. Section V
provides a proof-of-concept for the method on an industrial
use case. Section VI presents the experimental evaluation.
Section VII concludes the paper and discusses the future work.

II. BACKGROUND AND RELATED WORK

The vehicle industry is striving towards automating vehicle
operations. To achieve this, research is focused on challenges
such as safety, predictability, and improving the overall oper-
ational performance [8]. The end goal is to achieve automated
vehicle operation that outperforms human operation in every
aspect. Current research is focused on moving the system
architecture from a federated to an integrated design, reducing
the number of ECUs and allowing one ECU to have more
than one role in the overall system [2]. This trend was set
by advances in avionics [3] and is now establishing itself in
the vehicle domain as well. An integrated architecture places
all the functionality onto a distributed computing system. The
system can have one or multiple hardware platforms, as long
as their connection allows uninterrupted computation while
sharing roles and resources.

One way of systematically designing a system architecture
is by formulating all the requirements as a mathematical
model and then optimising the architecture based on some
cost function. This type of systematic approach is known as
the design space exploration [12]. Optimising the allocation
of tasks on distributed systems has been heavily researched,
although currently, the research has yet to produce a solution
that is a viable candidate for an industry standard [9].

Currently, much of the research is focused on multi-
objective evolutionary algorithms for deriving an optimised
system allocation. Such research was performed in [13], where
a Pareto Archived Evolutionary Strategy [14] was used for
multi-objective optimisation in task allocation on a real-time
system. The method described by Švogor and Carlson [15]
is based on an analytic heuristics process to perform multi-
objective optimisation of the distribution space. The mapping
of the software components in the cited work is also performed
using the evolutionary algorithms. The work in [16] proposes a
framework for the allocation of control software functions to a
distributed system with an objective of optimising the network
load. In comparison, the method proposed in this paper opti-
mises the system architectures with respect to communication
as well as computation resources in a possibly distributed
system while meeting the specified timing requirements.

In [17], a multi-objective genetic algorithm (Non-dominated
Sorting Genetic Algorithm II) is used to solve the task of allo-
cating software components onto ECUs within an automotive

architecture. This work focuses on the load on communication
bus, memory utilisation and the delivery times of signals in
the communication bus as the main restrictions for the opti-
misation. The authors developed a framework that produces
both hardware and software architectures which are optimised
based on the input requirements. The results show that this
method is very effective at optimising small-scale architectures
although the method exhibits inconsistencies when the size of
the architectures grow further. Conclusively, the authors state
that input from the vehicle industry would be beneficial for
any related future research.

A tool designed following the model-driven paradigm and
platform-based design principles is presented in [18]. The
tool is used to transform initial platform-independent software
component specifications into a model which is platform-
specific and is used to integrate software components of
mixed criticality onto one common computing platform. The
approach combines dependability and real-time requirements
and optimises the architecture with restrictions regarding error
propagation and schedulability analysis, among other criteria.

The work in [10] proposes a design-space exploration
approach that optimises topologies, process bindings, and
communication routing of a system. It uses multi-objective
optimisation to find a solution and provides a use case of
the approach for a Motion-JPEG decoder application on a
multimedia hardware architecture. Design-space exploration
plays an important role in the vehicle industry as optimised
integrated architecture designs and allocations can significantly
help to alleviate complexity and reduce cost [4].

The work in [11] proposes a two-step optimization approach
for the placement of system architectures in distributed sys-
tems. It utilises MILP and genetic algorithms to achieve the
optimized architectures. In comparison, this paper simplifies
the method in [11] to a single step in deriving optimal allo-
cations of system architectures in the construction equipment
vehicles domain, while taking real-time constraints and re-
source requirements into account. Since many such constraints
can be defined mathematically, the various works discussed in
this section have relation to the paper in the sense that they
explore different means of design-space exploration in order
to optimise the system architectures.

III. OPTIMISED ALLOCATION OF THE SYSTEM
ARCHITECTURES

This section presents the proposed method to derive opti-
mised vehicular system architectures while taking the specified
real-time constraints into account.

In order to sufficiently guarantee that no resource in the
system ends up over or under-allocated, certain characteristics
such as the Worst-case Execution Time (WCET) and period-
icity of tasks or software functions must be assessed. Note
that this paper considers a software function as a synonym
for a software component, which is a well-defined term in
component-based software engineering [19]. Moreover, the
paper considers a one-to-one mapping between a software
function (design-time entity) and a task (run-time entity),
which is in-line with many component models and modelling
languages for vehicular embedded systems [8], [20]. Hence,
the terms “software function” and “task” are used interchange-
ably in this paper. The WCETs, periods, and deadlines of



tasks can further be used in a real-time schedulability analysis
which, in turn, can be used to provide information on the
schedulability of each subsystem, and the system in its entirety.

The proposed method consists of three steps, visualised in
Figure 1, that all need to be passed in order to guarantee an
optimised allocation of the system architecture. The first step is
an assessment of the functionality, i.e., the WCET, periodicity,
and communication dependencies for each software function
in the system are assessed. These are the necessary precondi-
tions that allow a set of tasks to be optimally allocated across a
set of resources. Secondly, the variables defined previously are
used to formulate a set of linear constraints and an objective to
optimise towards in the step of design-space exploration. The
third and final step utilises the initial variables and performs
an early verification of the system resources by means of the
schedulability analysis [21].

Extrapolating on the first step, the design-space explo-
ration method proposed in this paper is indifferent to any
methods used for WCET estimation. Any means with which
WCETs can be estimated have relevance, such as statistical
methods [22], or flow analysis as performed by the Swedish
Execution Time tool (SWEET) described in [23]. A statistical
method based on extreme value theory, such as the one
described in [22], further guarantees that the WCET estimate
is only exceeded by future invocations at the same rate as
the exceedance probability. Therefore, this paper proposes
the use of statistical extreme value theory methods since a
comparison between such and SWEET suggest them to be suf-
ficiently precise while gaining generality and applicability over
their static counterparts [24]. Periodicity and communication
dependencies should be assessed by manual analysis of the
existing codebase. Continuing the extrapolation of each step,
the second step utilises such metrics to optimise the allocation
of a system architecture. Accounting for such metrics and
systematically mapping processes onto multiple resources is
done by applying methods for design-space exploration. The
idea is to formulate the mapping problem as an Integer Linear
Program (ILP), which can then be solved using an ILP solver.
The problem is defined as:

min
x

fT
x (1)

Ax  b

Aeqx = beq

x ≥ 0

x  1

x 2 Z.

(2)

Expression 1 consists of the objective function, f , and the
vector, x, containing all the system variables. Equation set 2
consists of all the linear constraints that define the problem,
i.e., equations, inequations, and constraints limiting the system
variables to only assume binary values 0 and 1. A and Aeq

are matrices of coefficients, b, beq , and f are vectors of
coefficients, while Z is the set of all integers. These equations
can be interpreted as a linear minimisation problem where the
variables are binary and are subject to linear constraints. The
linear constraints and objective function are then tailored to
model the specifics of the architecture being analysed. The

linear constraints are dictated not only by the conventions
and logic of the implementation set but also by the real-time
characteristics of the individual functions.

 Task Worst Case
Execution Times 

Task Periods

Communication
Dependencies

Functional
Assessment

Design Space
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Not Schedulable

Schedulability
Analysis

System
Architecture
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Fig. 1: Information flow in the proposed method, depicting
the possibility of reiterating the design-space exploration as a
result of the schedulability analysis.

As the constraints in question cannot ensure, nor enforce,
the schedulability of a system, a schedulability analysis is
necessary. This forms the third step of the proposed method.
This paper proposes to use response-time analysis [21], [25],
which is a well-defined schedulability analysis technique that
can be applied directly after the design-space exploration. This
way, infeasible allocations are discarded at an earlier stage.
However, the schedulability test can only be performed after
a system allocation has been generated as the results of the
schedulability test determine the feasibility of the allocation.
If even one task allocated to one resource is proven not to be
schedulable, the whole allocation needs to be reconfigured by
modifying the linear constraints. This reiteration of the design-
space exploration step is depicted in Figure 1 and happens as
a result of an unschedulable allocation.

It is assumed that all computing platforms are single-core
processors, so a uniprocessor schedulability test can be used.
Schedulability conditions can be represented or approximated
as linear constraints [26]. However, the method presented in
this paper does not aim at achieving an optimal schedulability
of the task distribution, but rather at providing a schedula-
ble task distribution which may be sub-optimal. Aiming for
optimal schedulability would greatly increase the complexity
of finding the system allocation, a cost easily avoided by per-
forming a simple schedulability test after an iteration of design
space exploration, slightly modifying the linear constraints
in case no schedulable system allocation can be achieved,
and then rerunning the design space exploration from the
beginning. As it will be later shown, there are mechanisms
which can enable custom constraints onto the design space
exploration, such as manually grouping or separating tasks.

IV. IMPLEMENTATION OF THE PROPOSED METHOD

This section provides a proof-of-concept implementation the
proposed method, detailing the design space and the set of
linear constraints considered in the design-space exploration.
Additionally, this section addresses the design objective and
schedulability analysis.

A. Design Space
The linear constraints used in the ILP consider the set

of resources R, where a resource r 2 R, and the set of
processes P , where a process p 2 P . Each process p can



be implemented on a resource from Rp, where Rp ✓ R.
The subscript r denotes the allocation of a certain property
on the resource r. For example, pr indicates the allocation
of process p onto resource r, and cr indicates the allocation
of the communication task c onto resource r. Let Nr be the
number of resources and Np be the number of processes, each
process is then defined by Nr binary variables, stating if a
process is allocated onto a specific resource or not. This, by
extension, means that there are Nr ⇥Np variables describing
the allocation of processes onto resources. Resources in this
implementation are considered as either processors or cores of
multi-core processors. Processes in this context are real-time
tasks, which are executed on the processors. Activation of a
resource is derived from having at least one process allocated
onto it. The linear constraints, which are derived from [10],
disregarding the constraints describing the communication of
processes, consist of the following:

8p 2 P : X

r2Rp

pr = 1 (3)

8p 2 P, r 2 Rp :

pr − r  0 (4)

8r 2 R :
r −

X

p2P^r2Rp

pr  0 (5)

where Equation 3 assures that a process p is allocated onto
one and only one resource in the system. The linear constraint
considers the vector pr consisting of binary values indicating if
a process p is allocated onto a resource r. Modifying the right
side of the equality enables a process to be simultaneously
allocated onto multiple resources in the system, which can be
used to host redundant copies of a process.

Equation 4 assures that a process p is, and can only be,
allocated onto an activated resource r. In this equation, and
the following, r represents a binary value indicating whether
a resource is activated in the system or not. Equation 5
guarantees that a resource r is only activated if a process p is
allocated onto it.

Let C be a set of communication tasks, where a commu-
nication task c 2 C, and let Nc be the number of com-
munication tasks. Communication tasks are then distributed
among resources from Rc ✓ R. For a certain process p
and a communication task c that are allocated to a resource
r 2 Rc \ Rp, where process p uses communication task
c to communicate with another process on another resource
connected to the communication bus. Using this logic, it can
be said that p and c belong to a common edge, and this,
in turn, can be written as (p, c) 2 ET , where ET is a set
containing all the edges in the system. One communication
task is responsible for connecting exactly two processes. Each
communication task, therefore, has two instances, one for
each process participating in the communication. Similar to
processes, there are Nr⇥Nc variables describing the allocation
of communication tasks onto resources. The linear constraints
describing communication are then defined such that:

8c 2 C : X

r2Rc

cr  2 (6)

8c 2 C, r 2 Rc :

cr − r  0 (7)

8c 2 C, r 2 Rc :

cr −
X

(p,c)2ET

pr  0 (8)

8c 2 C, r 2 Rc :

cr +
X

(p,c)2ET

pr  2 (9)

8c 2 C, (pm, pn) 2 {(fpm,fpn)|((fpm, c) 2 ET ^ (fpn, c) 2
ET )}, r 2 Rc \Rp :

pmr − pnr − cr  0

pnr − pmr − cr  0.
(10)

The idea behind this system of equations is to have one
communication task allocated next to every process that needs
to communicate with a process on another resource. This is
done to model the communication latency of interacting with
the communication buffer. Each connection is described by
two communication tasks, one for each process participating in
the communication. If two processes that need to communicate
with each other end up allocated on the same resource (inten-
tionally or unintentionally), the communication task should
not be allocated at all, since there is no interaction with the
communication bus.

Equation 6 limits the number of allocated communication
tasks to two. Equation 7 assures that communication tasks are
allocated only to activated resources. Equation 8 guarantees
that no communication tasks are allocated to a resource
on which none of the participating processes are allocated.
Similarly, Equation 9 removes the communication task from
the resource where both of the processes participating in
the communication are allocated. Finally, the dual constraint
described by Equation 10 allocates the communication task to
the resource where exactly one of the participating processes
is allocated. Variables fpm and fpn describe all process pairs
which require to communicate with each other.

8r 2 R :

r −
X

c2C^r2Rc

cr −
X

p2P^r2Rp

pr  0 (11)

To expand the initial model with the communication con-
straints, it is also important to modify Equation 5 to consider
communication tasks, the modification of which is given by
Equation 11.

To add a constraint describing the capacity and utilisation
of each resource, the following equation is used:

8r 2 R :

− ⇣(r)r +
X

p2P

⇣(pr)pr +
X

c2C

⇣(cr)cr  0 (12)

where ⇣(r) is the capacity of resource r and ⇣(pr) is the
amount of that capacity used up by process p if it ends up
allocated to resource r.

To account for real-time characteristics in the sense of
resource capacities and requirements of each process, the



period and WCET of each process — or, in the real-time
terminology, task — are considered.

The capacity of all resources should be equal and is defined
as the hyperperiod of all tasks in the task set, therefore ⇣(r) =
H . The hyperperiod, H , of a task set is defined as the least
common multiple of the periods of all the tasks in the task
set. The resource requirement for each task is defined by the
formula:

8p 2 P :

⇣(p) =
H

Tp
Cp (13)

where Tp is the period of task p, and Cp is its WCET. As
can be seen in Equation 13, the resource requirement of each
task based on its WCET and period is actually the sum of
the WCETs of all instances of the task in the hyperperiod.
Additionally, it is assumed that all communication tasks have
an equal resource requirement, ⇣(cr), which is defined by
the bandwidth of the communication between two hardware
platforms and all other delays the communication may be
subject to. The communication requirements are independent
of the real-time characteristics of the processes participating in
the communication since the assumption is that all messages
are available on the bus at all times. The absence of a message
from the communication bus indicates that a fault is present
in the system, and should be dealt with in an earlier step.

Aperiodic tasks can be included in the analysis using
servers [27] — periodic tasks that reserve execution time for
aperiodic tasks that may or may not need execution in each
cycle. The period of the server should be determined manually,
according to the WCET of the corresponding aperiodic task
and its importance to the functionality of the overall system.

In order to manually group a set of processes together, the
following constraint can be enforced:

8r 2 R :
pmr − pnr = 0 (14)

where pm and pn are two arbitrary processes where m 6= n.
Equation 14 guarantees that processes pm and pn will be
allocated to the same resource, and the optimal solution will
be found by taking this constraint into consideration. One
scenario in which this requirement can be considered useful is
when two processes require fast or constant communication,
which would greatly increase the load on communication bus.

Similarly, a constraint can be added to manually separate
two processes from each other:

8r 2 R :
pmr + pnr  1 (15)

Equation 15 enforces this constraint, by allowing only one of
the two selected processes to be allocated onto one resource.

Manually setting constraints using Equations 14 and 15
relying on prior knowledge of the specific system for which
the allocation is being optimised is particularly useful for
following functional safety guidelines set by standards often
used in the construction vehicle domain, such as IEC 61508
[5] and ISO 26262 [6]. These standards, along with system-
specific domain knowledge can help formulate constraints in
order to achieve properties such as redundancy, fault detection
or even graceful degradation.

B. Design Objective

In the problem at hand, the objective function is minimised
and is defined as:

f =
X

r2Rp

r +
X

c2C^r2Rc

cr (16)

wherein the first sum is used to minimise the number of
activated resources in the system, and the second sum is used
to minimise the number of communication tasks in the system,
which is done by grouping tasks that need to communicate on
the same resource.

C. Schedulability Analysis

The schedulability analysis is performed for each resource
independently, as the influence of tasks on other resources
is embedded into the communication tasks resource require-
ments. As it was stated, all computation platforms are assumed
to be single-core processors.

To perform a schedulability analysis, Response Time Anal-
ysis [25], [21] is used by applying the following iterative
formula:

Rn+1
i = Ci +

X

8j2hp(i)

⇠
Rn

i

Tj

⇡
Cj (17)

where Rn
i is the response time of task i for iteration n

and Tj is the period of Task j. The subset of the task set
denoted by hp(i) contains all the tasks with an equal or
higher priority than task i, excluding task i. In this context,
tasks are considered independent and no resource sharing is
considered. Therefore, a lower priority task cannot block a
higher priority task. Note that the scheduling of communi-
cation tasks is dependent upon the type of communication
protocol. For instance, Controller Area Network (CAN) [28]
uses the fixed-priority non-preemptive scheduling [29]. In that
case, the corresponding response-time analysis (as discussed
in [30]) is used instead of Equation 17. For the first iteration in
Equation 17, it is assumed that R0

i = Ci. The calculation given
by the iterative Equation 17 is repeated until the value of Ri re-
mains unchanged through iterations, i.e., until Rn+1

i = Rn
i or

the specified timing requirement (e.g., deadline) is exceeded.

V. INDUSTRIAL USE CASE: AUTONOMOUS HAULER

This paper considers an industrial use case from the segment
of construction vehicles, which was gracefully provided by
Volvo Construction Equipment (Volvo CE)1. The use case
serves to provide a proof of concept and show usability of
the proposed method. The use case consists of an autonomous
hauler that currently has a set of functionalities implemented
on a single, centralised, hardware platform. The hauler is a part
of an autonomous quarry, where it autonomously transports
crushed stones and gravel from one location to another.
The specific requirement in this context is an assessment of
the effects of decentralisation, and, to find an appropriately
decentralised architecture that can retain a similar level of
productivity compared to the existing architecture. This is a
complex task since there is a great number of considerations

1https://www.volvoce.com/



that must be taken into account, many regarding safety, redun-
dancy, efficiency and cost as well as extensibility.

A. System Overview
The system of interest in this use case is an on-board com-

puter architecture of the autonomous hauler. The computer has
access to information from various sensors in the vehicle, and,
has access to different communication channels and vehicle
controls. The system is identified as a machine automation
system, depicted in Figure 2. This system is integrated into
the machine2 and it operates the machine via an interface to
the machine platform — based on missions that are received
from a remote fleet management system. Moreover, any sensor
needed for sensing the environment is also considered part
of the machine automation system while the position of the
machine is part of the machine platform.

Fleet Management (Back office) Machine System 

Machine Automation
System 

(System of interest)

Machine
Platform 

Commands Status

Fleet
Management 

Commands

Status

Fig. 2: System-level overview of the system in an autonomous
construction vehicle use case.

The functions considered in this use case are generally
essential to any vehicular automation system, though in this
case, specifically developed for the autonomous construction
vehicles domain. These include path execution, object detec-
tion, collision avoidance, remote control and operation, teleop-
eration, and safety-critical functions. The functions in the use
case are currently implemented on one single computer. The
aim is to decentralise these functions by optimised allocation
of the system architecture with respect to the available system
resources, while meeting the specified constraints.

B. Existing System Architecture
The existing system that was available for the demonstration

of the use case consisted of a centralised approach where all
the functionality was executed on one computer. The func-
tional architecture was an atomic implementation consisting
of several functionalities such as object detection and machine
control. In Figure 3, an abstracted3 overview of the functional

2This paper uses the terms “machine” and “vehicle” interchangeably as
construction vehicles are often referred to as construction machines in the
industry.

3For the sake of intellectual property protection, the names of the tasks and
other related information are anonymised.

architecture of the machine system in focus is depicted, where,
the communication between tasks is represented by the edges
in the graph. Task A is a periodic task with a period of
10 ms while tasks B–F are aperiodic and have additional
communication dependencies derived from the sensors. These
dependencies are addressed by grouping several functionally
related sub-tasks into one task, for sub-tasks which should
not be separated onto different hardware resources for logical
reasons.

Task A 

Task B Task C 

Task D 

Task E Task F 

Fig. 3: Functional architecture of the machine system together
with the communication dependencies among the tasks.

VI. EXPERIMENTAL EVALUATION AND VALIDATION

In this section, the results gathered from applying the
method to the proposed use case are discussed. First, the worst-
case execution times of each task in the evaluated system are
estimated. Thereafter, the system allocation is generated by
the implemented method. Note that the proposed method is
implemented as an in-house tool.

A. Worst-case Execution Time Estimation
This paper applies a statistical method based on the extreme

value theory [22] to estimate the WCETs of the tasks A–F in
the use case. Note that any other method, such as the flow
analysis performed by the SWEET tool and benchmark [23],
can also be used for the WCET estimation — refer to [24] for
an extensive comparison of the WCET estimation method used
in this paper and SWEET. Since the WCET estimation method
used in this work is statistical, it is subject to a probability of
exceedance. This means, the estimated WCET is guaranteed
to only be exceeded by future invocations at the same rate as
the exceedance probability. Overall, the number of measured
executions was approximately 2.5 million for each task in the
use case. Using an exceedance probability of pe = 10−5, the
WCET estimates for each task, and their respective periods,
are given in Table I. In this table, the tasks with periods
denoted by N/A do not have a defined period. Such tasks are
considered aperiodic and the time between two invocations is
mostly dependent on the length of their execution, therefore
not constrained to a fixed period.

B. System Architecture Allocation
The measurements attained from the WCET analysis are

used as the basis for the design-space exploration. Tasks A–
F are mapped onto Processes 1–6 and given WCETs and
periods as parameters. Based on the connection requirements
depicted in Figure 3, a partial adjacency matrix that describes
the communication relations of the processes is defined as
follows:
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Schedulable!
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35%
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Process 4
Process 5
Communication 4

Resource 2
Utilisation: 95.06%
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35%
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Communication 4
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96%

< 1%

Process 1
Communication 1

Fig. 4: Resulting system architecture after optimised allocation to the system resources.

TABLE I: Table listing the periodicity and WCET estimate for
each task in the use case.

Task Period (ms) WCET (ms)
A 10 9.6401
B N/A 23.0226
C N/A 24.8154
D N/A 26.1708
E N/A 28.1620
F N/A 28.2108

Mc =

2

666664

0 − − − − −
0 0 − − − −
0 1 0 − − −
0 0 0 0 − −
0 0 0 0 0 −
1 0 1 0 1 0

3

777775

where rows and columns both represent processes, and the
value of each element shows if the two processes are commu-
nicating or not. For example, a value of 1 at position (3, 2)
indicates that Process 3 communicates with Process 2.

Each aperiodic task (Tasks B–F) requires a designated
aperiodic server. Hence, each aperiodic task is assigned a
polling server with a period of 80 milliseconds and capacity of
30 milliseconds, which is sufficient from the WCET standpoint
of the aperiodic tasks. Figure 4 shows the system architec-
ture allocation as a result of the design-space exploration.
There are three hardware resources that are activated in the
system, namely Resource 1, 2 and 3. The method allocates
two processes (4 and 5) and one communication task (4) to
Resource 1. Furthermore, three processes (2, 3 and 6) and two
communication tasks (1 and 4) are allocated to Resource 2.
Finally, process 1 and communication task 1 are allocated to
Resource 3. Communication task 1 models the communication
between processes 1 and 6, while communication task 4 mod-

els the communication between processes 5 and 6. Although
three resources are activated in this experiment, the method
can derive optimised system architecture for any number of
resources.

Each pie chart in Figure 4 represents the capacity utilisation
for one hardware resource. Each segment of a pie chart
represents one process (task) or a communication task. The
percentage next to each segment shows the capacity utilisation
of that process/communication task on that hardware platform.
The individual utilisation of Resource 1, 2 and 3 is 67.92%,
95.06% and 96.41% respectively. Whereas, the average utilisa-
tion achieved for the derived system architecture with respect
to the three resources is 86.46%. Note that the optimisation
was executed on a computer with an i7-6500U 2.5 GHz CPU
and 8GB of RAM. The optimisation was completed in 0.7693
seconds.

In this experiment, it is considered that the WCET measure-
ments contain the communication loads, so the communication
tasks are given a small load of 1 microsecond, only for the
purpose of visualisation, which is also identified in Figure 4.
The system has no requirements on process redundancy, as
no processes are identified as safety-critical. A schedulability
analysis using the rate-monotonic priority assignment and
response-time analysis is performed on all the task sets in-
dividually, and it is concluded that the system architecture
allocation is feasible since all the task sets are schedulable.

VII. CONCLUSION

This paper has adapted the state-of-the-art techniques to
provide an optimised allocation method for vehicular system
architectures with real-time constraints. The adapted method
is simplified and easier to apply to the industrial settings. The
method consists of three general steps that include: worst-
case execution time estimation, design-space exploration, and
schedulability analysis. The proof of concept and usability
of the method is demonstrated on a use case from the
construction vehicles industry. The evaluation results indicate



that the method can successfully derive optimised system
architectures according to the specified real-time constraints,
while permitting specific design choices made by the designer.
This further allows the method to accommodate, in addition
to revolutionary architecting, the evolutionary architecting
paradigm in cases where pre-defining the existing architecture
and allocation is possible.

The work in this paper is done keeping functional safety
requirements implicitly in mind. OEMs rely on standards to
give guarantees that the products developed are safe to use in
real-world situations where functional safety is a high priority.
It has already been shown that the optimisation constraints can
be used to enforce functional safety guidelines suggested by
standards such as IEC 61508 and ISO 26262. One future work
entails the accommodation of functional safety standards by
the method, as well as what guarantees regarding functional
safety can be inherently given by its application. Furthermore,
adapting the design-space exploration method to account for
heterogeneous systems would be of benefit to optimise for,
e.g., system cost. Such work would necessitate either general-
ising the metric of allocation, which in this paper was defined
as the system utilisation, calculated from worst-case execution
time estimates and periods, or deriving additional constraints
in order to consider resource-dependent worst-case execution
times of processes. A more comprehensive scheme to account
for communication dependencies would be a beneficial exten-
sion to this work. The industrial use case considers the system
to communicate through one communication bus, connecting
each resource with the shortest possible distance between each
other, i.e., one hop. Extending such constraints would allow
the method to derive optimised system architectures in which
the resources are not at a uniform distance apart.
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