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I. INTRODUCTION

During the last decades, automotive software systems have
been evolving at a staggering pace. Through the years, several
model-driven methodologies have been introduced for the
development of automotive software systems. As verification
of timing predictability became a pivotal task for the homolo-
gation and safety certification of these systems, in our previous
work, we have introduced MoVES, a model-driven method-
ology for automotive software supporting the development
and architectural exploration of system designs with temporal
awareness [1]. To this end, MoVES exploits two industrial
automotive-specific modelling languages, EAST-ADL [2] and
Rubus Component Model (RCM) [3], and a set of six model
transformations.

Currently, the automotive industry is exploring new mobility
solutions with future vehicles being adaptive, autonomous
and connected [4]. However, these solutions introduce new
challenges both at software and hardware level, which in turn
affect timing predictability analysis of the software architec-
tures. Upcoming automotive software systems will demand
for computational power and high bandwidth for on-board
communication well beyond the capacity of most of the
contemporary automotive Electronic Control Units (ECUs)
and on-board networks. As a consequence, more traditional
Electrical/Electronic (E/E) architectures will be replaced by
consolidated E/E architectures leveraging heterogeneous com-
puting platforms connected by high bandwidth and low-latency
on-board backbone networks [5], [6]. Furthermore, due to
complex internal hardware architectures, various levels of
shared memories, system buses and inputs/outputs (I/Os),
the traditional timing predictability verification techniques are
no longer applicable to the software architectures that are
deployed on such heterogeneous high-performance platforms,
mainly because the worst-case execution times (required by
the analysis as one of the inputs) cannot be estimated inde-
pendent of the response times (an important result provided
by the analysis) [7]. What is more, heterogeneous computing
platforms open up to the problems of allocation and tem-
poral isolation of software. Additionally, the shift towards
more consolidated/clustered architectures leads to the major
challenge of supporting and integrating software coming from
different application domains, following different models of
computation and with different Quality of Service (QoS), real-
time and safety requirements [8].

Problem formulation
Considering the importance of timing predictability ver-

ification for automotive software systems, there is a need

for model-driven methodologies capable of supporting the
software development on emerging E/E architectures. How-
ever, for this to happen, automotive domain-specific modelling
languages must be able to overcome the challenges introduced
by emerging E/E architectures; hence, prescribing the type
systems and the structure of upcoming heterogeneous software
and computing platforms. In addition, either new model-
based timing analysis techniques need to be developed or
the existing techniques need to be adapted to support the
end-to-end timing analysis, which is required to verify the
timing predictability of the software architectures on upcoming
heterogeneous computing platforms. Furthermore, using the
worst-case timing analysis to verify the timing predictability of
the software that runs on these advanced computing platforms
can render high under-utilisation of the system resources.
Hence, an investigation is needed to assess the feasibility and
efficacy of the existing worst-case timing analysis when ap-
plied to software architectures of the applications that include
time-critical as well as performance demanding functionality
deployed on heterogeneous computing platforms.

II. EXISTING MOVES METHODOLOGY

Currently, the MoVES methodology is realised by means of
six model transformations responsible for translating EAST-
ADL models into RCM models where timing analysis can
be run, as exemplified in Fig. 1. Within MoVES, EAST-
ADL models are used for representing the functional software
and hardware architectures, the software timing properties and
the software to hardware allocation of automotive software
applications. RCM models refine the information described
by the EAST-ADL models with timing, control and execution
platform information needed for running the model-based
timing analysis. The translation step between EAST-ADL and
RCM models is characterised by a one-to-many mapping,
meaning that one set of EAST-ADL models depicting a given
software application could be translated to more than one
valid RCM model, representing the same software application.
Such a multiplicity is mainly due to the lack of control flow
information on the EAST-ADL models. Timing analysis is
run on each generated RCM model and the analysis results
are fed back to the engineer. However, timing analysis can
only be performed on automotive software on distributed E/E
architectures leveraging single- or multi-core ECUs. EAST-
ADL, RCM, MoVES and all related tools do not support the
modelling and end-to-end timing analysis of software archi-
tectures for heterogeneous and parallel computing platforms.
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Fig. 1. Simplified representation of the MoVES methodology.

III. PRELIMINARY WORK

In this ongoing work we discuss a set of improvements
to MoVES for supporting automotive software systems on
emerging E/E architectures. In particular, we will focus on
the following three points in our forthcoming efforts.

Heterogeneous Software: In [9], the authors provided
a standard driven software architecture for upcoming
automotive software systems realising autonomous driving.
One key requirement for modelling languages supporting these
architectures will be to address the real-time requirements of
applications with different workloads, activation semantics,
data flow semantics, real-time characteristics, criticality and
safety requirements. We have already extended RCM for
supporting different criticality and safety integrity levels
(according to the ISO26262 safety standard), activation
semantics, and real-time properties and requirements.

High-performance Computing Platforms: Autonomous
driving is bringing automotive software systems into the
era of high-performance computing. Upcoming automotive
platforms will be realised by a combination of automotive-
certified real-time micro-controllers and general purpose
high-performance computing processors and accelerators [6].
Due to their complex internal hardware architectures, various
levels of shared memories and I/Os, heterogeneous platforms
can’t be verified with traditional model-based timing analysis.
What is more, the lack of a reference hardware architecture
makes it hard to develop new timing analysis techniques.
In this respect, one possible solution would be to provide
automotive-specific modelling languages with support
for modelling the composing elements of heterogeneous
platforms, e.g., GPU, FPGA, etc., and their interaction.
In this regard, the language can be equipped with more
fine-grained basic blocks such as cores, buses, various types
of memories, I/O interfaces, just to name a few, to allow
“to model your own heterogeneous computing platform”.
This approach would also have the benefit of reducing the
complexity associated to the hardware modelling by hiding
those hardware details which are not primarily concerned

with the model-based timing verification.

Model-based Timing Analysis: One important factor that
influences the timing analysis of a software architecture is
the assumptions about the system model and underlying
computing platform. There are different timing analyses for
different types of computing platforms. The high levels of
heterogeneity and parallelism in the emerging consolidated
E/E architectures in the automotive domain makes it more
challenging to support the timing analysis of the software
architectures. It is likely that adaptation of the existing
worst-case timing analysis to support such platforms will
result in timing verified software architectures that heavily
under-utilise the system resources because the worst-case
analyses are based on worst-case assumptions. In this context,
we are currently investigating the efficacy of various types of
timing analyses.

IV. CONCLUSION

Recently, several model-driven methodologies have been
introduced to manage the software complexity of automotive
systems and automate their software development process.
MoVES is one such methodology that employs two indus-
trial automotive-specific modelling languages and a set of
six model transformations for supporting the development
and architectural exploration of these systems with temporal
awareness. This paper discusses the challenges and ongoing
work with regards to extending the MoVES methodology
to support upcoming software architectures for adaptive, au-
tonomous and connected vehicles.
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