
Quality aware MPEG-2 Stream Adaptation in Resource Constrained Systems

Damir Isović and Gerhard Fohler
Department of Computer Engineering

Mälardalen University, Västerås, Sweden
{damir.isovic,gerhard.fohler}@mdh.se

Abstract

A number of algorithms have been presented for han-
dling software decoding of MPEG-2 streams based on
buffering or rate adjustment focusing on providing good av-
erage quality. The potentially arising drops in quality are
tolerated, e.g., in transmissions over the Internet; they can-
not be accepted in high quality consumer products: these
mandate real-time methods. When resources, such as pro-
cessing power or network bandwidth, are limited and not
all frames can be handled, best effort decoders incur un-
necessary quality decrease while wasting resources.

In this paper, we present a method for quality aware
frame selection for MPEG decoding under limited re-
sources, based on realistic timing constraints for the de-
coding of MPEG streams. Given that not all frames can be
processed, it selects those which will provide the best pic-
ture quality while matching the available resources, starting
only such decoding, which is guaranteed to be completed.
We formulate the method as real-time scheduling problem
and present its application in an example scheduling algo-
rithm. Results from study based on realistic MPEG-2 video
underline the effectiveness of our approach.

1 Introduction

The MPEG-2 standard for video coding [1] is predomi-
nant in consumer electronics for DVD players, digital satel-
lite receivers, and TVs today. In such high quality de-
vices, drops in perceived video quality are not tolerated by
consumers. Within the next few years, MPEG-2 decoding
will move from dedicated hardware to software, for reasons
of cost, rapid upgradeability, and configurability. Further-
more, video will not only be watched on classic TV sets, but
increasingly displayed on smaller devices ranging from mo-
bile phones to web pads, providing mobility. Consequently,
MPEG-2 decoding will be performed in software under lim-
ited resources.

Most current software decoders, however, operate under
the assumption of sufficient resources, using buffering and
rate adjustment based on average-case assumptions. These
provide acceptable quality for applications such as video
transmissions over the Internet, when decreases in quality,
delays, uneven motion or changes in speed are tolerable. In
high quality consumer terminals, however, quality losses of
such methods are not acceptable. In fact, producers of such
devices have argued to mandate the use of hard real-time
methods instead [4].

In resource limited situations the processor cannot work
fast enough to decode all the frames, the workload for the
software decoder has to be reduced. This can be achieved
by either by quality reduction, using a downgraded decod-
ing algorithm or frame skipping, i.e., not decoding complete
frames. In this paper, we look into frame skipping.

Naive best-effort decoders perform frame skipping by
simply running out of time at frame display time, incurring
either a sudden disturbance in smoothness, as pictures are
missing, or a delay of subsequent frames, disturbing mo-
tion speed. As frame decoding starts and proceeds with-
out knowing about timely completion, it may happen that
the resources are fully used, but wasted, as partially de-
coded frames are generally not useful. In extreme cases,
the decoding of a large and important frame might just not
make it, therefore being lost and impeding quality, while
simply skipping to decode a small preceding frame might
have freed the resources for completion, with only slight
quality reduction. In addition, skipping a frame may af-
fect also other frames due to inter frame dependencies. In a
typical movie, a single frame skip can ruin around 0.5 sec-
onds. Thus frame skipping needs appropriate assumptions
and constraints about streams [11] to be effective.

A server based algorithm for integrating multimedia and
hard real-time tasks has been presented in [2]. It is based
on average values for execution times and interarrival in-
tervals. A method for real-time scheduling and admission
control of MPEG-2 streams that fits the need for adaptive
CPU scheduling has been presented in [6]. The method is
not computationally overloaded, qualifies for continuous re-

processing and guarantees QoS. However, no consideration
on making priorities on the B frame level has been done.
An approach that allows close-to-average-case resource al-
location to a single video processing task has been proposed
in [18]. It is based on asynchronous, scalable processing,
and QoS adaptation. A frame skipping pattern that makes
distinction between B frames has been presented in [15].
However, only one skipping criterion, QoS human [14], has
been applied when selecting B frames, taking no consider-
ation about frame sizes, buffer and latency requirements, or
compression methods used. Most standard real-time sched-
ulers fail to satisfy the demands of MPEG-2 as they do not
consider the specifics of this compression standard.

In this paper we present an algorithm for quality aware
MPEG-2 stream adaptation in resource constrained sys-
tems. It is based on previous work, in which we derived re-
alistic timing constraints for MPEG-2 video decoding with-
out [11] and with [12], and identified a number of miscon-
ceptions. The algorithm provides best quality by selecting
frames if not all can be decoded under limited resources.
It is based on a priority ordering for frame skipping taking
frame importance into account. It creates an ensemble of
decoding tasks for the frames in Group of Pictures, GOPs,
each with timing constraints suited specifically for the par-
ticular frame, transforming the GOPs into such tailored for
actual demand and available resources. Using a real-time
system for resource management, the frame selection algo-
rithm takes into account the actual state of the system, by
determining the best GOPs utilizing the available resources
and considering the priority ordering for skipping. Thus our
algorithm selects frames based on concrete frame knowl-
edge and ensures that only decoding of frames which can
be completed in time is started. While the algorithm is in-
dependent of the actual guarantee algorithm used, making it
suitable to work with a variety of algorithms and paradigms,
we present its use with a concrete scheduler. We present
results from a study underlining the effectiveness of our ap-
proach as compared to standard decoders.

The rest of this paper is organized as follows: in Section
2 we give an overview of the method. Section 3 presents
real-time processing model for MPEG playout, and timing
constrains for frame decoding. In Section 4 we present a
quality aware frame selection algorithm that assign priori-
ties to frames based on some quality criteria, followed by
description of the frame skipping algorithm in Section 5. In
Section 6 we show the use of the algorithm with a concrete
scheduler. The analysis results are reported in Section ??.
Finally, Section 7 concludes the paper.

2 Method overview

The functionality of a MPEG video player is quite sim-
ple: it reads a stream of compressed video frames, then de-

compresses and displays them. Video frames have to be
decoded and displayed correctly and in time.

I B B BP B
GOP

MPEG
stream in

Frame priority
 assignment algorithm

T3T2T1
Other
tasks

Decoding guarantee
algorithm

 Example guaranteed GOP

Decoding
task

Scheduling

System load

I B
skip

P B
skip

MPEG
stream out

Figure 1. Method overview and system archi-
tecture

Figure 1 gives an overview and the system architecture of
our approach. We deal with systems with limited resources
where frame skipping has to take place. The idea is to assign
priorities to each of the frames in a GOP, and then try to
guarantee their decoding in time. If not all frames can be
decoded in time, then we use the assigned priorities to select
which frames to skip first.

We have proposed a number of criteria to be applied
when selecting the frames to be decoded. The frame pri-
ority assignment algorithm uses those criteria to assign im-
portance values to frames. The lower the value for a frame,
the sooner the frame will be skipped, compared to the other
frames.

The guarantee algorithm takes an MPEG stream, the
amount of available system resources and frame importance
values as input, and produces a best possible MPEG stream.
It receives feedback from the system and decides how many
and which frames can be decoded in time, depending on
the current system load. If the guarantee algorithm fails
to ensure decoding of all the frames in the GOP, it will
start skipping some of them, starting with the frames that

have the least impact on the overall video quality. The out-
put from the guarantee algorithm is the information about
which frames can be successfully decoded in time.

The algorithm above needs a mechanism to access the
system load online. We use the slot shifting mechanism [8]
to offline calculate the amount and the distribution of avail-
able resources in the system, and to access this information
at runtime. However, other mechanisms can be used as well.

The final result of the stream adaptation process is a tai-
lored MPEG stream that is guaranteed to be decoded and
displayed in time. The difference between our method and
best-effort based algorithms that randomly skip frames if
they run out of time, is that we: a) consider useful only
what is finished: partially decoded frames do not contribute
to the overall video quality, b) decode only what is guaran-
teed to finish in time: we will not start decoding a frame
unless we can ensure the frame will be completely decoded
and displayed in time, and c) select the frames that will give
best possible video quality: we use a heuristic to determine
which frames in a GOP are more important than the others.

Our approach is applicable on variety of other methods
which provide mechanisms for online access of the avail-
able system resources. The system resources does not nec-
essarily need to be the available CPU time, it can also
be e.g., available network bandwidth: we could apply our
method for video streaming through a network, i.e., we take
available network bandwidth as input, and create feasible
streams which are guaranteed to be transmitted in time.

3 Real-time model for MPEG playout

Here we present real-time processing model for MPEG
playout, and timing constrains for frame decoding. As a
first step towards the decoding guarantee algorithm, we use
those constraints to derive earliest start times and deadlines
for the instances of decoding task.

3.1 MPEG video stream structure

The MPEG-2 standard defines three types of frames, I ,
P and B. The I frames or intra frames are coded as still
images. They contain absolute picture data and are self-
contained, meaning that they require no additional informa-
tion for decoding. The second kind of frames are P or pre-
dicted frames. They are forward predicted from the most re-
cently reconstructed I or P frame, i.e., they contain a set of
instructions to convert the previous picture into the current
one. P frames are not self-contained, i.e., if the previous
reference frame is lost, decoding is impossible. The third
type is B or bi-directionally predicted frames. They use
both forward and backward prediction, i.e., a B frame can
be decoded from a previous I or P frame, and from a later I

or P frame. B frames require resource-intensive compres-
sion techniques but they also exhibit the highest compres-
sion ratio. No other frames depend on a B frame.

An I frame, together with all of the frames before the
next I frame, form a Group of Pictures (GOP). The GOP
length is flexible, but 12 or 15 frames is a common value.
Furthermore, it is common industrial practice to have a fixed
pattern (e.g., I BB P BB P BB P BB).

B frames are predicted from two I or P frames, one
in the past and one in the future. Clearly, information in
the future has yet to be transmitted and so is not normally
available to the decoder. MPEG gets around the problem by
sending frames in the “wrong” order. The frames are sent
out of sequence and temporarily stored. For example, origi-
nal frame sequence I BB P ... is transmitted as I P BB ...,
so that the future frame is already in the decoder before bi-
directional decoding begins. Picture reordering requires ad-
ditional memory at the encoder and decoder and delay in
both of them to put the order right again. The number of bi-
directionally coded frames between I and P frames must
be restricted to reduce cost and minimize delay.

3.2 Video processing model

In its simplest form, playing out an MPEG video stream
requires three activities: input, decoding, and display.
These activities are performed by different tasks, separated
by input buffer and a set of frame buffers, see figure 2.

First bit
arrives at
input task

Decoding
task reads
first bit

Decoding
task

Display
task

Input
task

Input
buffer

Frame
buffer
space

First pixel
displayed on
the screen

Varying
decoding latency

Fixed end-to-end latency

Varying
display latency

t

Figure 2. MPEG processing model

The input task directly responds to the incoming stream.
It places en encoded video stream in the input buffer. In the
simple case, the input activity is very regular, and only de-
termined by the fixed bit rate. In a more general case, the
input may be of a more bursty character due to an irregu-
lar source (e.g. the Internet), or due to a varying multiplex
in the transport stream. We assume that the video data is
placed in the input buffer at a constant bitrate.

The decoding task decodes the input data and puts the
decoded frames in the frame buffers. If sufficient buffer

space is available, it may work asynchronously, spreading
the load more evenly over time. Its deadline is determined
by the requirements of the display task. If B frames are
present in the stream, the decoder performs frame reorder-
ing, i.e., the display order differs from the decoding order.
This means that the frames are offered to the display task
at irregular intervals. Reference frames are offered to the
display task after the B frames they helped to decode.

The display task is IO bound, and often performed by a
dedicated co-processor. It is driven by the refresh rate of the
screen. The display task, once started, must always find a
frame to be displayed. In the simple case, the display rate
equals the frame rate, but we will also consider situations
where the display rate is higher than the frame rate.

Once we start to play out an MPEG stream, the end-to-
end latency is fixed and it is measured from the arrival of the
first bit at the input task to the display of the first pixel or line
on the screen. If this latency is not fixed, the system can-
not work correctly over time. The end-to-end latency is the
sum of the decoding latency, and the display latency, which
are not necessarily fixed. If the decoder is asynchronous,
i.e. if its activity is determined by the buffer fillings, both
latencies can vary, see figure 2.

Since the decoder can be asynchronous, there is a risk of
buffer overflow and underflow. Input underflow, and frame
buffer overflow occur when the decoder is too fast, i.e.,
when the decoding latency is too small and/or the display
latency too large. The decoder is blocked until the input
and/or output task catches up. This can be prevented by
synchronization. Input overflow and output underflow oc-
cur when the decoder is too slow, i.e., when the decoding
latency is too large and/or the display latency is too small.
In case of output underflow, the display does not have a new
frame to display, but this has been foreseen by retaining the
previous frame for display until a new one arrives. Input
overflow can be much more serious. In some cases, the in-
put can be delayed, e.g. in case of a DVD player. In other
cases, the input task cannot be blocked, especially in case
of a broadcast input, where the input buffer must be made
large enough to accommodate at least the variation that is
allowed by the frame buffers. Theoretically two options are
open for the input task: overwrite data at the head of the
queue, or drop incoming data. In both cases, reference data
will be destroyed, which will lead to a very serious artifact,
because the remainder of the GOP cannot be decoded with-
out these reference data. Therefore, preventing overflow at
the input is imperative. There are three measures that con-
tribute to preventing overflow: judicious choice of end-to-
end latency and input buffer size, speeding up the process-
ing by allocating more processing resources, and preventive
load reduction, e.g. by skipping frames, as we do in section
5 of this paper. More detailed description of buffers and
latencies can be found in our previous paper [11]

3.3 Timing constraints for MPEG-2 decoding

Video and audio, as well as stream processing in gen-
eral, have throughput requirements and real-time deadlines.
These deadlines are hard in the sense that missing a deadline
causes an error, which can render a whole GOP unusable.
Timing constraints for an MPEG video decoder stem from
roughly three sources: first, the MPEG stream, in particular
frame ordering and their dependencies, poses mostly rela-
tive constraints. Second, the display rate, related to the re-
fresh rate of the screen, defines mostly absolute constraints.
It depends on hardware characteristics, which in turn define
when a picture should be ready to be displayed. Consumer
TV sets typically have refresh rates of 50, 60, or 100Hz,
computer screens may have more diverse values. Third,
the frame buffers incur resource and synchronization con-
straints. The number and handling of frame buffers depends
on hardware and architecture design, i.e., the constraints
will be implementation dependent.

In our previous papers [11, 12] we have derived timing
constraints for the decoding task. We proposed start time
constraints, STC, i.e., the earliest time at which decoding a
frame can begin, and finishing time constraints, FTC, i.e.,
the latest time at which decoding a frame has to be com-
pleted. For the exact formulation of the timing constraints
for MPEG decoding, please refere to our previous work. In
this paper, we use those to set the earliest start time and the
deadline for the decoder task.

3.4 Decoding task model

As mentioned, an input task (for example a digital video
tuner) periodically inserts frames into the input buffer, with
a period determined by the frame rate and a display task
(for example a video renderer) consumes frames from frame
buffers with a period determined by the display rate of the
display device. The input task and the display task are syn-
chronized with a fixed end-to-end latency, while the decod-
ing task executes in between asynchronously, since the de-
coding latency and the display latency can vary.

Start times and deadlines – Decoding task start time and
deadline are determined by the requirements of the display
task, and the buffer fillings. We use the identified start time
and finishing time constaints to set earliest start times and
deadlines for frames decoding. Simply, we set the earli-
est start time and the deadline to be the most strict start
time and finishing time constraint. For a frame frame f j

i ,
where i is the decoding number of the frame and j is the
display number, let STCk(f j

i) denote points in time when
the corresponding start time constraints are fulfilled, and let
FTCl(f j

i) represent the same for the finishing time con-
straints. Then, the earliest start time, est, and the deadline,

dl, for decoding the frame f j
i are equal to:

est(f j
i) = max{STCk(f j

i)}
dl(f j

i) = min{FTCk(f j
i)}

Execution times – It is difficult to predict worst-case ex-
ecution times (WCET) for frame decoding. MPEG-2 can
use different bitrates which can result in large differences in
decoding times for different streams. This could lead to big
overestimations of the WCETs. Our analysis [10] shows
that the relation between frame size and decoding follows
roughly a linear trend. The variations in decoding times for
similar frame sizes, however, are significant for the major-
ity of cases, e.g., in the order of 50-100% of the minimum
value for B frames. As expected, the frame types exhibit
varying decoding time behavior: I frames vary least, since
the whole frame is decoded with few options only. On the
other hand, B frames, utilizing most compression options,
vary most. The frame selection algorithm that we present
in section 5 requires known decoding times. There are two
ways to make this information available at the guarantee
time: offline analysis of the stream which gives exact de-
coding times, or, in more realistic scenario, prediction at
runtime. The focus of this paper is not to provide frame de-
coding times. Instead, we refer to some previous work. Pre-
dicting MPEG execution times has been presented in [3, 5],
where the frame decoding time is predicted by frame type
and size, and the corresponding predictor is shown to have
less than 25% of prediction error.

4 Quality aware frame selection

The latency variation allowed is a design decision, based
on the maximum allowed end-to-end latency, and the avail-
able buffer space. If the processor cannot work fast enough
to meet the time constraints, the decoder has to speed up.
There are two ways to do this: quality reduction and frame
skipping.

Quality reduction strategies for MPEG decoding and
other video algorithms are discussed in [16], [20], [9], and
[13]. Control strategies for fine-grained control based on
scalable algorithms are proposed in [17] and [19]. These
control strategies use a mixture of preventive quality re-
duction and reactive frame skipping. Quality reduction ap-
proach requires algorithms that can be downgraded, with
sufficient quality levels to allow smooth degradation.

Frame skips speed up the decoder, and increase the dis-
play latency, like a throttle. There are two forms of frame
skips, reactive and preventive. A reactive frame skip is a
frame skip at or after a deadline miss to restore the frame
count consistency. In case of a deadline miss, there are two
options, aborting the late frame, which is probably almost

completely decoded, or completing the late frame, and skip-
ping the decoding of a later frame. The effects of an abor-
tion and of a reactive frame skip on the display latency are
shown in [11].

A preventive frame skip increases the display latency.
Skipping a frame takes a certain time, but much less than
decoding it. Instead of rising, which is normal for B frames,
the buffer occupancy drops during the frame skipping. The
decision to skip preventively is taken at the start of a new
frame, and is based on an measurement of the lateness of
the decoder.

In this paper, we focus on the preventive frame skipping.
Here we present some criteria for quality aware preventive
frame selection upon overload situations and a frame skip-
ping algorithm based on these criteria.

4.1 Criteria for preventive frame skipping

Frame skipping needs appropriate assumptions to be ef-
fective [11]. Dropping the wrong frame at the wrong time
can result in a noticeable disturbance in the played video
stream. Here we identify some criteria for frame skipping.

Criterion 1: Frame type. According to this criterion, the
I frame is the most important one in a GOP since all other
frames depend on it. If we lose an I frame, then the decod-
ing of all consecutive frames in the GOP will not be possi-
ble. B frames are the least important ones because they are
not reference frames. Skipping one B frame will not make
any other frame undecodable, while skipping one P frame
will cause the loss of all its subsequent frames and the two
preceding B frames within the same GOP. If we would ap-
ply this criterion only, then we would pull out all B frames
first, then P frames and finally the I frame.

Criterion 2: Frame position in the GOP. This is applied to
P frames. Not all P frames are equally important. Skipping
a P frame will cause the loss of all its subsequent frames,
and the two preceding B frames within the GOP. For in-
stance, skipping the first P frame (P1) would make it im-
possible to reconstruct the next P frame (P2), as well as all
B frames that depends on both P1 and P2. And if we skip
P2 then we cannot decode P3 and so on.

Criterion 3: Frame size. Applies to B frames. According
to the previously presented analysis results, there is a re-
lation between frame size and decoding time, and thus be-
tween size and gain in display latency. The bigger the size
of the frame we skip, the larger display latency obtained.
However, we should not skip unnecessarily big B frames,
since they in general contain more picture data.

Criterion 4: Skipping distribution. With the same num-
ber of skipped B frames, a GOP with evenly skipped B
frames will be smoother than a GOP with uneven skipped B

frames, e.g if we have a GOP=IBBPBBPBBPBB then
even skipping I −BP −BP −BP −B will give smoother
video than uneven skipping I − −PBBPBB − −, since
the picture information loss will be more spread [14].

Criterion 5: Buffer size. Buffer requirements has to be
taken into account when designing a frame skipping algo-
rithm. There is no point in having a nice skipping algorithm
without having sufficient space to store input data and de-
coded frames.

Criterion 6: Latency. This is not really a criterion, but one
must be aware of: an algorithm that takes entire GOP into
account requires a large end-to-end latency, and correspond-
ing buffer size.

When deciding the relative importance of frames for the en-
tire GOP, we could assign values to them according to all
criteria collectively applied, rather than applying a single
criterion. Since the criterion 1 is the strongest one, the I
frame will always get the highest priority, as well as the ref-
erence frames in the beginning of the GOP, while in some
cases we would prefer to skip a P frame towards the end of
the GOP than a big B frame close to the GOP start.

4.2 Frame priority assignment algorithm

We apply the skipping criteria above on a GOP and as-
sign different importance values (priorities) to the frames.
The lower the value for a frame, the sooner the frame will
be skipped, compared to the other frames. The frame prior-
ity assignment algorithm goes like this:

1. Apply criterion 1 to assign the highest value to the I
frame (equal to the number of frames in the GOP).

2. Apply criterion 2 to assign values to P frames. The
closest the distance of a P frame to the start of the
GOP, the highest value will be assigned.

3. Apply criterion 3 and 4 to assign values to B frames.
Initially set all values for B frames to the lowest P
value. Identify all “even-skip” chains for B frames
and sort them according to the total bytesize. Decrease
the importance values of the B frames, depending on
which chain they belong to. The less the total byte of a
chain, the less the values are assigned to belonging B
frames.

4. Apply criterion 5 and 6 on all frames to adjust priori-
ties if necessary. For example, if there are not enough
buffer space for decoding the first P frame, switch its
priority with a later P frame.

Example: assume the following GOP with respective bit-
sizes (taken from a video stream that we analysed):

I BB P BB P BB P BB =

{734136, 89656, 96640, 119368, 89232, 74048,
100680, 32112, 87080, 92064, 18336, 142008}

We want to assign importance values to frames according
to our method. The number of frames in the GOP is 12, so
the values will be between 1 and 12, 12 being the highest
priority. The assigned values after each step are depicted on
top of the frames. The frames with values that have changed
compared to the previous step will be highlighted by filled
style. Also, P and B frames are indexed in order to distin-
guish between different frames of the same type.

We start by applying criterion 1. According to this crite-
rion, the I frame got the highest value 12, three P frames
got the same value 11, and B frames are the least important,
with value 10:

I B1 B2 P1 B3 B4 P2 B5 B6 P3 B7 B8

12 10 10 11 10 10 11 10 10 11 10 10

We continue by applying criterion 2 on the P frames. P 1

is closest to the I frame among all P frames. Hence P1 will
keep its assigned value (11), while the values of P2 and P3

will get decreased. Since P2 is closer to the I frame than
P3, it will get higher value than P3. By this we ensure that
in overload situations P3 will be skipped first, P2 second
and P1 will be the last one among P frames to skip:

I B1 B2 P1 B3 B4 P2 B5 B6 P3 B7 B8

12 10 10 11 10 10 10 10 10 9 10 10

Since the value of P3 is now the same as the value of
B frames, we even need to decrease the B values to make
sure that all P frames will be prioritized before any of the
B frames:

I B1 B2 P1 B3 B4 P2 B5 B6 P3 B7 B8

12 8 8 11 8 8 10 8 8 9 8 8

Now we need to assign priorities among B frames. At
this point they all have the same priority 8, but we need to
assign unique priorities to make sure that we always know
which B frames to skip first. We mentioned earlier that
the criteria 3 and 4 should not be applied separately. For the
criterion 3 we need to compare sizes for B frames. Let s(f)
denote the size in bits for a frame f . For the chosen GOP
the following holds:

s(B8)>s(B2)>s(B1)>s(B3)>s(B6)>s(B4)>s(B5)>s(B7)

If we apply the frame size criterion alone, then B1−8 frames
would be assigned values 6, 7, 6, 3, 2, 4, 1 and 8 respectively
(B8 would get the highest value, 8, because it is the largest
among all B frames in the GOP). Assume now that we need
to skip 4 frames. According to the assigned values, a skip-
ping mechanism that only compares frame sizes would pro-
duce the pattern: I BB P B− P −− P −B, which is not

the optimum for the video smoothness, as discussed before.
Instead, we need to apply criterion 3 together with criterion
4 to obtain the best possible value assignment with respect
to both frame sizes and even distribution of skipped frames.
We start by identifying all “even-skip” chains (ESC) of B
frames:

ESC1 : B1 → B3 → B5 → B7, sum = 229336 bits

ESC2 : B2 → B4 → B6 → B8, sum = 402238 bits

We compare the total bitsize in both chains, and we as-
sign greatest values to the B frames in the chain with larger
size i.e., chain ESC2. We start by decreasing the values of
ESC1 by the number of frames in ESC2, i.e., 4; we need
those four values for frames in ESC2. The new assignment:

I B1 B2 P1 B3 B4 P2 B5 B6 P3 B7 B8

12 4 8 11 4 8 10 4 8 9 4 8

Next we do internal value distribution according to the
frame sizes, in both ESC1 and ESC2. The largest frame
in the chain gets the highest value. In ESC1, B1 will get
value 4 because it is the largest in the chain, and B7 gets the
smallest value 1. Similarly, in ESC2, B8 keeps the value 8
and B2 gets the lowest value, 4. The final value assignment:

I B1 B2 P1 B3 B4 P2 B5 B6 P3 B7 B8

12 4 7 11 3 5 10 2 6 9 1 8

By doing this kind of value assignments for B frames
we find the compromise between even skipping and frame
sizes, because we make skipping decision based not only on
the frame size but also on the relation to the other B frames
in the GOP. i.e., the influence on the entire GOP. Finally, a
frame skipping algorithm based on frame importance values
would skip frames in the following order:

I B B P B B P B B P B B 1677822
(GOP size)

1)

I B B P B B P B B P − B 16594862)

I B B P B B P − B P − B 16273743)

I B B P − B P − B P − B 15381424)

I − B P − B P − B P − B 14484865)

I − B P − − P − B P − B 13744386)

...and so on...

5 Online stream adaptation

In the previous section we showed a method to assign
priorities to the frames within a GOP. Here we present how

we can online adapt video streams by running a guarantee
algorithm for frame decoding. It takes an MPEG stream,
the amount of available CPU bandwidth and frame priori-
ties, and produces a tailored MPEG stream, as discussed in
section 2.

5.1 Guarantee algorithm for frame decoding

Many available software decoders perform badly in the
case of a deadline miss; they simply skip the current frame,
without taking any consideration about the frame impor-
tance. In the worst case, the current frame could be an I
frame, which would ruin the entire GOP. We base our skip-
ping decision on the assigned importance values between
frames. If the current frame is an important one, we do not
skip it, instead we skip a less important frame.

For each frame in a GOP, we check how much available
resources do we have between the earliest start time and the
deadline for the frame decoding. If the amount of available
resources is less than the decoding execution demand of the
frame, we must skip frames. When a frame is skipped, tim-
ing constraints for other frames in the GOP can be relaxed.

Assume, for example, we need to skip frame f3 in a GOP.
If we skip framef3, then the required display times (and
hence the decoding deadlines) of all preceding frames can
be relaxed, since we are neither decoding nor displaying f 3.
We shift deadlines of all preceding frames to the right, i.e.,
dl(f2) becomes equal to dl(f3) and dl(f1) becomes dl(f2).
Similarly, the earliest start times of the successor frames are
shifted to the left, since the frames will become available in
the input buffer earlier if we skip the current frame. An
approach similar to this has been proposed by Wüst et al. in
[18], which relaxes the decoding deadlines of the remaining
frames upon a deadline miss of the decoder task. .

5.2 Pseudo-code

Let GOPc denote currently guaranteed group of pic-
tures, and let fs be the frame that is to be skipped, i.e., the
one with currently lowest importance value among remain-
ing frames in GOPc. Also let P and S denote subsets of
GOPc, containing predecessor and successor frames of fs

respectively:

GOPc = {
P︷ ︸︸ ︷

f1, f2, ..., fs,

S︷ ︸︸ ︷
fs+1, fs+2, ..., fn}

P = {P ⊆ GOPc | ∀fj ∈ P , 1 < j < s}
S = {S ⊆ GOPc | ∀fk ∈ S, s < k < n}

Pseudo code (see the comments below in parallel):

1: ∀fi ∈ GOPc

2: while availableResources[est(fi), dl(fi)] ≤ c(fi)

3: fs = minImportanceV alue(GOPc)
4: GOPc = GOPc − fs

5: ∀fj ∈ P
dl(fj) = dl(fj+1)

∀fk ∈ S
est(fk) = est(fk−1)

Comments:

1. Go through the current GOP frame by frame.

2. Compare the execution demand of the current frame
with the available resource between the earliest start
time and the deadline of the frame.

3. Get the frame with the currently minimum importance
value.

4. Remove skipped frame from the current GOP.

5. Relax deadlines for the predecessor frames and start
times of the successor frames. The current frame f i

belongs either to P or S, i.e., either its deadline or start
time constraint is relaxed, which means in the next step
of the while loop the amount of available resources for
fj will be bigger compared to the previous step (before
skipping fs).

Complexity - For each frame that we skip (in the while-
loop), the amount of frames in GOPc will decrease (the for-
loop), giving the worst-case complexity O(N 2), where N
is the number of frames in the GOP. Considering very small
values for N (in most cases 12-15 frames), the algorithm is
relatively cost-efficient to run online.

6 Evaluation

As an example, we show how we can adjust streams in
the context of our previous work, i.e., combined offline and
online scheduling. We get the amount of available CPU re-
sources by using the slot shifting mechanism [8], and apply
our guarantee algorithm to create a feasible stream.

6.1 Available system resources

The frame guarantee algorithm needs a mechanism to ac-
cess the amount and the distribution of available resources
online. We use the slot shifting mechanism [8] to offline cal-
culate the amount and the distribution of available resources
in the system. First, an offline scheduler [7] creates schedul-
ing tables for the selected periodic tasks with complex con-
straints. It allocates tasks to nodes and resolves complex
constraints by constructing sequences of task executions.
The resulting offline schedule consist of independent tasks

with start times and deadlines, which can be re-scheduled
by EDF at runtime, preserving original constraints. Second,
the offline schedule is divided into a set of disjoint execution
intervals. Offline scheduled task scan be executed flexibly
within their intervals, i.e., they can be “shifted” in order to
accommodate for tasks that arrive at runtime, i.e., aperiodic
and sporadic tasks. Third, we need to know amount and
location of resources available after offline tasks are guar-
anteed. Spare capacities to represent available resources are
then calculated for each interval. The spare capacities, sc,
of an interval Ii are calculated as:

sc(Ii) = |Ii| −
∑
T∈Ii

wcet(T) + min(sc(Ii+1), 0) (1)

where T are the tasks that belong to Ii. The length of Ii, mi-
nus the sum of the activities assigned to it, is the amount of
idle time in that interval. These have to be decreased by the
amount “lent” to subsequent intervals: Tasks may execute
in intervals prior to the one they are assigned to. Then they
“borrow” spare capacity from the “earlier” interval. The
reader is referred to [8] for details about the calculation of
intervals and spare capacities.

6.2 Online access of available system resources

At runtime, we can access the amount and the distribu-
tion of available resources via intervals and spare capacities.
For example, at any point in time at runtime we can easily
calculate the amount of spare capacity between two time
slots, t1 and t2, by simply summing up the spare capacities
of the intervals between them. Let Istart denote the inter-
val that contains t1 and Iend the one containing t2. Then,
the total amount of spare capacities between t1 and t2 it is
equal to the remaining spare capacity Istart , plus the sum
of spare capacities of all full intervals between Istart and
iend, plus the remaining spare capacity of Iend:

sc[t1, t2] = scr(Istart) +
∑

Ii∈(t1,t2)

sc(Ii) + scr(Iend) (2)

This mechanism suits perfectly well for online stream
adaptation, providing a simple and efficient way to access
the amount of available CPU time at runtime, but as men-
tioned above, other mechanisms can be used as well.

We have implemented and analyzed the quality aware
frame selection algorithm (QAFS) and compared our algo-
rithm with a naive, best-effort approach.

A naive algorithm will try to decode even those frames
that cannot be decoded in time. It will start to decode a
frame, and when the decoding deadline miss occurs, it will
simply throw it away, unnecessarily wasting the CPU time.
Furthermore, if no frame distinction between frame types is
done, a best-effort algorithm could, in the worst case, ruin
entire GOP by skipping the I frame.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90%

G O P satisfaction - percentage available of total needed per GOP

U
s
e
fu
ll
 r
e
s
o
u
rc
e
 c
o
n
s
u
m
p
ti
o
n Best Effort

QAFS - avg assum .

QAFS - exact assum .

0

20000

40000

60000

80000

100000

120000

140000

160000

10% 20% 30% 40% 50% 60% 70% 80% 90%

GOP satisfaction

To
ta

l d
ec

od
ed

 fr
am

es

Best Effort
QAFS

Figure 3. Simulation results - Quality Aware vs Best Effort decoding

Our algorithm selects frames based on concrete frame
knowledge and ensures that only decoding of frames which
can be completed in time is started. It will not start decoding
a frame unless we can ensure the frame will be completely
decoded and displayed in time. Besides, QAFS selects the
frames that will give best possible video quality, according
to the frame selection criterion discussed in subsection 4.1.

We have compared QAFS and best effort with respect
to the useful resource consumption per GOP and the total
number of decoded frames. Each value in both graphs of
figure 3 is derived from running the simulations on about
15000 GOPs. The system load per GOP is randomly dis-
tributed between the frames.

Useful resource consumption - Here we compared the
time per GOP spent on useful decoding, i.e., fully decoded
frames that contribute to the overall picture quality (as pic-
ture data and/or reference data). Wasted decoding time
is the one spent on partial decoding frames that must be
aborted due to decoding deadline misses.

The x-axis in the figure represents the GOP satisfaction
degree, which is the ratio between the resources needed for
timely decoding of a GOP and the available system resource
given to the GOP by the stream. E.g., if GOP satisfaction is
30%, then the GOP is given 30% resources of what it needs
for decoding of all its frames. The y-axis shows how much
of the granted time is spent on the useful decoding.

We have simulated the case with known exact execu-
tion times for the decoding of frames, that we measured of-
fline, and with the average decoding times for the respective
frame types. As expected, the analysis shows that QAFS
will not waste any resources at all if the exact execution
times, or worst-case execution times, are known upon guar-
anteeing. Although there are not yet completely accurate
method to predict decoding times online, we have showed

the efficiency of our algorithm once when such method is
available. In a more realistic case with the average decod-
ing times, QAFS will waste some resources due to the fact
that it will guarantee decoding for some frames that can-
not be decoded in time, since it performs frame guarantee
based on the average decoding times and not the exact de-
coding times. So, whenever it accepts a frame that has the
exact execution time that is larger than the average execu-
tion time, some resources will be wasted. Still, it performs
much better than the naive, best-effort algorithm, as it can
be seen from the figure. Since the GOP load is distributed
between all the frames in the GOP, the best effort algorithm
will miss decoding deadlines whenever the total load in the
execution window of the currently decoded frame is larger
than the execution demand of the frame. This means that
all decoding spent on the frame upon the deadline miss is
wasted. On the other hand, frames are skipped byQAFS, it
will adjust the start times and the deadlines of the remaining
frames in the GOP, giving them higher probability to meet
their deadlines.

Total decoded frames - Here we compare the total num-
ber of frames successfully decoded by respective algorithm.
As expected, the best-effort approach performs worse be-
cause it makes no distinction between frames: when a
P frame is skipped, all its referring frames will also be
skipped, and if the I frame is skipped, then no other frame
in the GOP can be decoded. Our algorithm will never skip
any reference frames unless it is absolutely necessary since
it skips frames based on assigned importance values.

7 Conclusions

In this paper, we presented a quality aware frame selec-
tion algorithm for software decoding of MPEG-2 streams

under limited resources, based on realistic timing con-
straints for MPEG decoding. The algorithm selects frames
providing best video quality if not all can be completed due
to limited resources. It is based on an priority ordering
for frame dropping taking frame importance into account.
The algorithm creates an ensemble of decoding tasks for the
frames in the Groups of Pictures in the stream, each with pa-
rameters suited specifically for the particular frame, instead
of working with fixed, constant task parameters for periodic
tasks. Applying real-time guarantee tests, the algorithm de-
termines the best set of frames to utilize the resources avail-
able and providing video quality. While the frame selection
algorithm is independent of the actual scheduling algorithm
used, we presented an examplatory scheduler for our frame
selection method.

We are currently studying the application of our algo-
rithm for networks with limited bandwidth. In particular
in mobile, wireless situations, bandwidth will vary, adding
another degree of variability to the problem. We are also in-
vestigating the sub frame level, e.g., slices and macroblocks
for quality trade-offs under limited resources. To underline
the independence of the frame selection algorithm, an ap-
plication with server algorithms is underway. Furthermore,
we are looking into how we can offline guarantee minimum
quality of service for MPEG streams with online adapta-
tion.

8 Acknowledgements

The authors wish to express their gratitude to Liesbeth
Steffens and Clemens Wüst for fruitfull discussions and to
the reviewers for helpful comments.

References

[1] ISO/IEC 13818-2: Information technology - generic coding
of moving pictures and associated audio information, part2:
Video. 1996.

[2] L. Abeni and G. C. Buttazzo. Integrating multimedia appli-
cations in hard real-time systems. In Proceedings of the 19th
IEEE Real-Time Systems Symposium, Madrid, Spain, 1998.

[3] A. Bavier, A. Montz, and L. Peterson. Predicting MPEG ex-
ecution times. In Proceedings of ACM International Confer-
ence on Surement and Modeling of Computer Systems (SIG-
METRICS 98), Madison, Wisconsin, USA, June 1998.

[4] R. J. Bril, M. Gabrani, C. Hentschel, G. C. van Loo, and
E. F. M. Steffens. Qos for consumer terminals and its sup-
port for product families. In Proceedings of the International
Conference on Media Futures, Florence, Italy, May 2001.

[5] L. O. Burchard and P. Altenbernd. Estimating decoding
times of MPEG-2 video streams. In Proceedings of Inter-
national Conference on Image Processing (ICIP 00), Van-
couver, Canada, September 2000.

[6] M. Ditze and P. Altenbernd. Method for real-time schedul-
ing and admission control of MPEG-2 streams. In The 7th
Australasian Conference on Parallel and Real-Time Systems
(PART2000), Sydney, Australia, November 2000.

[7] G. Fohler. Flexibility in Statically Scheduled Hard Real-
Time Systems. PhD thesis, Technische Universität Wien,
Austria, Apr. 1994.

[8] G. Fohler. Joint scheduling of distributed complex periodic
and hard aperiodic tasks in statically scheduled systems. In
Proc. 16th Real-time Systems Symposium, Pisa, Italy, 1995.

[9] C. Hentschel, R. Braspenning, and M. Gabrani. Scalable
algorithms for media processing. In Proceedings of the
IEEE International Conference on Image Processing (ICIP),
Thessaloniki, Greece, pp. 342-345, October 2001.

[10] D. Isovic and G. Fohler. Analysis of MPEG-2 streams.
Technical Report at Malardalen Real-Time Research Cen-
tre,Vasteras, Sweden, March 2002.

[11] D. Isovic, G. Fohler, and L. F. Steffens. Timing constraints
of MPEG-2 decoding for high quality video: misconcep-
tions and realistic assumptions. In Proceedings of the 15th
Euromicro Conference on Real-Time Systems, Porto, Portu-
gal, June 2003.

[12] D. Isovic, G. Fohler, and L. F. Steffens. Real-time issues of
MPEG-2 playout in resource constrained systems. Journal
of Embedded Computing (JEC), special issue 3, June 2004,
Pre-copy available upon request.

[13] Y. C. John Tse-Hua Lan and Z. Zhong. MPEG2 decoding
complexity regulation for a media processor. In Proceedings
of the 4th IEEE Workshop on Multimedia Signal Processing
(MMSP), Cannes, France, pp. 193 - 198, October 2001.

[14] J. K. Ng, K. R. Leung, W. Wong, V. C. Lee, and C. K. Hui.
Quality of service for MPEG video in human perspective. In
Proceedings of the 8th Conference on Real-Time Comput-
ing Systems and Applications (RTCSA 2002), Tokyo, Japan,
March 2002.

[15] J. K.-Y. Ng, C. K.-C. Hui, and W. Wong. A multi-server
design for a distributed MPEG video system with streaming
support and QoS control. In Proceedings of the 7th Interna-
tional Conference on Real-Time Systems and Applications
(RTCSA’00), Cheju Island, South Korea, December 2000.

[16] S. Peng. Complexity scalable video decoding via idct data
pruning. In Digest of Technical Papers IEEE International
Conference on Consumer Electronics (ICCE), pp. 74-75,
June 2001.

[17] C. Wüst. Quality level control for scalable media process-
ing applications having fixed CPU budgets. In Proceedings
Philips Workshop on Scheduling and Resource Management
(SCHARM01), 2001.

[18] C. Wüst, L. Steffens, R. J. Bril, and W. F. Verhaegh. Qos
control strategies for high-quality video processing. In Pro-
ceedings of the 15th Euromicro Conference on Real-Time
Systems, Catania, Sicily, Italy, June 2004.

[19] C. Wüst and W. Verhaegh. Dynamic control of scalable mea-
dia applications. In Algorithms in Ambient Intelligence. edi-
tors: E.H.L. Aarts, J.M. Korst, and W.F.J. Verhaegh, Kluwer
Academic Publishers, 2003.

[20] Z. Zhong and Y. Chen. Scaling in MPEG-2 decoding loop
with mixed processing. In Digest of Technical Papers IEEE
International Conference on Consumer Electronics (ICCE),
pp. 76-77, June 2001.

