
1

Self-Healing Protocol: Repairing Schedules Online
after Link Failures in Time-Triggered Networks

Abstract—The time-triggered paradigm is not adaptive, a static
schedule determines the time-triggered communication and, then,
any unpredicted change, like a link failure, might result in
the loss of frames. Using spatial redundancy or recomputing
a new schedule for replacement achieves fault tolerance only in
moderate-size networks. With the increase in size and complexity
of cyber-physical systems, more scalable and cost-efficient mecha-
nisms are needed in order to complement conventional solutions.
We propose a distributed Self-Healing Protocol that instead of
recomputing the whole schedule, repairs the existent schedule
at runtime. The basis of our protocol is the collaboration of
nodes in the network to individually adjust their local schedules
for rerouting the frames affected by link failures. Our protocol
exhibits a high success rate compared to full rescheduling, as well
as remarkable scalability; it repairs the schedule in milliseconds,
whereas rescheduling requires minutes.

Index Terms—Real-Time, Time-Triggered Network, Schedul-
ing, Fault-Tolerance.

I. INTRODUCTION

THE time-triggered (TT) paradigm [1] is frequently ap-
plied in networks demanding low latency, high determin-

ism, and high reliability. This behavior is accomplished with
the synthesis of a precomputed static schedule that contains
the transmission times of all the synchronous (time-triggered)
frames over all the links in the network. The obtained schedule
is then distributed to all the network nodes, which can follow it
consistently thanks to a shared notion of time, guaranteed by a
synchronization clock protocol [2]. Communication protocols
such as FlexRay [3], TTEthernet [4] and TSN [5] implement
this paradigm.

One major disadvantage of the time-triggered concept is
its insufficient ability to adapt to changes, particularly to
link failures. This problem is exacerbated when time-triggered
communication is used in large-scale systems because the
number of links increases significantly [6], [7]. There have
been some proposals to enhance time-triggered schedules with
tolerance to link failures. One family of solutions are based on
rescheduling the whole network [8]. Rescheduling will always
provide a new schedule, if it exists, that meets all the new
requirements. However, it introduces a high response time, not
only because of the time required to (re)synthesize the new
schedule, but also because of the time needed to distribute it
to all the nodes. On the other side, alternative solutions try
to minimize response time, by precomputing schedules that
tolerate potential failures. Precomputing has an almost instant
response time, but it is still static in nature: if a failure that
was not anticipated occurs, a new schedule cannot be provided.
These solutions have both been successfully implemented in
small networks, but they present significant impracticalities
for larger networks. Rescheduling a large network incurs an
excessive response time, in the order of minutes or even hours

[9]. Precomputing becomes very complex computationally for
large scale systems, and the number of possible changes is
too high to be able to save the precomputed schedules into
memory; moreover, predicting the potential failures is also
challenging. In this article, we seek to implement a middle
ground solution between response time and success rate. I.e.,
given a failure in any link of the network, our aim is to obtain
a new valid (and high-quality) schedule very quickly, such
that end-to-end communication can be restablished as soon as
possible.

For that purpose, we revise the notion of schedule repara-
bility, recently introduced in [10], and present a runtime Self-
Healing Protocol (SHP) that is able to, upon link failure, detect
which portion of the network schedule needs to be modified
and orchestrates a distributed algorithm that ensures that all
the relevant nodes perform the required updates in a consistent
manner. More specifically, the SHP tries, when a link has a
failure, to reallocate and adjust all frame instances transmitted
over such a link to a new path that still connects the receiver
and sender nodes. The protocol is separated into two phases:
1) discovering the new path that connects the sender node to
the receiver while preparing information needed for the second
phase and, 2) using the information obtained in the previous
phase, modify the local schedules by allocating the frames
instances transmitted in the faulty link into the newly found
path, while satisfying all the frame and network constraints.
Our SHP shows equivalent success rate compared to using a
repair algorithm with full system knowledge. It also exhibits
great scalability due to the localized nature of the schedule
modifications, with very low repair times for large networks.
In most of the evaluated cases, the SHP requires less than a
hundred milliseconds to patch the schedule and in the order of
hundreds of milliseconds to optimize the schedule to maintain
a high success rate also for consecutive link failures.

Even though the SHP aims to solve some of the limitations
for large networks of the previously mentioned approaches,
it is conceived as an enhancement and not a replacement.
Due to its best effort and localized nature when repairing
from a failure, it does not reach the reliability guarantees
of static redundancy or the success rate of full rescheduling.
However, SHP provides a fast and online response to failures
in network segments where static redundancy might not viable,
at reduced cost. Moreover, it can also be applied on top of
static redundancy to recover the same redundancy levels after
multiple failures and prevent fast redundancy attrition.

Section II introduces relevant background on time-triggered
networks and scheduling. We present the fault model and the
Self-Healing Protocol rationale in Section III. In Section IV we
explain the Notification and Preparation phase and in Section
V, the Schedule Update phase. We evaluate the repair success
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Fig. 1. Network Example

and the performance in Section VI. In section VII we compare
our work with different state-of-the-art approaches to recover
from link failures. We conclude in Section VIII and give some
insight for future work.

II. PROBLEM STATEMENT

A. System model

We describe a multi-hop network as a directed graph G =
(V,L), where the vertices V represent nodes and the edges L
represent links that connect nodes, each link designated with a
capacity in Bytes per second Cl. We categorize nodes in end
systems (Ve), which can send and receive information over
links through frames f , and switches (Vs) that relay frames
obtained from an end system or a switch to another end system
or switch; (V = Ve ∪ Vs) and (Ve ∩ Vs = ∅). Consequently,
we can connect switches to any other node, but end systems
can only be connected to switches.

Every frame in the network from the set of all frames f ∈ F
starts at an end system sender that initiates the transmission
to one or multiple end system receivers, following a sequence
of links (vx, vy) ∈ L called data flow path p:

p = [(vs, vx), ..., (vy, vr)] : vs, vr ∈ Ve, vx, vy ∈ Vs (1)

where vs is the sender and vr is the receiver. In the case that
the frame has multiple receivers, we can describe the multiple
paths as the union of all paths creating a tree path TP. Lastly,
we can specify a frame as a tuple f = 〈Tf , Df , Lf ,TPf 〉
where Tf is the period, Df is the deadline, Lf is the size in
Bytes and TPf is the previously mentioned tree path.

Let us illustrate a time-triggered network example with its
topology and its traffic. In Figure 1, we can examine the net-
work topology consisting of four end systems (v1, v2, v6, v7),
three switches (v3, v4, v5) interconnected by fourteen links
(l1, ..., l14). Note that the in the figures we use uppercase to
improve readability. In Table I we also introduce an example
of traffic with four frames. For the frame with multiple
receivers, f4, we assign the tree path TP4 as the union of
the paths from v1 to v6 and from v1 to v7, therefore TP4 =
[(v2, v4), (v4, v5), (v5, v6)] ∪ [(v2, v4), (v4, v5), (v5, v7)] =
[(v2, v4), (v4, v5), (v5, v6), (v5, v7)].

B. Time-Triggered Scheduling

The schedule dictates the transmission instants of all frames
as they traverse the links in their respective tree paths. A
correct schedule guarantees that all frames reach their receivers
by their deadline, satisfying their individual end-to-end delay

TABLE I
TRAFFIC MODEL FOR FIGURE 1

Frame Sender Receivers Tree Path Period Deadline
1 V1 V6 L1-L7-L11 8 8
2 V1 V6 L1-L7-L11 8 8
3 V2 V6 L3-L9-L11 8 8
4 V2 V6-V7 L3-L9-L11-L13 8 8
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Fig. 2. Time-Triggered Schedule, highly reparable according to [10]

constraints. Then, the schedule synthesis problem is defined
as finding a correct assignment over this function:

Φf : [1, Nf ]× L→ N+ ∪ {∗} (2)

where the Offset Φf (i, l) = t defines the frame f transmis-
sion time t (relative to the start of the hyperperiod) of the i-th
frame instance over the link l if and only if l ∈ TPf . In the
case l /∈ TPf , we assign the offset as Φf (i, l) = ∗. Every
node stores the schedule for all its incoming and outgoing
links, to identify when it should receive and/or transmit a
frame. Because of the traffic periodicity, the schedule size
can be limited to the minimum common multiple of all the
frame periods, or hyper-period TF = LCM(Tf ),∀f ∈ F .
If a frame has a small period compared to TF and needs
to be transmitted multiple times within the hyper-period, we
define each transmission as a frame instance. The number of
instances is calculated as Nf = TF

Tf
.

For interested readers, the specifications for the network and
traffic constraints can be found in [11]. Higher reparability
schedules are achieved by maximizing the distances between
frame transmissions [10]. For this maximization to work
properly, they removed the constraint that upper bounded the
time a frame can stay in a switch. However, the end to end
delay constraint, which upper bounds the time for the frame to
reach its destination, does indirectly limit the time that frames
can effectively stay in a switch. This increases the buffer
memory needed for the switches, but in the cases studied in
Section VI, we observe that it does not surpass 30KB in the
worse case. We show an example of a valid schedule of the
previously presented network and traffic typically obtained by
an ILP Solver in Figure 2.

III. OUR RATIONALE FOR SELF-HEALING

Our approach for self-healing considers permanent link
failures and transient link failures lasting enough to cause a
considerable loss of frames. We also assume the possibility
of simultaneous link failures where, e.g., a cut in a physical
link causes both link directions to be faulty. Nodes can detect
a link failure with the aid of their local schedules and the
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Fig. 3. Time-Triggered Schedule obtained after applying the Self-Healing
Protocol to repair the failure of link 7

global notion of time shared by all the nodes in the network.
When a link has a failure and stops transferring frames, the
receiving node will notice that frames stated in its schedule
to be received are missing. After a specified number of lost
frames is detected, the node will trigger the SHP to try to
repair the schedule.

Let us illustrate the rationale of the SHP with an example on
the previously introduced network, assuming that l7 suffers a
permanent link failure. As seen in Figure 2, f1 and f2 will not
be received by node v5 when l7 fails, and therefore the frames
cannot be relayed to their end system destinations. Node v5

detects that frames are not being received and activates the
protocol. All nodes in the network collaborate in the first
phase to find an alternative path, [l5, l9]. In the second phase, a
group of nodes, called the SHP group, has to find transmission
times for both frames in the new path while satisfying all the
constraints. For example, f1 needs to be transmitted in the
range 1 < t < 5, which we call the available range between
frame instances. This second phase is performed individually,
every node in the SHP group is allowed to change its local
schedule to accommodate the new frames. Because of the use
of a high reparability schedule, i.e. with maximized frame
distances [10], there exist many available slots within the
schedule for allocating the new frame instances, resulting in
the schedule shown in Figure 3.

Even though the protocol operates in a distributed manner
and nodes do not require to have full knowledge of the
network, every node should keep three parameters for each
link it is directly connected to. This includes (1) the current
link status to remember which links have been registered as
faulty, (2) the link identifier, which is unique in the network
and used to refer to a specific link, and (3) the link speed,
needed when repairing the schedule in order to calculate the
transmission delays when sending frames on the new path.

Due to the large amount of data exchanged among nodes,
and to increase the determinism of the SHP, in the synthesis of
the initial schedule, empty slots are allocated in all links for
the transmission of SHP frames. We define this bandwidth
reservation (BR) with a period and time included in the
schedule. E. g., for a given period of 1ms and a given time
of 1µs, the nodes will be able to send and receive protocol
frames for one µs every ms, which corresponds to only 0.1%
link utilization. We will use this BR period and time in all our
evaluations, without losing generality.

Table II shows the frames of the SHP protocol for the No-
tification and Preparation phase and for the Update Schedule
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Fig. 4. Frames and Phases flowchart for the Self-Healing Protocol

phase. Figure 4 displays the diagram flow of the frames in
the different protocol phases. The purpose of these frames
during the SHP process will be explained in more detail in
the following sections.

IV. SHP NOTIFICATION AND PREPARATION

The objectives of the first phase of SHP are (1) to notify the
node sending frames through the link and (2) to find a new
path that reconnects the two nodes. We will explain here the
protocol designed for achieving these objectives.

A. Notification

Let vr ∈ V be a node (the receiver) receiving frames from
a link l ∈ L according to a schedule. Let vs ∈ V be the node
(the sender) sending frames through link l = (vs, vr) ∈ L.
Node vr will consider l as faulty if there is frame omission
over link l; i.e. if a message is not received when scheduled1.

Upon detection of a faulty link, node vr starts the SHP
by broadcasting the frame NOF, with the aim to notify node
vs that a new path needs to be found. The purpose of NOF
is not only to notify vs of the failure, but it is also used to
search for a path [vr, ..., vs] needed for future communications.
The construction of this path works as follows. Any node that
receives a NOF via link l′ ∈ L will broadcast NOF, with link l′

appended to the path that was contained in the received NOF.
If a node receives NOF a second time, it will not broadcast
the frame again. When vs receives a NOF frame, it will start
the process to find a new path [vs, ..., vr]. To avoid a flooding
of NOF over the whole network, only a maximum number of
hops is allowed. Note that if a path [vr, ..., vs] does not exist,
vs will never receive any NOF, making the notification and,
therefore, the self-repair impossible.

1It is possible to use a counter of omissions, to avoid activation due to a
transient fault, but since it does not change the protocol, we will here assume
that the protocol is activated on the first detected omission.
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TABLE II
SELF-HEALING PROTOCOL FRAMES

Protocol Frame Abbr. Starting at Ending at Others Content Purpose
Notification Frame NOF Receiver

node
Sender node Add path &

broadcast
Faulty link ID + path
the frame is following

Notify of the link failure to the sender node

Finding Path Back PAF Sender node Receiver
node

Add path &
broadcast

Path receiver to
sender + Path the
frame is following

Sending node broadcasts to find a new path
to allocate not transmitted frames

Notify Path NP Receiver
node

Sender node Relays frame New found path The found path is sent to the sender

Membership Frame MF Sender node Membership
nodes

Relays frame Frame offsets avail-
able ranges

The sender (leader) notifies which nodes are
part of the group patching the schedule

Patch Frame PF Membership
nodes

Sender node Relays frame Patching result Notify if the patching was successful or not

Schedule Frame SF Membership
nodes

Neighbors New schedule Notify the neighbor to which new schedule
should change

Update Frame UF Sender node Membership
nodes

Relays frame Time to update to the
new schedule

Send a common time when to update to the
new obtained schedule

Optimization Frame OF Membership
nodes

Sender node Relays frame Patching result Notify if the patching was successful or not

Let us consider the network topology in Figure 1 with the
schedule in Figure 2, and let us assume that l7 has a failure.
Node vr = v5 will detect the link failure when f1 and f2 no
longer are received. To notify vs = v3, it will start to broadcast
NOF through l8, l10, l11, and l13. Notice that v3 will receive
the notification immediately through l8 and initialize the path
[v3, ..., v5] ← [l8]. However, the other nodes do not stop
broadcasting, e.g., node v4 will receive NOF through l10 and
broadcast NOF through l4 and l6 adding the information that it
was received from path [l10]. Another interesting observation
is that v3 will receive another NOF with path [l9, l6]. During
the broadcast, several paths without cycles will be found, but
the sender vs will only consider the first path received, which
is a good approximation of the shortest path. The possible
selection of other paths, based on different criteria, is left as
future work.

When vs receives the notification of the faulty link (the first
NOF), it starts broadcasting PAF (Finding Path Back) with the
aim to find a path back to vr. The nodes handle PAF in the
same way they do with NOF, although now the objective is
to construct the path to reach vr from vs. Additionally, PAF
contains information about the path [vr, ..., vs], such that when
vr receives PAF, it learns the path to send information to vs.
From that moment on, the protocol is not based on broadcast
anymore, and all communication happens through the loop
path [vr, ..., vs, ..., vr]. Node vr sends frame NP (Notify Path)
to communicate the path [vs, ..., vr] to vs.

Continuing with our example, v3 will send PAF through
l2 and l5 containing the path [v5, ..., v3] = [l8] with the
objective to find the path [v3, ..., v5]. The shortest path that
SHP will detect, goes through v4, which will append l5 to
the path [v3, ..., v5] ← [l5] and broadcast it through l4 and
l9. Node v5 will receive the first PAF through l9 and obtain
the path [v3, ..., v5] ← [l5, l9]. Node v5 will also receive the
information that it can communicate to v3 through path [l8]
and send an NP with the information [v3, ..., v5] = [l5, l9]
which will be the new path to repair the schedule. Although
not visible in this example, with other topologies, vr might
receive multiple possible paths. However, as indicated before,

SHP only considers the first obtained path.
If vr never receives PAF, either because there is no path

[vr, ..., vs] or because there is no path [vs, ..., vr], then SHP
timeouts and the repair is not possible. In such a case, without
some other fault tolerance mechanism, the frames scheduled
through the faulty link will never reach vr nor their final
destination.

B. Membership

We coin the term SHP group to identify the set of nodes that
will collaborate to repair the schedule. All the nodes present in
the new path [vs, ..., vr], which was obtained in the notification
phase, are members of the SHP group, because they own the
schedules that need to be modified.

The SHP group requires a leader, the node vs, to coordinate
the changes, notify the nodes that will belong to the group and
send the needed frames information to patch the schedules.
When vs obtains the path [vs, ..., vr] via the NP frame, it has
already the knowledge that it is the leader of the group, and the
paths to communicate with the nodes in the SHP group. For
the affected frames, i.e. the frames that were transmitted on the
faulty link, the leader also has the information of what we call
the Available Transmission Ranges ATRf (i, l) = [tin, tout].
The ATRs contains the range of possible offsets that each frame
instance is allowed to use without violating the frame and
network constraints. In simpler words, a range of all possible
offsets in which the protocol can accommodate each of the
affected frames. The leader already possesses the information
of all needed ATRf (i, lf ), lf indicating the faulty link,
for all the frames transmitted through the faulty link with
tin = Φf (i, lp), lp as the link where f was received in vs
and tout = Φf (i, lf ) + df (i, l), with d indicating the delay
to transmit f through l . Finally, the leader equitably divides
each ATRf (i, lf ) by the number of links in the path and sends
it with a MF (Membership Frame) to all SHP group nodes
through the path [vs, ..., vr].

In our previous example, vs = v3 is the SHP group leader,
whereas v4 and v5 as the other members of the group. We can
obtain from the schedule contained in v3 that ATRf1(1, l7) =
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[2, 4] and ATRf2(1, l7) = [3, 5], which need to be divided by
the number of links in the new path [v3, ..., v5] = [l5, l9]. As
the available slots for both ATRs are only three, we choose
to divide in ATRf1(1, l5) = [2, 3], ATRf1(1, l9) = [4, 4],
ATRf2(1, l5) = [3, 4] and ATRf2(1, l9) = [5, 5]. Once v3

calculates all the needed ATRs, it sends an MF with the needed
information to each node in the group, notifying that they
are part of a SHP group and indicating which new frames
instances they must allocate. For example, v4 will receive
ATRs containing l9, while v5 will receive an empty MF as
it does not have to modify any outgoing link. The leader will
also need to modify its schedule, but for obvious reasons, it
does not need to send an MF to itself.

V. SHP SCHEDULE UPDATE

In the second phase, Schedule Update, every SHP group
node tries to find a valid allocation for the received ATRs
inside their local schedules. If all the nodes are successful,
the leader can decide a point in time for all the SHP group
nodes to change to their new obtained schedules. However,
allocating the frames offset can be time-consuming, especially
if we want to keep the high reparability of the initial schedule
for subsequent link failures. The SHP cannot afford to take
a long time to find a solution as the affected frames are not
being transmitted while the self-healing is performed. For this
reason, we divide the second phase into two steps: Patching
and Optimization. The patching step aims to find a solution to
transmit all frames in the network again, as fast as possible. In
this step, we do not take into account the schedule reparability
and can use a straightforward, fast heuristic to allocate the
ATRs. Once the patching has been successful, the SHP can
spend additional time to find a better schedule with higher
reparability, using a more complex and hence time-consuming
optimization algorithm.

A. Patching

Once an SHP group node receives a MF, it can start the
patching process immediately. A pseudo-code of the patch-
ing algorithm we implemented is shown in Listing 1. The
algorithm is simple; for every frame ATR, we try to allocate
the frame at the start of its ATR (tin). In the case it collides
with another frame from the original schedule, we try again
after the conflicted frame. We repeat this process until we
find an available allocation, in which case we allocate the
frame and move to the next ATR. If we do not have any
possible allocation, we failed to patch the schedule. This can
happen, e.g., if the utilization exceeds 100% or, as shown in the
evaluation section, if the utilization is close to 100%. We leave
for future work choosing another possible path obtained in the
first protocol phase to overcome this problem. When checking
if a frame collides, we need to consider all the frame instances,
as they must be separated precisely by the frame period. If all
frame ATRs find a possible allocation, the SHP group node
has obtained the valid schedule containing the new frames.

Listing 1. Patching Algorithm Pseudo-code
1 function Patch_Algorithm (ATRs)
2 for ATRf (i, l) = [tin, tout] in ATRs do

3 while collision(S , Φf (i, l) = tin) or
tin + df (i, l) ≤ tout do

4 %% Calculate next possible allocation
5 fc = get_frame_collides(S , Φf (i, l) = tin)
6 tin = Φfc (j, l) + dfc (j, l) + 1
7 end while
8 if tin + df (i, l) > tout then
9 return failure

10 else
11 allocateS, Φf (i, l) = tin
12 end if
13 end for
14 return S

After termination of the patching algorithm, the node no-
tifies the leader with a PF (Patch Frame) of the result so
it can determine the next step. Moreover, if the SHP group
node finds a valid schedule, it will send the modifications of
the schedule to its neighbor with a SF. The purpose of SF
(Schedule Frame) is to convey the potential changes in the
schedule to the neighbor node in order to also change the
schedule in its receiving link in case the leader chooses to
allow the schedule update.

B. Update

When the leader has received all PFs from all the other SHP
group nodes, and if all were successful patching the schedule,
it sends back a UF (Update Frame) containing the update time
where all nodes need to switch to their new obtained schedule.
However, if the leader receives a PF indicating that a node
could not find a valid schedule, it will send a UF to abort the
update and wait for the result of the optimization step.

Note that if a link that belongs to the path connecting
the SHP group suffers a failure, the nodes will not be able
to communicate, leading to timeouts of the SHP activation.
However, we expect this probability to be small. Assuming
independent link failures, it is calculated as the multiplication
of the SHP response time, the number of links in the SHP
group and the probability of a link failure. For common cases,
assuming a link failure of 10−6, the probability of this case is
10−7. The consequences of the timeout will be termination of
the SHP activation without any modification of the schedule.

Still, there exist a problematic case of an inconsistent
Update step which results in an inconsistent modification of
the schedule. If a link fails at a time when the node should
receive UF but the link failure was still not detected, it will
cause an update of the schedule in some nodes only, while
others will not receive the order. This case, even if extremely
unlikely, can be reduced by the implementation of an ACK
frame after the schedule update. It does not entirely remove
the possibility of inconsistent schedule updates but it reduces it
to 10−9, using the same values as in the previous calculations.

C. Optimization

The nodes start the optimization step once they finish the
patching step. Because of the quick patch algorithm, the SHP
can employ more time to find a high reparability solution
to increase the success rate of the SHP for subsequent link
failures. But optimization still needs to be quick because there
can be cases where the patching might fail. The SHP employs
an ILP solver in conjunction with a two-phase algorithm that
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seeks to maximize the schedule reparability. Note that the
ATRs for the patching and optimization are the same, so no
new information is required from the leader.

We present the optimization algorithm pseudo-code in List-
ings 2. The first phase will try to allocate the new frames one
by one without modifying the original schedule following an
incremental approach. But, whenever a valid schedule cannot
be found, a second phase in which all offsets can be modified
is activated. This provides more opportunities for the ILP
solver to find a valid solution as the whole link can be
modified at the cost of an increase in response time. The
maximize reparability call to the ILP solver tries to maximize
the distances between frames [10].

Listing 2. Optimization Algorithm Pseudo-code
1 function Optimization_Algorithm (ATRs)
2 % Phase 1, not modify schedule
3 ILP <- add(S)
4 for ATRf (i, l) = [tin, tout] in ATRs do
5 ILP <- add(tin ≤ Φf (i, l) ≥ tout)
6 end for
7 S = Maximize_Reparability(ILP)
8 if S failed then
9 % Phase 2, modify schedule

10 S = \O
11 for ATRf (i, l) = [tin, tout] in ATRs do
12 ILP <- add(tin ≤ Φf (i, l) ≥ tout)
13 end for
14 for f(i, l) in S do
15 ATRf (i, l) = [tin, tout] = get_ATR(f)
16 ILP <- add(tin ≤ Φf (i, l) ≥ tout)
17 end for
18 S = Maximize_Reparability(ILP)
19 if S failed then
20 return failure
21 end if
22 end if
23 return S

When the optimization algorithm has finished, it mimics the
process of the patching step. The membership node sends an
OF (Optimization Frame) with the result of the optimization.
In case it obtained a valid schedule, it also transmits the poten-
tial new schedule to its neighbor with a SF. The SHP finishes
activating the update step again. If all OF are successful, it
sends back the update time in a UF to all the SHP group
nodes. In case any of the nodes fail to find a schedule, the
SHP could not repair the schedule after the link failure. The
leader could notify to a higher instance of the link failure,
such that further correcting actions can be performed.

D. Multiple Protocol Activations

It is possible to repair multiple simultaneous or consecutive
link failures occurring when an SHP activation is still active.
When multiple SHPs are active, a node might belongs to
multiple SHP groups at the same time. This case can be
accommodated with a straightforward queue system to send
protocol frames or perform actions to different SHPs queries.
However, the response time might increase drastically, espe-
cially when a node needs to perform multiple optimizations for
different SHPs at the same time. To decrease the response time
in this case, we enable the combination of the optimization
step of different SHPs as it is the most time consuming step.
We allow a recent optimization call to be aborted if another
is received. In this case, the solution of simultaneous SHPs
will be found at the same time. The main drawback of this

Fig. 5. Small Network Topology

Fig. 6. Larger Network Topology

approach is that if a link failure cannot be repaired, the result
of the combined optimization will be a failure, even if all the
other links could be repaired if performed independently.

VI. EVALUATION

To evaluate the success rate of our distributed SHP approach
to repair networks, we apply the protocol to the same two
synthetic networks where a global knowledge repair algorithm
was applied [10]. The first network is a small network (Figure
5) consisting of 3 switches, 6 end systems, and 28 links. The
second network is a larger network (Figure 6) with longer
paths, consisting of 8 switches, 8 end systems, and 54 links.
We also synthesized an extremely large network three times
larger than our large network, including 24 switches, 24 end
systems, and 168 links. The networks incorporate two link
classes related to capacity; 50 MB/s when the link connects
a switch with an end system, and 100 MB/s when the link
connects two switches.

We are interested in evaluating the response time in relation
to network size and amount of traffic. We have incremented the
number of frames considered in each network from 50 to up
to 250. The schedule is obtained with an incremental approach
scheduler [12] adapted to obtain high reparability schedules.
We designed the traffic to amount for a high distribution, with
a 10% of frames having one sender and only one receiver,
40% of frames having a random number of receivers, and
50% of frames being broadcasted to all the end systems. High
distributed networks present higher utilization networks where
all links have a similar utilization which we consider to be the
main driver to increase response time for SHP.

Every frame size is set to 1500 bytes and the period is
chosen randomly from 10, 20 or 40 ms, which generates a
schedule with a 40 ms hyper-period. The maximum end-to-
end latency is a tenth of the frame period. The time slots in
the schedule are set to only one ns, which implies that every
link will contain 4×107 time slots. Finally, we set the deadline
to be equal to the period, and use the optimization parameters
defined in [10].

This traffic yields a maximum link utilization of 28% for
the small network, 30% for the large network and 31% for
the extra large network. We do not consider higher utilization
networks as we evaluate multiple link failures, which further
increases the utilization around the affected links. E.g., after
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two link failures, in some cases links achieve up to 90%
utilization.

We have implemented a scheduler prototype that obtains
high reparable schedules using the ILP Solver Gurobi v.8.1
with its Python API. We simulated the states of the SHP
using our simulator also implemented using Python, together
with the patching algorithm. The optimization algorithm was
implemented using a modified incremental approach with the
ILP Solver Gurobi v.8.1. The evaluations were performed on
a MacBook Pro with 2.9 GHz CPU Intel Core i7 and 16 GB
of RAM.

A. Reparability Results

We evaluate the success rate of SHP in comparison with a
full network reschedule and a global knowledge repair algo-
rithm. We utilize both networks with 250 frames to compare
with our previous evaluation, considering up to three link
failures. For the SHP, we differentiate two fault patterns: links
can fail at a random point of time but only when no SHP is
active, and all links fail simultaneously. We perform the study
for all possible link failure combinations for the number of
links studied and display the percentage of successful cases.
We do not perform more than three link failures as the number
of possible cases exceeds 105.

We can observe in Table III the success rate for the small
network, for full rescheduling, a globalized repair algorithm
[10], the SHP with consecutive failures and the SHP with
simultaneous failures respectively. Notice that the success rate
of the SHP is almost identical to the global repair algorithm.
For only a single link failure, it reaches a 100% success rate,
the same as the full reschedule; the best possible success rate
scenario. However, for more link failures, the localized repair
decreases its success rate compared to the full reschedule,
where the selection of not optimal paths to re-route the traffic
affects its performance. Between the global repair and the SHP,
we see that our protocol cannot solve a negligible number
of cases. The reason for these failed cases is the distributed
character of the SHP, which has to schedule the links sep-
arately at every SHP group node, missing some potential
solutions from the state space. An interesting result is that
simultaneous link failure with multiple SHP activations has the
same success rate as independent link failures, which motivates
the use of SHP when many failures are likely to happen at
different points of the network at the same time. It is also
important to recognize that the SHP also has difficulties with
small networks topologies, where different paths to connect
nodes are limited, and where after a few link failures the
link utilization is very high. In our evaluations, we discovered
that the SHP presents difficulties to allocate frames when the
utilization is above 50% and starts to regularly fail to heal
links with the utilization above to 60%. In order to increase the
success rate, the traffic of the affected link could be split and
allocated into different paths taking into account the utilization
limitations described. However, we leave this for future work.

For the large network, we can observe a similar success
rate between the global algorithm and the SHP, with an even
closer success rate compared to the full reschedule. Larger

networks are more suited to localized repairs, since different
available paths can be found. We notice that some cases could
not be repaired with simultaneous link failures compared to
independent protocol activation.

TABLE III
COMPARISON OF THE REPARABILITY BETWEEN A GLOBAL REPAIR

ALGORITHM AND THE SELF-HEALING PROTOCOL

Network Failures Resched. Global SHP. SHP Sim.

Small
1 1,0 1,0 1,0 1,0
2 0,9682 0,9006 0.8915 0.8915
3 0,9047 0,7288 0,7206 0,7206

Large
1 1,0 1,0 1,0 1,00
2 0,9861 0,9809 0,9776 0.9770
3 0,9570 0,9330 0,9310 0,9293

Extra Large
1 1,0 1,0 1,0 1,00
2 0,9874 0,9218 0,9172 0,9165

B. Performance Results

We evaluate the performance of the SHP by investigating the
response time to patch and optimize up to three link failures.
Remember that when a schedule has been patched, all the
frames are starting to be transmitted again, while when the
schedule has been optimized, we modify the patched schedule
to increase the reparability and increase the success rate for
the subsequent link failures. For every network, we study
up to 250 frames and a total of 1000 random link failure
combinations at random times. We do not display the result
variances, as they are highly dependent on which link is
repaired and it would distort the displayed figures.

We can observe in Figure 7 the patching and optimization
times for the small network after consecutive link failures,
where a link can only fail when no SHP is currently active.
An unexpected result is that there are no timing differences be-
tween the first, second and third link failures, which indicates
that the deterioration after multiple link failures only affects
the success rate, not the response time. We can also see that
up to 150 frames, we have a patching time below 100 ms and
an optimization time of less than half a second. Scalability
issues appear for more than 200 frames, with more than six
schedule cycles (240 ms) of frames lost on the faulty link and
more than one second to optimize. The response time in the
protocol is mostly a result of the patching and optimization
algorithms, the rest of the protocol incurs on average less than
5 ms. We conclude that, similarly to the reparability results, the
SHP has difficulties with very small networks. However, it is
worth noting that this is a considerable improvement compared
to reschedule, where the initial scheduling time took several
minutes. Moreover, the SHP also takes into consideration
uploading the new schedule into the network.

The patching and optimization times for the large network
are displayed in Figure 8. We notice a significant difference
in response times compared to the small network, where even
for 250 frames the SHP needs less than 40 ms for patching
and around 5 ms for 50 frames. The optimization time is also
smaller, with less than half a second for all the studied cases.
However, it has less uniformity, as with a larger network, there
exists a more significant difference in the utilization of links.
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Fig. 7. Patching and optimization time to repair the schedule for the small
networks after consecutive link failures for different number of frames
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Fig. 8. Patching and optimization time to repair the schedule for the large
networks after consecutive link failures for different number of frames

To inspect if larger networks continue to influence the response
times, evaluated the extra large network, three time larger than
the large network. The patching time continues to be reduced,
around 10 ms, and the optimization could repair the schedule
in almost one schedule cycle (40 ms) in the worst case, as
seen in Figure 9. We conclude that the SHP is faster in larger
networks, as the traffic is more distributed.

Finally, we evaluate the response times when several links
fail simultaneously. To enforce that nodes are part of multiple
SHP groups at the same time, we impose two link failures on
both link directions from the same physical link. This situation
implies that both SHP activations have the same SHP group
nodes and requires such nodes to try to patch and optimize
schedules at roughly the same time. In Figure 10, we observe
the patching and optimization times after both link failures,
for the small and the large network. The response times
are slower with multiple activations, with a small increase
of the optimization time but almost double in the patching
time compared with the previous evaluations. The capacity to
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Fig. 9. Patching and optimization time to repair the schedule for the extra
large networks after consecutive link failures for different number of frames
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Fig. 10. Patching and optimization time to repair the schedule for two
simultaneous link failures, for the small and large networks and different
number of frames

merge the optimization step allows the SHP to reduce the time
compared to queuing the optimizations. However, we do not
merge the patching, and therefore the node will start the first
received patching order while queueing the second, resulting
in about double response time for the latter.

VII. RELATED WORK

A varied range of research has been conducted to study
how to enhance the static schedule to tolerate failures. Pop et
al. proposed the re-execution of frames to deal with transient
link failures [13] and quasistatic schedules where a set of
schedules was synthesized as a prevention for the most likely
permanent link failures [14]. An improvement of the Pop et
al. replication was also proposed using frame replication over
disjoints paths [15][16]. The same authors also enhanced this
method including the topology to the synthesizing problem
[17][18]. The idea of schedule mode changes as an improve-
ment to quasistatic schedules was also considered, where
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stacked schedules are generated, which can be modified to
react to predefined events [19][20]. The crucial factor of all
these studies is their fast reaction time, nearly instantaneously.
However, they require a higher initial synthesis time, introduce
extra traffic and most importantly they only cover a limited set
of predefined events/failures, which for upcoming large-scale
networks can only be a small fraction of all failures, since the
number of failures is proportional to the network size. Hence,
these techniques do not scale well or are not economically
suitable for the whole network.

Methods to obtain schedules during run-time have also been
studied. Zhang et al. proposed a cloud-based approach with a
server containing a set of pre-computed schedules for different
events [21][22]. If no schedule meets the requirements, the
server synthesizes a new schedule and distributes it. Even
though this approach can react to any change, a full schedule
synthesis can take several minutes, and the synthesis time
increases with network size. Other authors have aimed to
meet the timing requirements by reducing the time to fully
re-schedule. Nayak et al. proposed an incremental approach
for time-sensitive software-defined networks that could find
schedules during run-time in a few seconds [8]. However, the
authors had to simplify the problem extensively, only networks
with less than 13% utilization and a certain maximum path size
could be scheduled, a utilization much smaller than the 60%
utilization observed in our evaluations.

Raagaard et al. studied runtime reconfiguration of schedules
for fog computing applying an incremental approach together
with list scheduling heuristics [23]. When network change
occurs, the reconfiguration algorithm removes all the affected
frames and reschedules them iteratively. If not successful, a
new schedule is attempted from scratch. Although this ap-
proach shares a relatively similar design scheme compared to
SHP, it presents serious scalability issues due to its centralized
nature. When a change occurs, their reconfiguration needs to
notify the central node, reschedule and redistribute the changes
in the schedule to the whole network again. For large networks,
this process requires time and bandwidth resources that were
not evaluated. Alternately, our SHP, being distributed, localises
the changes needed in the network schedule, reducing the
time to notify and update the schedule to a few milliseconds.
In regards to the scheduling process, we appreciate in our
evaluation that a link failure might cause the loss of up to 50%
of the frames which would explain the exponential increase in
reconfiguration time in their evaluation for larger networks.
Alternatively, the proposed SHP localises the rescheduling to
the few affected group of nodes that needs to change their
local schedules. That not only reduces the complexity of the
scheduling problem (and allows parallelization on the solving),
but also avoids the scalability issues presented with larger
networks. Moreover, the SHP can repair link failures occurring
at different network locations due to the repair not affecting
the schedules outside the SHP group.

Additional research has been performed to react to un-
predicted changes at runtime. Avni et al. implemented a
combination of offline and online techniques to tolerate k link
failures where an online policy was activated for the recovery
[24]. Their work has scalability issues as they rely on very

computationally demanding algorithms [25]. Additional online
policies include [26], which implements an offline schedule
with slacks to allow small adjustments of the frame timing.
A similar concept was also applied to train communication
networks where the traffic could be changed at the cluster
level [27], [28]. In our approach, we repair the schedule
at the required segment without any level limitations using
rescheduling techniques instead of policies to enhance the
success rate while seeking to keep a low response time.

In the context of TT communication, self-adaption has
also been researched [29]. For instance, to accommodate new
message streams or to update traffic patterns. Our approach
does not address this problem, although it is possible that the
self healing capabilities can be exploited in order to implement
local adaption. The most evident case is addition of a new
link, which can be seen as the reciprocal of a link crash.
However these alternative uses of our protocol have not been
investigated, as our focus is on fault tolerance exclusively.

VIII. CONCLUSIONS

Time-triggered networks need to be enhanced with flexibil-
ity and adaptability, particularly for large networks and con-
sidering link failures. Existing solutions are computationally,
timing and cost expensive, or can only handle a limited number
of predefined possible changes. We propose a distributed Self-
Healing Protocol that recovers from link failures at runtime
by forming a group of nodes which collaborate to repair a
small schedule portion instead of the whole schedule. Our
evaluations indicate that SHP may reach a similar repair
success compared to a global knowledge approach, even in
the presence of simultaneous links failures.

The SHP repair is several orders of magnitude faster than
full rescheduling, requiring only around 200 ms for small
networks and 10 ms for large networks, instead of several
minutes (or even hours) of a complete rescheduling. We find
that small network repairs tend to reallocate traffic in only a
few links, causing saturation and increasing the repairing time.
To increase the likelihood to repair after a link failure, we also
introduce an optimization step that finds a high reparability
schedule after the patching process in less than 2 seconds for
small networks and less than half a second for larger networks.
In the presence of simultaneous link failures, the patching time
is doubled, but the optimization time stays almost unaltered.
These results show that static schemes, e.g. [14], can be more
efficient for small networks, but our protocol scales well with
large networks. Both techniques are complementary and can
be integrated to increase the performance of both approaches.
We leave this integration as an open problem.

For future work, we would like to enhance our protocol to
consider an extended fault model, for instance with node fail-
ures, and also the integration of new elements during runtime
(i.e plug-and-play schedules); although we believe that a fully
distributed solution, based on local information only, might not
be efficient. On top of that, requiring all nodes to have solving
capabilities might be expensive to implement. Thus, we plan to
design a new protocol where only a set of high-performance
nodes possesses solving capabilities. Moreover, such nodes,
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while no protocol is active, will recollect information of their
surrounding nodes and build knowledge of the network status.
This knowledge will not only allow them to better react to
different events, but it could also use the idle time to create
schedules preventively, for more likely events.
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