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Abstract— Several control methods have been proposed to
stabilise riderless bicycles but they do not have sufficient
simplicity for practical applications. This paper proposes a
practical approach to model an instrumented bicycle as a
combination of connected systems. Using this model, a PID
controller is designed by a loop shaping method to stabilise the
instrumented riderless bicycle. The initial results show that the
bicycle can be stabilised when running on a roller. The work
presented in this paper shows that it is possible to self stabilise
a riderless bicycle using cascade PI/PID controllers.

I. INTRODUCTION

A bicycle is a very well-known and popular means of
transportation. The bicycle is often configured to have two
inline wheels which make the system inherently unstable and
difficult to control. The rider must train how to balance the
bicycle. Balancing a bicycle is based on the simple concept,
steering into the fall direction, but it is hard to be applied
automatically as many features of the bicycle should be
considered such as the trail, the gyroscopic torque, the mass
distribution, and the forward velocity.

Two common models which represent, to some extent,
the dynamics of a bicycle are the Whipple model and the
point-mass model. The Whipple model, developed by Francis
John Welsh Whipple in 1899, is the first analytic model that
in a correct way describes the dynamics of a bicycle [1].
Linearised equations were derived from the Whipple model
by Meijaard et al. [2] and they have been used in many
implementations regarding control of a riderless bicycle, such
as in the work by Baquero-Suarez et al. and Shafiekhani et
al. [3], [4]. A less complex dynamic model of a bicycle is the
point mass model, as described by Liembeer and Sharp [5],
where a set of assumptions allows the bicycle to be modelled
as an inverted pendulum, with its mass as a point mass.

Several control methods were proposed to stabilise the rid-
erless bicycle using the point mass model [6], [7]. However,
the proportional integral derivative (PID) is still attractive
from an industrial point of view [8] and more investigation
is needed to come up with an effective tuning method for
PIDs.

In this paper, the mass-point model is considered to model
the riderless bicycle. A robust PID controller design method
is proposed to come up with the simplifications on the
considered model. It is then used to stabilise an instrumented
bicycle.
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The remaining of this paper is structured as follows. Sec-
tion II gives a brief survey of related works. The simulation
model of the bicycle is explained in Section III. The proposed
robust PID designed method is developed in Section IV.
Section V is devoted to the application of the robust PID
control design method on an instrumented riderless bicycle
and the obtained results. Finally, concluding remarks and
future works are given in Section VI.

II. RELATED WORKS

Different types of controllers have been proposed in the
literature to control and balance riderless bicycles. From
the more traditional ones, such as the Proportional-Integral-
Derivative (PID) controllers, to more complex ones which
rely on various Artificial Intelligence (AI) controllers.

Tanaka and Murakami [9] presented one of the first
riderless bicycles which managed to keep its balance while
riding on a roller. To control the bicycles steering axis, and by
extension the balance, a PD controller was utilised along with
disturbance observers. From the results, it is possible to see
how the steering angle follows the lean angle which makes
the bicycle balanced. A PD controller was also implemented
in the work by Suebsomran [10], where a bicycle, equipped
with a reaction wheel was kept stable. The controller regu-
lates the angle of the reaction wheel to produce a necessary
torque for the bicycle to be able to balance. The PD controller
manages to stabilise the bicycle, however, only in a simulated
environment. In the work by Wang et al. a cascade controller
for balance and directional control of a bicycle-type two-
wheeled vehicle is presented [11]. In the inner loop, a PD
controller was used for balancing the vehicle by sensing the
lean angle and output a steering torque to the plant. The
outer loop, which composed of the directional control, also
relied on a PD controller, but by sensing the yaw angle it
outputs a reference lean angle which was fed to the inner
loop. Experiments were made in simulation and on a real
bicycle-type two-wheeled vehicle. Both the balance and the
directional controller showed promising results. However,
the platform used for testing was small and was some sort
of hybrid between a kid bicycle model and small scooter.
A regular sized bicycle have a greater height and mass
compared to small bicycle, and also the center of gravity is
generally at a greater distance from the ground which makes
the regular sized bicycles more sensitive to disturbance and
harder to control. Because of the size and the structure of
the platform, the presented results cannot be generalised to
a regular sized bicycle.

Since many systems, including bicycles, are simplified
when modelled, there are some uncertainties present. A



robust controller is specially designed to tune a system to
have the desired behaviour, even with some uncertainties in
the models [12]. Many of the proposed controllers in the
related works are only evaluated in simulation and often
experiments conducted on a real bicycle is missing. For
example, in the work by Chen and Dao [13], a Sliding-
Mode Controller (SMC) was proposed to track the bicycles
roll angle. The benefits of using SMC to control a bicycle is
that the uncertainties in the Whipple model’s velocity can be
compensated. The results showed that the bicycle was stable
in 15km/h in a simulation environment.

Anjumol and Jisha [14] proposed an LQR controller to
control a second-degree bicycle model. The results obtained
from the controller was compared with a posture controlled
proposed by Tanaka and Murakami [15]. The result from the
comparison shows that an LQR controller performs better.
However, the posture controller uses a PD controller with
a disturbance observer which was better for disturbance
rejection. An adaptive self-tuning regulator is proposed by
Al-Buraiki and Ferik [16]. The controller uses an estimation
stage and a construction stage for the input signal, the
first stage uses a weighted recursive least squares approach
to estimate the models state-space, which is used in the
second stage to construct the input signal. Additionally, in
the second stage, an LQR controller is adapted for the on-
line estimation. The proposed controller was only evaluated
in simulation, where it successfully managed to balance the
bicycle.

An AI-controller is used in the work by Sharma, where
a fuzzy controller is presented to balance a bicycle [6]. The
developed controller takes two inputs, the lean angle, and
the steering angle, and outputs a correction lean. Thus, the
controller relies on direct regulation of the lean angle which
would require a reaction wheel, an inverted pendulum or
something similar. In this paper, regulation of the steering
angle and the rear wheel speed is used to keep the bicycle
stable. Sharmas’ controller manages to stabilise the bicycle
in a simulated environment but was never used in any real-
life experiments.

Real-life experiments are conducted in the work of
Shafiekhani et al. [4] where an adaptive critic-based neuro-
fuzzy controller was developed. A comparison was made
between the neuro-fuzzy controller and a Fuzzy Inference
System (FIS) controller, and it was concluded that the neuro-
fuzzy offers more accurate performance in term of tracking
the lean angle in both simulation and reality. Additionally,
Abdolmalaki [17] presented a control system that relies on
a FIS in combination with a PID controller to balance a
bicycle. Results from experiments showed that the bicycle
was able to balance along with a straight line, however
with oscillations of ± 5◦. The oscillations were also present
when a sinusoidal trajectory was followed, despite this, the
proposed control was still able to keep the bicycle from
falling over in real-life experiments.

In 2018, Baquero-Suarez et al. [3] presented promising
results where a regular sized bicycle, of a male model,
equipped with sensors and actuators, manage to balance

itself. It was able to follow a path using steering torque
and forward velocity as the only control outputs. The results
showed that the proposed system can balance even under
small accelerations, however, the control structure is com-
plex.

III. MODELLING OF THE RIDERLESS BICYCLE

The riderless bicycle consists of three main parts, the
bicycle, the steering unit, and the moving unit. The point-
mass model is used in this paper to model the bicycle
where a direct relationship between the lean angle and the
steering angle are described. The steering motor is internally
controlled to get the desired second-order system dynamic.
The rear wheel motor is controlled such that the bicycle can
move in a constant speed and it is not considered in this
paper.

A. The Point-Mass Model
The point-mass model is one of the more basic analytic

bicycle models, it’s a simple second-order linear model with
a set of simplifications. The model assumes that both the
front and rear wheel along with the front frame is mass-
less, giving them inertia of zero. However, their masses are
lumped together forming a point-mass, hence the models’
name. To simplify the bicycle model further, it is assumed
that the forward speed is constant and the heading angle λ
and the trail distance are zero. Consider the bicycle shown
in Fig. 1, with x-axis in the forward direction of the bicycle
and the z-axis in the vertical direction. The two points, P1
and P2 are the contact points between the ground and the
rear wheel and front wheel respectively. P3 is the point where
the steering axis and the horizontal plane intersects with each
other. The parameters a and h describe the distance from the
rear wheel to the centre of gravity (CoG) in the x- and z-
axis. λ is the head angle, c is the trail distance, and the b is
the wheel base [18].

Fig. 1. The a and h corresponds to the position of the CoG. The wheelbase
is given by b, λ describes the head angle, and c is the trail.

Following the procedure described in [18], we get the
following transfer function from steer angle δ to lean angle φ

Gφδ(s) =
v(Ds+mV h)

b(Js2 −mgh)

=
vD

bJ

s+ mV h
D

s2 − mgh
J

≈ av

bh

s+ v
a

s2 − g
h

. (1)



As can be seen from the transfer function, it will behave
differently for different velocities. In this paper, a constant
forward velocity of 14km/h and the bicycles physical param-
eters presented in Table I are considered.

TABLE I
INSTRUMENTED BICYCLE PARAMETERS.

Design parameters
Parameter Symbol Unit Value
CoG with respect to O (x) a [m] 0.486
CoG with respect to O (z) h [m] 0.519
Gravity g [m/s2] 9.820
Wheel base b [m] 1.080

B. Steering Response Matching

The internal structure of the position controller is com-
posed of one PD steering angle controller followed by a
speed and a current PI controller as shown in Fig. 7. Instead
of modelling the three closed loop controllers, handlebar
mass, friction and the motor characteristics, a step matching
response method is applied where the recorded step response
from the instrumented bicycle is matched with a timed
delayed second-degree transfer function. To record the step
response from the instrumented bicycle, it is held in an
upright position with the wheels on the ground and a step of
3 degrees are commanded. The input to the transfer function
is the desired steering angle and the output is the actual
steering angle.

P (s) = e−d·s ω2
n

s2 + 2ζωns+ ω2
n

. (2)

Matching the response in Fig. 2 gives a transfer function
with damping factor ζ = 0.6, ωn = 33.9, and the time delay
d = 0.015.

Fig. 2. Recorded response along with the matched transfer function.

By coupling the system (2) and (1), i.e expanding the
point-mass model with the dynamics captured from the steer-
ing system, the instrumental bicycle is modelled. Converted
into discrete time, using zero-order hold as the discretisation
method, with a sampling time of 0.01 seconds, the complete
model is given by the following transfer function. The input
to the system is the desired steering angle and the output is

the current lean angle.

P (z) = z−2×
0.000461z3 + 0.00198z2 − 0.00186z − 0.000324

z4 − 3.574z3 + 4.813z2 − 2.905z + 0.6658
(3)

IV. BALANCE CONTROLLER DESIGN

In this section, the design problem of a PID controller is
formulated as an optimisation problem that can be solved
using an appropriate algorithm. The goal of the balance
controller is to track a lean angle, by outputting a desired
steering angle to the steering position controller. Consider
the feedback control system in Fig. 3, where G(z) is the
plant, K(z) is the controller, r(t) is the reference signal,
y(t) is the system output signal, u(t) is the control signal,
d(t) is the disturbance signal, and n(t) is the noise signal.

Fig. 3. A standard feedback control system.

The objectives of the feedback control loop are to en-
sure the stability of the closed loop system, good tracking
performance, robustness against the plant uncertainties, and
rejection of the disturbances affecting the system. These
objectives can be formulated as constrained on the frequency
response of the loop transfer function as follows [19]:

• The open loop frequency response should cross the 0 dB
once with a constraint on the phase margin (to ensure
the stability and the performance of the closed loop
system).

• The gain of the open loop frequency response should
be high below the desired bandwidth (to ensure the
rejection of the disturbances).

• The gain of the open loop frequency response should
be low above the desired bandwidth (to ensure the
robustness against the plant uncertainties).

A controller that meets the above constraints can be designed
by optimising the following objective function [20]:

J =ω1(ωb − ωt)
2

+ω2

∑
ω>ωb

20log|K(jω)P (jω)|

−ω3

∑
ω<=ωb

20log|K(jω)P (jω)| (4)

where ωt is the target bandwidth, ωi, i = 1, 2, 3, are weights,
and ωb is the bandwidth of the loop transfer function defined
by:

ωb = inf
ω

|K(jω)P (jω)| ≤ 1 (5)



The weights ωi, i = 1, 2, 3 have to be selected properly in
order to approximately satisfy the design requirements. The
following weights are suggested by [20]

ω1 =
1

ω2
t

, ω2 = ω3 =
1

2000
(6)

The above optimisation problem is solved for the bicycle
model in eq. 3 using fmincon, which is a nonlinear program-
ming solver in MATLAB. The solution yields the following
PID controller:

K(z) = KP (1 +KITs
1

z − 1
+

KD

Ts

(z − 1)

z
) (7)

where KP = 2.5117, KP = 1.5431, KD = 0.075, and
Ts = 0.01s.

Fig. 4 shows the sensitivity function of the designed
system. It shows that the largest value of the sensitivity
function is 2.02 which is in the range of the recommended
values and the system will have a good rejection of the
disturbance in lean angle.

Fig. 4. Sensitivity function of the designed system.

V. SIMULATION RESULTS

The complete system is modelled in Simulink along with
the noise of the lean angle sensor which has a measured
variance of 0.0001 and a standard deviation of 0.01. In the
Simulink model, the balance controller has a sampling time
of 100 Hz, the transfer function which represents the steering
system executes in 600 Hz and the point-mass model is
implemented in continuous time. The result of running the
complete Simulink model with a disturbance on the lean
angle is shown in Fig. 5. The simulation shows that the
bicycle keeps balancing after disturbing the lean angle.

Fig. 5. The steering and lean angles from simulation.

VI. APPLICATION TO THE INSTRUMENTED BICYCLE

The bicycle is a modified electrical bicycle of a regular
sized male model with a motor in the rear wheel. The bicycle
is equipped with a brushed DC motor for controlling the
steering angle which is measured with an encoder. To control
the steering motor a Junus motor controller is utilised. A
VN-100 is used for measuring the lean angle of the bicycle
and is mounted underneath the bottom bracket shell. To be
able to send remote commands to the bicycle, a receiver
is mounted on the bicycle. As the main processing unit a
National Instruments roboRIO is utilised and the software is
written using LabVIEW, the instrumented bicycle is shown
in Fig. 6.

Fig. 6. The instrumented bicycle with its rear wheel motor inside the
green square. The blue box indicates the position of the VN-100, used
for measuring the lean angle. Inside the yellow box is the electrical speed
controller. National Instruments roboRIO is mounted on the bicycle and is
highlighted by the purple box. To be able to send remote commands to the
bicycle, the receiver inside the red box is utilised. The motor used to control
the steering angle is highlighted by the orange rectangle.

A. Control structure

The control structure on the roboRIO is devised of an inner
and an outer loop forming a cascade controller as shown in
Fig. 7

Fig. 7. The complete control structure where φ∗, δ∗, δ̇∗, I∗ represents
the desired values and φ, δ, δ̇, I are the measured values from the bicycle.
The balancing controller and steering angle controller are implemented on
the roboRIO while the velocity and current controller reside on the motor
controller.

The steering angle controller tracks the position of the
handlebar and the outer loop tracks the desired lean angle of
the bicycle. The steering angle controller uses a PD controller
running on the roboRIO FPGA target with a loop speed of
600Hz, while the outer balancing PID controller is imple-
mented on the real-time OS running with a loop frequency
of 100Hz. The output of the steering angle controller is a



PWM signal which is fed to the motor controller. Inside the
motor controller, the PWM signal is mapped to the desired
motor velocity and compared to the current motor velocity.
The error is inputted to a PI controller and the resulting
output is forwarded as the desired current to the last control
loop which regulates the voltage going to the motor by using
another PI controller.

Using software which accompanied the motor controller,
the current controller is auto-tuned. The velocity controller is
manually tuned using the same software and their respective
control gains can be seen in Table II along with their
saturation limits. The two controllers which reside on the
roboRIO use the values shown in Table III.

TABLE II
THE GAINS USED FOR THE TWO PI CONTROLLERS WHICH RESILE ON

THE MOTOR CONTROLLER.

Junus controllers
Velocity controller Current controller
Cp 70 Vp 700
Ci 81 Vi 200
Limit 4.12 A Limit 7000 RPM
Speed 4 kHz Speed 20 kHz

TABLE III
CONTROLLER GAINS FOR THE PD CONTROLLER IMPLEMENTED ON THE

FPGA TARGET OF THE ROBORIO AND THE PID CONTROLLER WHICH

EXECUTES ON THE REAL-TIME TARGET.

roboRIO controllers
Steering angle controller Balance controller

Kp 0.10 2.5117
Ki 0 1.5431
Kd 0.04 0.0750
Output range ±50 ±45
Speed 600 Hz 100 Hz
Filter coefficient 0.80 -

To control the forward velocity of the bicycle, a PI con-
troller is implemented on the FPGA target of the roboRIO.
To measure the speed of the rear wheel, 12 magnets are
mounted on the rear wheel, and a Hall sensor measures the
pulses from the magnets and converts it to speed. The output
from the PI controller is fed to the rear wheel motor through
an electrical speed controller.

B. Experimental setups

To evaluate the proposed controller, the bicycle is placed
on a bicycle roller with the front wheel pointing forward
and is kept in an upright position by a human. Riding a
bicycle on a roller is similar to riding a bicycle in an outdoor
environment [21].

An experiment begins with a small calibration phase where
the steering angle is initialised to zero and the IMU is
powered on. During the calibration phase, it is important that
the front wheel is pointing forward. Using a small offset, the
IMU angle is also initialised to approximately zero. Next, the
control loop is deployed and the rear wheel is powered on
and accelerates to approximately 14km/h. When the bicycle

rides at a nearly constant velocity the human is releasing the
bicycle and the control loop is fully in-charge of keeping the
bicycle stable, as shown in Fig. 8.

Fig. 8. Self stabilising bicycle on a roller running with a forward speed
of 14 km/h. The width of the rollers is 37 cm.

Two experiments are conducted, in the first one the bicycle
is simply riding on the bicycle roller and the signals are
logged until a human has to interfere with the bicycle. To
further evaluate the controller and its robustness, lean angle
disturbance is injected in the lean angle measurements. The
amplitude is 1 degree and its present for 0.25 seconds, and
the disturbance is injected two times. Another possibility is
to induce disturbance manually by introducing some lateral
forces on the bicycle. However, by inducing the disturbance
directly in the measurements, the experiment can easily be
reproduced if necessary.

C. Results

In Fig. 9 and Fig. 10 the result from the bicycle experiment
is presented. The signals are only logged while the bicycle
self-stabilising, as soon as a human interacts with the bicycle
the logging is turned off. Fig. 9 plots the lean and steering
angle of the bicycle as well as the desired steering angle
which is outputted from the balance controller. The forward
speed of the bicycle is given in Fig. 10. In the experiment,
the gains of the PID controller are taken from the tuning
process done in simulation without any modifications and
can be found in Table III. The results from the disturbance
rejection experiment are shown in Fig. 11.

Fig. 9. The result from the bicycle experiment where the bicycle is
placed on a roller and a commanded forward speed of 14km/h is used.
The signals are logged when the bicycle is self-stabilising on the roller.
The PID controller, employed for balancing the bicycle, is first tuned in
simulation and then implemented on a roboRIO.



Fig. 10. The forward speed of the bicycle during the experiment. To
measure the speed of the bicycle, 12 magnets are mounted on the rear
wheel and its pulses are measured with a Hall sensor. By calculating the
time between the pulses and knowing the radius of the rear wheel it is
possible to calculate the speed of the bicycle.

Fig. 11. A disturbance is injected at approximately 1.5 seconds and another
one at 2.2 seconds. Each disturbance period is present for 0.25 seconds and
each period highlighted by a grey rectangle in the figure. The amplitude
of the disturbance, which is injected in the lean angle measurements, is 1
degree.

VII. CONCLUSION & FUTURE WORK

The work presented in this paper showed that it is possible
to self stabilise a riderless bicycle using a cascade PID
controller. By modelling a dynamic bicycle model, step
response matching, and sensor noise a controller can be tune
in simulation and adopted on an instrumented bicycle. The
roller experiment showed that the instrumented bicycle is
self-stabilising for 51 seconds or approximately 200 meters.
Additionally, from the disturbance experiment, it is possible
to see that the proposed controller can reject disturbance on
the lean angle and still maintain to balance the bicycle. Both
experiments are cancelled when a human has to interfere
with the bicycle, this is due to the width limitations of the
bicycle roller and the lack of trajectory tracking which makes
bicycle drift to the sides. This could also be the result of
asymmetric mass distribution of the bicycle or that the testing
ground is not entirely flat. Additionally, in reality, the lean
and steering angle might not be initialised to the absolute
zero position. This needs to be investigated further, and an
outer loop for trajectory tracking should be implemented.
Furthermore, to avoid the limitations of the roller, future
experiments should be conducted on a flat surface without
the confined limitations of the roller.
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