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Abstract: The technological advancements make the intelligent on-board data processing possible on a 
small scale of satellites and deep-space exploration spacecraft such as CubeSats. However, the operation 
of satellites may fall into critical conditions when the on-board data processing interferes strongly to the 
basic operation functionalities of satellites. In order to avoid these issues, there exist techniques such as 
isolation, partitioning, and virtualization. In this paper, we present an experimental study of isolation of on-
board payload data processing from the basic operations of satellites using Docker. Docker is a leading 
technology in process level isolation as well as continuous integration and continuous deployment (CI/CD) 
method. This study continues with the prior study on heterogeneous computing method, which improves 
the schedulability of the entire system up to 90%. Based on this heterogeneous computing method, the 
comparison study has been conducted between the non-isolated and isolated environments. 

1. INTRODUCTION 

The role of intelligent on-board data processing for in-situ information value extraction 
is significant in space systems such as earth and atmospheric observation satellites, Cu-
beSat constellations, and deep-space exploration spacecraft. For example, the next gen-
eration earth and atmospheric observation satellites require the sensors with high sensi-
tivity and resolution, while, the sensors generate more data than the cross-links or down-
link can handle. However, the operation of satellites may fall into critical conditions when 
many on-board operations and processes, including the basic operation functionalities of 
satellites, interfere with each other strongly. Thus, in this paper, we present an experi-
mental study of isolation of on-board payload data processing from the basic operation 
functionalities of satellites in a common platform using Docker[1]. 
 
In this study, we consider heterogeneous computing for on-board data processing which 
is explored by using radiation tolerant on-board processing platforms[2][3]. These plat-
forms take advantage of both commercial off-the-shelf products (COTS) and a new com-
puter architecture, Heterogeneous System Architecture (HSA)[4], which reduces the data 
transfer bottle-neck by enabling coherent virtual shared memory between different pro-
cessing units (e.g. CPU, GPU FPGA). Moreover, HSA simplifies the programming pro-
cess of the heterogeneous computing software. The platforms inherit the advantages of 
the platform which is commercialized by Unibap AB and selected by NASA for high-
performance on-board processing for the “HyTI” thermal hyperspectral mission[5]. 
 
Space systems require to satisfy different types of limitations such as SWaP (size, weight, 
and power) and radiation hardness. As being as real-time systems, timing constraints are 



required as well. Further, space systems require to adopt continuous integration and con-
tinuous development/deployment (CI/CD) and automated testing in order to improve their 
development process and quality of the products. Thus, in this paper, we consider using 
Docker for isolation as well as CI/CD. 
 
Contribution: This study continues prior work[6][3] of a heterogeneous computing 
method, which improves the schedulability of the entire system up to 90%. This hetero-
geneous computing method is well known in high performance computing[7] and super-
computers. However, to the best of our knowledge, there is a lack of prior research studies 
of this method on real-time embedded systems. Therefore, in this paper, we conduct an 
experimental study of this method in Docker isolated environments. 
 
Organization: The rest of this paper is organized as follows. Section 2 and 3 introduce 
related work and necessary background information. Section 4 presents our system model 
and system architecture. Section 5 introduces case study and experiments and reports ex-
perimental evaluation. Lastly, Section 6 concludes this paper. 

2. RELATED WORK  

FPGA accelerated onboard computer is one of the main representers of heterogeneous 
processors used in satellites, as FPGAs are strong against in the radiation-hardened envi-
ronments. For example, FPGAs are considered for on-board processing in an advanced 
imaging system[8] and real-time cloud detection[9] since FPGAs are good for image and 
video processing. On the other hand, adopting GPUs in the context of space was not ap-
preciated, since the concern of GPUs about the radiation-hardened environments was un-
acceptable. Recently, adopting GPU onto the on-board computer is increasing[10, 2, 3]. 
Furthermore, Kosmidis et al.[11] presents benchmarking results of GPU accelerated plat-
forms for on-board data processing. 
 
In this paper, we focus on systems using both CPU and GPU in the context of space. As 
we see in the survey[12], the study of CPU-GPU systems as heterogeneous processors 
and heterogeneous computing is very active. Especially, the impact of GPU in supercom-
puters is significant as the most of supercomputers adopt GPU. However, greedy use of 
specific processing unit may worsen the entire system and not all the applications are 
suitable for parallelism[7]. Therefore, there are methods using the nature of OpenCL[13, 
7] that makes heterogeneous computing easier. Because, in OpenCL, it is possible to pre-
pare the different kernels of the same execution part on the different devices. In this paper, 
we perform experiments with tasks which can be executed whether on CPU or GPU.  
 
Although there are fewer studies on GPU in real-time systems compared to high-perfor-
mance computing, there exist several works which tackle with real-time properties of 
GPU accelerated systems. Shinpei et al. presented TimeGraph[14] and RGEM[15] along 
with zero-copy I/O processing for low-latency GPU computing[16]. In addition, the 
works[17, 18] consider worst-case timing scenarios in GPU accelerated real-time sys-
tems. Most of these works consider solving the limitation of early existing GPU hardware 
and device drivers such as a zero-copy technique for accelerator memories and splitting 
tasks into smaller chunks in order to perform preemption. However, these limitations will 
be solved by the latest new technologies such as unified memory, zero-copy and preemp-
tion technologies in CUDA[19] and Heterogeneous System Architecture (HSA)[4, 3]. 



3. BACKGROUND  

3.1 Real-time system 

A real-time system is a system that responds to external events within a finite and required 
time. In other words, both accuracy and timeliness of the response of the system are a 
crucial factor for the system. Thus, in real-time systems, we focus on worst-case scenarios 
rather than best- and average-case scenarios, while high performance computing focuses 
on them. Real-time systems can be divided into a hard, firm and soft real-time systems 
according to their timing constraints. Hard real-time systems must pass entire timing con-
straints. Any small deadline miss can result in failure which leads to a fatality and/or big 
cost damage. For example, an airbag system in cars is a hard real-time system, and any 
deadline miss can end up a loss of human life. On the other hand, soft real-time system 
can accept one or more deadline misses although it affects to its quality of service. Sys-
tems such as music player and car window opening control system are soft real-time sys-
tems since any deadline misses of these systems would not end up with catastrophic re-
sults. A firm real-time system is between hard and soft real-time systems. In satellites, a 
system including basic functionalities can be considered as hard real-time system, while 
payloads can be considered as soft real-time systems. 

3.2 Docker 

 
Figure 1. System architecture 

 
To achieve the independent conduct of both on-board data processing and basic opera-
tions of satellites as real-time systems, we use Docker [1] for the process level isolation. 
Docker is a container and runs on top of the kernel of the host operating system (OS). In 
this paper, we consider Linux as the host OS. Docker uses the basic Linux features, 
namespaces and cgroups, in order to bring isolation for systems[1] (see Figure 1). Con-
trary to virtual machines, Docker containers share the same host OS and it starts running 
as an application in the host OS while virtual machines should first boot entire OS 



installed in the virtual machines. This feature enables to keep the entire system smaller 
and to perform the quick startup of isolated containers. 
 
Furthermore, containers may include different Linux distributions as long as their kernels 
match with the kernel included in the host OS. Hence, it is possible that the containers 
can use libraries and binaries of the host (container A in Figure 1) or other distributions 
(containers B and C in Figure 1). By using namespaces feature, a container runs under a 
different root from the root of the host OS, i.e., it helps to isolate container tasks from 
tasks running on the host OS. On the other hand, cgroups[20] helps to limit the resource 
usage of containers as it works as constant bandwidth server. In addition to limiting CPU 
and memory usages, a container can restrict system calls, e.g. terminating network access 
for security reason and so on. A container does not need to consume the resources when 
it is idle while virtual machine still consumes the resources for its OS. 

4. SYSTEM MODEL AND ARCHITECTURE 

4.1 System model 

We consider a system S (Eq. 1),  that deals with  a task set G , that consists of n tasks, i.e., 
G = {t#}. Each task should be assigned to one of a benchmarking environment set E (Eq. 
2). The benchmarking environment set E consists of a host environment, 𝐸&'() or 𝐸*, and 
m pieces of container environments, 𝐸+,'#)-.#/0  or {𝐸1, . . , 𝐸+}. 
 

𝑆 =< G, 𝐸 >     (1) 
𝐸 = 𝐸&'() 	∪ 9𝐸+,'#)-.#/0: = {𝐸*, … , 𝐸+}   (2) 

 
We further define that each benchmarking environment should be able to manage k pieces 
of CPU cores,	{𝑃=,>?}, and memory limit, 𝑀.. 
 

𝐸. =< {𝑃=,>?},𝑀. >, 𝑖 = {0, … ,𝑚}    (3) 

4.2 System architecture 

The system architecture is shown in Figure 1. This system employs a HSA compliant 
accelerated processing unit (APU) maintained in a system-on-chip (SoC). The APU 
(A10-8700P) adopts RadeonÔ R6 GPU, which consists of 6 compute units, and 2 CPUs 
(each CPU has 2 cores). 2 cores of each CPU share one 128KB L1 cache and all four 
cores share 1MB L2 cache. Total processing capability of the system reaches up to 614 
GFLOPS. There is no memory copy between memories of CPU and GPU since the APU 
is HSA compliant and they share 8GB DDR3 memory. Above this platform, Ubuntu 
16.04 distribution is running as a host operating system (OS) including Linux kernel 4.15 
and ROCm 1.9 driver. ROCm is an open source driver for heterogeneous computing. On 
top of the host OS, we run Docker 1.13.1.  



5. EVALUATION 

5.1 Case study 

Two type of applications, basic operation functionalities of satellite and workload, are 
conducted to represent on-board data processing platforms of satellites. We deal with 
machine learning and computer vision applications as a workload on different containers 
in order to study interference between host-and-container and container-and-container. A 
simple matrix calculation along with the basic processes of the host OS are considered as 
the basic operation functionalities of satellites.  
 
As shown in Figure 1, there are 3 types of containers; the container A uses binaries/li-
braries of the host OS and the containers B and C are based on different binaries/libraries.  
The allocations of the applications to the containers are shown as follows; matrix multi-
plication, TensorFlow[21] and Harris Corner Detector are on the container A, B and C, 
respectively. 
 
TensorFlow is an open source machine learning library created by Google. In this paper, 
we use TensorFlow 1.12 together with ROCm 1.9 driver. Harris Corner Detector is a 
computer vision algorithm, which is provided by open-source computer vision library 
OpenCV[22]. All the containers are able to perform the applications on both CPU and 
GPU. 

5.2 Experiments 

The following 3 experiments are considered to identify the process level isolation by 
Docker. Due to space limitations, we only give simple explanations of the experiments. 

•  Experiment A. The aim of this experiment is to understand the basic mechanism 
of the Docker container and the interference factors to the host environment.  

• Experiment B. In this experiment, we deal with the interference between host-
and-container applications. The comparison study of the execution time of the 
different applications on host and container environments is performed. 

• Experiment C. The interference between different container environment is the 
key in this experiment. 

5.3 Results 

Due to the space limitation, we only present interesting results. In Table 1, we see the 
results of Experiments A and B. The mean  and measurement based worst case response 
time (WCRT) of computing only AlexNet and Harris Edge Detector are {7.875s; 8.036s} 
and {1.649s; 1.87s}, respectively. Furthermore, the WCRTs of executing both AlexNet 
and Harris Edge Detector together in host environment are 8.104s and 1.897s. These re-
sults are similar to the WCRTs of executing AlexNet in host environment and Harris Edge 
Detector in Docker. This means that we do not confirm any interferences from Docker to 
the systems. 
 

Execution time [s] 
(measured) AlexNet with TensorFlow Harris Edge Detector 



Mean WCRT Mean WCRT 

Stand Alone 7.875 8.036 1.649 1.87 

Together in Host Environment 7.906 8.104 1.821 1.897 

AlexNet in Host & Harris in Docker 7.929 8.113 1.837 1.893 

Table 1. Summary of experimental results 
 
A part of the results from experiment C is shown in Table 2. Table 2 expresses the exe-
cution times of AlexNet algorithm on different environments with different data set. The 
mean values of AlexNet running both in host environment (12.348s) and Docker contain-
ers (12.349s) are shorter than the mean value of AlexNet running stand-alone (12.355s), 
although their WCRTs (12.374s and 12.371s) is longer than the WCRT of stand-alone 
(12.366s). This explains that we confirm no interferences from Docker container to the 
systems. Moreover, we do not confirm any interference to the CPU-GPU communication. 
 

Execution time [s] 
(measured) 

AlexNet with TensorFlow 

Mean WCRT 

Stand Alone 12.355 12.366 

Together in host environments 12.348 12.374 

Together with payloads using Docker 12.349 12.371 

Table 2. CPU-GPU communication 
 
Finally, although it is obvious, we can state that starting up systems on Docker is much 
faster compared to booting the system including its host OS. This strongly supports adopt-
ing Docker in CI/CD required systems. 

6. CONCLUSION 

Through the experiments, we confirm that Docker helps to perform CI/CD without de-
creasing the computing potential. The results show that the tasks allocated in the different 
environments with the independent resources (CPU cores and memory) would not inter-
fere with each other. Moreover, Docker would not worsen the computation potential when 
the tasks, which allocated on the different containers, share the resources. Finally, we see 
that our heterogeneous computing method fits with Docker for the process level isolation. 
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