
Run-Time Cache-Partition Controller for Multi-Core
Systems

Jakob Danielsson1, Marcus Jägemar1,2, Moris Behnam1, Tiberiu Seceleanu1, Mikael Sjödin1
1 Mälardalen University, Västerås, Sweden

2 Ericsson AB, Stockholm, Sweden
jakob.danielsson@mdh.se

Abstract—The current trend in automotive systems is to inte-
grate more software applications into fewer ECU’s to decrease
the cost and increase efficiency. This means more applications
share the same resources which in turn can cause congestion
on resources such as such as caches. Shared resource conges-
tion may cause problems for time critical applications due to
unpredictable interference among applications. It is possible to
reduce the effects of shared resource congestion using cache
partitioning techniques, which assign dedicated cache lines to
different applications. We propose a cache partition controller
called LLC-PC that uses the Palloc page coloring framework
to decrease the cache partition sizes for applications during run-
time. LLC-PC creates cache partitioning directives for the Palloc
tool by evaluating the performance gained from increasing the
cache partition size. We have evaluated LLC-PC using 3 different
applications, including the SIFT image processing algorithm
which is commonly used for feature detection in vision systems.
We show that LLC-PC is able to decrease the amount of cache
size allocated to applications while maintaining their performance
allowing more cache space to be allocated for other applications.

I. INTRODUCTION

Recent trends in the automotive industry show an increasing
interest in high-performance computational machines. A com-
mon way to address the increased demand for computational
capacity is the use of multi-core CPUs, which is a significant
benefit to the autonomous industry due to the reduced size,
weight, and power (SWaP) area [3]. Increasing the number
of cores adds additional computational capacity, however, it
also increases the system complexity. Multi-core systems are
infamous for performance variations, which can become prob-
lematic in time-sensitive systems [8]. These variations often
occur due to inter-core resource sharing, such as shared caches,
shared memory bus, Translation Lookaside Buffers (TLB),
shared DRAM-banks and others. These resources can be
shared between cores, which means an application (e.g. app0),
executing on one core, does not have exclusive ownership of
a single resource, instead it shares the resource with another
application, (e.g. app1), executing on an adjacent core. Such
scenario can lead to shared resource contention where app0

unexpectedly stalls, since app1 has access to the resource.
The shared last level cache (LLC) has been a performance

bottleneck in multi-core systems for a long time because of
simultaneous accesses from multiple cores. In recent years,
several studies have proposed methods aiming to mitigate
LLC contention through isolation. Some examples are cache
partitioning which partition the LLC so that accesses from
one application do not affect the performance of another [11].
An additional technique is cache locking [12], that forces

applications to use only certain cache lines. Another example
is cache scheduling [6] that schedules applications to minimize
conflicts in the cache memory. Isolating the cache memory can
however be a costly process in terms of lost memory space
and increased overhead.

We have devised a new way to optimize LLC partition
allocation, during run-time. We implement a controller that
continuously reads the instructions retired event from the
Performance Monitoring Unit (PMU) [5] to estimate the
application’s performance. This paper focuses on the LLC,
but the PMU supports a broad set of events [15], and our
method can be applied to other shared resources as well -
to be investigated in the future. The controller correlates the
performance metrics and the cache partition size, and decides
if an application needs more cache memory to achieve the
desired performance or Quality of service (QoS). Our main
contribution is:

• Propose a method to automatically select the minimum
cache-size to be allocated to an application for achieving
a desired QoS.

The rest of the paper is structured as follows. We give
background information in Section II and describe the LLC
partition controller we have implemented in Section III. An
empirical study of the correlation coefficient and also a com-
parison study of our LLC partition controller versus statically
assigned LLC partitions is described in Section IV. Section V
describe work related to ours and we conclude the paper in
Section VI.

II. BACKGROUND

In the following, we discuss cache partitioning and it’s
relations to application performance.

A. Partitioning to avoid LLC contention

LLC contention occurs when multiple applications compete
for the same cache lines. This can drastically degrade the
execution time. Page-coloring, a.k.a cache coloring [13] or
cache partitioning, is a way of disqualifying applications from
using certain cache lines. LLC partitioning in Linux can be
done by replacing the standard Buddy allocator [14], forcing
applications to take a subset of the total number of cache lines.
Forming LLC partitions is often done by assigning colors to
an application. The colors are then used to control where data
requests from the physical memory should be put in the cache,
see Fig 1.

978-1-7281-4878-6/19/$31.00 ©2019 IEEE 4369

Fig. 1. Cache coloring

Fig. 2. Matrix multiplication - isolation example

The Figure shows three applications which split the cache
memory equally. The applications are assigned three different
colors in the physical memory which are then used to map
memory rows to cache line locations. Cache colors are ref-
erenced using the set-associative bits of the LLC, calculated
according to Equation 1 [13].

Nr. of Colors =
Cache size

Cache ways ∗ page size
(1)

We have used the combined DRAM-bank partitioning and
LLC coloring tool called Palloc [14] to create LLC partitions.
Palloc is a kernel module which runs partitions at the granu-
larity of a page and replaces the regular Linux Buddy allocator
with a colored page approach.

B. Cache partitioning effect

Page coloring can be very efficient for reducing the execu-
tion time oscillations of applications executing in a memory
contentious environment [13]. We have illustrated such envi-
ronment in Fig. 2 where one 512x512 matrix multiplication
application runs iteratively 100 times on core 0. The blue
pluses show 100 iterations of the matrix multiplication without
page coloring. The red crosses show 100 iterations of the
matrix multiplication using palloc page coloring with a cache
partition size of 60. Another matrix multiplication starts at
iteration 20, running on core 1. The purpose of the newly
inserted matrix multiplication is to cause LLC contention,
which happens as a consequence of sharing the same LLC.

Fig. 2 depicts a typical LLC contention scenario, where the
execution time of the no-page-colored matrix multiplication
starts to oscillate, after inserting the leech. The page-colored
matrix multiplication is, on the other hand, undisturbed by the
leech. It is, however, apparent that page coloring comes with

Fig. 3. Matrix multiplication using different cache partition sizes

an increased overhead due to extra latency in page allocations.
Such trade-off can be worthwhile in time-critical systems
when application time-predictability is essential. Overhead
evaluations and Real-time performance impacts of the Palloc
tool using bank partitions is extensively discussed in the Palloc
paper.

Dimensioning the LLC partition sizes is one of the critical
aspects when running multiple applications simultaneously.
Assigning too small LLC partitions can significantly decrease
the application performance. Fig. 3 shows the performance
difference of the same matrix multiplication using various
amount of LLC partition size.

Assigning only 1 LLC partition to the matrix multiplication
significantly reduces the performance, compared to the execu-
tion in Fig. 2, which uses 60 LLC partitions. Increasing the
LLC partition size to 2, significantly increases the performance
compared to the 1 LLC partition assignment and so on. Fig. 3
also illustrates an ”above LLC saturation point” scenario -
when an application does not gain performance from being
assigned more cache memory, which is a consequence of fully
saturating the temporal locality of the matrix multiplication.
For this dataset size, the number of cache misses cannot
be reduced anymore and all data which can be re-used is
being re-used. Thus, there is no increase in performance from
increasing the LLC partition size further. In this case, the
saturation point occurs at the 12 LLC partitions assignment.
Further increasing the available LLC partitions, does not
produce a significant performance impact on the application.
Increasing the LLC size for this application will only allocate
unnecessary resources. As a comparison, we could adopt a
static partitioning strategy: for instance, assigning a 4th of all
cache partitions to each core in a 4 core system. In many
cases, this may be a waste of valuable resources. Thus, we
argue that it is beneficial to find the LLC saturation point at
run-time, rather than statically assigning partitions.

III. CACHE PARTITION DECISION

There are many ways to create efficient LLC partitions.
One possibility is to use exhaustive offline profiling for
tasks, distributing the available cache partitions optimally to
different tasks [2]. Offline profiling, however, needs complete
knowledge of the applications running in the system. Changing
the application set requires a complete re-profiling procedure
before deploying new cache partitions. These limitations make

24370

offline cache partitioning not feasible for most dynamic sys-
tems. In addition, some applications may also change their
respective workload during execution, which can be very
difficult to foresee at design-time.

This paper focuses on LLC-bound workloads, meaning that
the respective performance is bound tightly with the amount of
LLC misses, where more LLC misses equals less performance.
It is possible to assume that an LLC-bound workload will
benefit from receiving more LLC partitions and opens up ways
for constructing re-partition methodologies.

For an app0, the performance is denoted by the number
of retired (reached the final step in the instruction pipeline)
instructions. In the context of the used example, our theory is
that:

• The performance of an LLC-bound process is strongly
correlated to the number of LLC misses.

• Enlarging the corresponding partition size available for
app0 increases the performance and decrease the LLC
misses.

• The correlation between performance and increased LLC
partition size decreases as the number of LLC partitions
increase, until a LLC saturation point, where other re-
sources (may) become the bottleneck

Based on the theory above, we propose a correlation-based
cache partition controller, LLC-PC, that tries to find the LLC
saturation point - Fig. 4.

Fig. 4. LLC-PC

The cache controller is a correlation based control loop
which regulates the cache partition size according to the
correlation between a performance metric and the increase
in cache size for a specific application. The controller will
continuously increase the cache size for as long as the corre-
lation between the increase in amount of cache partition size
and the performance metric is high. Once the correlation starts
to decline and reaches a certain threshold, an LLC saturation
point has been found and the controller will stop assigning
additional cache partitions to the specific application.

The correlation scheme to find the LLC partition saturation
point is based on the Pearson correlation coefficient [1] - a
statistics methodology to quantify the relationship between
two datasets. The pearson correlation coefficient is calculated
according to Equation 2, where r is the pearson correlation
coefficient estimate, n is the number of samples, x is the first
sample vector, x is the mean of the first sample vector, y is
the second sample vector, y is the mean of the second sample
vector and i is the iterator.

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(2)

The correlation coefficient ranges from values between -
1 and 1. The absolute value of the correlation coefficient
represents how strong the correlation is, where a higher
value represents a stronger correlation. Correlation coefficients
between 0.1 to 0.3 generally show a weak correlation, 0.4-0.5
show a medium correlation and greater than 0.5 show a strong
correlation [4]. The correlation significance may, however,
vary depending on the data set.

A. Controller implementation
We have implemented the LLC partition controller - LLC-

PC - as a user-space application in the Linux operating system.
LLC-PC employs the Palloc page-coloring interface, described
in Fig. 5.

Fig. 5. System connections

LLC-PC handles application connections through message
queues and assigns LLC partitions to the connected applica-
tions using the cgroup interface. The cgroup interface has
an implemented file-system called palloc, which uses the
LLC set associative bits for configuring LLC boundaries. The
palloc kernel implementation creates the cache colors based
on the information provided by the cgroup file-system. LLC-
PC has also a connection to the palloc kernel space user
interface to enable palloc.

The controller, see Fig. 4, consists of three parts. The
monitor part, the correlation part and the partition computation
part. The controller implementation is described in Algorithm
1.

The first forall block of the algorithm shows the connectivity
part of LLC-PC, i.e., how the program deals with connected
applications through message queues. Applications connect to
LLC-PC by sending the application pid to a message queue.
Applications furthermore notify LLC-PC of execution iteration
ends by sending a ”done” message to the same message queue.
If the system does not currently recognize the pid posted by
an application, the create application function is triggered.
This function initializes an application variable and stores the
newly created application to an array. If an ”end” message
is received, an average value of instructions retired for the
application is calculated, and the amount of average samples
for the application is increased by 1.

The second forall block shows the actual LLC-PC controller
part and starts with an application monitor part. The monitor

34371

Initialize palloc();
Initialize PAPI();
while forever do

/* Handle application connections */
forall messages in message queue do

if message == new application then
initialize application();
tasks in system++;

end
if message == task iteration ended then

calculate avg instructions retired();
avg samples++;
done = 1;

end
end
/* Control loop segment */
forall applications in tasks in system do

/* Monitor application
characteristics */

instr retired = read pmu(pid);
if avg samples <= 3 then

/* Calculate correlation */
correlation =

pearson(avg instructions retired[i..end],
cache partition size[i..end]);
/* Make partition decision */
if correlation > 0.8 then

partition size++;
end

else
/* Insufficient amount of data

to calculate correlation */
partition size++;
done = 0;

end
resize cache partition();

end
sleep();

end
Algorithm 1: LLC-PC pseduocode

continuously reads the instructions retired PMU event for all
application pids which exists within the applications array.
The instructions retired event is stored within another array,
used for calculating the average instructions. If the amount of
average samples for an application is less than 3, a correlation
calculation will not be performed, since it is not possible
to detect trends with so few values. Thus, if there are less
than three available average samples, LLC-PC will increase
the partition size by 1. If on the other hand, the amount of
average samples is at least 3, LLC-PC will start to perform
the correlation calculation. The correlation calculation uses
the average instructions retired and partition history for one
application as input data and provides a Pearson correlation
coefficient as output data. The application input data to the
Pearson calculation is provided as a sliding window filter

ranging from i to the end of the vector. This window is
implemented to ensure that only the most recent values are
accounted for in the Pearson calculation, to provide a faster
response of LLC-PC. Once the correlation calculation is
complete, a partition decision can be made. If the correlation
is over 0.8, the partition size of the application is increased
by one. If not, the saturation point of the application has been
found, and LLC-PC will not increase the partition size further.

The third step is to actuate the resize cache partition method,
which goes through all currently active applications in LLC-
PC and calls cgroup/palloc to create partitions accordingly.
Finally, the sleep variable dictates the periodicity of the
monitor loop and therefore controls the number of values given
as input to the average performance calculations the average
overhead of the LLC-PC monitor- and control loop averages at
73 µs. Decreasing the sleep timer will increase the amount of
control-loop iterations per application samples and will thus
increase the overhead while expanding the sleep timer will
reduce overhead.

IV. EXPERIMENTS

We here describe the experiment on the identification of
a feasible correlation threshold, to be used to determine the
LLC saturation point. We evaluate how well LLC-PC perform
compared to a static LLC partitioning.

Our experiment platform is a desktop Intel R© CoreTM i5
computer, with specification details as in Table I.

TABLE I
HARDWARE SPECIFICATIONS INTEL R© CORETM I578850H

Feature Hardware Component
Core 4xIntel R© CoreTM i578850H CPU (Skylake) 2.6GHz

L1-cache
32 KB 8-way set assoc. instruction caches/core +
32 KB 8-way set assoc. data cache/core

L2-cache
256 KB 4-way set assoc. cache/core

LLC 9 MB 12-way set assoc. shared cache
MMU 64 Byte line size,

64 Byte Prefetching,
DTLB: 32 entries 2 MB/4 MB 4-way set assoc. +
64 entries 4 KB 4-way set assoc.,
ITLB: 128 entries 4 KB 4-way set assoc.,
L2Unified-TLB: 1 MB 4-way set assoc.,
L2Unified-TLB: 512 entries 4 KB/2 MB 4-way
assoc.

A. Point of saturation - Correlation threshold
Finding the right correlation threshold value is essential

to LLC-PC, since a too low threshold value can cause the
LLC-PC to act too slowly and therefore assign too many LLC
partitions to an application. A too high threshold value may, on
the other hand, force LLC-PC to act too quickly, and to assign
not-enough LLC partitions to an application. The following
experiments describe how the correlation coefficient between
performance and LLC partition size changes over time, using
different workloads while increasing the LLC partition size.

The correlation-based approach is able to identify which
resource has the dominant effect on the performance of the
applications, and this might change after allocating a certain

44372

Fig. 6. 512x512 matrix multiplication execution

Fig. 7. 4 MB SIFT execution

amount of that particular resource, such as the LLC. Due to
the space limitation, we will leave the management of multiple
resources as future work and focus on a single resource which
is the LLC.
Matrix multiplication. This experiment exemplifies what
happens when a cache intensive workload runs on different
partition sizes. We chose a 512x512 matrix multiplication,
which is a well-known cache optimization problem [7] to run,
using an increasing amount of LLC. Fig. 6 depicts the matrix
multiplication instructions retired on the left-hand side y-axis
and the correlation relationship between the instructions retired
and the cache partition size on the right-hand side y-axis.

The figure shows a gradually decreasing correlation curve
and also a clear relationship between increased LLC partition
size and instructions retired. The matrix multiplication reaches
saturation at a partition size of 10.
SIFT. We test the SIFT algorithm, a commonly used feature
detection algorithm to illustrate that our correlation theory
works for not only synthetic workloads. Fig. 7 show as
an execution of the SIFT algorithm run on a 4MB image
with different cache partition sizes from 1 to 40. The figure
shows an upwards going performance curve, with an absolute
peak when assigned 37 cache colors. This peak is however
very minor and can be explained as local deviation due to
”lucky” executions. The majority of the peak values are,
however, within the 405 million - 425 million instructions
retired interval, which is reached at a correlation coefficient
of roughly 0.9 and continues to scale down.
Random Calculation. The purpose of this experiment is to
exemplify what happens when a load is not LLC-bound. The
random calculation program executes a set of random number
requests and stores the random value into a variable. The
variable is compared with another variable to find the highest
value gained from the random number requests. We set the
random number requests to 108 random number requests with

Fig. 8. Random calculation execution

a modulo of 5∗105 and increase the number of cache partitions
assigned to this application by one each time the application
is finished executing. Fig. 8 depicts the correlation coefficients
from the random calculation test.

The figure shows an entirely different result from the matrix
multiplication correlation graph. Instead of a continuously
decreasing correlation, the correlation values are irregular
at first but then saturates on iteration 13 to a correlation
coefficient of 0.

B. Summary of experiments
There are two common nominators for the LLC-bound

applications in these experiments. Firstly, the number of in-
structions retired increase when increasing the LLC partition
size. The increase in instructions retired is reasonable since
the application gets significantly more LLC. Secondly, there
is a point where the instructions retired curve levels off to
a stable state. The curve levels out when the application is
assigned a certain number of LLC partitions. Thus, we have
found the LLC saturation point for this given application. We
can conclude that in our experiments, the LLC saturation point
of the curve is a certainty at a correlation coefficient of 0.8.
Using this conclusion, we set the correlation threshold to 0.8
in the subsequent LLC-PC experiments, which is the point
from which LLC-PC will not assign more cache partitions
to an application. Using a correlation over the entire dataset
at all time, however, makes LLC-PC slow to saturate. The
saturation of the system can, however, be hastened through
introducing a sliding window, which only tracks the most
recent cache partition and instructions retired measurements.
Using a sliding window means the system will only react to
current execution trends, not considering the earliest stages of
the system execution.

C. LLC-PC evaluation
One static way of assigning LLC partitions is to split all

available LLC partitions equally between the cores. Our test
environment has 4 cores and 128 available cache partitions,
thus each core gets 128/4 = 32 static LLC partitions as a
first reference value. We also use 16 partitions per core as a
second reference value. Below, we show an evaluation of static
partitioning vs. LLC-PC, using different sizes of the previously
introduced LLC-bound workloads. We ran each test a total of
5 times. LLC-PC runs the experiment setup listed in Table II.

For the sake of test simplicity, re-partition regulations are
made once each application iteration, however, in theory a re-
partition decision could be made each time a memory manager

54373

TABLE II
LLC-PC SPECIFICS

Property Value
Available LLC partitions 128
Correlation window size 5
Correlation threshold 0.8
Control loop sleep 50ms

Fig. 9. Comparison of 756x756 matrix multiplication executions

call is made. We execute each test sequentially for a more
straightforward interpretation of the results. The control loop
address each task individually, which means that it is possible
for the controller to handle multiple tasks concurrently at the
same time. It can also be argued that the control loop sleep
time would be a coefficient of the execution time such that
the sampling occurs only a certain amount of times every
iteration, however since the execution time can be very hard to
predict, we chose to go for a statically set sleep timer. Such a
solution, however, requires accurate execution time prediction
of an application, which becomes very troublesome since the
execution time of each application can change dramatically
due to cache re partitioning and would possibly mean more
overhead to LLC-PC. We chose 50 ms as control loop sleep in
order to get at least 100 measurement values for the average
calculation for all application variations.
Matmult and SIFT running under LLC-PC. We evaluate
LLC-PC versus a static partition based solution which uses a
LLC partition size of 16 and 32. Fig. 9 and Fig. 10 depicts
the execution flow of a 756x756 matrix multiplication and a
8MB sift execution respectively, using LLC-PC. The left-hand
side y-axis of the graphs plots the median instructions retired
(i.e., performance) per 50 milliseconds of the application using
LLC-PC (blue squares), 16 statically assigned cache partitions
(orange cross) and 32 statically assigned cache partitions
(yellow plus). The right hand-side axis show the correlation
over time using LLC-PC. A higher value on the left-hand side
axis means more instructions executed per 50 milliseconds
and is, therefore, better than a low value. The x-axis shows
the number of partitions used, where a lower value is preferred
since more cache partitions can be given to other applications.

Fig. 9 shows a full LLC-PC run of a 756x756 matrix
multiplication, where the system saturates at 16 partitions, with
comparable performance to that of the static partitions. For
this particular matrix multiplication size, the static partition
size was equal to the correlated size. Statically increasing the
LLC sizes to 32 does not improve the matrix multiplication

Fig. 10. Comparison of 8MB SIFT executions

performance significantly. Furthermore, Fig. 10 show SIFT
operating within the LLC-PC, with a final assignment of
13 LLC partitions at which point the correlation value has
dropped from 0.89 to 0.72. The correlation-based methodology
almost reaches the same performance achieved by the static
LLC partition allocations.

Table III and Table IV further compares LLC-PC with a
static partitioning strategy using different sizes of the work-
loads. Wsize is the workload size and Csize is the LLC
partition size assigned to the application, Cinstr, S16 and
S32 show the median million instructions retired per 50
milliseconds of the matrix multiplication using LLC-PC, 16
statically allocated LLC partitions and 32 statically allocated
LLC partitions respectively.

TABLE III
MATRIX MULTIPLICATION TESTS

Wsize Csize Cinstr S16 S32

256x256 7 432.73 428.17 419.49
512x512 13 420.11 432.78 428.54
756x756 16 414.36 424.63 428.39

TABLE IV
SIFT TESTS

Wsize Csize Cinstr S16 S32

1MB 6 395.38 406.56 408.79
2MB 7 384.96 413.01 405.85
4MB 9 387.80 410.61 405.87
8MB 13 385.53 406.31 402.58

Table III shows the benefit of LLC-PC, especially using the
smallest matrix multiplication size of 256x256, which saturates
at a partition size of 7. Increasing LLC partition size to 16
and 32 does not increase the performance, and would thus
be a wasteful LLC assignment since other applications could
have used the LLC partitions. The larger 512x512 matrix
multiplication size saturates at an LLC partition of 13, which is
3 LLC partitions less than the static 16 allocation, which does
not notably change performance. Table IV further compares
LLC-PC with the static partitioned strategy using different
image sizes, where Wsize is the image size used by the
SIFT application and Csize is the LLC partitions assigned
to SIFT by LLC-PC. Cinstr, S16 and S32 show the median
million instructions retired per 50 milliseconds for using LLC-
PC, 16 statically allocated LLC partitions and 32 statically

64374

allocated LLC partitions respectively. The table shows a close-
to static performance for all different image sizes using less
LLC partitions. The 8MB image receives 13 LLC partitions
from LLC-PC and is which is relatively close to the S16

allocated partitions, which saves 3 LLC partitions from waste.
Increasing the image size further could potentially trespass the
S16 allocation using the correlation controller.

V. RELATED WORK

Our work is based on the Palloc [14] page coloring frame-
work, which can be used for partitioning both the cache and
DRAM banks. While the authors show that Palloc efficiently
can be used to counter resource contention where all cores
gain the same amount of cache partitions, they do not consider
to optimize the cache assignments for each application. We
aim to further extend this approach by using correlation-based
partitioning decisions and therefore gain more efficient cache
partitions. Ye et al. [13] presented the Coloris cache coloring
engine which uses a threshold scheme, based on performance
counters. The Coloris approach forms cache partitions based
on how many cache misses one process contributes to the total
amount of cache misses of all processes. Our approach differs
from Coloris, as we look at how the performance of a process
correlates to the cache misses of the same process. Perarnau
et al. [10] presents another cache coloring scheme and argues
that creating feasible cache memory partitions is best left to the
user, since they have most knowledge of the application. We
argue that it is difficult to know beforehand how much cache
an application needs, in order to achieve a certain performance
level. It is therefore beneficial to use a method that makes the
cache partition decision automatically at run-time.

VI. CONCLUSION

We have created a correlation based LLC partition con-
troller, called LLC-PC, which can be used to find LLC
partition sizes for workloads with unknown cache usage.
We evaluate LLC-PC using two LLC heavy loads, a Matrix
multiplication, and a SIFT feature detection algorithm. The
results show that LLC-PC can be used for this set of workloads
to reduce the amount of cache size given to an algorithm
compared to a static 32 cache LLC partition assignment, and
also in most cases a 16 LLC partition assignment - while still
maintaining similar performance. We can probably find better
cache partitions through thorough offline measurements and

Our prime focus has been to create a generalizable cor-
relation model. We can apply the correlation model on any
shared resource that has a performance counter event and a
partitioning strategy which affect the shared resource, e.g.,
TLB partitioning [9]. Our future work includes introducing
new partitioning strategies. We would also like to create a
methodology for solving the multi-objective control problem
when balancing multiple shared resources usage.

code analysis; however, our aim is not to find the absolute op-
timal cache partitions but rather find sufficient cache partition
sizes during runtime of an algorithm.

REFERENCES

[1] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen.
Pearson correlation coefficient. In Noise reduction in speech
processing, pages 1–4. Springer, 2009.

[2] Jacob Brock, Chencheng Ye, Chen Ding, Yechen Li, Xiaolin
Wang, and Yingwei Luo. Optimal cache partition-sharing. In
2015 44th International Conference on Parallel Processing,
pages 749–758. IEEE, 2015.

[3] Alessio Bucaioni, Saad Mubeen, Federico Ciccozzi, Antonio
Cicchetti, and Mikael Sjödin. Technology-preserving transition
from single-core to multi-core in modelling vehicular systems.
In European Conference on Modelling Foundations and Appli-
cations, pages 285–299. Springer, 2017.

[4] Jacob Cohen. Statistical power analysis for the behavioral
sciences. Routledge, 2013.

[5] Thomas Gleixner. Linux Performance Counter announcement,
2008. URL http://lkml.org/lkml/2008/12/4/401.

[6] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. Cache-aware
scheduling and analysis for multicores. In Proceedings of the
seventh ACM international conference on Embedded software,
pages 245–254. ACM, 2009.

[7] Monica D Lam, Edward E Rothberg, and Michael E Wolf. The
cache performance and optimizations of blocked algorithms. In
ACM SIGARCH Computer Architecture News, volume 19, pages
63–74. ACM, 1991.

[8] Abdelhafid Mazouz, Denis Barthou, et al. Study of variations
of native program execution times on multi-core architectures.
In 2010 International Conference on Complex, Intelligent and
Software Intensive Systems, pages 919–924. IEEE, 2010.

[9] Shrinivas Anand Panchamukhi and Frank Mueller. Providing
task isolation via tlb coloring. In 21st IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 3–
13. IEEE, 2015.

[10] Swann Perarnau, Marc Tchiboukdjian, and Guillaume Huard.
Controlling cache utilization of hpc applications. In Proceedings
of the international conference on Supercomputing, pages 295–
304. ACM, 2011.

[11] G Edward Suh, Larry Rudolph, and Srinivas Devadas. Dynamic
partitioning of shared cache memory. The Journal of Supercom-
puting, 28(1):7–26, 2004.

[12] Xavier Vera, Björn Lisper, and Jingling Xue. Data cache locking
for higher program predictability. In ACM SIGMETRICS
Performance Evaluation Review, volume 31, pages 272–282.
ACM, 2003.

[13] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. Coloris:
a dynamic cache partitioning system using page coloring. In
Parallel Architecture and Compilation Techniques (PACT), 2014
23rd International Conference on, pages 381–392. IEEE, 2014.

[14] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo
Pellizzoni. Palloc: Dram bank-aware memory allocator for
performance isolation on multicore platforms. In Real-Time and
Embedded Technology and Applications Symposium (RTAS),
2014 IEEE 20th, pages 155–166. IEEE, 2014.

[15] Gerd Zellweger, Denny Lin, and Timothy Roscoe. So many
performance events , so little time. APSys ’16, 2016. doi:
10.1145/2967360.2967375.

74375

