
Probabilistic Timing Analysis of a Periodic Task on
a Microcontroller

Jonathan Thörn1, Najda Vidimlic1, Anna Friebe1,2, Alessandro V. Papadopoulos1, Thomas Nolte1

1Mälardalen University, Västerås, Sweden
2Åland University of Applied Sciences, Mariehamn, Åland, Finland

Abstract—In this paper we present our ongoing work towards
a realistic probabilistic timing analysis of embedded software
systems subject to timing requirements. In order to provide such
an analysis that captures necessary and important behavioural
features of the software system under analysis, including the
underlying platform, we have implemented a real-time system
running on a Rasberry Pi microcontroller on which we have
performed a series of experiments and measurements. The results
so far suggest a new model for analysis that captures more
detailed behaviour and consequently provides a more accurate
and correct probabilistic analysis.

I. INTRODUCTION

In the context of embedded software implementing hard
real-time systems, traditional scheduling algorithms and anal-
ysis focus on strict deadlines and deterministic timing guaran-
tees that must be satisfied [1]. Instrumental in realizing such
analyses and scheduling algorithms is knowledge concerning
software execution time and algorithm behaviour. In partic-
ular, Worst-Case Execution Times (WCET) and Worst-Case
Response Times (WCRT), which both often are pessimistic
by design. This led to different research directions in the real-
time community, investigating different approaches to reduce
such pessimism in practice, such as the Typical Worst-Case
Analysis (TWCA) [2], or probabilistic approaches [3]–[7].
However, in soft real-time systems it is sufficient to look at
probabilistic guarantees, i.e., there are requirements on the
time distributions’ tails that need to be fulfilled. These re-
quirements differ between systems. Commonly the likelihood
of a deadline miss needs to be below a given threshold and/
or the amount by which a deadline is missed needs to be
within certain bounds. When designing a soft real-time system
based on worst-case timing analyses, the resulting system
will be over-provisioned. This causes increased costs and
additional resources such as material and power consumption.
Probabilistic (soft) real-time systems, on the other hand, have
a potential to mitigate this over-provisioning of resources.

In this paper we present our ongoing work towards a more
realistic, compared to current state-of-the-art, probabilistic
modelling and analysis of real-time systems. In doing so
we utilize embedded hardware where we set up controlled
experiments to derive realistic models and analysis. Micro-
controllers such as Raspberry Pi are commonly used in soft

This work was partially supported by the Swedish Research Council (VR)
for the project “Practical Probabilistic Timing Analysis of Real-Time Systems
(PARIS)”.

real-time systems. Such systems can be found in, e.g., robotics
and Internet-of-Things (IoT) applications. In such applications,
soft real-time systems need to have a predictable timing
behaviour, i.e., we need to show that the probabilistic timing
guarantees are fulfilled.

Several solutions to stochastic analysis methods have been
developed over the past decades, for example in [6] a method
for analysis of periodic real-time tasks is proposed. To be able
to apply stochastic analysis methods for real systems, we need
knowledge of the properties of the systems’ time distributions.
Moreover, we need knowledge and solutions that capture or
correctly deal with potential dependencies among software
and/or hardware. To the best of our knowledge the current
state-of-the-art has limited or no support of such dependencies.

In this paper, we describe on-going work in investigating
the response time distribution properties of a periodic task
running on a Raspberry Pi microcontroller. In particular,
effects on response times of interference from other processes
are investigated. The release time distribution is modelled as
a Markov chain.

The paper is structured as follows: after the introduction
of Section I, used concepts and definitions are described
in Section II. Next, the experimental setup is clarified in
Section III and used methods are described in Section IV.
Further, results are presented in Section V. Finally, the results
are summarized and future work directions are discussed in
Section VI.

II. CONCEPTS AND DEFINITIONS

In this section the concepts used throughout the paper are
defined to avoid misinterpretations.

Response Time: For each instance of a task, the response
time is the time span from the release time (sched_wakeup
event of the instance) until completion of execution.

Execution time: For each instance of a task, the execution
time is the total time that a job is executing from when the
job’s execution starts until the execution is completed.

Wake-up latency: For each instance of a task, the wake-up
latency is the time span from the release time (sched_wakeup
event of the instance) until the scheduling time, when a CPU
context switch enables the job to begin execution.

Interference: An instance of a task is subject to interference
if executions by other processes on the CPU occur during the
response time of the job.



Independent task(s): Tasks are considered independent (in
this paper) since they do not share any software resources (e.g
semaphores) among each other.

Time units used in graphs and calculations: For calculat-
ing and presenting response time, execution time and latency,
all time references are given in microseconds.

Instance trace graph: This graph represents the response
times for the job in each period [0, n], where n is the number of
periods in the referred recording session. This graph is used to
analyze dependencies between succeeding task instances and
the potential effect on response time.

Response time distribution graph. This graph is a his-
togram, where job response times are sectioned into intervals
with a difference of one microsecond. This gives an estimate of
the empirical probability distribution for the response times.

III. EXPERIMENTAL SETUP

In this section the foundation for the experiments is de-
scribed. This includes the hardware setup, the test software
and the data collection method chosen.

A. Hardware and configurations

The experiments are performed on a Raspberry Pi 3B1 with
a Quad Core 1.2GHz Broadcom BCM2837 64bit CPU. To
achieve real-time properties the Raspbian kernel is patched
with PreemptRT, version 4.14.52. For deterministic execution
the clock frequency is pinned to the turbo-mode, which gives
a constant 1.2GHz. Before starting experiments this is verified
by a simple batch script which prints the current frequency.

B. Software implementation

A simple program, written in C, is used for the tests. The
program implements a single independent thread, utilizing the
pthread library which is specified by the IEEE POSIX
1003.1c standard. The program simulates workload with pre-
defined execution time, achieved by a loop of arithmetic
computations. In order to ensure consistent execution the
program is assigned the highest possible real-time priority and
is scheduled according to FIFO. By setting affinity the program
is pinned to CPU3, simplifying recordings and eliminating
migration between cores. The program is implemented as a
periodic task with absolute period of 5ms, achieved with con-
tinuous timestamps regulating the clock_nanosleep()
function with CLOCK_MONOTONIC as reference.

C. Data collection

The command-line tool trace-cmd2 is used to access
ftrace3 and to record data from the kernel during execution
of the program. ftrace is a kernel tracer in Linux that
can trace most functions during execution on the kernel. For
execution trace visualization, Kernelshark4 which is a GUI to
trace-cmd, is used.

1https://www.raspberrypi.org/products/raspberry-pi-3-model-b
2https://lwn.net/Articles/410200
3https://elinux.org/Ftrace
4https://lwn.net/Articles/425583/

IV. METHODOLOGY

In this section the method for collecting and processing
data is described. Further, we clarify the features of the
timing distributions that we investigate along with the utilized
methods.

A. Data acquisition and preprocessing

While the test program runs, a trace-cmd command is
executed to record all events of interest. Several different
sessions with varying recording time are conducted in the
interval from 5 minutes to approximately 1 hour of continuous
execution. This is done in an attempt to observe differences
in response time in relation to the number of executed task
instances.

After each recording session the log file is converted to
a text file to extract relevant data for timing calculations. A
Python script is used to read the text file, sort out events of
interest, save these and perform calculations. The extracted
events are sched_wakeup and sched_switch. These
events are used for calculating the response time, execution
time and wake-up latency. The results are exported for further
analysis.

B. Investigated timing distribution features

In the python script mentioned above, calculations are based
on the pattern of events in the log file.

The event pattern for a task is a repetition of: wakeup,
switch in, and switch out. This is used to calculate the
following features, where n is the instance of interest:

• Wake-up latency = switch(in)n − wakeupn
• Execution time = switch(out)n − switch(in)n
• Response time = switch(out)n − wakeupn

The execution time can be calculated in this manner because
there are no preemptions of the process in the investigated
logs, i.e, in each period there is exactly one time at which the
process is switched in and one at which it is switched out. The
response time distribution is visualized by displaying it as a
histogram. Sequential dependencies of the response times are
visualized using the instance trace graph. The relation between
response times and wake-up latencies are investigated, in
particular the increases in response time and wake-up latency
for jobs affected by interfering processes. This relation is
visualized in a sequential section of the recorded data. The
logs and the code used for analysis are available online5.

V. RESULTS OBTAINED SO FAR

In this section findings derived from the experiments are
presented.

A. Response time distribution

The collected data is analyzed in MATLAB and initially
displayed as a histogram. Several different data sets originating
from different recording sessions are analyzed, all indicating
similar distributions. No differences are observed between

5https://gitlab.com/najda.vidimlic/timing-analysis



Fig. 1. Response time distribution.

Fig. 2. Instance trace graph for 5 min recording session.

the different recording sessions and thus no further attempt
is made in distinguishing differences originating from the
number of executed task instances.

Fig. 1 shows the response time distribution for a recording
session of 5 minutes. The distribution resembles a bimodal
distribution, due to an initial large peak in the frequencies
of the response time, and a second smaller peak around
923µs. A smaller number of jobs have notably longer response
times and cause a local maximum of the empirical probability
distribution.

a) Trace of response time in relation to instance: A
bimodality in the distribution is observed, and the data is
presented in the instance trace graph in a attempt to understand
the reason for the increased response times causing the second
peak. As seen in Fig. 2, several spikes in the response time
are occurring at a seemingly periodic rate. To understand the
cause of these spikes, additional information from the data sets

Fig. 3. Showing correlation between response time and wake-up latency.

is analyzed.
b) Response time and latency correlation: Both the

response time distribution and instance trace graphs indicate
that some interference may be causing the increased response
time. In Fig. 3, an instance trace graph consisting of both
response time and wake-up latency data is shown. It could be
expected that an increase in wake-up latency would give an
equal increase in response time. However, this does not seem
to be the case. The increase in response time is generally
significantly greater compared to the increase in wake-up
latency.

c) Response time distribution with interference: The
discrepancy between latency and response time gives reason
for additional analysis in search for factors contributing to
the anomalies. The trace-cmd command is thus extended
to record all events occurring during run-time. Hence new
data sets are used from this point forward. An analysis of the
collected data show additional sources of interference. These
are grouped into different categories depending on their origin
and occurrence:

• RT-NoInter: All task instances that have no interference.
• RT-InterKTS-Exe: All instances where the process
ktimersoftd is interfering during execution.

• RT-InterKTSandSIRQ-Exe: All instances where both
the processes ktimersoftd and softirq are inter-
fering during execution.

• RT-InterKTS-WakeUp: All instances where the process
ktimersoftd is interfering during wake-up latency.

• RT-SwitchToKTS: All instances where a context switch
to the process ktimersoftd is performed after com-
pleting execution.

The interference in the analyzed logs consists of release (wake-
up) events from different processes.

The distribution graph in Fig. 4 shows that the instances
contributing to the second mode of the distribution mainly



Fig. 4. Cause of prolonged response time identified to some extent.

consist of jobs affected by the different types of interference
listed above.

B. Markov Analysis

From the graph in Fig. 4 two states can be identified:
(i) execution without interference, and (ii) execution with
interference. The system is modelled as a Markov chain with
these two states. To approximate the probability of being in
either of the states and transitioning from one state to another
a simple Markov analysis is performed using the same set of
data that is used to construct the graph in Fig. 4.

The data set contains 2845 instances, sorted into categories
of the two states. The transition probabilities are estimated
based on the state transition count:

NI → NI : 2479,

NI → I : 183,

I → I : 0,

I → NI : 183.

The probability of being in the NI state (pNI ) or in the I state
(pI ), as well as the transition probabilities λi, i = 1, . . . , 4,
are then calculated as

PNI =
2479 + 183

2845
≈ 0.93577

PI =
183

2845
≈ 0.064323

λ1 =
2479

2479 + 183
≈ 0.9312547

λ2 =
183

2479 + 183
≈ 0.0687453

Since no transitions exist where the state remains in interfer-
ence λ3 = 0 and λ4 = 1. Fig. 5 shows the resulting Markov
chain.

Fig. 5. Markov model of the two states and possible transitions.

VI. SUMMARY AND FUTURE WORK

Results obtained from the conducted experiments suggest
that even though a task runs at highest priority and is not
preempted the response time may change in ways that were
not foreseen. The experiments also indicate that the response
time has a bimodal distribution, regardless of quantity of
traced instances. It has been observed that the second mode
is to a large extent comprised of task instances with the
identified interference types. The Markov model suggests
a high probability of remaining in a non-interference state
and also implies that consecutive states of interference are
improbable. However, all anomalies in response time including
some contained in the second mode can not be explained by
the identified interference types.

Ongoing and future work will consist of further attempts to
find, analyze and explain response time anomalies. Further, ex-
periments with higher processor utilization could be conducted
in order to elicit consecutive states of interference and effects
on the distribution. Additionally, the state of interference in
the Markov model could be partitioned into several sub-states
for enhanced understanding of possible transitions. In addition,
one to the above complementing and ongoing work aims at
identifying probability distributions that can be used as tight
upper bounds of the tail.

REFERENCES

[1] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time
scheduling theory: A historical perspective,” Real-Time Syst., vol. 28, no.
2-3, pp. 101–155, 2004.

[2] S. Quinton, T. T. Bone, J. Hennig, M. Neukirchner, M. Negrean, and
R. Ernst, “Typical worst case response-time analysis and its use in
automotive network design,” in 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC), June 2014, pp. 1–6.

[3] L. Santinelli and L. Cucu-Grosjean, “Toward probabilistic real-time
calculus,” SIGBED Rev., vol. 8, no. 1, pp. 54–61, Mar. 2011. [Online].
Available: http://doi.acm.org/10.1145/1967021.1967028

[4] F. J. Cazorla, E. Quiñones, T. Vardanega, L. Cucu, B. Triquet,
G. Bernat, E. Berger, J. Abella, F. Wartel, M. Houston, L. Santinelli,
L. Kosmidis, C. Lo, and D. Maxim, “Proartis: Probabilistically
analyzable real-time systems,” ACM Trans. Embed. Comput. Syst.,
vol. 12, no. 2s, pp. 94:1–94:26, May 2013. [Online]. Available:
http://doi.acm.org/10.1145/2465787.2465796

[5] Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean, “A statistical response-
time analysis of real-time embedded systems,” in 2012 IEEE 33rd Real-
Time Systems Symposium, Dec 2012, pp. 351–362.

[6] J. L. Diaz, D. F. Garcia, Kanghee Kim, Chang-Gun Lee, L. Lo Bello,
J. M. Lopez, Sang Lyul Min, and O. Mirabella, “Stochastic analysis of
periodic real-time systems,” in 23rd IEEE Real-Time Systems Symposium,
2002. RTSS 2002., Dec 2002, pp. 289–300.

[7] R. I. Davis and L. Cucu-Grosjean, “A survey of probabilistic schedula-
bility analysis techniques for real-time systems,” Leibniz Transactions on
Embedded Systems, vol. 6, no. 1, pp. 1–53, 2019.


