Component technology in Resource Constrained Embedded
Real-Time Systems

Kaj Hanninen, Jukka Maki-Turja
Malardalen Real-Time Research Centre
Department of Computer Science and Engineering
Malardalen University, Vasteras, Sweden
{kaj.hanninen, jukka.maki-turjg@mdh.se
http://www.mrtc.mdh.se

Abstract: This paper presents a framework to incorporate real-tirerthwith component based

software engineering, in order to achieve predictableesyst The proposed technology is aimed at
releasing the developers from analysis aspects, and hawggthesis tool resource efficiently map-
ping a feasible component based software architecture tm-#ime environment. Two component
technologies form the base of our proposal, the predictatbtastructure PECT and the real-time
component technology AutoComp. By combining propertiesnfrooth, we achieve a framework
suited for resource constrained real-time systems.

1 Introduction

Though diversified in many aspects, different companiedalke the common goal of maximizing
profit. Different domains and companies within a domain hiavgeted towards different business
goals. For example, a developer using a component techndlage different needs from those
supplying the infrastructure and those supplying comptmdturthermore, a company with few cus-
tomers per product will benefit more from an efficient deveiept process since development cost
must be shared by few customers, an example being the bsisegsent of heavy vehicles [MFNO4].
On the other hand, companies with large volumes are mormwiib place extra effort in the devel-
opment phase and reducing the cost of each product, thedusstig being an example. Technically
the systems in heavy vehicles and cars are closely relatedlue to their different business needs,
different technologies are used [FS0B].

Software reuse, through component based software engigeer often argued to reduce system
development and/or maintenance cost [CLO2]. Howeverjmportant that the range of commonality
is sufficiently large. With this we mean that a component rhaugst be applicable to a wide range
of developers in order to see a business need for sub-sigphierovide and develop components
and component frameworks. However, the component modetatipe too general in that it will not
meet the specific needs (such as scarce resource). Thisfficalidirade off where the challenge lies
in finding a sufficiently general component model that willehthe specific needs of a wide range of
requirements placed on applications of a domain.

The view on embedded real-time system (ERTS) has been agdexemped, monolithic, platform
dependent view, which is not constructed for evolution. ldeer, the typical life-cycle of such sys-

tems, in practice, depicts a quite opposite reality. ERTi8<d0 have a very long life-time, decades
in some cases. The effort placed in them can not easily beadnaherefore such systems tends
to become legacy systems that are hard to incorporate imcti€nality and/or technology shifts
[FSNT03].

Component technology offers an opportunity to increaselyrtivity by providing natural units
of reuse (components and architectures), by raising thet thabstraction for system construction,
and by separating services from their configuration toitaté evolution [BCC 03]. Embedded real-
time systems are often characterized by having scarcenesoguch as memory, processing power
and communication bandwidth. Yet many of these systems toesatisfy requirements on depend-
ability [CLO2, MFNO4]. The focus of this paper is how deveatepnt and maintenance of resource
constrained embedded real-time systems (RCERTS) can bd bhida component technology and
component based development (CBD) methodology.

Developers of RCERTS face the challenge of making safe asyteanaintain applications run-
ning on limited resources, without overrunning project dgeetd. Historically, the development of
ERTS has been done using low level programming languageai@gtee full control over the system
behaviour [SFA04]. However, during recent years a new softvengineering discipline, component
based software engineering (CBSE), has received atteintiibre embedded development domain. It
has been seen as a promising approach to handle the congsléritolved in the development of
ERTS. The complexities arise, amongst other things, fronstmt demands on adding new function-
alities in systems, to keep up market shares for the devélppeducts. Besides being a discipline
aiding developers to cope with complexity, CBSE is concannih rapid assembly by reuse of com-
ponents in different applications (products)[BB&2, CL02].

Introducing a component based development process for ER&Ssociated with challenges.
First, a component based development process must be adendte and satisfy at least the same
set of functional requirements as the existing developmestess. Furthermore, for RCERTS, non-
functional requirements such as timing behaviour, safegmory consumption and so on, must be
analysable in the context of the development process. $mptigper we will focus on two vital proper-
ties for RCERTS: Space and temporal resources expresseeimpm usage and schedulability. To
introduce a component technology for a domain, such as RGERMain, we must be able to show
the economical benefit for all parties, ranging from end siséthe component technology, suppliers
of the component framework (run-time support), to thirdlpaomponent suppliers.

In this paper, we take the view of a component framework piev(CFP). A CFP can be seen
as one delivering both development as well as run-time stipgaools to a company (compare this
with providers of operating systems enclosing developreemtronments). Furthermore, the com-
pany may already have, or may need to develop, their own usdn@omponents. In addition, the
company may need to rely on third party components adhevitttetcomponent framework standard.

The rest of the paper is organized as follows. In section 2 @seribe the terminology used
in component based software engineering. Section 3 depictgdeas for CBSE in the context of
RCERTS at a general level. Section 4 describes how our ideammbining component technology
with real-time system theory, relates to work done by othBesction 5 shows how an example appli-
cation can be developed by using ideas presented in this. dapally, in section 6 we conclude the
paper and describe some future work.

2 Component technology definitions

In this section we describe basic concepts used in compdrasetd software engineering literature.
We begin this section with a description of definitions ginwndifferent authors. We then conclude
this section by describing the terminology that we will usetghout this paper.

Development and engineering
Component based development (CBD) and component basedhsefengineering (CBSE), are two
common terms used in the context of software engineering @atnponents. Component based de-
velopment refers to the building of software systems byrabtiag developed components ready for
integration. The systematic approach focusing on compoagmects of development, recognized
as a sub discipline of software engineering, is referredstocmponent based software engineering
[CLO2].

Brinksma et al [BCC 03] distinguishes between component development andnsydéselop-
ment with components. They state that the difference liethénrequirements and business goals
in the two cases. They argue that the main emphasis on comipdaeelopment is on reusability
whereas system development is focused on the identificafioausable entities and relations be-
tween them. This is a similar argument as we had in the inttioly, i.e., in order for CBSE to be
successfully adopted, both suppliers and users of comp®naurst be able to see a business benefit.

Components
Component based software engineering is a relative yougmeering discipline. Several attempts
to define a component have been made. Bachmann et al {BBBdescribes a component as a
software implementation that can be executed on a physidagjizal device. Furthermore, they state
that a component is an opaque implementation of functipn#iat may be subject to third-party
composition and conformant with a component model. Brirkstal [BCC03] follows the notion
of Szyperski [Szy98] stating that:

“a component is a unit of composition with contractually @fied interfaces and fully
explicit context dependencies that can be deployed indigrely and is subject to third-
party composition.”

We agree to this definition if the development time can be ssdhe time of deployment.

Interfaces and contracts
The operation and context dependencies of a component ieddiiy its interfaces. Bachmann et al
[BBBT02] shortly describes an interface as means to integrat@paoent into assemblies, which in
turn, makes it possible to reason about the assemblieskdBnia et al [BCC 03] states that interfaces
summarizes the component properties that are externailyleito other parts of the system. Further-
more, they describe that so called rich-interfaces mayatomxtra-functional information (such as
execution time etc).

Component specifications may also be described by contr&shmann et al [BBB02] de-
scribes a contract as pattern of interaction rooted on a ooprd. Furthermore, they state that con-
tracts specify the services provided by a component, andllgations of clients and an environment
needed by a component, to provide its services. Brinksmb[BCL 03] state that a contract spec-
ifies functional or non-functional properties of a compdnevhich are observable in a components
interface. Crnkovic et al [CLO2] describes a contract as eci§igation focusing on conditions in

which a component interacts with its environment.

Models and frameworks

Brinksma et al [BCC 03] describes a component model and a component framewdvkoalsasic
prerequisites that enables components to be integratedvaridtogether;. The component model
"specifies the standards and conventions that componeritfoilasv to enable proper interaction”
whereas the framework i&he design and run-time infrastructure that manages ressufor com-
ponents and supports component interactioBsichmann et al [BBB02] describes a framework as
means of managing resources and providing mechanismsrihlbkecommunication among compo-
nents. In this paper we focus on design time infrastructuge synthesis to a minimal, application
specific, run-time infrastructure.

In the rest of this paper we will adopt the definitions givenBrinksma et al [BCC 03], which
to a large extent is based on work by Szyperski [Szy98].

3 CBSE in development context for RCERTS

It is our belief that the challenges of introducing compdrtenhnologies into RCERTS can be over-
come, and in the long run gain acceptance in the industrytyAreich the same way compilers have
become accepted (even indispensable) tools in the develtprhsuch systems. Our view of compo-
nent technologies (which is shared by others [SFA04, Wal03[RCERTS bares many similarities,
both at the high level and low level, with compiler technglog he following discussion highlights
some of the similarities.

Component
archltecture

6\)\ L [“

Developer

automatic
lranslatlon

Analysis

framework
@symhesis
assumptions

(artefacts) made by
the analysis
framework

Run-time system

Figure 1: Component technology in the development of RCE&J#ications. The arrows indicates
process flow in a development scenario

For the following discussion, refer to figure 1. In an ide&diaiion we envision the developer (or
designer) of a system having a component model, archigdatules and constraints at his disposal in
order to develop a high level (abstracts away from pure sococle) architecture of the application
(system). The systems is built up from components suppdayeitie component technology (com-
ponent framework, constructive rules on composition). gbal during construction is to relive the

designers from the burden of low level details so that theyfoaus on the problem at hand. This
enables the developer to construct a component archigetttat is understandable and maintainable.
The architecture should also be formal enough for autometedl/sis and synthesis. The analogy to
compiler theory can be seen as a programmer programmingiigesgode (high level of abstraction)
instead of assembler (low level of abstraction).

A component architecture for an application should be asalyfor certain properties with an
analysis framework. The role of an analysis framework isrisuee that a well formed (syntacti-
cally correct) architecture can be analysed whether isfasi certain properties or not. The analogy
to compilers could be checking for semantic correctness, &pe checking. In this paper we are
concerned with memory consumption and temporal feasilfgithedulability analysis) which results
in two analysis frameworks, one for memory consumption amel for schedulability analysis. The
objective of an analysis framework is to deal with as intecproblems as possible (this is where
we want to hide the complexity) with automated tool supppet, the analysis framework has the
knowledge of the component architecture (design) as well@sonstraints and services provided by
the component framework (run-time system). An analysisiéaork aims at satisfying a feasibility
property (such as doing a schedulability analysis) or engldystem property analysis derived from
individual component properties such as memory usage. tiemat properties are not in the scope
of this paper, however the component model can support batktimg approach or a model based
approach if components functional behaviour is describeahdlly with for example timed automata
[UPP].

Another important task for the analysis framework is to mlevnformation of assumptions (arte-
facts) it had to make in order make a property feasible. Steffieats typically consists of task model
attributes that can not be derived from the design (one ebesbging task priorities). This information
together with the component architecture, i.e., an archite that is both syntactically and semanti-
cally correct, may be used by a synthesis tool (analogoub#zie-end generator of a compiler) when
generating code for the run-time environment. A synthesisthus takes the architecture design and
possibly some artefacts (such as priorities for a task mgietiuced by the analysis framework, and
maps it to the run-time system (OS, component glue code €it¢ aim is to provide a run-time
system that has a small footprint, but still providing suéfit run-time services to the components of
the application. Note that this is a degree of freedom; ifgpplication makes use of lot of run-time
services these must be provided by the run-time system. w#owat one extreme, if the application
is purely static, all connections between components caadmdved off-line (by analysis framework
and synthesis tool) which result in a static schedule yigjdittle run-time overhead. With this view
one can say that the entire component framework is providetb\zelopment time (as opposed to
at run-time for component technologies such as e.g. .NEmgreas only the part that are used are
mapped down to the run-time system.

Our vision is to provide the engineer with a powerful and esgive component model for the
RCERTS domain. In order to do this, automated tools are medd® handles the complexity of
analysis frameworks and code synthesis to the run-time@mwient. The vision is to get as powerful
technology for designing with components as there todapricémpilers. Few developers know
what goes on inside a compiler (there is a lot of formal themirywork) and they do not have to, it
suffices to know what it does and know how it can be used to agtigind synthesise the application
requirements. Similarly we envision that analysis framegwa@nd synthesis tools can aid a designer
in the area of RCERTS.

4 Related work and objective

A lot of research has addressed the requirements that mdstfiied by component technologies,
to be accepted by industries developing embedded realsystems. Moller et al [MFNO4, MFNO3,
MAFNO3] presents a set of technical and development reaérgs that different developers, in the
heavy vehicle domain, find important. Among the technicguneements the industry strives for
components to be analysable, testable, debuggable, cesoomstrained and portable. Furthermore,
the industry strives for a simple and mature standardizedpoment modelling language. The re-
quirements related to the development process include m#snan components to be introducible,
reusable, maintainable and understandable. Furtherithareequirements regarding analysis of com-
ponents in ERTS include addressing properties such asiti@ss| memory consumption, reliability
and safety etc. not just for single components, but also $semblies of components. Hence the
assemblies of components should be predictable with regardhctional as well as non-functional
requirements.

Sandstrom et al [SFA04] presents a component technologyo@omp) for safety critical em-
bedded real-time systems. The technology is aimed at sgstéth high demands on safety and
reliability. This is achieved by mapping a component modéhwigh level real-time constraints, to a
real-time model which is analysed and synthesized for ptablie execution. The AutoComp model
is divided into components, interfaces, compositionspa@aion cycles, transactions and system rep-
resentation. The component interfaces are classified waaategories; data and control interfaces.
The data interfaces are used to handle data flow between cemizoand the control interfaces to
handle control flow of components.

Wallnau [Wal03] presents a development infrastructureQPEenabling critical runtime proper-
ties of component assemblies that are objectively andiysaid predictable. The logical structure
of PECT consists of two distinct frameworks; a constructod one or more reasoning frameworks.
The construction framework supports construction adisiof CBD, whilst the reasoning framework
supports the prediction activities of CBD. The ability toeuseveral independent reasoning frame-
works makes PECT interesting for development of RCERTS . duliton, decoupling the analysis
and constructive framework increases the usefulness afahstructive component model. Analysis
frameworks are used to tailor the application specific negoents. This is an attractive viewpoint
and increases the level of commonality of the constructm@monent model. There are however
certain limitations to the component model that may hintier developers when using PECT. The
abstract component technology (ACT) in PECT do not allowstgaration of data and control flow,
hence transactions including several components that toeexkcute at different periodicity, which
is common in many (multi-rate) control systems [San02], meylifficult to realize.

We find AutoComp being aimed against the embedded systemaidomt is developed using a
natural way of guaranteeing temporal predictability of poment assemblies. However, the Auto-
Comp model assumes a fixed run-time environment to whichpali@tions must be mapped (syn-
thesised) to (Fixed priority Systems). This will restribettype of applications that can use the
component model to those where FPS run-time support canfdreled. Furthermore, no commer-
cially available FPS OS:es have run-time support for adfséiiso the only reasoning framework in
AutoComp is the schedulability analysis, which is integdsin the development method. The PECT
theory, on the other hand, feels more natural with respeassembly predictions, especially since
several frameworks may be used to analyse different priegett/nfortunately, it lacks synthesis the-
ory.

In essence we find that combining the view from AutoComp amdview from PECT together
with adding stronger and more flexible synthesis theory ealttribute in achieving the vision out-
lined in the previous section. The idea is to combine compbtexhnology with real-time system
theory and encapsulate them into development and synttued$sto achieve good quality software
for RCERTS. To concretise our ideas, and support our clamasyill show how a simple example
application can be developed using the techniques in AutgCiSFA04], PECT [Wal03], and our
idea of synthesis.

5 Example system development

In the following sections we present an example system #eg design, analysis and synthesis prop-
erties from both AutoComp [SFA04] and PECT [Wal03].

The challenge is to develop a control system responsiblthéopositioning of a industrial robot.
The main goal of this example is to describe how activitiesrfrexisting component technologies
may be interleaved, resulting in predictable componergrabies suitable for memory constrained
ERTS. Our intention is not to develop an optimal control egstin fact, the primary concern is to
design the system in a way that clearly illustrates and ratgs/ the activities used throughout the
component based development process.

Throughout the example, we assume that the necessary tool®bse components, create as-
semblies etc, are at the developers disposal.

5.1 Introduction

We believe that one of the main concerns of a designer, innitialiphases of development, is to
design the system in terms allowing analysis. Hence the ooemd architecture together with the
definition of data and control flow between the componentsulshbe performed as early as possi-
ble. It would allow for automatic task allocations and as&yof a system, early in the development
process. Figure 2 shows an overview of our envisaged dewelopflow in constructing the control
system for the robot. The system requirements form as imptltet design process. The output from
the design process should be an analysable and synthdsizzabitecture. In case the analysis of
the architecture reveals unfulfilled requirements, the@ss need to be iterated with a change in the
requirements and/or design. As can be seen in figure 2, thedagement process flow take different
paths depending on whether components are available iraitefy or need to be developed. How-
ever, the component and application development processebe separated, allowing them to be
performed in parallel [CLOZ2].

5.2 System requirements

The initial activity depicted in figure 2, consists of colieg the system requirements that will be
used as input to the component aware design activity. Ttkereive begin the development of the
example system by describing the requirements and presigzgifor our robot system example.

The challenge is to develop an control system responsibléh#® positioning of a robot arm
consisting of three axis. The movement of each axis is cletrby separate motors (m1,m2,m3) and

O = activity
I:l - input / ottput

Requirements

Component
Component aware Design Library

y

I Architecture

N

Component
Development

Run-Time
system

Figure 2: Overview of the Component Based Development gsoased in the robot system example

indicated by three separate pulse-sensors (s1,s2,s3)ditioa, the system consists of an emergency
stop button and sensors to calibrate initial axis positiofise requirements on the example system
are as follows:

e Req.1 Strived positions for the robot arm must be reached withcamigcy of+20 pulses
e Req.2 A pressed emergency stop button must be detected, andswbd@ped, within 100ms

e Req.3 A total of 4 kB of random access memory (RAM) are available tfee application
positioning the robot

The following is a list of system prerequisites and robotrahteristics for the example:

e Pre.1 The strived positions for the robot, are pre-defined anckdtm a vectow as coordinates
in space. The vector will be available as input to the system.

e Pre.2 A sensorn detects if an emergency stop button is pushed. The minimtenaimival
time between two consecutive activations of the emergenttpi, is assumed to be infinitely
long.

e Pre.3 Sensorsl generates 3712 pulses per revs
e Pre.4 Sensors2ands3generates 1280 pulses from end to end positions

e Pre.5 Three sensorgle2 and e3 are used to calibrate axis positions at system start. Each
of the sensors generates an event when the desired calibpisition is reached. The mini-
mum interarrival time between two consecutive activatiohthese sensors, is assumed to be
infinitely long (indicates that it happens only once).

e Pre.8 The maximal velocity of each motor is 100 pulses per secdfath activation of an
motor will run the motor for a shorter time (100 - 200ms). Herbere may be a need for
several consecutive activations, to reach a specific positFurthermore, the inertia of each
motor may result in a drift of up to 10 pulses at motor deatitiva

e Pre.7 The operating system is activated periodically each seitiond by a timer interrupt. A
timer interrupt uses approx. 100 bytes of memory at eackadicin. The timing overhead of
the operating system is 3@ at each timer interrupt. The context switch overhead isapp
30 bytes.

5.3 Operational modes and implementation architectures

This section describes the design of component archiestor the robot example system.

To begin with, the operational modes [NG®L] of the robot are identified and realised with a
component architecture suited for each mode. The compsnsed in the architectures may either
be existing ready to use components, or components in negelvefopment (see figure 2). For the
sake of reasoning, we assume in this example, that the dunattand non-functional properties are
stated with similar notation independently of whether tbmponents are developed in-house or not.

5.3.1 Operational modes

With the requirements at hand, we begin with identifying dperational modes of the system. The
purpose is to identify the states of the system and sepdrathigh level functional behaviour. The
partitioning into modes gives a high level description @& fystem, which might facilitate the under-
standing of the system, especially for new developers.hEuriore, most systems have a concept of
modes and making it explicit, rather than implicit in the epthakes the design much more maintain-
able.

Two modes are identified for the robot; an initial mode and amoeuvring mode. The initial
mode is needed to calibrate the axis to get a pre-definedgo§i,0,0). The manoeuvring mode will
be used to position the robot axis according to the pre-défpusition data in vector v. A simple
sketch of possible mode transitions is shown in figure 3.

System calibrated to pre-defined position

Start Manoeuvring

Emergency stop pressed

Figure 3: Operational modes for the robot system example

5.3.2 Designing the component architecture
The component architectures for the identified modes mayebgded using the following activities:
¢ Identification of the environment (hardware components)

¢ Identification the needed functionalities. This should betconfused with identification of
program functions. Functionalities are, by our definitibigh level system behaviour

e Choosing of components to model the functionalities
e Definition of data flow between components
¢ Definition of control flow between components

There is however no need to perform the activities in anyiipecder. The above activities could
be performed in the best suitable order for the applicatioteivelopment.

For the sake of simplicity, we will perform the design of tt@mponent architecture, in the order
depicted above, starting with the identification of systemmctionality and environment.

5.3.3 Initial mode - identifying functionality and environment

We start by identifying the needed functionalities in thiéiah mode, beginning with the emergency
stop functionality. Two associated functions are iderdifthe detection of a pressed emergency but-
ton and the halting of the motors.

Continuing with the functionality of calibrating the axtsyo functionalities are needed; the read-
ing of calibration sensors el-e3 and the running of the axitora to move the robot arm to a pre-
defined starting position.

Thus, we can see that the environment consists of the entigposensors (el,e2,e3), the emer-
gency stop senor (n) and the three motors (m1,m2,m3).

5.3.4 Initial mode - choosing components

We continue by choosing suitable components for the idedtfiinctionalities.

The emergency stop functionality could be modelled by usimgseparate components, a sensor-
handler (component N) and an motor controller componemhfament M).

The calibration of the robot could also be performed using ¢e@mponents; one that handles the
input from the calibration sensors and another that cantte motor activations. For the reading of
calibration sensors el-e3 we choose to use a new compowempdoent E).

The calibration of the robot arm requires running and hglth the motors. For this we could
use the same component (component M) as we used earlieefentbrgency stop functionality. The
component M must be continuously activated, according éveguisite no 6, since the motor will
otherwise stop. Some periodicity is therefore required.

5.3.5 Initial mode - defining data and control flow

We continue with defining the dataflow and control flow betwgnchosen components in the initial
mode.

Starting with the emergency stop functionality, the semsordling component (component N) is
activated by a press on the e-stop button. It then procelBeem/ent and forwards a halt event to the
motor controller component (component M). Hence there dbela need for a control flow between

sensor n, component N and component M.

Continuing with the calibration, component E is activatgdskensors el, e2 or e3 when an axis
reaches a desired calibration position. When activated¢dimponent forwards a halt motor event to
component M. When component M receives information thatallbration sensors (el,e2,e3) have
reached their end positions (indicates the predefinedipogi®,0,0)), component M initiates a mode
change. Furthermore, during calibration, component M rbasactivated periodically according to
the characteristics. Figure 4 illustrates the notatiorduse¢he graphical figures depicting component
assemblies. Figure 5 shows the resulting component actinigefor the initial mode. Notice that
the components in figure 5 have annotations describing weest case execution times (WCET) and
maximum memory consumption (MEM). These are, dependinglaethrer the components are devel-
oped or not, either derived specifications for existing congmts, or budgets given by the application
designers to the component developers.

== == - Environment QO - Dbataport ' 1 - Hardware component
1

——> - Data/ Control flow p - Control port - Software Component

Figure 4: Notation

,_-! - Comp: E I

1

. e2 1 i .

- mi !

L <wcet,w0@s> | | | A ____ .

1 e3 1

: <MEM, 500B> Comp: M i

T m2 |

_____ 1

I <WCET, 30QS> -l hl

r== - VU mg

' n <MEM, 1000B> v

I_ _I_ -

<WCET, 5S>

<MEM, 100B>

Figure 5: Component architecture for the initial mode

5.3.6 Manoeuvring mode

Using the same design activities as for the initial mode cthraponent architecture for the manoeu-
vring mode may be realised by four components. Figure 6 shiogvsesulting components and their
interaction in the manoeuvring mode.

As in the initial mode, component N would be activated by asgren the e-stop button, it then
processes the event and forwards a halt event to the mottrotten component M. Component P

polls the sensor values s1-s3 for changes in axis positiod<alculates the current position of the
robot arm. The position is forwarded to component C, whi&esavector v as input to decide whether
the strived position is reached or not.

For the sake of this example, a required data port from coeato@ is connected to a provided
port on component P. The data is used to indicate the dire@tiavhich the motors are running.
This information is needed since component P only has a jaslégput and has to decide whether to
count the position of a robot arm up or down. This exemplifiease that would not be possible to
achieve following the definitions in PECT [Wal03]. The compat interactions, as defined in PECT,
is handled through sink and source pins. Pins are means dfi@rsole events, or events bundled
with data. There is however, no specified way of interactimgugh pure data on sink or source pins.

r~ ~ ~ ~ ~"~"~—"=-—"=—"=-"=-=-=="="===71

Comp: P

< WCET, 15QS >

< MEM, 300B >

Comp: M

< WCET, 5QS > < WCET, 30QS >
< MEM, 100B > < MEM, 10008 >

Figure 6: Component architecture for the manoeuvring mode

5.3.7 Component assemblies

In order to deal with complexity issues for the designer, ponent assemblies must be treated the
same way basic components are treated. There are two maonsefor this:

1. Hierarchical decomposition. The developer should be &bhide unnecessary details and view
the system from different abstraction levels. A "flat” stwre with all information available at
all times clutters the high level abstraction view.

2. Reuse of components. If a component is to be reused it neugatkaged, and from the de-
velopers view, look exactly as a basic component does. |fidwelopers are forced to figure
out the inner workings of the assembly, they would probalelydductant to use it. It would in
many cases be easier for them to construct it by themselves.

The above reasons motivate the black box approach of CBSE Ere user’s perspective, an
assembly will behave like a component if the interfaces\ijoied and required) on the boundary, are
passed to the component assembly instead. A special casgiigldnterfaces, where there is a choice
during component construction (or equally during hierem@hdecompaosition), whether to embed
timers and/or hardware components into the component &bgeBoth approaches are possible.
If left out, a control interface becomes available on the gonent. And the other way around, if

embedded in the component assembly, the user of the compassembly does not se how the
services of the component are activated. As an example, gae ff where we have packaged the
manoeuvre mode, shown in figure 6, into one component.

Component assembly

Figure 7: Black box view of a component assembly

In figure 7, we have chosen to embed one timer into the comp@ssembly, whereas the other
control interfaces are placed on the border of the compaassgmbly.

5.3.8 Task allocation and attribute assignment

When the initial component architectures are defined, tihgpoment assemblies must be partitioned
into executable units called tasks. For each mode, everponant in the architecture should be auto-
matically mapped to a real-time task. There is a lot of issaesved in the allocation of components
into tasks. One of them being the question whether a compameuld be restricted to deliver one
single service or several ones. This issue raises the goesthow components should be instanti-
ated. Should we allow several instances of a component agéesnstance shared by several tasks.
Allowing several instances would consume more memory thaimgle one, but issues involved in
service precedence’s might be easier to cope with.

In this example, we allow the instantiation of a componetd several tasks. Furthermore, the
allocation is performed in a way allowing us to derive WCEfiseach task. Beginning with the
components for the initial mode (see figure 5), using somedligcation strategy, might results in
three tasks for the mode.

e Task Ty, : A periodic task activating motors m1,m2 and m3. Tagk dctivates component M.
(One can view M as a program function)

e Task Tyys : Anevent triggered task handling emergency stop funcliymdask Ty 3 activates
component N followed by M.

e Task Tg,s : Three instances (n=1...3) of an event triggered task resiple for the calibration
of the robot arm. Each task instance activates componenitdwid by M.

Continuing with task allocation for the manoeuvring modee(§igure 6), we might end up with the
following tasks:

e Task Tp : A periodic task reading pulse sensors s1,s2 and s3. Tasiclivates component P.

e Task Toas @ A periodic task controlling the current position of the obkarm. Task T
activates component C followed by M.

e Task Tyys : Anevent triggered task handling emergency stop funcliyndask Ty 3 activates
component N followed by M.

Task attributes, such as period and priority, could be maymen user specification of compo-
nents. This information can be specified for software ant&ydware components. For example,
a hardware components generating events into the systetndesibe its temporal characteristics
(minimum interarrival time between two consecutive eveatsl for timers the period time. As for
priorities this could be specified on the level of componemd mapped to tasks with similar rules
as for those used in PECT. Another approach, is to reliegestiecification burden from the designer
completely, as in AutoComp, and let an analysis tool do fyiallocations. This paper does not
resolve this issue, any or a combination of the above appesacould be used in our presented con-
text. For the sake of completing our example we assume tleviolg priorities and periods has been
derived by some technique:

Initial mode

e Task Tyjs : P =High

o Task T, - P = Medium

e Task Ty : P=Low, T =100ms
Manoeuvring mode

e Task Tyjs : P =High

e Task Tp : P = Medium, T =5ms
e Task Tops : P =Low, T =50ms

For the reminder of this example we assume that the resuhisig sets rely on the single shot exe-
cution model which allows several tasks to share a commak $2MTO00, dEg]. Furthermore, we
assume that tasks with equal priorities are handled in finstecfirst serve manner (FCFS), i.e., they
can not pre-empt each other.

5.3.9 Task allocation for assemblies

For task allocation of assemblies the black box approacbridbes! in section 5.3.7 is not sufficient.
In order to perform a task allocation the detailed contrdrimation is needed, i.e., a structure that is
flattened out. From task allocation point of view the contndérfaces can not be black-box, it needs
to know the inner workings of each component, i.e., a grey (mok, but don’t touch!) approach.
Figure 8 shows what information task allocation needs foercomponent assembly of figure 7.

5.4 Analysing the system design with reasoning frameworks

This section describes how schedulability analysis andigiien of memory usage may be performed
for the task sets in our robot system example.

So far in the development process we have mainly used tasbsimutlined in AutoComp [SFA04].
The contribution of PECT [Wal03], to our robot system exampglonsists of theories allowing us to
reason about our assemblies. In order to analyse our exayglem, we establish two reasoning
frameworks [Wal03], by defining a property theory and an matic reasoning procedure for each

Comp: P %»

Comp: C

Comp: N b Sh Comp: M

Figure 8: Grey box view of a component assembly

framework. The validation proceddfer the analysis of our example system, will however not be ad
dress. We assume that the given properties for the commaentorrectly specified. Furthermore,
the reasoning frameworks are based on formally validatedryh

5.4.1 Property theory

The property theory for our example systems consists of istndt parts; a timing analysis property
checking for schedulability, and a memory consumption hedhe property theory for analysing

timing behaviours in our example system may be expressedroyufa 1 [JP86]. The formula ex-

press the maximum response time for a task, taking in coraide the influence imposed by all

higher priority tasks. The computed response times may lieammsed to examine the schedulability
of the task sets.

R =ct Y ﬁ_w c,)
Viehp(i) ' 7
The maximum memory consumption property for the assembthefobot system, may be ex-
pressed by formula 3. The original formula 3 is presente®MT00]. We have slightly modified the
formula and added formula 2, to express the memory usager@spiect to the FCFS task activation
strategy explained in section 5.3.8. The property theohpigever a safe estimation of the maximum
memory consumption of our robot system example.

mode_mem = Z (max (t"™) + Context) (2

VpEprio_levels Vteprio(p)

Total_memory_usage = mode_mem + ISR)

prio_levels: All priority levels in the system

prio(i) . Set of all tasks with priority level

Context : Memory required to save register data etc., at a task switch
frem : Memory usage of task

ISR : Memory required by timer interrupt service routine

A reasoning framework in PECT consist of three distinct gaatproperty theory, an automated reasoning procedure
and a validation procedure. The validation procedure sexvexplore the trustworthiness of a reasoning framework

5.4.2 Automated reasoning procedure

The interpretation of the assemblies to the reasoning fraories is pretty straightforward. In section

5.3.8, components were assigned into sets of tasks witmdpielp temporal and memory attributes.
The assignment makes is possible to automate both timingremdory reasoning of the assemblies
i.e., it is possible to map parts of the concrete constroctigtax to strings for our property theories.

The following is a list of response times and memory consiomptderived for the tasks in the
robot example system. Prerequisite no. 7 lists the OS timirgghead used in the calculations. The
response times for each task are calculated with formulahé&.riiemory consumption of each task is
calculated as; the sum of memory used by all componentsreskig the task.

Initial mode

e Task Ty : R =380us, Mem = 1100 bytes

e Task Tg,as - R = 780us per instance, Mem = 1500 bytes per instance
e Task Ty; : R=1110us, Mem = 1000 bytes

Manoeuvring mode

e Task Ty : R =380us, Mem = 1100 bytes

e Task Tp : R =530us, Mem = 300 bytes

e Task Tops @ R =1060us, Mem = 1500 bytes

Table 1 shows the calculated memory usage in each mode @egpisite no. 7 for the values of
ISR and Context).

Table 1: Memory usage in each mode of the robot system example

Priority level modemem (init.) | modemem (man.)

High 1100 +30=1130 1100 +30=1130

Medium 1500 + 30 = 1530 300 + 30 =330

Low 1000 + 30 =1030 1500 + 30 =1530

Total (modemem + ISR)| 3690 + 100 = 3790 2990 + 100 = 3090

The output from the reasoning procedure is then analysed@mgared to the requirements.

Req.1: Strived positions are reached with an accuracylof pulses (max speed: 100 pulses/sec.) in
the manoeuvring mode. Hence the requirement 20 pulses, is fulfilled.

Req.2: A press on the emergency button is detected and geztegthin 38@s. The requirement
stated that an emergency stop should halt a motor within $0Gpon pressing the button,
hence the requirement is fulfilled.

2This correspond to the decision procedure element of therated reasoning procedure in PECT

Req.3: The maximum memory usage is calculated to 3,79 kBzeh#re requirement of 4kB, is ful-
filled.

5.5 Synthesising the analysed design

In order for the component model and analysis framework($)et used in practice, there has to be
a resource efficient mapping from the architecture to a mesostructure (run-time system). In the
synthesis step, tasks are assigned to threads of contracamehunication between them are solved,
mapped and realized by operating system primitives andilpgpssome glue code. Input from the
analysis phase (e.qg., task allocation, priorities, sclesjlis crucial since the synthesis step must ad-
here to the assumption made by the analysis framework. $oewtthe activities of analysis and
synthesis are closely related, almost indistinguishahle, when creating a static schedule, which is
a proof-by-construction technique.

To show that the mapping to a run-time system is very muchdetadf situation and dependant on
which properties are stressed (even in the same system smsehpve different needs) we compare
the time-triggered (TT) execution paradigm and evenggigd (ET) paradigm.

Time-Triggered:

+ Useful for control functionality, Periodic activation tsks are not dependant on the environ-
ment. This will lead to a robust solution that naturally dealth overload situations, they never
occur since the system dictates itself independently oétivironment. Another benefit is that
it is reproducible and hence testable, which make a tespipgoach to functional verification
much easier.

- Pure time-triggered solutions becomes very strict anexitfle, changes to the schedule (if
static schedules are used) by adding or removing tasks;esilllt in new analysis and synthesis
step (for TT task in FPS it may suffice to do the analysis stepjast add the task at a fea-
sible priority). Also since the system is designed for theswtoase it will always exhibit this
behaviour. If events in the environment does not occur atwarst rate, the TT approach is un-
able to utilise this underload situation for other soft fiimeality. Futhermore, static schedules
can be memory consuming.

Event-Triggered:

+ Events are modelled more naturally, and thus better regptmes can be obtained for tasks
defined at highest priority. The system is well equipped todlunderload situations, since
tasks are activated by the environment. Whenever therepiara sapacity, the CPU can use the
time for soft functionality such as diagnostics.

- Overload situation may collapse the system, e.g., if ammimn inter-arrival time is incorrectly
specified or a sensor is faulty (generating bursty eventsp,Ahe behaviour in a ET system is
very hard to reproduce, thus verification by testing getcdit and time-consuming.

Communication: Generating code for communication between ports is deperatawhether
the ports are allocated to the same task or different tasésefally, code to copy data from in- to out
ports needs to be generated. To guarantee mutual exclisemdases have to be considered:

e Among TT : Solved in the analysis by time separation

e Among ET : Semaphores are added by tools, response timaayisaéxtended with blocking
factor.

e Between ET & TT : In schedule construction (analysis/sysithéools), blocking of a TT task
must be taken into account.

The synthesis part is the work that is mostly future work arieere little has been done. There is
a commercial concept that realises this step, Rubus [ABjvé¥er the Rubus component model is
restricted to statically allocated tasks in pre-definededales. Also the analysis and synthesis parts
are only concerned with these so called "red” tasks. The R@fs also supports interrupts and FPS
tasks. The lack of higher level tool support result in heasg af the red part for companies using
Rubus. We have started a project called MultEx that will lotdk which execution paradigms should
be supported by an OS and how one can provide support forpteuttkecution paradigms, all the
way from construction (component and architecture) vidyaigto synthesis.

6 Conclusion and Future Work

How can CBSE aid in the development of RCERTS? Our beliefas tbnnecting CBSE and RTS
theory by methods (processes) and automated tools cardprawig step towards this. Our vision of
the development process is that:

e Developers design by (re)using components, and thus pragiacomponent architecture at the
"appropriate” level of abstraction. Appropriate meang tha components and the component
model are expressive enough so that the application regeirts can be expressed and fulfilled
as naturally as possible. Note also that too expressive aoemp model lets the developers
"stray” and use solutions that are hard to understand argeréuacker solutions instead of
engineering solutions).

e The produced component architectures should be analysaffimin properties, responsive-
ness and memory consumption are treated in this paper. \WehalPECT view on this where
a constructive framework corresponds to the point aboveo Hnalysis framework is used, the
developer can utilise the full expressiveness of the motdedn analysis framework is used,
it may place some restrictions on architectural constoustior even on components. You can
compare this for a real-time system that uses C as a progragriariguage, most probably con-
structs such as dynamic memory allocation, recursion, wmibed loops etc, are not allowed.
However, different applications have different demandsvbat properties are important to
analyse, therefore the plug and play approach of analyameworks is attractive instead of
hardwiring it to method and tools.

e Last but not least, in order for the component model and asalyamework(s) to be used
in practice, there has to be a resource efficient mapping frerarchitecture to a resource
structure (run-time system). Traditionally CBSE is pugitomplexity away from the designer,
ending up with the complexity in the run-time system. Howethgs is not acceptable for
RCERTS. For RCERTS there is an additional push: from thetima-system (saying: "we
have no resources to do all that”) up to the development.layer

So where should the complexity end up, if the user, nor thetima system can cope with it?
Extensive constructive, analysis, and synthesis, metandgools! Compare to a compiler where lot
of theory, analysis, and synthesis techniques are hiddem the user, still a programmer knows how
to produce resource efficient code by using the compilerawittknowing all the details of it.

References

[AB]
[BBB+02]

[BCC*03]

[CLO2]

[dEg]
[DMTOO]

[FSN*03]

[JP86]

Arcticus Systems AB. Home page. http://www.arctiss.

F Bachmann, L Bass, C Buhman, S Comella-Dorda, F Long,beRoR Seacord, and
K.C Wallnau. Volume ii: Technical concepts of componensdzhsoftware engineering,
2nd edition. Technical report, Software Engineering togt, Carnegie Mellon Univer-
sity, Pittsburgh, USA, September 2002.

E Brinksma, G Coulson, | Crnkovic, A Evans, S Gérard, 8f@Gf Hermanns, B Jonsson,
A Ravn, P Schnoebelen, F Terrier, A Votintseva, and J.Mdéel. Component-based
design and integration platforms. Roadmap, Advanced Riga¢ Systems Information

Society Technologies (ARTIST), May 2003.

I Crnkovic and M Larsson. Building Reliable Component-Based Software Systems.
Artech House Publishers, 2002. ISBN 1-58053-327-2.

Live devices ETAS group. Home page. http://www.segf.

R Davis, N Merriam, and N Tracey. How embedded amilans using an rtos can stay
within on-chip memory limits. Inproceedings of the WIP and Industrial Experience
Session, Euromicro Conference on Real-Time Systems, June 2000.

J Froberg, K Sandstrom, C Norstrom, H Hansson, J Arelsand B Villing. Correlating
bussines needs and network architectures in automotivizalgns - a comparative case
study. Inproceedings of the 5th IFAC International Conference on Fieldbus Systems and
their Applications (FET), Aveiro, Portugal, July 2003.

M Joseph and P Pandya. Finding response times in-tmeasystem Comput.J, 29(5),
1986.

[MAFNO3] A Moller, M Akerholm, J Fredriksson, and M Nolin. Software componecht®logies

[MFNO3]

[MFNO4]

[NGS+01]

[San02]

[SFA04]

for real-time systems -an industrial perspective-prioceedings of the WP session of the
24th |EEE Real-Time System Symposium, Cancun, Mexico, December 2003.

A Moller, J Froberg, and M Nolin. What are the neent Eomponents in vehicular sys-
tems? -an industrial perspective.droceedings of the WIP session of the 15th Euromicro
Conference on Real-Time Systems, Porto, Portugal, July 2003.

A Moller, J Froberg, and M Nolin. Industrial reqeiments on component technologies
for embedded systems. International Symposium on Component-based Software En-
gineering (CBSE7), Edinburgh, Scotland, May 2004.

C Norstrom, M Gustafsson, K Sandstrom, J Maki-Tugad N-E Bankestad. Experi-
ences from introducing state-of-the-art real-time teghas in the automotive industry.
In 8th IEEE International conference and workshop on the Engineering of Computer-
Based Systems, Washington, USA, April 2001.

K Sandstrom.Enforcing Temporal Constraints in Embedded Control Systems. PhD
thesis, Royal Institute of Technology, April 2002.

K Sandstrom, J Fredriksson, andA®erholm. Introducing a component technology for
safety critical embedded real-time systemslriernational Symposium on Component-
based Software Engineering (CBSE7), Edinburgh, Scotland, May 2004.

[Szy98] C SzyperskiComponent software: Beyond Object-Oriented Programming. ACM Press
and Addison-Wesley, New York. N.Y, 1998.

[UPP] UPPAAL. Home page. http://www.uppaal.com.

[Wal03] K.C Wallnau. Volume iii: A technology for predictibassembly from certifiable com-
ponents. Technical report, Software Engineering Ingjt@arnegie Mellon University,

Pittsburgh, USA, April 2003.

