
Component technology in Resource Constrained Embedded
Real-Time Systems

Kaj Hänninen, Jukka Mäki-Turja
Mälardalen Real-Time Research Centre

Department of Computer Science and Engineering
Mälardalen University, Västerȧs, Sweden
{kaj.hanninen, jukka.maki-turja}@mdh.se

http://www.mrtc.mdh.se

Abstract: This paper presents a framework to incorporate real-time theory with component based

software engineering, in order to achieve predictable systems. The proposed technology is aimed at
releasing the developers from analysis aspects, and havinga synthesis tool resource efficiently map-
ping a feasible component based software architecture to a run-time environment. Two component
technologies form the base of our proposal, the predictableinfrastructure PECT and the real-time
component technology AutoComp. By combining properties from both, we achieve a framework
suited for resource constrained real-time systems.

1 Introduction

Though diversified in many aspects, different companies allhave the common goal of maximizing
profit. Different domains and companies within a domain havetargeted towards different business
goals. For example, a developer using a component technology have different needs from those
supplying the infrastructure and those supplying components. Furthermore, a company with few cus-
tomers per product will benefit more from an efficient development process since development cost
must be shared by few customers, an example being the business segment of heavy vehicles [MFN04].
On the other hand, companies with large volumes are more willing to place extra effort in the devel-
opment phase and reducing the cost of each product, the car industry being an example. Technically
the systems in heavy vehicles and cars are closely related, but due to their different business needs,
different technologies are used [FSN+03].

Software reuse, through component based software engineering, is often argued to reduce system
development and/or maintenance cost [CL02]. However, it isimportant that the range of commonality
is sufficiently large. With this we mean that a component model must be applicable to a wide range
of developers in order to see a business need for sub-suppliers to provide and develop components
and component frameworks. However, the component model cannot be too general in that it will not
meet the specific needs (such as scarce resource). This is a difficult trade off where the challenge lies
in finding a sufficiently general component model that will meet the specific needs of a wide range of
requirements placed on applications of a domain.

The view on embedded real-time system (ERTS) has been a, oncedeveloped, monolithic, platform
dependent view, which is not constructed for evolution. However, the typical life-cycle of such sys-

tems, in practice, depicts a quite opposite reality. ERTS tends to have a very long life-time, decades
in some cases. The effort placed in them can not easily be ignored, therefore such systems tends
to become legacy systems that are hard to incorporate into functionality and/or technology shifts
[FSN+03].

Component technology offers an opportunity to increase productivity by providing natural units
of reuse (components and architectures), by raising the level of abstraction for system construction,
and by separating services from their configuration to facilitate evolution [BCC+03]. Embedded real-
time systems are often characterized by having scarce resources such as memory, processing power
and communication bandwidth. Yet many of these systems needto satisfy requirements on depend-
ability [CL02, MFN04]. The focus of this paper is how development and maintenance of resource
constrained embedded real-time systems (RCERTS) can be aided by a component technology and
component based development (CBD) methodology.

Developers of RCERTS face the challenge of making safe and easy to maintain applications run-
ning on limited resources, without overrunning project budgets. Historically, the development of
ERTS has been done using low level programming language to guarantee full control over the system
behaviour [SFA04]. However, during recent years a new software engineering discipline, component
based software engineering (CBSE), has received attentionin the embedded development domain. It
has been seen as a promising approach to handle the complexities involved in the development of
ERTS. The complexities arise, amongst other things, from constant demands on adding new function-
alities in systems, to keep up market shares for the developed products. Besides being a discipline
aiding developers to cope with complexity, CBSE is concerned with rapid assembly by reuse of com-
ponents in different applications (products)[BBB+02, CL02].

Introducing a component based development process for ERTSis associated with challenges.
First, a component based development process must be able tohandle and satisfy at least the same
set of functional requirements as the existing developmentprocess. Furthermore, for RCERTS, non-
functional requirements such as timing behaviour, safety,memory consumption and so on, must be
analysable in the context of the development process. In this paper we will focus on two vital proper-
ties for RCERTS: Space and temporal resources expressed by memory usage and schedulability. To
introduce a component technology for a domain, such as RCERTS domain, we must be able to show
the economical benefit for all parties, ranging from end users of the component technology, suppliers
of the component framework (run-time support), to third party component suppliers.

In this paper, we take the view of a component framework provider (CFP). A CFP can be seen
as one delivering both development as well as run-time supporting tools to a company (compare this
with providers of operating systems enclosing developmentenvironments). Furthermore, the com-
pany may already have, or may need to develop, their own in-house components. In addition, the
company may need to rely on third party components adhering to the component framework standard.

The rest of the paper is organized as follows. In section 2 we describe the terminology used
in component based software engineering. Section 3 depictsour ideas for CBSE in the context of
RCERTS at a general level. Section 4 describes how our ideas of combining component technology
with real-time system theory, relates to work done by others. Section 5 shows how an example appli-
cation can be developed by using ideas presented in this paper. Finally, in section 6 we conclude the
paper and describe some future work.

2 Component technology definitions

In this section we describe basic concepts used in componentbased software engineering literature.
We begin this section with a description of definitions givenby different authors. We then conclude
this section by describing the terminology that we will use throughout this paper.

Development and engineering
Component based development (CBD) and component based software engineering (CBSE), are two
common terms used in the context of software engineering with components. Component based de-
velopment refers to the building of software systems by assembling developed components ready for
integration. The systematic approach focusing on component aspects of development, recognized
as a sub discipline of software engineering, is referred to as component based software engineering
[CL02].

Brinksma et al [BCC+03] distinguishes between component development and system develop-
ment with components. They state that the difference lies inthe requirements and business goals
in the two cases. They argue that the main emphasis on component development is on reusability
whereas system development is focused on the identificationof reusable entities and relations be-
tween them. This is a similar argument as we had in the introduction, i.e., in order for CBSE to be
successfully adopted, both suppliers and users of components must be able to see a business benefit.

Components
Component based software engineering is a relative young engineering discipline. Several attempts
to define a component have been made. Bachmann et al [BBB+02] describes a component as a
software implementation that can be executed on a physical or logical device. Furthermore, they state
that a component is an opaque implementation of functionality that may be subject to third-party
composition and conformant with a component model. Brinksma et al [BCC+03] follows the notion
of Szyperski [Szy98] stating that:

“a component is a unit of composition with contractually specified interfaces and fully
explicit context dependencies that can be deployed independently and is subject to third-
party composition.”

We agree to this definition if the development time can be seenas the time of deployment.

Interfaces and contracts
The operation and context dependencies of a component is defined by its interfaces. Bachmann et al
[BBB+02] shortly describes an interface as means to integrate component into assemblies, which in
turn, makes it possible to reason about the assemblies. Brinksma et al [BCC+03] states that interfaces
summarizes the component properties that are externally visible to other parts of the system. Further-
more, they describe that so called rich-interfaces may contain extra-functional information (such as
execution time etc).

Component specifications may also be described by contracts. Bachmann et al [BBB+02] de-
scribes a contract as pattern of interaction rooted on a component. Furthermore, they state that con-
tracts specify the services provided by a component, and theobligations of clients and an environment
needed by a component, to provide its services. Brinksma et al [BCC+03] state that a contract spec-
ifies functional or non-functional properties of a component, which are observable in a components
interface. Crnkovic et al [CL02] describes a contract as a specification focusing on conditions in

which a component interacts with its environment.

Models and frameworks
Brinksma et al [BCC+03] describes a component model and a component framework astwo basic
prerequisites that enables components to be integrated andwork together;. The component model
”specifies the standards and conventions that component must follow to enable proper interaction”,
whereas the framework is”the design and run-time infrastructure that manages resources for com-
ponents and supports component interactions”. Bachmann et al [BBB+02] describes a framework as
means of managing resources and providing mechanisms that enable communication among compo-
nents. In this paper we focus on design time infrastructure and synthesis to a minimal, application
specific, run-time infrastructure.

In the rest of this paper we will adopt the definitions given byBrinksma et al [BCC+03], which
to a large extent is based on work by Szyperski [Szy98].

3 CBSE in development context for RCERTS

It is our belief that the challenges of introducing component technologies into RCERTS can be over-
come, and in the long run gain acceptance in the industry. Pretty much the same way compilers have
become accepted (even indispensable) tools in the development of such systems. Our view of compo-
nent technologies (which is shared by others [SFA04, Wal03]) in RCERTS bares many similarities,
both at the high level and low level, with compiler technology. The following discussion highlights
some of the similarities.

Com ponent
architecture

Analysis
fram ew ork

Develop er

Run-tim e system

designs

autom atic
translation

synthesis

assumptions
(artefacts) m ade by
the analysis
fram ew ork

Figure 1: Component technology in the development of RCERTSapplications. The arrows indicates
process flow in a development scenario

For the following discussion, refer to figure 1. In an ideal situation we envision the developer (or
designer) of a system having a component model, architectural rules and constraints at his disposal in
order to develop a high level (abstracts away from pure source code) architecture of the application
(system). The systems is built up from components supportedby the component technology (com-
ponent framework, constructive rules on composition). Thegoal during construction is to relive the

designers from the burden of low level details so that they can focus on the problem at hand. This
enables the developer to construct a component architecture that is understandable and maintainable.
The architecture should also be formal enough for automatedanalysis and synthesis. The analogy to
compiler theory can be seen as a programmer programming in source code (high level of abstraction)
instead of assembler (low level of abstraction).

A component architecture for an application should be analysed for certain properties with an
analysis framework. The role of an analysis framework is to ensure that a well formed (syntacti-
cally correct) architecture can be analysed whether it satisfies certain properties or not. The analogy
to compilers could be checking for semantic correctness, e.g., type checking. In this paper we are
concerned with memory consumption and temporal feasibility (schedulability analysis) which results
in two analysis frameworks, one for memory consumption and one for schedulability analysis. The
objective of an analysis framework is to deal with as intricate problems as possible (this is where
we want to hide the complexity) with automated tool support,i.e., the analysis framework has the
knowledge of the component architecture (design) as well asthe constraints and services provided by
the component framework (run-time system). An analysis framework aims at satisfying a feasibility
property (such as doing a schedulability analysis) or enabling system property analysis derived from
individual component properties such as memory usage. Functional properties are not in the scope
of this paper, however the component model can support both atesting approach or a model based
approach if components functional behaviour is described formally with for example timed automata
[UPP].

Another important task for the analysis framework is to provide information of assumptions (arte-
facts) it had to make in order make a property feasible. Such artefacts typically consists of task model
attributes that can not be derived from the design (one example being task priorities). This information
together with the component architecture, i.e., an architecture that is both syntactically and semanti-
cally correct, may be used by a synthesis tool (analogous to aback-end generator of a compiler) when
generating code for the run-time environment. A synthesis tool thus takes the architecture design and
possibly some artefacts (such as priorities for a task model) produced by the analysis framework, and
maps it to the run-time system (OS, component glue code etc.). The aim is to provide a run-time
system that has a small footprint, but still providing sufficient run-time services to the components of
the application. Note that this is a degree of freedom; if theapplication makes use of lot of run-time
services these must be provided by the run-time system. However, at one extreme, if the application
is purely static, all connections between components can beresolved off-line (by analysis framework
and synthesis tool) which result in a static schedule yielding little run-time overhead. With this view
one can say that the entire component framework is provided at development time (as opposed to
at run-time for component technologies such as e.g. .NET), whereas only the part that are used are
mapped down to the run-time system.

Our vision is to provide the engineer with a powerful and expressive component model for the
RCERTS domain. In order to do this, automated tools are needed that handles the complexity of
analysis frameworks and code synthesis to the run-time environment. The vision is to get as powerful
technology for designing with components as there today is for compilers. Few developers know
what goes on inside a compiler (there is a lot of formal theoryat work) and they do not have to, it
suffices to know what it does and know how it can be used to optimise and synthesise the application
requirements. Similarly we envision that analysis frameworks and synthesis tools can aid a designer
in the area of RCERTS.

4 Related work and objective

A lot of research has addressed the requirements that must befulfilled by component technologies,
to be accepted by industries developing embedded real-timesystems. Möller et al [MFN04, MFN03,
MAFN03] presents a set of technical and development requirements that different developers, in the
heavy vehicle domain, find important. Among the technical requirements the industry strives for
components to be analysable, testable, debuggable, resource constrained and portable. Furthermore,
the industry strives for a simple and mature standardized component modelling language. The re-
quirements related to the development process include demands on components to be introducible,
reusable, maintainable and understandable. Furthermore,the requirements regarding analysis of com-
ponents in ERTS include addressing properties such as timeliness, memory consumption, reliability
and safety etc. not just for single components, but also for assemblies of components. Hence the
assemblies of components should be predictable with regardto functional as well as non-functional
requirements.

Sandström et al [SFA04] presents a component technology (AutoComp) for safety critical em-
bedded real-time systems. The technology is aimed at systems with high demands on safety and
reliability. This is achieved by mapping a component model with high level real-time constraints, to a
real-time model which is analysed and synthesized for predictable execution. The AutoComp model
is divided into components, interfaces, compositions, invocation cycles, transactions and system rep-
resentation. The component interfaces are classified into two categories; data and control interfaces.
The data interfaces are used to handle data flow between components and the control interfaces to
handle control flow of components.

Wallnau [Wal03] presents a development infrastructure (PECT) enabling critical runtime proper-
ties of component assemblies that are objectively analysable and predictable. The logical structure
of PECT consists of two distinct frameworks; a constructionand one or more reasoning frameworks.
The construction framework supports construction activities of CBD, whilst the reasoning framework
supports the prediction activities of CBD. The ability to use several independent reasoning frame-
works makes PECT interesting for development of RCERTS. In addition, decoupling the analysis
and constructive framework increases the usefulness of theconstructive component model. Analysis
frameworks are used to tailor the application specific requirements. This is an attractive viewpoint
and increases the level of commonality of the constructive component model. There are however
certain limitations to the component model that may hinder the developers when using PECT. The
abstract component technology (ACT) in PECT do not allow theseparation of data and control flow,
hence transactions including several components that needto execute at different periodicity, which
is common in many (multi-rate) control systems [San02], maybe difficult to realize.

We find AutoComp being aimed against the embedded systems domain. It is developed using a
natural way of guaranteeing temporal predictability of component assemblies. However, the Auto-
Comp model assumes a fixed run-time environment to which all applications must be mapped (syn-
thesised) to (Fixed priority Systems). This will restrict the type of applications that can use the
component model to those where FPS run-time support can be afforded. Furthermore, no commer-
cially available FPS OS:es have run-time support for offsets. Also the only reasoning framework in
AutoComp is the schedulability analysis, which is integrated in the development method. The PECT
theory, on the other hand, feels more natural with respect toassembly predictions, especially since
several frameworks may be used to analyse different properties. Unfortunately, it lacks synthesis the-
ory.

In essence we find that combining the view from AutoComp and the view from PECT together
with adding stronger and more flexible synthesis theory willcontribute in achieving the vision out-
lined in the previous section. The idea is to combine component technology with real-time system
theory and encapsulate them into development and synthesistools to achieve good quality software
for RCERTS. To concretise our ideas, and support our claims,we will show how a simple example
application can be developed using the techniques in AutoComp [SFA04], PECT [Wal03], and our
idea of synthesis.

5 Example system development

In the following sections we present an example system that uses design, analysis and synthesis prop-
erties from both AutoComp [SFA04] and PECT [Wal03].

The challenge is to develop a control system responsible forthe positioning of a industrial robot.
The main goal of this example is to describe how activities from existing component technologies
may be interleaved, resulting in predictable component assemblies suitable for memory constrained
ERTS. Our intention is not to develop an optimal control system, in fact, the primary concern is to
design the system in a way that clearly illustrates and motivates the activities used throughout the
component based development process.

Throughout the example, we assume that the necessary tools to choose components, create as-
semblies etc, are at the developers disposal.

5.1 Introduction

We believe that one of the main concerns of a designer, in the initial phases of development, is to
design the system in terms allowing analysis. Hence the component architecture together with the
definition of data and control flow between the components, should be performed as early as possi-
ble. It would allow for automatic task allocations and analysis of a system, early in the development
process. Figure 2 shows an overview of our envisaged development flow in constructing the control
system for the robot. The system requirements form as input to the design process. The output from
the design process should be an analysable and synthesizeable architecture. In case the analysis of
the architecture reveals unfulfilled requirements, the process need to be iterated with a change in the
requirements and/or design. As can be seen in figure 2, the development process flow take different
paths depending on whether components are available in a repository or need to be developed. How-
ever, the component and application development processescan be separated, allowing them to be
performed in parallel [CL02].

5.2 System requirements

The initial activity depicted in figure 2, consists of collecting the system requirements that will be
used as input to the component aware design activity. Therefore, we begin the development of the
example system by describing the requirements and prerequisites for our robot system example.

The challenge is to develop an control system responsible for the positioning of a robot arm
consisting of three axis. The movement of each axis is controlled by separate motors (m1,m2,m3) and

Requirements

Component aware Design

Architecture

Component
Library

Analysis Synthesis

Component
Development

Run-Time
system

 - activity
 - input / output

Figure 2: Overview of the Component Based Development process used in the robot system example

indicated by three separate pulse-sensors (s1,s2,s3). In addition, the system consists of an emergency
stop button and sensors to calibrate initial axis positions. The requirements on the example system
are as follows:

• Req.1: Strived positions for the robot arm must be reached with an accuracy of±20 pulses

• Req.2: A pressed emergency stop button must be detected, and motors stopped, within 100ms

• Req.3: A total of 4 kB of random access memory (RAM) are available for the application
positioning the robot

The following is a list of system prerequisites and robot characteristics for the example:

• Pre.1: The strived positions for the robot, are pre-defined and stored in a vectorv as coordinates
in space. The vector will be available as input to the system.

• Pre.2: A sensorn detects if an emergency stop button is pushed. The minimum interarrival
time between two consecutive activations of the emergency button, is assumed to be infinitely
long.

• Pre.3: Sensors1 generates 3712 pulses per revs

• Pre.4: Sensorss2 ands3 generates 1280 pulses from end to end positions

• Pre.5: Three sensorse1,e2 ande3 are used to calibrate axis positions at system start. Each
of the sensors generates an event when the desired calibration position is reached. The mini-
mum interarrival time between two consecutive activationsof these sensors, is assumed to be
infinitely long (indicates that it happens only once).

• Pre.6: The maximal velocity of each motor is 100 pulses per second.Each activation of an
motor will run the motor for a shorter time (100 - 200ms). Hence there may be a need for
several consecutive activations, to reach a specific position. Furthermore, the inertia of each
motor may result in a drift of up to 10 pulses at motor deactivation.

• Pre.7: The operating system is activated periodically each millisecond by a timer interrupt. A
timer interrupt uses approx. 100 bytes of memory at each activation. The timing overhead of
the operating system is 30µs at each timer interrupt. The context switch overhead is approx.
30 bytes.

5.3 Operational modes and implementation architectures

This section describes the design of component architectures for the robot example system.

To begin with, the operational modes [NGS+01] of the robot are identified and realised with a
component architecture suited for each mode. The components used in the architectures may either
be existing ready to use components, or components in need ofdevelopment (see figure 2). For the
sake of reasoning, we assume in this example, that the functional and non-functional properties are
stated with similar notation independently of whether the components are developed in-house or not.

5.3.1 Operational modes

With the requirements at hand, we begin with identifying theoperational modes of the system. The
purpose is to identify the states of the system and separate the high level functional behaviour. The
partitioning into modes gives a high level description of the system, which might facilitate the under-
standing of the system, especially for new developers. Furthermore, most systems have a concept of
modes and making it explicit, rather than implicit in the code, makes the design much more maintain-
able.

Two modes are identified for the robot; an initial mode and an manoeuvring mode. The initial
mode is needed to calibrate the axis to get a pre-defined position (0,0,0). The manoeuvring mode will
be used to position the robot axis according to the pre-defined position data in vector v. A simple
sketch of possible mode transitions is shown in figure 3.

Initial
mode

Manoeuvring
mode

Emergency stop pressed

System calibrated to pre-defined position

start

Figure 3: Operational modes for the robot system example

5.3.2 Designing the component architecture

The component architectures for the identified modes may be designed using the following activities:

• Identification of the environment (hardware components)

• Identification the needed functionalities. This should notbe confused with identification of
program functions. Functionalities are, by our definition,high level system behaviour

• Choosing of components to model the functionalities

• Definition of data flow between components

• Definition of control flow between components

There is however no need to perform the activities in any specific order. The above activities could
be performed in the best suitable order for the application in development.

For the sake of simplicity, we will perform the design of the component architecture, in the order
depicted above, starting with the identification of system functionality and environment.

5.3.3 Initial mode - identifying functionality and environment

We start by identifying the needed functionalities in the initial mode, beginning with the emergency
stop functionality. Two associated functions are identified; the detection of a pressed emergency but-
ton and the halting of the motors.

Continuing with the functionality of calibrating the axis,two functionalities are needed; the read-
ing of calibration sensors e1-e3 and the running of the axis motors to move the robot arm to a pre-
defined starting position.

Thus, we can see that the environment consists of the end position sensors (e1,e2,e3), the emer-
gency stop senor (n) and the three motors (m1,m2,m3).

5.3.4 Initial mode - choosing components

We continue by choosing suitable components for the identified functionalities.

The emergency stop functionality could be modelled by usingtwo separate components, a sensor-
handler (component N) and an motor controller component (component M).

The calibration of the robot could also be performed using two components; one that handles the
input from the calibration sensors and another that controls the motor activations. For the reading of
calibration sensors e1-e3 we choose to use a new component (component E).

The calibration of the robot arm requires running and halting of the motors. For this we could
use the same component (component M) as we used earlier for the emergency stop functionality. The
component M must be continuously activated, according to prerequisite no 6, since the motor will
otherwise stop. Some periodicity is therefore required.

5.3.5 Initial mode - defining data and control flow

We continue with defining the dataflow and control flow betweenthe chosen components in the initial
mode.

Starting with the emergency stop functionality, the sensorhandling component (component N) is
activated by a press on the e-stop button. It then processes the event and forwards a halt event to the
motor controller component (component M). Hence there would be a need for a control flow between

sensor n, component N and component M.

Continuing with the calibration, component E is activated by sensors e1, e2 or e3 when an axis
reaches a desired calibration position. When activated, the component forwards a halt motor event to
component M. When component M receives information that allcalibration sensors (e1,e2,e3) have
reached their end positions (indicates the predefined position (0,0,0)), component M initiates a mode
change. Furthermore, during calibration, component M mustbe activated periodically according to
the characteristics. Figure 4 illustrates the notation used in the graphical figures depicting component
assemblies. Figure 5 shows the resulting component architecture for the initial mode. Notice that
the components in figure 5 have annotations describing theirworst case execution times (WCET) and
maximum memory consumption (MEM). These are, depending on whether the components are devel-
oped or not, either derived specifications for existing components, or budgets given by the application
designers to the component developers.

- Environment - Data port

- Control port

 - Hardware component

 - Software Component - Data / Control flow

Figure 4: Notation

e1

e2

e3

n

<WCET, 50µS>

<MEM, 100B>

<WCET, 100µS>

<MEM, 500B>

Comp: N

Comp: E

<WCET, 300µS>

<MEM, 1000B>

Comp: M

m1

m2

m3

Figure 5: Component architecture for the initial mode

5.3.6 Manoeuvring mode

Using the same design activities as for the initial mode, thecomponent architecture for the manoeu-
vring mode may be realised by four components. Figure 6 showsthe resulting components and their
interaction in the manoeuvring mode.

As in the initial mode, component N would be activated by a press on the e-stop button, it then
processes the event and forwards a halt event to the motor controller component M. Component P

polls the sensor values s1-s3 for changes in axis positions and calculates the current position of the
robot arm. The position is forwarded to component C, which takes vector v as input to decide whether
the strived position is reached or not.

For the sake of this example, a required data port from component C is connected to a provided
port on component P. The data is used to indicate the direction in which the motors are running.
This information is needed since component P only has a pulseas input and has to decide whether to
count the position of a robot arm up or down. This exemplifies acase that would not be possible to
achieve following the definitions in PECT [Wal03]. The component interactions, as defined in PECT,
is handled through sink and source pins. Pins are means of handling sole events, or events bundled
with data. There is however, no specified way of interacting through pure data on sink or source pins.

s1

s2

s3

n

< WCET, 150µS >

< MEM, 300B >

Comp: P

< WCET, 300µS >

< MEM, 1000B >

Comp: M

m1

m2

m3

< WCET, 200µS >

< MEM, 500B >

Comp: C

< WCET, 50µS >

< MEM, 100B >

Comp: N

Figure 6: Component architecture for the manoeuvring mode

5.3.7 Component assemblies

In order to deal with complexity issues for the designer, component assemblies must be treated the
same way basic components are treated. There are two main reasons for this:

1. Hierarchical decomposition. The developer should be able to hide unnecessary details and view
the system from different abstraction levels. A ”flat” structure with all information available at
all times clutters the high level abstraction view.

2. Reuse of components. If a component is to be reused it must be packaged, and from the de-
velopers view, look exactly as a basic component does. If thedevelopers are forced to figure
out the inner workings of the assembly, they would probably be reluctant to use it. It would in
many cases be easier for them to construct it by themselves.

The above reasons motivate the black box approach of CBSE. From the user’s perspective, an
assembly will behave like a component if the interfaces (provided and required) on the boundary, are
passed to the component assembly instead. A special case is control-interfaces, where there is a choice
during component construction (or equally during hierarchical decomposition), whether to embed
timers and/or hardware components into the component assembly. Both approaches are possible.
If left out, a control interface becomes available on the component. And the other way around, if

embedded in the component assembly, the user of the component assembly does not se how the
services of the component are activated. As an example, see figure 7 where we have packaged the
manoeuvre mode, shown in figure 6, into one component.

Component assembly

Figure 7: Black box view of a component assembly

In figure 7, we have chosen to embed one timer into the component assembly, whereas the other
control interfaces are placed on the border of the componentassembly.

5.3.8 Task allocation and attribute assignment

When the initial component architectures are defined, the component assemblies must be partitioned
into executable units called tasks. For each mode, every component in the architecture should be auto-
matically mapped to a real-time task. There is a lot of issuesinvolved in the allocation of components
into tasks. One of them being the question whether a component should be restricted to deliver one
single service or several ones. This issue raises the question of how components should be instanti-
ated. Should we allow several instances of a component or a single instance shared by several tasks.
Allowing several instances would consume more memory than asingle one, but issues involved in
service precedence’s might be easier to cope with.

In this example, we allow the instantiation of a component into several tasks. Furthermore, the
allocation is performed in a way allowing us to derive WCET:sfor each task. Beginning with the
components for the initial mode (see figure 5), using some task allocation strategy, might results in
three tasks for the mode.

• Task TM : A periodic task activating motors m1,m2 and m3. Task TM activates component M.
(One can view M as a program function)

• Task TNM : An event triggered task handling emergency stop functionality. Task TNM activates
component N followed by M.

• Task TEnM : Three instances (n=1...3) of an event triggered task responsible for the calibration
of the robot arm. Each task instance activates component E followed by M.

Continuing with task allocation for the manoeuvring mode (see figure 6), we might end up with the
following tasks:

• Task TP : A periodic task reading pulse sensors s1,s2 and s3. Task TP activates component P.

• Task TCM : A periodic task controlling the current position of the robot arm. Task TCM

activates component C followed by M.

• Task TNM : An event triggered task handling emergency stop functionality. Task TNM activates
component N followed by M.

Task attributes, such as period and priority, could be mapped from user specification of compo-
nents. This information can be specified for software and/orhardware components. For example,
a hardware components generating events into the system must describe its temporal characteristics
(minimum interarrival time between two consecutive events) and for timers the period time. As for
priorities this could be specified on the level of componentsand mapped to tasks with similar rules
as for those used in PECT. Another approach, is to relieve this specification burden from the designer
completely, as in AutoComp, and let an analysis tool do priority allocations. This paper does not
resolve this issue, any or a combination of the above approaches could be used in our presented con-
text. For the sake of completing our example we assume the following priorities and periods has been
derived by some technique:

Initial mode

• Task TNM : P = High

• Task TEnM : P = Medium

• Task TM : P = Low, T = 100ms

Manoeuvring mode

• Task TNM : P = High

• Task TP : P = Medium, T = 5ms

• Task TCM : P = Low, T = 50ms

For the reminder of this example we assume that the resultingtasks sets rely on the single shot exe-
cution model which allows several tasks to share a common stack [DMT00, dEg]. Furthermore, we
assume that tasks with equal priorities are handled in first come first serve manner (FCFS), i.e., they
can not pre-empt each other.

5.3.9 Task allocation for assemblies

For task allocation of assemblies the black box approach described in section 5.3.7 is not sufficient.
In order to perform a task allocation the detailed control information is needed, i.e., a structure that is
flattened out. From task allocation point of view the control-interfaces can not be black-box, it needs
to know the inner workings of each component, i.e., a grey box(look, but don’t touch!) approach.
Figure 8 shows what information task allocation needs for our component assembly of figure 7.

5.4 Analysing the system design with reasoning frameworks

This section describes how schedulability analysis and prediction of memory usage may be performed
for the task sets in our robot system example.

So far in the development process we have mainly used techniques outlined in AutoComp [SFA04].
The contribution of PECT [Wal03], to our robot system example, consists of theories allowing us to
reason about our assemblies. In order to analyse our examplesystem, we establish two reasoning
frameworks [Wal03], by defining a property theory and an automatic reasoning procedure for each

Comp: P

Comp: M

Comp: C

Comp: N

Figure 8: Grey box view of a component assembly

framework. The validation procedure1for the analysis of our example system, will however not be ad-
dress. We assume that the given properties for the components are correctly specified. Furthermore,
the reasoning frameworks are based on formally validated theory.

5.4.1 Property theory

The property theory for our example systems consists of two distinct parts; a timing analysis property
checking for schedulability, and a memory consumption theory. The property theory for analysing
timing behaviours in our example system may be expressed by formula 1 [JP86]. The formula ex-
press the maximum response time for a task, taking in consideration the influence imposed by all
higher priority tasks. The computed response times may thenbe used to examine the schedulability
of the task sets.

Rn+1
i = Ci +

∑

∀j∈hp(i)

⌈

Rn
i

Tj

⌉

Cj (1)

The maximum memory consumption property for the assembly ofthe robot system, may be ex-
pressed by formula 3. The original formula 3 is presented in [DMT00]. We have slightly modified the
formula and added formula 2, to express the memory usage withrespect to the FCFS task activation
strategy explained in section 5.3.8. The property theory ishowever a safe estimation of the maximum
memory consumption of our robot system example.

mode mem =
∑

∀p∈prio levels

(max (tmem)
∀t∈prio(p)

+ Context) (2)

Total memory usage = mode mem + ISR (3)

prio levels : All priority levels in the system
prio(i) : Set of all tasks with priority leveli
Context : Memory required to save register data etc., at a task switch
tmem : Memory usage of taskt
ISR : Memory required by timer interrupt service routine

1A reasoning framework in PECT consist of three distinct parts; a property theory, an automated reasoning procedure
and a validation procedure. The validation procedure serves to explore the trustworthiness of a reasoning framework

5.4.2 Automated reasoning procedure

The interpretation of the assemblies to the reasoning frameworks is pretty straightforward. In section
5.3.8, components were assigned into sets of tasks with belonging temporal and memory attributes.
The assignment makes is possible to automate both timing andmemory reasoning of the assemblies
i.e., it is possible to map parts of the concrete construction syntax to strings for our property theories.

The following is a list of response times and memory consumptions derived for the tasks in the
robot example system. Prerequisite no. 7 lists the OS timingoverhead used in the calculations. The
response times for each task are calculated with formula 1. The memory consumption of each task is
calculated as; the sum of memory used by all components assigned to the task.

Initial mode

• Task TNM : R = 380µs, Mem = 1100 bytes

• Task TEnM : R = 780µs per instance, Mem = 1500 bytes per instance

• Task TM : R = 1110µs, Mem = 1000 bytes

Manoeuvring mode

• Task TNM : R = 380µs, Mem = 1100 bytes

• Task TP : R = 530µs, Mem = 300 bytes

• Task TCM : R = 1060µs, Mem = 1500 bytes

Table 1 shows the calculated memory usage in each mode (see prerequisite no. 7 for the values of
ISR and Context).

Table 1: Memory usage in each mode of the robot system example
Priority level modemem (init.) modemem (man.)

High 1100 + 30 = 1130 1100 + 30 = 1130
Medium 1500 + 30 = 1530 300 + 30 = 330

Low 1000 + 30 = 1030 1500 + 30 = 1530
Total (modemem + ISR) 3690 + 100 = 3790 2990 + 100 = 3090

The output from the reasoning procedure is then analysed andcompared2 to the requirements.

Req.1: Strived positions are reached with an accuracy of±17 pulses (max speed: 100 pulses/sec.) in
the manoeuvring mode. Hence the requirement of±20 pulses, is fulfilled.

Req.2: A press on the emergency button is detected and processed within 380µs. The requirement
stated that an emergency stop should halt a motor within 100ms upon pressing the button,
hence the requirement is fulfilled.

2This correspond to the decision procedure element of the automated reasoning procedure in PECT

Req.3: The maximum memory usage is calculated to 3,79 kB, hence the requirement of 4kB, is ful-
filled.

5.5 Synthesising the analysed design

In order for the component model and analysis framework(s) to be used in practice, there has to be
a resource efficient mapping from the architecture to a resource structure (run-time system). In the
synthesis step, tasks are assigned to threads of control andcommunication between them are solved,
mapped and realized by operating system primitives and possibly some glue code. Input from the
analysis phase (e.g., task allocation, priorities, schedules) is crucial since the synthesis step must ad-
here to the assumption made by the analysis framework. Sometimes, the activities of analysis and
synthesis are closely related, almost indistinguishable,e.g., when creating a static schedule, which is
a proof-by-construction technique.

To show that the mapping to a run-time system is very much a trade-off situation and dependant on
which properties are stressed (even in the same system some parts have different needs) we compare
the time-triggered (TT) execution paradigm and event-triggered (ET) paradigm.

Time-Triggered:

+ Useful for control functionality, Periodic activation oftasks are not dependant on the environ-
ment. This will lead to a robust solution that naturally deals with overload situations, they never
occur since the system dictates itself independently of theenvironment. Another benefit is that
it is reproducible and hence testable, which make a testing approach to functional verification
much easier.

- Pure time-triggered solutions becomes very strict and inflexible, changes to the schedule (if
static schedules are used) by adding or removing tasks, willresult in new analysis and synthesis
step (for TT task in FPS it may suffice to do the analysis step and just add the task at a fea-
sible priority). Also since the system is designed for the worst case it will always exhibit this
behaviour. If events in the environment does not occur at their worst rate, the TT approach is un-
able to utilise this underload situation for other soft functionality. Futhermore, static schedules
can be memory consuming.

Event-Triggered:

+ Events are modelled more naturally, and thus better response times can be obtained for tasks
defined at highest priority. The system is well equipped to handle underload situations, since
tasks are activated by the environment. Whenever there is a spare capacity, the CPU can use the
time for soft functionality such as diagnostics.

- Overload situation may collapse the system, e.g., if a minimum inter-arrival time is incorrectly
specified or a sensor is faulty (generating bursty events). Also, the behaviour in a ET system is
very hard to reproduce, thus verification by testing gets difficult and time-consuming.

Communication: Generating code for communication between ports is dependant on whether
the ports are allocated to the same task or different tasks. Generally, code to copy data from in- to out
ports needs to be generated. To guarantee mutual exclusion three cases have to be considered:

• Among TT : Solved in the analysis by time separation

• Among ET : Semaphores are added by tools, response time equation is extended with blocking
factor.

• Between ET & TT : In schedule construction (analysis/synthesis tools), blocking of a TT task
must be taken into account.

The synthesis part is the work that is mostly future work and where little has been done. There is
a commercial concept that realises this step, Rubus [AB]. However the Rubus component model is
restricted to statically allocated tasks in pre-defined schedules. Also the analysis and synthesis parts
are only concerned with these so called ”red” tasks. The Rubus OS also supports interrupts and FPS
tasks. The lack of higher level tool support result in heavy use of the red part for companies using
Rubus. We have started a project called MultEx that will lookinto which execution paradigms should
be supported by an OS and how one can provide support for multiple execution paradigms, all the
way from construction (component and architecture) via analysis to synthesis.

6 Conclusion and Future Work

How can CBSE aid in the development of RCERTS? Our belief is that connecting CBSE and RTS
theory by methods (processes) and automated tools can provide a big step towards this. Our vision of
the development process is that:

• Developers design by (re)using components, and thus producing a component architecture at the
”appropriate” level of abstraction. Appropriate means that the components and the component
model are expressive enough so that the application requirements can be expressed and fulfilled
as naturally as possible. Note also that too expressive component model lets the developers
”stray” and use solutions that are hard to understand and reuse (hacker solutions instead of
engineering solutions).

• The produced component architectures should be analysed for certain properties, responsive-
ness and memory consumption are treated in this paper. We take the PECT view on this where
a constructive framework corresponds to the point above. Ifno analysis framework is used, the
developer can utilise the full expressiveness of the model.If an analysis framework is used,
it may place some restrictions on architectural constructions or even on components. You can
compare this for a real-time system that uses C as a programming language, most probably con-
structs such as dynamic memory allocation, recursion, unbounded loops etc, are not allowed.
However, different applications have different demands ofwhat properties are important to
analyse, therefore the plug and play approach of analysis frameworks is attractive instead of
hardwiring it to method and tools.

• Last but not least, in order for the component model and analysis framework(s) to be used
in practice, there has to be a resource efficient mapping fromthe architecture to a resource
structure (run-time system). Traditionally CBSE is pushing complexity away from the designer,
ending up with the complexity in the run-time system. However this is not acceptable for
RCERTS. For RCERTS there is an additional push: from the run-time system (saying: ”we
have no resources to do all that”) up to the development layer.

So where should the complexity end up, if the user, nor the run-time system can cope with it?
Extensive constructive, analysis, and synthesis, methodsand tools! Compare to a compiler where lot
of theory, analysis, and synthesis techniques are hidden from the user, still a programmer knows how
to produce resource efficient code by using the compiler without knowing all the details of it.

References

[AB] Arcticus Systems AB. Home page. http://www.arcticus.se.

[BBB+02] F Bachmann, L Bass, C Buhman, S Comella-Dorda, F Long, J Robert, R Seacord, and
K.C Wallnau. Volume ii: Technical concepts of component-based software engineering,
2nd edition. Technical report, Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, USA, September 2002.

[BCC+03] E Brinksma, G Coulson, I Crnkovic, A Evans, S Gérard, S Graf, H Hermanns, B Jonsson,
A Ravn, P Schnoebelen, F Terrier, A Votintseva, and J.M Jéz´equel. Component-based
design and integration platforms. Roadmap, Advanced Real-Time Systems Information
Society Technologies (ARTIST), May 2003.

[CL02] I Crnkovic and M Larsson. Building Reliable Component-Based Software Systems.
Artech House Publishers, 2002. ISBN 1-58053-327-2.

[dEg] Live devices ETAS group. Home page. http://www.ssx5.com.

[DMT00] R Davis, N Merriam, and N Tracey. How embedded applications using an rtos can stay
within on-chip memory limits. Inproceedings of the WiP and Industrial Experience
Session, Euromicro Conference on Real-Time Systems, June 2000.

[FSN+03] J Fröberg, K Sandström, C Norström, H Hansson, J Axelsson, and B Villing. Correlating
bussines needs and network architectures in automotive applications - a comparative case
study. Inproceedings of the 5th IFAC International Conference on Fieldbus Systems and
their Applications (FET), Aveiro, Portugal, July 2003.

[JP86] M Joseph and P Pandya. Finding response times in a real-time system.Comput.J, 29(5),
1986.

[MAFN03] A Möller, M Ȧkerholm, J Fredriksson, and M Nolin. Software component technologies
for real-time systems -an industrial perspective-. Inproceedings of the WiP session of the
24th IEEE Real-Time System Symposium, Cancun, Mexico, December 2003.

[MFN03] A Möller, J Fröberg, and M Nolin. What are the need for components in vehicular sys-
tems? -an industrial perspective. Inproceedings of the WiP session of the 15th Euromicro
Conference on Real-Time Systems, Porto, Portugal, July 2003.

[MFN04] A Möller, J Fröberg, and M Nolin. Industrial requirements on component technologies
for embedded systems. InInternational Symposium on Component-based Software En-
gineering (CBSE7), Edinburgh, Scotland, May 2004.

[NGS+01] C Norström, M Gustafsson, K Sandström, J Mäki-Turja,and N-E Bȧnkestad. Experi-
ences from introducing state-of-the-art real-time techniques in the automotive industry.
In 8th IEEE International conference and workshop on the Engineering of Computer-
Based Systems, Washington, USA, April 2001.

[San02] K Sandström.Enforcing Temporal Constraints in Embedded Control Systems. PhD
thesis, Royal Institute of Technology, April 2002.

[SFA04] K Sandström, J Fredriksson, and ṀAkerholm. Introducing a component technology for
safety critical embedded real-time systems. InInternational Symposium on Component-
based Software Engineering (CBSE7), Edinburgh, Scotland, May 2004.

[Szy98] C Szyperski.Component software: Beyond Object-Oriented Programming. ACM Press
and Addison-Wesley, New York. N.Y, 1998.

[UPP] UPPAAL. Home page. http://www.uppaal.com.

[Wal03] K.C Wallnau. Volume iii: A technology for predictable assembly from certifiable com-
ponents. Technical report, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, USA, April 2003.

