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Abstract

We describe and evaluate several variants of an active
set algorithm for the problem of computing a (1 + ε)-
approximation to the minimum-volume ellipsoid en-
closing a given point set. The general approach is
to run an existing algorithm repeatedly on smaller
subsets of the points, and thereby achieve improved
solution times compared to solving the whole problem
directly. As the underlying algorithm, we use that of
Todd and Yıldırım, which belongs to a group of algo-
rithms based on the first-order Frank–Wolfe method.
We propose multiple strategies to choose a new active
set in each iteration, including an improved version of
an existing strategy by Sun and Freund. In addition,
we develop a variation of the elimination heuristic by
Harman and Pronzato, that eliminates input points
more aggressively in each iteration and then checks
correctness of the solution before returning it. When
used to (1+10−6)-approximate the minimum-volume
ellipsoid enclosing sets of 106 points in 2 to 25 dimen-
sions, the proposed techniques generate speedups up
to 70× compared to our baseline.

1 Introduction

Let P := {p1, . . . , pn} ⊂ Rd be a given set of points
with affine hull Rd. An enclosing ellipsoid of P is
defined by a center c ∈ Rd and a symmetric positive-
definite matrix Q ∈ Rd×d as

EQ,c := {x ∈ Rd : (x− c)T
Q(x− c) ≤ 1}

such that EQ,c ⊃ P. The volume of EQ,c is given by

vol EQ,c = ζ detQ−1/2,

where ζ is the volume of the unit ball in Rd. We are
concerned with the problem of finding the minimum-
volume enclosing ellipsoid (MVEE) of the given point
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set P, MVEE(P). This ellipsoid, also known as the
Löwner–John ellipsoid, has utility in diverse applica-
tions such as collision detection [8], classification [22],
convex optimization [20], and optimal experimental
design [23]. Specifically, we are concerned with com-
puting a (1 + ε)-approximation to the MVEE, which
is an enclosing ellipsoid E satisfying

vol E ≤ (1 + ε) vol MVEE(P).

A closely related problem is that of computing an
(1 + η)d-rounding of the convex hull of P, conv(P),
which is an ellipsoid E satisfying

((1 + η)d)−1E ⊂ conv(P) ⊂ E ,

where the left-hand side denotes the ellipsoid E scaled
about its center by ((1 + η)d)−1. The exact MVEE
of P provides a d-rounding of conv(P) in the general
case, and a

√
d-rounding if P is centrally symmet-

ric [14].
The main focus of this paper is on a family

of first-order algorithms for the MVEE problem
that can be derived from the more general Frank–
Wolfe method [11]. This includes some early al-
gorithms for the equivalent D-optimal design prob-
lem [23], namely, the ones proposed by Wynn [27],
Fedorov [10], Atwood [3], and Böhning [7]. It fur-
ther includes the algorithms by Khachiyan [16], Ku-
mar and Yıldırım [17], Todd and Yıldırım [25], and
Cong et al. [9], which compute a (1+ε)-approximation
of the MVEE, that is at the same time a (1 + η)d-
rounding with η = (1 + ε)2/(d+1) − 1.

We study the combining of these algorithms with
an active set strategy to improve their speed in prac-
tice. The basic idea is to invoke the underlying algo-
rithm multiple times on smaller subsets of the input
data as opposed to running it once on the full prob-
lem. The returned solution from each step informs
the selection of the next active set, until the solu-
tion to the current subproblem provides a ((1 + ε)-
approximate) solution to the original problem. The
rationale of such an approach is that only a limited
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number of points in P are essential to compute or
approximate MVEE(P). Indeed, it was shown by
John [14] that MVEE(P) is determined by at most
d(d + 3)/2 points on its boundary. The concept of
core-sets also builds on the idea of finding a small
subset of relevant points that can be used to approxi-
mate the solution to within a guaranteed accuracy.
In the context of the MVEE problem, K ⊆ P is
called an ε-core-set if there exists a scale factor s
such that sMVEE(K) ⊃ P and vol sMVEE(K) ≤
(1 + ε) MVEE(P).

A similar active set approach to the MVEE prob-
lem was previously developed by Sun and Freund
as a complement to their path-following Newton
method [21]. Since each Newton step requires form-
ing and factorizing an n × n matrix, such an active
set scheme is necessary when n is large to reduce the
number of points fed to the algorithm. In the com-
putational study included in [2], Ahipaşaoğlu et al.
found this algorithm to be up to 12 times faster than
the aforementioned first-order algorithm by Todd and
Yıldırım when n � d. The latter algorithm, on the
other hand, is able to handle problem instances in
higher dimension d due to its lower memory require-
ments. Combining an active set strategy with this
type of first-order algorithm, as is the goal of this
paper, therefore appears promising.

In this paper, we evaluate different strategies for
selecting the points to be added to the active set
in each step. This includes the straightforward ap-
proach of selecting the C farthest points from the cur-
rent working ellipsoid, for some constant C, as well
as an orthant scanning strategy previously developed
for the related minimum enclosing ball (MEB) prob-
lem [18]. We further propose a modification of the
strategy by Sun and Freund, which attempts to in-
crease the spread of the selected points around the
ellipsoid. Finally, we introduce a new elimination
heuristic, inspired by the elimination heuristic by
Harman and Pronzato [13] as well as similar heuris-
tics for the MEB problem [1, 15], that removes points
more aggressively from the input and then checks
correctness before returning the final solution. We
remark that all the techniques discussed in this pa-
per are heuristics, in the sense that they come with-
out theoretical guarantees of improved running times.
They might, in fact, increase the theoretical worst-
case time complexity compared to the underlying al-
gorithm. However, it should be emphasized that all
of the discussed methods are guaranteed to return a
(1 + ε)-approximation of the MVEE, and the final

active set can easily be shown to be an ε-core-set.

In the next section, the MVEE problem is stated
in more detail, and the considered algorithms are in-
troduced. In Section 3, the various active strategies
included in our evaluation are described. Then in Sec-
tion 4 our results are presented. Section 5 concludes
the paper with a discussion.

2 Minimum-Volume Enclosing
Ellipsoids

If the point set P is centrally symmetric, i.e., P =
−P, then the problem simplifies to that of finding
the minimum-volume ellipsoid centered at the origin
that contains P, because this ellipsoid is known to
also be the true MVEE. To reap the same benefit also
in the general case, P can be “lifted” to the (d+ 1)-
dimensional centrally symmetric set

P̂ := {±p̂i : i = 1, . . . , n}, where p̂i := (pT
i , 1)T.

Although this trick appears to double the number of
points entered into the algorithm, the mirror copy
−p̂i of each p̂i does not need to be represented ex-
plicitly, since the centered MVEE of the points p̂i is
guaranteed to enclose also these points. If an ellip-
soid Ê is the (d + 1)-dimensional MVEE of P̂, or a
(1 + ε)-approximation of it, then the d-dimensional
MVEE of P (or a (1 + ε)-approximation of it) is

given by the intersection of Ê and the hyperplane
{(xT, 1)T : x ∈ Rd} [23].

The algorithms considered here compute a se-
quence of feasible solutions to the following formula-
tion of the centered MVEE problem, which is equiv-
alent to the D-optimal design problem:

(D) maximizeu ln detM(u)−1

subject to

n∑
i=1

ui = 1,

ui ≥ 0 for i = 1, . . . , n,

where u := (u1, . . . , un)T ∈ Rn and

M := M(u) :=
(
(d+ 1)

n∑
i=1

uip̂ip̂
T
i

)−1
.

Any feasible but suboptimal solution to problem (D)
translates to a trial ellipsoid EM,0 that is an un-

derapproximation of MVEE(P̂), which means that
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EM,0 6⊇ P̂ and vol EM,0 < vol MVEE(P̂). An optimal
solution u = u∗ satisfies, for i = 1, . . . , n,

p̂T
i M(u∗)p̂i ≤ 1, (1)

u∗i > 0 implies p̂T
i M(u∗)p̂i = 1. (2)

Geometrically, (1) states that the distance from the

center of the MVEE to any point in P̂ is at most 1
in the ellipsoidal norm, and (2) states that if u∗i > 0
then p̂i lies on the boundary of the MVEE.

When the goal is to approximate the MVEE, it
is of interest to find a feasible solution u = ũ that
satisfies the following approximate versions of these
conditions:

p̂T
i M(ũ)p̂i ≤ 1 + η, (3)

ũi > 0 implies p̂T
i M(ũ)p̂i ≥ 1− η, (4)

for i = 1, . . . , n. The resulting ellipsoid EM,0 then

satisfies
√

1 + ηEM,0 ⊃ P̂. Furthermore, if η =
(1 + ε)2/(d+1) − 1 is used then vol

√
1 + ηEM,0 ≤

(1 + ε) vol MVEE(P̂).
The d-dimensional counterpart EQ,c of EM,0 is given

by

Q := Q(u) :=
d+ 1

d
M(u)1:d,1:d,

c := c(u) :=

n∑
i=1

uipi,

where 1:d denotes the matrix indices 1 through d
inclusive. It can be shown that EQ,c correspond-
ing to u = ũ satisfies

√
1 + η′EQ,c ⊃ P and

vol
√

1 + η′EQ,c ≤ (1 + ε) vol MVEE(P), where η′ :=
η(1 + d−1). Letting x̂ := (xT, 1)T for any x ∈ Rd, we
point out the following additional relation between
EM,0 and EQ,c:

(x− c)T
Q(x− c) = d−1

(
(d+ 1)x̂TMx̂− 1

)
.

For derivations and proofs of the statements made
above, we refer to the original publications discussing
the algorithms. For a more exhaustive treatment, we
refer to Todd’s book [24].

2.1 First-Order Algorithms

At the heart of the algorithms considered in this pa-
per lies the Frank–Wolfe strategy [11] applied to prob-
lem (D). In each step, a linearization of the problem is
formed at the current iterate u, then the next iterate

is found along the line segment going from u to the so-
lution of this linear subproblem. Since the feasible re-
gion of problem (D) is the unit simplex, each subprob-
lem is maximized at a vertex of the simplex. Specifi-
cally, if ei is defined as the vector with 1 in position i
and 0 in all other positions, then each subproblem is
maximized at the vertex ej , where j is the index of the
largest component of the gradient of ln detM(u)−1.
Formally, j is given by arg maxi p̂

T
i M(u)p̂i. Geomet-

rically, the point p̂j is the farthest point from EM,0

and pj is the farthest point from EQ,c, measured in
the respective ellipsoidal norms. This approach can
be equivalently viewed as the barycentric coordinate
descent method.

The algorithm by Wynn [27] moves the iterate u
toward ej using a step size that shrinks with each
iteration. Fedorov [10] instead uses a line search
to maximize the growth of the objective function,
and shows that this search has a closed-form solu-
tion. Atwood [3] further augments the algorithm with
away steps, which are equivalent to what was inde-
pendently proposed by Wolfe [26]. In the context
of the MVEE problem, an away step is a move of
the current iterate away from the corner ej− of the
unit simplex, where j− := arg mini:ui>0 p̂

T
i M(u)p̂i;

that is, j− is the index of the smallest component of
the gradient of ln detM(u)−1, subject to the condi-
tion ui > 0. Equivalently, the points p̂j and pj are
the farthest points from the boundary on the inside
of the current trial ellipsoids EM,0 and EQ,c, respec-
tively, among points with positive weights. Again,
there is a closed-form expression for the step length
that maximizes the growth of the objective function.
The choice between a regular iteration and an away
step is made dynamically.

Khachiyan [16] applies the algorithm by Fe-
dorov [10] to the MVEE problem, and shows that
if the initial solution u0 is set to u0

i = 1/n for
i = 1, . . . , n, then a solution satisfying (3) is com-
puted in O(nd2(η−1 + ln d + ln lnn)) time. This
bound is improved by the analysis of Todd [24] to
O(nd2(η−1 + ln lnn)). Kumar and Yıldırım [17]
achieve a further improvement of the asymptotic time
complexity by replacing the initialization by a pro-
cedure that identifies max(2d, n) points in P using
the volume approximation algorithm by Betke and
Henk [6]. By setting u0

i = 1/max(2d, n) for the
points pi located by this method, the algorithm fin-
ishes in O(nd2(η−1 + ln ln d)) time [24]. Note that
this algorithm has the potential to return a consider-
ably more sparse solution u. Indeed, a core-set given
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by {pi : ui > 0} has cardinality O(d(η−1 + ln ln d)).
As a basis to motivate and exemplify our active

set strategies, we use the algorithm by Todd and
Yıldırım [25]. This algorithm, which is outlined in Al-
gorithm 1, is the Kumar–Yıldırım variant combined
with Atwood’s away steps. The away steps enable the
algorithm to use a refined termination test (Line 6)
that ensures that the returned u satisfies (4) in ad-
dition to (3). Since away steps can reduce positive
weights to zero, this algorithm can return even more
sparse solutions (smaller core-sets) in practice. How-
ever, it retains the same theoretical bounds as the
Kumar–Yıldırım algorithm on the time complexity
and the size of the core-set.

Algorithm 1 Todd and Yıldırım’s MVEE algorithm.

Input: P := {p1, . . . , pn} ⊂ Rd, η > 0
Output: u ∈ Rn satisfying (3) and (4)
1: Initialize u using the Kumar–Yıldırım scheme
2: loop
3: gi ← p̂T

i M(u)p̂i for i = 1, . . . , n
4: j+ ← arg maxi gi; j− ← arg mini:ui>0 gi
5: κ+ ← gj+ ; κ− ← gj−
6: if 1− η ≤ κ− and κ+ ≤ 1 + η then
7: Break the loop
8: end if
9: if κ+ − 1 > 1− κ− then

10: β ← κ+−1
(d+1)κ+−1

11: u← (1− β)u+ βej+
12: else
13: β ← min

(
1−κ−

(d+1)κ−−1 ,
uj−

1−uj−

)
14: u← (1 + β)u− βej−
15: end if
16: end loop
17: return u

The updates of u on Lines 11 and 14 both cor-
respond to rank-1 updates of M(u)−1. This means
that from the second iteration onward, g can be com-
puted on Line 3 from the previous value of g in Θ(dn)
time per iteration, as opposed to the Θ(d2n) time it
would take to evaluate the full quadratic form for
i = 1, . . . , n [25]. Despite this, however, Line 3 is still
the main bottleneck of the algorithm. As a motiva-
tion for the techniques discussed in this paper, we
point out that in practice, the index j+ computed on
Line 4 already satisfies uj+ > 0 in the vast majority of
the iterations. In these iterations, it would therefore
suffice to compute and scan only the gi where ui > 0,
of which there are typically far fewer than n. Al-
though it cannot be determined beforehand whether

j+ will refer to a point already in the solution or a
new point that should be included, it makes sense
to put more effort into improving the solution over a
small subset A of points before considering the full
data set again. The idea is to have the set A, which
we call the active set, contain all the points pi where
currently ui > 0, as well as a subset of promising
points that are likely to be included in the solution
in a future iteration.

3 Active Set Strategies

A generic active set strategy is outlined in Algo-
rithm 2. A complete such strategy has the following
three components: (i) computing an initial active set,
(ii) adding new points to the active set before each
invocation of the underlying algorithm, and (iii) re-
moving superfluous points from the active set after
each such invocation. Sun and Freund [21] provide
ideas for how to realize each of these components.
In this paper, we rely on the initialization scheme
by Kumar and Yıldırım [17] for the first part, since
it is known to yield a good initial candidate solu-
tion (Line 1). For the third part, we take advantage
of the fact that the discussed first-order algorithms
will tend to increase the weights only of promising
points, and that the away steps used in Algorithm 1
can even reduce some weights to zero. Thus, we leave
it up to the inner algorithm to increase the weights
of newly added points from zero, and we deem any
points with zero weights in the returned solution to
be superfluous and remove them afterwards (Line 5).
For the second part (Line 11), we consider a number
of methods below.

Before moving on, we point out that it is assumed
on Line 4 that Algorithm 1 can be called with an
additional optional parameter u0, which it then uses
as the initial solution instead of running the Kumar–
Yıldırım procedure. Furthermore, to be sure of the
correctness of Algorithm 2, note that κA always
equals the final value of κ+ in Algorithm 1, which
means that κA ≤ 1 + η. Thus, if κP = κA, then the
(1 + η)-approximate optimality condition (3) must
hold also for P. Otherwise, since A ⊆ P, it must be
that κP > κA, which means that there is at least one
point pi outside of the current ellipsoid with gi > κA,
which should be added to A.

A straightforward and intuitive way to compute
∆A is to include the C points pi with the largest
values of gi, where C is some constant, or simply
all points with gi > 1 if there are C or fewer such
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Algorithm 2 Active set algorithm.

Input: P := {p1, . . . , pn} ⊂ Rd, η > 0
Output: u ∈ Rn satisfying (3) and (4)
1: Initialize u using the Kumar–Yıldırım scheme
2: A ← {pi : ui > 0}
3: loop
4: Update ui for pi ∈ A by calling Algorithm 1

on A with the current values of ui as the initial
solution

5: A ← {pi : ui > 0}
6: gi ← p̂T

i M(u)p̂i for i = 1, . . . , n
7: κP ← maxi gi; κA ← maxi:pi∈A gi
8: if κP = κA then
9: Break the loop

10: end if
11: Compute ∆A
12: A ← A∪∆A
13: end loop
14: return u

points. Indeed, this strategy has been used success-
fully with C = 1 for the minimum enclosing ball prob-
lem [12, 4, 19]. We include this “C-farthest” strategy
in this evaluation with C = 1, d, d2, and d3. As noted
by Sun and Freund [21], however, it might be a mis-
take to judge potential active points only based on
their distance from the ellipsoid, since there might
be clusters present in the data that make the far-
thest point dominate the next farthest point, for ex-
ample. This could occur, for instance, for data sets
containing many copies (or near identical copies) of
each point.

For this reason, they present the following scheme
to ensure that the points in ∆A are reasonably spread
out around the ellipsoid: If fewer than 30 points pi
satisfy gi > 1, then they are all included in ∆A. Oth-
erwise, ∆A is first set to contain only the farthest
point, and then the remaining points are considered
in falling order of their values of gi. Each pi is added
to ∆A if

∑
p`∈∆A(p` − c)TQ(pi − c) < 0. Note that

each term in this sum represents the dot product be-
tween the vectors p` and pi in the local coordinate
system of the ellipsoid EQ,c. Henceforth we refer to
this strategy as the “SF” strategy.

With the same goal of achieving a large spread
among the points added to the active set, Larsson et
al. [18] propose the following orthant scanning pro-
cedure for the computation of the minimum enclos-
ing ball: First P is partitioned based on which or-
thants the vectors pi − c fall into. Note that two

vectors v1, v2 ∈ Rd belong to the same orthant iff
N(v1

i ) = N(v2
i ) holds for i = 1, . . . , d, where N is a

map defined as N(x) = 1 if x < 0 and N(x) = 0
otherwise. Then, from each group in which at least
one point pi satisfies gi > 1, the farthest point in the
group is included in ∆A. In this paper we include
an additional version of this strategy that transforms
the vectors pi − c to the local coordinate system of
the ellipsoid before doing the orthant mapping.

We also introduce a new strategy that can be seen
as a variation of the SF method above. We refer to
this strategy as the “dot” strategy, and it works as
follows: First the d farthest points are added to ∆A.
Then, in a similar manner as before, the remaining
points pi with gi > 1 are considered in order of de-
creasing values of gi, but each pi is added to ∆A if
(p` − c)TQ(pi − c) ≥ 0 holds for fewer than d of the
points p` ∈ ∆A.

Note that these strategies only consider points for
addition to the active set that are outside of the el-
lipsoid EQ,c. While it makes sense that these points
are more likely to be active in the final solution, we
remark that this is merely a heuristic to avoid hav-
ing to consider every point in P in every iteration.
There might indeed be points inside of said ellipsoid
that wind up as active points in the final (1 + ε)-
approximation, and these will eventually be included
in A in a later iteration.

3.1 Elimination Strategies

Harman and Pronzato [13] show that every support
point p∗ of MVEE(P) must satisfy p̂T

∗M(u)p̂∗ ≥ H,
where

H := 1 +
δ

2
−
√
δ(4 + δ − 4/(d+ 1))

2
,

δ := (d+ 1)(maxi p̂
T
i M(u)p̂i − 1).

Conversely, any point pi satisfying

p̂T
i M(u)p̂i < H (5)

cannot be a support point. Thus, eliminating all such
points from P in each iteration of Algorithm 1 has no
effect on the final result, but can make the subsequent
iterations go faster as P gets continuously reduced.
This technique can be viewed as a type of active set
strategy that does not rely on an outer loop like that
of Algorithm 2. Instead, the current active set is
simply considered to be the points of P that have
not yet been eliminated.
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We now introduce an “aggressive” variant of this
strategy. Instead of using the test (5), we remove
from P any point pi that satisfies ui = 0 and

p̂T
i M(u)p̂i < 1,

i.e., any non-active point that falls in the interior of
the current trial ellipsoid. Since this might remove
support points of MVEE(P), some additional mea-
sures must taken to ensure correctness. Initially, a
full copy of P is saved. Then, once the termination
criteria have been fulfilled, P is restored to its original
state and the approximate optimality conditions (3)
and (4) are verified against the original n points. If
they do hold, the solution is returned, otherwise the
algorithm is continued with P restored and the cur-
rent solution as the starting point, and the process
repeats.

3.2 Distance Filtering

In contrast to the minor modifications made to u in
each iteration of Algorithm 1, which correspond to
rank-1 corrections of M(u)−1, the changes to u across
the iterations of Algorithm 2 are extensive enough
that the n values gi must be recomputed from scratch
in Θ(d2n) time in every iteration. In high dimensions,
this computational cost might outweigh the savings
from using the active set method. A similar issue
occurs in the aggressive elimination method above,
because all the gi need to be recomputed every time
P is restored.

To remedy these problems, we use the distance fil-
tering technique that was introduced by Källberg and
Larsson [15] to accelerate the types of algorithms dis-
cussed in this paper. The idea is that instead of main-
taining the exact values gi = p̂T

i M(u)p̂i, the algo-
rithm maintains upper bounds hi ≥ p̂T

i M(u)p̂i that
are cheaper to compute. In the first iteration, each hi
is initialized to the exact value of p̂T

i M(u)p̂i. Then
in the subsequent iterations, each hi first undergoes a
constant-time update that ensures hi ≥ p̂T

i M(u)p̂i for
the current u. Then hi ← p̂T

i M(u)p̂i only if hi ≥ 1
after this initial update, which is typically the case
only for a few of the values hi.

Let uk+1 and uk be the current and pre-
vious values of u, respectively. For each pi
define the generalized Rayleigh quotient ri :=
(p̂T
i M(uk+1)p̂i)/(p̂

T
i M(uk)p̂i). Then the following

holds for i = 1, . . . , n:

p̂T
i M(uk+1)p̂i = ri(p̂

T
i M(uk)p̂i)

≤ λ∗(p̂T
i M(uk)p̂i)

≤ λ∗hi,

where λ = λ∗ is the largest solution to the generalized
eigenvalue problem [5]

M(uk+1)x = λM(uk)x.

Thus, setting hi ← λ∗hi ensures that hi ≥
p̂T
i M(uk+1)p̂i for i = 1, . . . , n, and takes only con-

stant time per hi.

4 Experiments

For the evaluation, we used random data sets gen-
erated in the same manner as in [21] and [2], that
is, as the unions of one to four clusters drawn from
independent multivariate normal distributions. All
code was written for MATLAB 9.5.0 (R2018b) and
executed on a PC with an Intel Core i5-8250U pro-
cessor and 16 GB of main memory. Our results are
summarized in Table 1.

The conservative elimination method of Harman
and Pronzato does not reach the same levels of ac-
celeration as the other methods do. Furthermore, its
effects diminish as the number of dimensions rises
beyond d = 10, which can be explained as being an
example of the “curse of dimensionality”: The elimi-
nation test (5) is equivalent to testing whether a point
falls inside a shrunken copy of the current ellipsoid.
As the dimensions increase, the ratio of the volume
of this ellipsoid to the volume of the portion of space
occupied by P decreases rapidly. Thus, it becomes
increasingly unlikely that any points in P fall inside
the smaller ellipsoid.

The aggressive elimination method consistently
outperforms the conservative method, and contrary
to the latter, its effect appears to increase with the
number of dimensions. For d ≥ 20, it is the fastest
strategy overall.

As can be expected, the C-farthest strategies show
increasing reductions in the number of iterations with
larger values of C. In the lower-dimensional in-
stances, this also tends to translate into improved
solution times. For d ≥ 20, however, the d3-farthest
strategy begins to exhibit worse execution times than
the d- and d2-farthest strategies. This is caused by
too many points being included in ∆A in each iter-
ation, which slows down the inner solver. Note that
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strategy iter. speed iter. speed iter. speed iter. speed
d = 2 d = 3 d = 4 d = 6

baseline 1.0 0.6 sec 1.0 1.9 sec 1.0 5.2 sec 1.0 11.9 sec
elim. 1.0 3.2× 1.0 4.4× 1.0 7.2× 1.0 10.7×
elim.-agg. 1.0 5.1 1.0 10.8 1.0 22.8 1.0 40.2
1-farthest 1.5 8.6 4.4 13.7 7.0 22.3 13.5 25.9
d-farthest 1.5 8.7 3.6 14.0 4.6 28.3 6.0 39.4
d2-farthest 1.5 8.1 3.0 16.1 3.7 31.0 4.3 47.8
d3-farthest 1.5 8.7 2.9 16.4 3.3 33.2 3.9 50.2
SF 1.5 8.7 3.1 14.9 3.6 31.4 4.8 43.8
orth. 1.5 8.0 3.3 11.6 4.0 30.2 5.1 41.8
orth.-local 1.5 8.1 3.1 11.6 3.8 29.8 4.2 46.5
dot 1.5 8.2 3.1 14.4 3.5 30.9 4.1 48.0

d = 10 d = 15 d = 20 d = 25
baseline 1.0 22.8 sec 1.0 52.9 sec 1.0 85.7 sec 1.0 127.4 sec
elim. 1.0 5.1× 1.0 5.2× 1.0 3.7× 1.0 4.0×
elim.-agg. 1.0 41.0 1.0 61.1 1.0 67.4 1.0 73.6
1-farthest 37.5 14.7 73.5 14.3 122.7 10.0 185.7 9.1
d-farthest 8.4 33.9 9.8 46.3 11.2 43.6 12.0 50.3
d2-farthest 5.2 41.9 5.7 60.9 6.0 63.9 6.0 65.1
d3-farthest 4.6 46.9 4.7 64.5 4.8 57.5 4.7 47.6
SF 6.7 34.1 8.5 41.4 10.5 28.8 12.5 18.6
orth. 7.9 32.6 8.0 45.6 8.4 34.7 5.7 19.8
orth.-local 4.9 44.9 4.8 51.1 3.7 30.2 3.1 15.9
dot 5.8 38.9 6.9 54.5 7.9 53.4 8.0 61.7

Table 1: Computational results. For each shown value of d, ten point sets with n = 106 were generated and a
(1+10−6)-approximate MVEE of each point set was computed with all of the strategies. The reported figures
are the geometric means from the ten point sets. The iteration counts refer to the number of invocations of
Algorithm 1, which is always 1 for the baseline and the elimination strategies. The “speed” columns show
the actual execution time only for the baseline, and the relative speedup factors for the remaining versions.

as a particular strategy generates sets ∆A of larger
and larger sizes, its behaviour becomes increasingly
similar to the baseline.

Clearly, the data sets used here do not warrant an
active set strategy that specifically attempts to in-
crease the spread of the points in the active set. This
is evident from the fact that none of the SF, orthant,
or dot strategies provide significant further improve-
ments over simply including the C farthest points in
each iteration. Nevertheless, some interesting effects
can be found in these results.

Firstly, although SF is comparable to d-farthest
w.r.t. the number of iterations, it is considerably
slower when d is large. This can be explained by
the fact that selecting ∆A using the SF strategy has
a time complexity that is quadratic in |∆A|, and al-
though it does not show in Table 1, our more detailed
results confirm that |∆A| tends to be very large when
d is large. This is particularly the case for the ∆A

computed in the first iteration, when there are still
many points outside of the candidate ellipsoid.

Although this drawback could possibly be reme-
died by enforcing a cap of, say, d2 on the cardinality
of ∆A, this could negatively affect the number of it-
erations of the overall algorithm. Furthermore, the
speedup figures suggest that the dot strategy—which
has the same quadratic time complexity as SF—does
not experience this problem. Our detailed results
show that, usually, |∆A| ≤ 4d with this strategy. In
addition, from Table 1 it appears that this method
incurs fewer iterations in general than SF.

Finally, we note that the orthant scanning strate-
gies are at best comparable to the other strategies. It
is nevertheless interesting that for the larger values
of d, the local variant reduces the number of itera-
tions considerably compared to the original version,
which is due to larger numbers of points being added
to the active set in every iteration (which, again, is
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also the reason that the reduction in iterations does
not result in improved execution times). As only or-
thants with at least one point outside of the current
ellipsoid provide a point to ∆A, this suggests that
the local orthants partition the points not enclosed
by the ellipsoid more evenly than the global orthants
do, which is an interesting result in and of itself.

5 Discussion

It is evident that the techniques developed in this
paper can significantly improve performance in prac-
tice. However, as mentioned in Section 1, it is not
clear that they are guaranteed to do so in theory. The
main issue is that Algorithm 1 only “sees” part of the
point set in each invocation: Whenever the value of
κ+ is smaller than the global largest distance mea-
sured over the full point set, the update on Line 11
is suboptimal; an excessive number of such updates
can negatively affect performance.

While a detailed analysis of the worst-case perfor-
mance of the algorithms has to be left as future work,
fairly conservative bounds on the number of iterations
can be derived with limited effort. Todd’s analysis of
Algorithm 1 [24] rests on the facts that the initial so-
lution u computed using the Kumar–Yıldırım method
has an optimality gap at most 4(d+1) ln(d+1) (Corol-
lary 3.4 in [24]), and that in every iteration that does
not reduce a weight to zero, the gap shrinks by at
least ln(1+δ)−δ/(1+δ), where δ := max(κ+−1, 1−
κ−) (Lemmas 3.5 and 3.10 in [24]). It is clear that
the bound of O(d(η−1 + ln ln d)) iterations must hold
in each individual invocation of Algorithm 1 as a sub-
routine from Algorithm 2, since each starting solution
u0 is at least as good as the one used in the original
algorithm. Furthermore, it is easily shown that the
same bound holds for the number of iterations in Al-
gorithm 2: The initial optimality gap is clearly the
same. Furthermore, all the discussed strategies for
computing ∆A ensure that each A contains the far-
thest point pj , j := arg maxi gi. Thus, at least in
the first iteration of every invocation of Algorithm 1,
the value of κ+ matches the global largest distance.
Consequently, each such invocation must shrink the
optimality gap at least as much as a regular iteration
of the original algorithm. Analogous arguments can
be applied to the elimination scheme of Section 3.1 to
bound the number of times the algorithm is paused
and then resumed with the restored point set, as well
as the number of iterations between these restarts.

Although promising effects were seen on the arti-

ficial data sets used in this study, in the future, it
would be interesting to evaluate the discussed tech-
niques in real-world settings involving large data sets,
for example, in clustering and classification applica-
tions. Such case studies could perhaps better reveal
the suitability of the different variants of the algo-
rithm for different situations.
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