
TAMAA: UPPAAL-based Mission Planning for Autonomous
Agents

Rong Gu, Eduard Enoiu, and Cristina Seceleanu
Mälardalen University, Västerås, Sweden

(first.last)@mdh.se

Abstract
Autonomous vehicles, such as construction machines, op-
erate in hazardous environments, while being required to
function at high productivity. To meet both safety and pro-
ductivity, planning obstacle-avoiding routes in an efficient
and effective manner is of primary importance, especially
when relying on autonomous vehicles to safely perform their
missions. This work explores the use of model checking for
the automatic generation of mission plans for autonomous
vehicles, which are guaranteed to meet certain functional
and extra-functional requirements (e.g., timing). We pro-
pose modeling of autonomous vehicles as agents in timed
automata together withmonitors for supervising their behav-
ior in time (e.g., battery level). We automate this approach by
implementing it in a tool called TAMAA (Timed-Automata-
based Planner for Multiple Autonomous Agents) and in-
tegrating it with a mission-management tool. We demon-
strate the applicability of our approach on an industrial au-
tonomous wheel loader use case.

Keywords
autonomous agents, mission planning, UPPAAL

1 Introduction
Autonomous vehicles [3] are complex systems that com-
bine mechanical elements, electromechanical devices, digi-
tal circuits and software programs in embedded controllers.
Their operation is subjected to many constraints, due to clut-
tered environments and objectives that can change over time.
Mission planning is the process of determining what each
autonomous vehicle should do to achieve the goals of the
mission as described by the high-level system specifications.
This includes autonomous path planning such that (static)
obstacles are avoided, tasks assignment and scheduling, and
re-planning in unforeseen circumstances. The challenge in
this area is the development of modeling and verification
frameworks [6, 16] able to accommodate the operating com-
plexity of these systems, while allowing for the verification
of their designs early in the development process. One way
of ensuring the quality of mission design for autonomous
vehicles is to employ model-checking for generating mis-
sion plans with guaranteed correctness. In this study, we
propose such an approach to synthesize mission plans for

Autonomous Wheel Loaders (AWL), which are part of an in-
dustrial use case provided by Volvo Construction Equipment
(VCE). An AWL machine is designed to autonomously move
and execute missions (like digging stones, loading and un-
loading) in quarries. An example of a complex mission plan
for an AWL can be expressed as follows: “Dig stones at the
stone pile. Carry and unload them into a primary crusher 500
meters away. Avoid static obstacles and keep repeating these
tasks until the stone pile is empty or the AWL needs to charge.”
To model the AWL and specify this kind of requirement
rigorously, synthesize mission plans and verify their execu-
tion formally, we adopt the two-layer framework approach
for modeling and verifying autonomous agents’ operations,
proposed in our previous work. This framework consists
of a static layer and a dynamic layer. The static layer fo-
cuses on path planning and task scheduling and the dynamic
layer focuses on modeling the kinematics and dynamics of
the agents to verify if they can accomplish the tasks and
circumvent risks, such as moving or unforeseen obstacles.
The contribution of this paper targets only the design of the
static layer of such a framework, which provides rigorous
algorithms for model generation and a user-friendly way for
model configuration.

Specifically, we use Timed Automata [2] and Timed Com-
putation Tree Logic (TCTL) [8] for capturing formally the
AWL’s behavior and requirements specification, respectively.
Formal definitions of the concepts, e.g., tasks, are given for
formal analysis and synthesizing solutions. Based on the def-
initions, we propose model-generation algorithms that we
integrate with an advanced path-planning algorithm (Theta*)
to generate formal models automatically. For simplicity, we
use mission plans to denote path-and-task plans in this paper.
The formal models are built in order to be able to synthe-
size mission plans satisfying requirements like the one we
aforementioned. These requirements often concern three
aspects: i) safety: all obstacles of the generated paths should
be avoided, ii) execution constraints: tasks should be exe-
cuted with respect to given logical and temporal constraints,
iii) timeliness: the final goal should be achieved within a
certain amount of time for productivity reasons. Given such
a mixed palette of requirements, it is not trivial to generate
automatically mission plans that will guarantee all of them.
Moreover, it is desirable that such synthesis of plans is sup-
ported by an easy-to-use tool, in which the user can visualize

and modify the mission plans. Hence, in this work, we pro-
pose a method supported by a tool, called Timed-Automata-
based Planner for Multiple Autonomous Agents (TAMAA).
Our approach integrates the state-of-the-art model checker
UPPAAL [5] with a toolkit for mission configuration called
MMT (Mission Management Tool) [14]. TAMAA implements
the model-generation algorithms and provides a graphic in-
terface to configure the environment, agents, and tasks and
organizes the information to build formal models, including
the movement of agents, task execution, and monitors. Next,
within TAMAA, one can verify the generated model with UP-
PAAL, against the TCTL queries that formalize the natural-
language requirements and generate diagnostic traces. The
traces are parsed by TAMAA to synthesize mission plans.
Eventually, the synthesis result is shown in MMT. If there
is a valid path, it is guaranteed to be correct and optimal in
the sense that it is generated via exhaustive model checking.
If no valid path exists, a counter-example is depicted to il-
lustrate the contradictions in the model configuration. We
demonstrate the applicability and scalability of TAMAA by
applying it to scenarios of an industrial use case.

The nolvety of TAMAA is that it addresses not only path
generation but also takes into account complex requirements
(functional and timing ones). Moreover, our solution com-
bines a rigorous, formal encoding of algorithms for compu-
tation with a user-friendly interface for visualizing model
configurations. Model-generation algorithms provide a sys-
tematic and automatic way for obtaining formal models and
properties from industrial requirements, which is less time-
consuming and error-prone. The remainder of the paper is
organized as follows. In Section 2 we introduce the prelim-
inaries of this paper. Section 3 describes the actual contri-
bution, that is, TAMAA, whereas in Section 4 we introduce
the implementation and evaluation of TAMAA. In Section 5
we compare to relate work, before concluding and outlining
possible future work in Section 6.

2 Preliminaries

In this section, we briefly overview the background informa-
tion related to timed automata and UPPAAL model checker,
which we employ in TAMAA.

2.1 UPPAAL Timed Automata

A timed automaton (TA) is an extended finite-state automaton
suitable for modeling real-time systems [1]. UPPAAL [5] is a
tool for modeling, simulation, and model checking of real-
time systems, and uses an extension of TA as the modeling
formalism [8]. A UPPAAL timed automaton is defined as a
tuple: < L, l0,A,V ,C,E, I >, where L is a finite set of locations,
l0 ∈ L is the initial location, A = Σ

⋃
τ is a set of actions,

where Σ is a finite set of synchronizing actions and τ < Σ are

internal actions, V is a set of data variables, C is a set of real-
valued variables called clocks, E ⊆ L × B(C,V) ×A × 2C × L
is the set of edges, where B(C,V) is the set of guards over
C and V , that is, conjunctive formulas of clock constraints
B(C) (of the form x ▷◁ n or x − y ▷◁ n, where x ,y ∈ C,n ∈

N, ▷◁∈ {<, ≤,=, ≥, >}) and non-clock constraints B(V), and
I : L 7→ Bdc (C) is a function assigning invariants to locations
where Bdc (C) ⊆ B(C) denotes a subset of clock constraints
resulting from the restriction to upper bounds ◁ ∈ {<, ≤}.
The semantics of a TA is given by a labeled transition

system. The states of the labeled transition system are pairs
(l ,u), where l ∈ L is the current location, and u ∈ RC

≥0 is
the clock valuation in location l . The initial state is denoted
by (l0,u0), where ∀x ∈ C,u0(x) = 0. Let u |= д denote that
clock value u satisfies guard д. We use u + d to denote the
time elapse where all the clock values have increased by d ,
for d ∈ R≥0. The following transitions (→) can happen in a
timed automaton:
- Delay transitions: < l ,u >

d
−→< l ,u + d > if u |= I (l) and

(u + d ′) |= I (l), for 0 ≤ d ′ ≤ d , and
- Action transitions: < l ,u >

a
−→< l ′,u ′ > if l

д,a,r
−−−−→ l ′,a ∈

Σ,u |= д, clock valuation u ′ in the target state (l ′,u ′) is
derived from u by resetting all clocks in the reset set r of the
edge, such that u ′ |= I (l ′).

A network of TA, B0 ∥ ... ∥ Bn−1, is a parallel composition
of n TA over C , A and synchronization channels (i.e., a! is
synchronized with a? by handshake). We refer the reader to
literature [1] for more information on the theory of TA.

UPPAAL uses a decidable subset of (Timed) Computation
Tree Logic [8] as the query language. It consists of path for-
mulae and state formulae. Specifically, we use the following
path-specific temporal operators: “Always" (□) temporal op-
erator for which a given formula is true in all states of a
path, and the “Eventually" (♢) operator used to show that a
formula becomes true in finite time, in some state along a
path. In this paper, we use queries of the following categories:
(i) Invariance (i.e., A□p), stating that p should be true in all
reachable states for all paths, and (ii) Reachability (i.e, E ♢p),
stating that there exists a path starting at the initial state,
such that p is eventually satisfied along that path.

3 TAMAA Approach
In this section, we describe an approach to automatically
synthesize mission plans for autonomous agents. We first
describe the function and architecture of an industrial use
case, the Autonomous Wheel Loader (AWL), in Section 3.1,
which motivates the design of TAMAA. Next, in Section
3.2, we introduce the components and workflow of TAMAA,
followed by formal definitions of autonomous agents, their
movement, tasks and their execution, which are all needed
for the automatic model generation. Last but not least, we
describe the model-generation algorithms in Section 3.4.

3.1 Use Case: Autonomous Wheel Loader
In this section, we introduce our use case, which is based on
an industrial system provided by Volvo Construction Equip-
ment (Sweden). The use case contains Autonomous Wheel
Loaders (AWL) that are used in construction sites to per-
form operations without human intervention. For example,
as shown in Figure 1, we consider the case of AWL that are
utilized to transport materials in a quarry site. According
to the provided requirements, an AWL digs a given stone
pile and carries an amount of stones in its bucket before it
moves to the primary crusher and unloads the stones onto
the conveyor belt. After this first step, the AWL moves to

Figure 1: An example of a working environment for
an autonomous wheel loader

the other end of the primary crusher and loads the crushed
stones. It then continues moving to the secondary crusher
to unload the stones and finishes its one-round job. During
this process, the AWL carries out its tasks autonomously
and moves to the charging point when its battery level is
low. The AWL has to also avoid static obstacles (e.g, holes
and rocks on the ground). The problem involves mission
planning, path following, and collision avoidance.
In this paper, we focus on generating valid paths for au-

tonomous vehicles, guaranteed to avoid static obstacles, as
well as correct schedules for the operational tasks of the
machines. We assume a two-layer approach of the design,
as proposed in our previous work, with mission planning
belonging to the static layer, while the avoidance of dynamic
obstacles, including the case of overlapping paths of multi-
ple vehicles working on the site, is being dealt with in the
dynamic layer. We assume that the latter functions correctly,
and we focus only on synthesizing mission plans for our
autonomous machines.
Intuitively, the mission-planning problem requires the

AWL to: (i) generate a path plan that includes visiting (in
the right order) the milestones where the loader needs to
stop to carry out a given operation, (ii) avoid all the static
obstacles on the way, and (iii) guarantee to execute certain
operations at particular milestones. Specifically, the require-
ments provided by our industrial partner can be divided into
the following categories:

Figure 2: Overview of the process of model generation
and mission plan synthesis in TAMAA

• Task Coverage. The AWL must execute all tasks and repeat
them until the ultimate goal is achieved (e.g., all stones are
transferred to the secondary crusher).

• Task Matching. The AWL must accomplish a certain task
at each particular milestone (e.g., digging is only allowed
at stone piles).

• Task Sequencing. The order of tasks execution must be
correct.

• Timing. The AWLmust finish the tasks within a prescribed
time, to keep the desired level of productivity (e.g., the
AWL must complete digging and carrying a ton of stones
in 0.5 hours).

• Event Reaction. Some special tasks are only triggered by
events under certain circumstances. For instance, when
the battery level is below a certain level, the AWL must
move to the charging point to charge itself.

Overall Challenge. Given an environment containing one or
several AWL with accurate speed control and a deterministic
speed range, predefined milestones and static obstacles, and
a set of requirements (e.g., task coverage, task matching and
sequencing, timing, and reacting to events), we need to syn-
thesize mission plans for these AWL in this environment, such
that the requirements are satisfied.

3.2 Workflow of TAMAA

Given this challenge, we propose a method called TAMAA
(Timed-Automata-based Planner for Multiple Autonomous
Agents) for making the optimal plan for the AWL to accom-
plish a sequence of tasks based on a set of given requirements.
Overall, the approach is composed of the steps shown in Fig-
ure 2. i) Step 1 - formalizing the requirement into CTL/TCTL
queries, ii) Step 2 - configuring the information of the en-
vironment and tasks in MMT, iii) Step 3 - automatically
generating environment and tasks models as UPPAAL TA,
iv) Step 4 - verifying models of Step 3 in UPPAAL against
the requirements in Step 1, and generating execution traces,
and v) Step 5 - using the traces to obtain the mission plans.
Since this is an automatic approach, users are only involved
in the first two steps in the configuration phase. All steps
are described in detail in the following sections.

3.3 Model Formalization and Definitions of
Concepts

In this section we define formally the elements of TAMAA,
that is: an autonomous agent, its movement, and the notion
of an autonomous task. To illustrate the formal definitions
and algorithms, we use a running example extracted from
our use case through out this section.

Running example.As depicted in Figure 3(a), the AWL starts
from A, goes to the stone pile at B and digs stones and moves to
the crusher at C to unload stones and comes back eventually.

The AWL can be considered as an autonomous agent that is
situatedwithin an environment, it can sense the environment
and act on it, over time, in pursuit of its own goals [12]. In this
paper we focus on mission planning of autonomous agents,
whose movement and tasks are simply abstracted as time
duration without considering any real-time feedback from
the environment. Therefore, we assume that autonomous
agents can be considered automated agents at this level of
abstraction and defined as follows: An automated agent is
a system that receives instructions from its mission plan and
executes its instructions with no human control and no inter-
action with its environment. There are many definitions of
what automated agents are according to their use in different
fields of research [12]. In this paper we assume the definition
above, and we formalize an automated agent (that actually
fits our AWL use case) as follows.

Definition 1 (AutomatedAgent).An automated agent (AA)
is defined as a tuple:

AA ≜< S,M,T > (1)
where,
• S is the speed of the moving vehicle,
• M is a set of motion primitives that make the agent move
and execute tasks,

• T is a set of tasks that the agent has to accomplish. □

The working environment of an agent is a closed space in-
cluding some static obstacles that the agent should avoid, and
some milestones where the tasks should be carried out. How-
ever, when an agent is reaching a milestone, it does not neces-
sarily stop. According to the mission plan, the agent can stop
and execute the corresponding task or simply pass. Static
obstacles and milestones are represented as a set of X-Y coor-
dinates in the environment. The working environment of an
agent is defined as a weighted graph G = (Vд ,Eд), where Vд
is a set of vertices denoting the milestones, Eд ⊆ Vд×Nд×Vд
is a set of edges, where Nд ⊆ R≥0 denotes a set of travel-
ing times between vertices. Edges only connect the vertices
that are directly reachable from each other, which means the
shortest path between two connected vertices does not pass
any other vertices.

(a) An example extracted from the use case

(b) The weighted graph modeling the example

(c) TA encoding of an Agent’s movement in the example

Figure 3: A running example and its corresponding
weighted graph and TA

We assume that automated agents are equipped with a
set of motion primitives that allow them to deterministically
move from v to v ′ for each (v, t ,v ′) ∈ Eд , with v,v ′ ∈ Vд .
Hence, the traveling time t between two vertices is con-
stant, and it is calculated by graph-search algorithms such as
Theta* algorithm [11]. The weighted graph extracted from
the example of Figure 3(a) is depicted in Figure 3(b).

When the agent starts to move, changing the position de-
pends on the connectivity of vertices and the traveling time
between them. Hence, the movement of an agent involves
discrete changes of position and the continuous evolution
of time, which makes TA a suitable formalism for modeling
the movement of agents.

Definition 2 (Movement of AA). The movement of an au-
tomated agent is defined as a timed automaton in a restricted
form:

Mm ≜< P ,p0,xm ,Am ,Em , Im > (2)

where,
• P = Pv ∪ Pe is a finite set of locations, where Pv denotes
the vertices of the weighted graph of the environment , and
Pe denotes the locations of components that represent the
transitions between vertices. The component consists of an
incoming edge, a location in Pe and an outgoing edge;

• p0 ∈ Pv is the initial location denoting the initial position;
• xm is a clock variable defined to measure the traveling time;
• Am = {move}∪τ is a set of actions, where “move” is for syn-
chronizing with the automaton encoding the agent’s tasks,
and τ < Σ denotes internal or empty actions without syn-
chronization;

• Em ⊆ Pv ×Am × Bm(xm) × 2C × Pe is a set of edges, where
Bm(xm) is a set of guards contains clock constraints of the

form xm ≥ ϒ, where ϒ ∈ R≥0 is a constant value of the
traveling time between two locations, and C = {xm};

• Im : Pe 7→ Be (xm) is a function that assigns invariants to
locations in Pe , where Be (xm) contains clock constraints of
the form xm ≤ ϒ. □

Based on Definition 2, a part of the TA modeling the move-
ment of agents is depicted in Figure 3(c), where the agent
moves from A to B and and vice versa. Locations A2B and
B2A belonging to Pe and the their associated invariants, re-
spectively, are created to model the duration of traveling.
Any automated agent should carry out tasks that can be

an operation (e.g., loading, digging) or simply a state of stop
and wait. A task is allowed to be carried out only at cer-
tain predefined positions, with an execution time given as
an interval. For example, an AWL only unloads rocks at a
primary crusher or a secondary crusher. Some tasks, like
charging, are triggered in special circumstances, but once
they are triggered they must be prioritized. Given an agent
(S,M,T) and a set of events Ev triggering Ti ∈ T , one
needs to formally capture the agent’s tasks and their execu-
tion, which we introduce by the following Definitions 3 and
4, respectively.

Definition 3 (AA Task). A task is defined as a tuple:

Task ≜ (B,W ,∆, S, F ,R,O,M,V ,G) (3)
where,
• B is the best case execution time,
• W is the worst case execution time,
• ∆ is the time that has elapsed during the execution of a task,
• S is a Boolean variable denoting if the task has started,
• F is a Boolean variable denoting if the task has finished,
• R is a precondition that must be satisfied before the task
starts,

• O is a postcondition that must be satisfied after the task
finishes,

• M is a set of indices of milestones where the task is allowed
to be executed,

• V is a set of variables that are changed after the task finishes,
• G is a set of Boolean variables (events) that trigger the task.

□

To simplify the notation, Ti is used to denote a task for
any i and we use “.” to access an element in a tuple. Ti .B and
Ti .W are different for different tasks and agents, and Ti .∆ is
designed to measure the total execution time of a task, so
B ≤ ∆ ≤W . The precondition is Ti .R = θt (T0.F , ...,Tk .F) ∧
θe (ev0, ..., evm), where θt and θe are predicates reflecting
the execution order of tasks {T0, ...,Tk } ⊆ T \ Ti , and the
status of events {ev0, ..., evm} = Ev . The postcondition is
Ti .O =

∧n
i=1 ¬evi ∧Ti .F , where evi ∈ Ti .G and n = |Ti .G |.

There are three tasks {T1,T2,T3} in the example of Figure
3(a), namely digging the stone pile, loading, and unloading,

respectively. The rules of execution are: T3 can start after T1
and T2 finish, T2 can start after T1 finishes, ev0 triggers T1,
then the preconditions and postconditions of these tasks are:

T1.R = ev0, T1.O = ¬ev0 ∧T1. f

T2.R = T1. f ∧ ¬ev0, T2.O = T2. f

T3.R = T1. f ∧T2. f ∧ ¬ev0, T3.O = T3. f

For some tasks, e.g., digging stones, finishing an execu-
tion means a decrease of the volume of the stone pile. This
feature is reflected in the value change of the variables in
Ti .V . When an agent is executing a regular task, it must not
move. After finishing tasks, the agent must switch to a spe-
cial task called no-op task before it starts to move. The no-op
task indicates no task is being executed, and it is denoted
as T0(0,∞+,∆, S, F , ∅, ∅,M, ∅, ∅). In T0, B is 0 andW is ∞+
implying the execution time can be any length, R and O are
“∅” implying the agent can get to or out of this task without
restrictions,M is the complete set of all the milestones in the
environment implying that this task is allowed at any posi-
tion (except obstacles), and V and G are ∅ implying that this
task does not change any data variable and is not triggered
by any event. Based on Definition 3, we define the execution
of tasks of an automated agent AA, as follows.

Definition 4 (Task Execution of AA). For an automated
agent (S,M,T), the execution of tasks in T is defined as a
timed automaton in a restricted form:

Taa ≜ (N , l0,xe ,Ae ,Ve ,Ee , Ie ,Me) (4)
where,
• N is a set of locations representing the tasks in T ,
• l0 ∈ N is the initial location representing the no-op task T0,
• xe is a clock that is reset whenever a task finishes,
• Ae = {move, done0, ...,donen} ∪ τ is a set of actions,
• Ve is a set of variables containing variables of all the tasks
in T , i.e., Ve =

⋃S
i=1Ti .V , S = |T |,

• Ee ⊆ l0 × Ae × Be (xe ,T) × 2C × 2T × N is a set of edges
connecting l0 and l ∈ N with a set of actions and guards,
where C = {xe },

• Ie : N \ l0 7→ Bi (xe) is a function assigning invariants to
locations except l0,

• Me : N 7→ T is a function assigning tasks to locations. □

InAe , “move” and “done0, ...,donen” are used for the synchro-
nization between the task TA and the movement TA and the
monitor TA respectively. The monitor TA are for supervising
some indices of the agents that we will introduce later. For
∀ei ∈ Ee , they are always between l0 and l ∈ N , because the
agents have to switch to the no-op task before they move
or execute the next task. For ∀ Ti ∈ T \ T0, the invariant
Bi (xe) is of the form xe ≤ Ti .W . The guard on the incom-
ing edge of Ti is of the form Pj ∧ Ti .R, where the Boolean
variable Pj denotes if the current position of the agent is a

Figure 4: A monitor as an UPPAAL TA

Figure 5: A network of TA obtained by TAMAA
milestonemj ∈ Ti .M . The guard on the outgoing edge of Ti
is xe ≥ Ti .B. Clock xe , variables vi ∈ Ti .V , task flags Ti .S
and Ti .F are updated on the edge.
As some tasks are triggered by events (e.g., when the

battery level is below a certain level, a battery-low event
occurs and it triggers the agent to charge), we need monitors
to supervise the status of the agents and inform in a real-time
manner when the values of the indices are below or above
thresholds. In fact, these indices are rates of consumption
that could be represented by real-number values of time, e.g.,
the fuel/electricity consumes 80% when the agent travels
a certain period of time. In this paper, we assume that all
events only concern the indices changing monotonically
and continuously over time. An example of monitor TA is
depicted in Figure 4. The invariant ofM0 and the guard of
its outgoing edge are used to guarantee that the monitor
is progressing to M1 when the clock’s value reaches the
threshold. Invariant of M1, and guard of its outgoing edge
are used when switching to Stop when the clock’s value
reaches a certain threshold, meaning that the agent has no
resources to move anymore. Hence, the monitor gives the
agent a time horizon between the threshold and deadline
to react to the event. However, if the agent ignores it for
too long time, energy (fuel, battery, etc.) is consumed so it
cannot move, which is represented as a deadlock in the TA.
A network of TA Mm | | Taa | | Monitor1 | | ... | | Monitorn

over (A,X) is a composition of TA for the movement, tasks,
andmonitors (Figure 5), whereA = {move, done1, ... ,donen},
X = {Mm.xm ,Taa.xe ,Monitor1.xr , ... , Monitorn .xr }, n =
|Ev |. Taa sends out synchronization signalsmove to inform
the movement TA that it is allowed to move, and donei to
Monitori informing the monitor TA that the task reacting
on event evi has finished.

3.4 Automatic Generation of Autonomous
Mission Models via TAMAA

In this section, we describe the steps and the algorithms
used for building the resulting TA and we also show how we
formalize the requirements as UPPAAL CTL/TCTL queries.

Algorithm 1: TA Generation of the Movement of an AA
1 Function CreateTA(Environment env)
2 дr id :=new CartesianGrid(env)
3 ms :=new Milestones(env)
4 ta :=new TimedAutomata()
5 int t t [][] :=new int[grid.size][grid.size]
6 formi ∈ ms do
7 formj ∈ ms ∧mi ,mj do
8 t t [mi][mj] :=ThetaStar(grid,mi ,mj)

9 whilems , ∅ do
10 Select ami ∈ ms , create a location A in ta representing it
11 for B ∈ ms ∧ B , A ∧ t t [A][B] < MAX do
12 Create a location C in ta
13 Label C with a guard: ta .c ≤ t t [A][B]
14 CreateConnection(A, C, B, ta)
15 CreateConnection(B, C, A, ta)

16 Removemi fromms

17 return ta

18 Function CreateConnection(L1, T , L2, ta)
19 Create an edge e in ta from L1 to T
20 Label e with a channelmove?
21 Label e with assignments: ta .c := 0, posit ion[L1] := f alse
22 Create an edge e′ in ta from T to L2
23 Label e′ with a guard: ta .c ≥ t t [L1][L2]
24 Label e′ with assignments: posit ion[L2] := true ,

visited [L2] := true

3.4.1 Generation of TA modeling the Movement of AA. To
abstract the continuous-space environment as discrete mod-
els (as shown in Definition 2 in Section 3.3), we decompose
the environment into a set of regions. There are two types
of decompositions that have been investigated previously in
the literature [10, 13]. The geometry-ignoring decomposition
[10] concerns only a set of regions of interest and ignores the
actual geometry of these regions. In contrast, the geometry-
using decomposition [13] divides the environment by using
different types of geometries, like rectangles, triangles, or
convex polygons. Both approaches to environment decom-
position ensure that propositions are well preserved by the
discrete model of the environment and are therefore called
proposition-preserving decompositions [10].
Our approach combines these two previous approaches

by dividing the environment into square cells for path calcu-
lation between milestones and abstracting the environment
as a TA where milestones and transitions among them are
represented. The concrete description is shown in Algorithm
1. We first decompose the environment as a Cartesian grid
and abstract the set of milestones as a two-dimensional array
(i.e.,ms in Algorithm 1) for storing the coordinates. An array
tt of integers is used for storing the traveling time between
milestones (lines 2 - 5). The Theta* algorithm is used to gen-
erate paths and traveling time (lines 6 to 8). In addition, we
traverse the elements inms and create a location (A) in ta

Figure 6: Environment decomposition and paths cal-
culation applying for the environment of Figure 3(a)for each of these elements (lines 9 and 10). “MAX” is the
maximum value of integers. After selecting another location
(B) in ta other than A, we connect them via a new location
C (lines 11 - 15). We use a function “CreateConnection” for
assigning guards and channels to edges as shown in Defini-
tion 4 of Section 3.3 (lines 19 - 23). Once the agent moves to
a milestone, the corresponding element in the array position
flips to true, and it is turned to false when the agent leaves
the milestone. Similarly, the array visit is used for storing
the visited milestones (lines 21 and 24).

Figure 6 illustrates the decomposition of the environment
of Figure 3(a). The cells in the Cartesian grid are the decompo-
sition unit. The ones that are completely or partially occupied
by obstacles are marked as forbidden cells (colored in grey
in Figure 6). Consequently, this is a conservative approach
for obstacle detection that leads to unnecessary avoidance.
This can be solved by increasing the grid resolution, which
might however increase the computation time.

3.4.2 Generation of the Task TA for Automated Agents. Based
on the concepts shown in Definition 4 of Section 3.3, we
describe the process of building task TA (i.e., Algorithm 2).
Note that, the line numbers mentioned in this paragraph

refer to Algorithm 2. We first create a TA and an initial
location l0 to represent the no-op task and label the self-loop
edge of l0 with a channel “move” for synchronizationwith the
movement TA. In addition, we traverse every taskTi ∈ AA.T
and create a location li in ta to represent it (lines 6 and 7).
The li edge is labeled with an invariant ta.c ≤ Ti .W which
ensures that the execution of the task must not be longer
than its worst-case execution time. We create a new edge
connecting l0 to li and label it with a guard and assignments
(lines 9, 10, and 11). The edge denotes the start of Ti and the
guard is used to model that the agent must be at one of the
locations whose index belong to Ti .M and that the task’s
precondition Ti .R must be true (line 10). The assignment
on the edge resets the clock and flips the starting flag to
true and the finishing flag to false (line 11). We create an
edge connecting li to l0 (lines 12 to 17) and label it with a
guard, a channel, and assignments. The tasks triggered by
events are labeled with “done[i]” to inform the monitor TA
that the events are responded (lines 13 - 15). For all tasks,
the assignments reset the clock and update the starting and
finishing flags (line 16). For exemplification, we show in
Figure 7 a task TA, which models the execution of a subset

Algorithm 2: Task Automaton Generation
1 Function CreateTaskAutomaton(Agent aa, Bool position[], EventSet Ev)
2 ta :=new TimedAutomata()
3 Create an initial location l0 in ta representing the no-op task
4 Create a self-loop edge of l0 and label it withmove !
5 while aa .T , ∅ do
6 Select a task Ti ∈ aa .T
7 Create a location li in ta representing Ti
8 Label li with an invariant: ta .c ≤ Ti .W
9 Create an edge e connecting l0 to li

10 Label e with a guard:
∨m
j=k posit ion[j] ∧Ti .R , where

{k, ...,m } = Ti .M
11 Label e with assignments: ta .c := 0, Ti .S := true ,

Ti .F := f alse
12 Create an edge e′ connecting li to l0
13 for evi ∈ Ev do
14 if evi triggers Ti then
15 Label e′ with a channel: done[i]!

16 Label e′ with assignments: ta .c := 0, Ti .S := f alse ,
Ti .F := true

17 Label e′ with a guard: ta .c ≥ Ti .B
18 Delete Ti from aa.T

19 return ta

Figure 7: A UPPAAL TA for execution of tasks
of tasks in our running example, namely digging holes (i.e.,
T1) and loading stones (i.e., T2). T0 is the no-op task.

3.4.3 Composition of TA. A network of movement TA and
task TA and monitor TA is constructed to synthesize mis-
sion plans satisfying various properties. As shown in Figures
3(c) and 7, the task TA and the movement TA are synchro-
nized using the “move” channel. Specifically, in the task TA
in Figure 7, this channel is only labeled in the self-loop of
T0, because the agent is only allowed to move when it has
no operation to perform. We mention here that the agent
does not necessarily move to milestone C (i.e., position[2])
for executing the corresponding task T2. It probably simply
passes it to go to another milestone. Therefore the transition
fromT0 toT2 is not synchonized with the movement TA. The
synchronizations between the task TA and monitor TA are
modeled in a similar way. The network of TA is then used
for model checking against certain CTL/TCTL queries in UP-
PAAL. The resulting execution traces from model checking
representing transitions between milestones and tasks will
be used to synthesize mission plans.

3.4.4 UPPAALQueries Design. We use the requirements in
our use case provided by VCE (as described in Section 3.1) to
show the design of UPPAAL queries in the following way:

• Task Coverage. Given that the agent must finish all tasks,
the corresponding CTL query can be written as:
E♢ (F [1] ∧ F [2] ∧ ... ∧ F [j] ∧ stonePileVol == 0) (5)

As shown in Definition 3 in Section 3.3, “F [i]” represents
the finish of task Ti and stonePileVol is a variable indicat-
ing the volume of the stone pile. Hence, this query requires
the agents to finish all the tasks and repeat them. When
the query is verified in UPPAAL, a diagnostic trace is gen-
erated for the synthesis of mission plans. We make use
of UPPAAL’s ability to generate traces witnessing a sub-
mitted reachability property. Currently, UPPAAL supports
three options for trace generation: some trace leading to a
goal state, the shortest trace with the minimum number of
transitions, and fastest trace with the shortest time delay.

• Task Matching. This requirement requires that an agent
executes particular tasks at particular milestones, which is
guaranteed by the guards in task TA defined in Definition
4. Hence, it does not need to be checked against a query.

• Task Sequencing. This requirement specifies that the order
of task execution must be correct. To prove the correctness
of some possible complex requirements, one can design
the query in the following form:

E♢ S[i + 1] (6)
A□ S[i + 1] imply F [i] (7)

In this case, taskTi must be finished beforeTi+1 starts. The
invariance is used to guarantee that the order of execution
holds on the model for all execution paths.

• Timing Requirement. For this requirement, the agent must
guarantee to finish its tasks within a time limit. Assume
the agent must carry all the stones within N time units,
and c is a clock variable, the TCTL query can be as follows:
E♢ (F [1]∧F [2]∧ ...∧F [j]∧stonePileVol == 0∧ c ≤ N) (8)
• Event Reaction. For this requirement, special tasks that are
triggered by events under some circumstances need to be
executed and prioritized. For instance, for battery level
checking, a monitor would activate an event when the
battery level is lower than a threshold. As the agent model
describes all possible combinations of behavior, there is
a possibility that the agent keeps staying at one location
or moves meaninglessly without executing any task until
its battery is consumed. Nevertheless, the satisfaction of
query (5) or (8) guarantees that the synthesized mission
plan subsumes that the agent charges itself whenever the
low-battery event occurs, because if a deadlock happens
in the monitor TA, there is no way to finish all the tasks
(i.e., queries (5) and (8) cannot be satisfied).

4 TAMAA Implementation and Evaluation
In this sectionwe outline some of themain aspects of TAMAA,
including a high-level implementation description and an
evaluation of its applicability and scalability in different re-
alistic scenarios.

Figure 8: The architecture of TAMAA

(a) A mission plan generated in a reason-
able environment

(b) A counter example generated in an un-
reasonable environment

Figure 9: Two screenshots of the MMT user interface
4.1 Implementation and User Interface
We present several technical solutions used in the implemen-
tation of TAMAA to fully support the complexity required
for model-checking the generated models. We have imple-
mented the algorithms described in Section 3.4 in Java and
have integrated the TAMAA tool with a Mission Manage-
ment Tool (MMT). MMT is a tool allowing users to graphi-
cally create complex missions for agents [14]. One can drag
and drop markers in the environment as milestones and
assign specific tasks to them (See Figure 9). When the envi-
ronment and tasks are configured in MMT, one can choose
a planner from the interface to calculate a mission plan. Our
TAMAA tool is linked to MMT as an explicit planner option,
which runs the Theta* algorithm, generates the UPPAAL
TA and calculates trajectories satisfying the given queries.
As illustrated in Figure 8, TAMAA has two communication
modules and one processing module which are implemented
in Java. The communication module connecting to UPPAAL
is shown as module A in Figure 8 and consists of two sub-
modules: one for connecting to UPPAAL for model checking
and the other one for analyzing the obtained trace. The mod-
ule for automatic TA generation is module B. The communi-
cation module connecting to MMT is shown as module C in
Figure 8. Module B first reads data from MMT via module C,
which is implemented in Apache Thrift1, to obtain informa-
tion about the environment, agents and tasks. Next, TAMAA

1Apache Thrift is a software framework for scalable cross-language services develop-
ment. https://thrift.apache.org

executes its model-generation engine for automatically cre-
ating the UPPAAL TA, which is represented as an xml file.
Module B invokes UPPAAL and sends the generated model
and the necessary commands as command-line arguments
to module A. After UPPAAL executes its verification of the
model, an execution trace is produced and parsed by module
A so that module B can interpret it as a mission plan and
transfer it to MMT by executing module C. Finally, if a sat-
isfactory execution trace exists, the corresponding mission
plan is depicted in MMT as it is shown in Figure 9(a). Oth-
erwise, a counter example representing an invalid mission
plan is also produced and shown in MMT GUI (See Figure
9(b)) for further debugging.

4.2 Applicability Evaluation

In this section, we consider various scenarios of AWL to show
the applicability of this method and tool implementation in
a realistic setting. The following environment is used in all
scenarios: a 50 × 50 2D space containing 3 static obstacles
and 4 milestones. The evaluation is conducted on a machine
running an Intel Core i5 processor with 16 GB of RAM and
a 64-bit Windows OS. We present here the scenarios and the
evaluation results.

Scenario 1. An AWL needs to perform 3 tasks in the right
order for one round. We design queries in the form of queries
(5)–(8) to obtain execution traces and check if the model sat-
isfies the requirements. As all queries are satisfied, a mission
plan is synthesized and the computation time is only a few
milliseconds.

Scenario 2.An AWL needs to repetitively execute four tasks
until the stone pile is empty and travel to a certain location
to charge itself when the battery is low. In this case, one
more task (i.e., charging) is added that is being triggered
by “low-battery” event. A monitor containing an auxiliary
data variable (variable ev0) is designed to inform the task TA
when the clock value exceeds a certain threshold. A query in
the form of query (8) is generated and the computation takes
0.5 seconds while exploring 113,719 states. The generated
trace for this query shows that the AWL as specified in the
model reacts to the event “low-battery” in time.

Scenario 3. In this case, three AWL cooperate to accomplish
one complex task. They have to all gather at one milestone
and start the task simultaneously. After that, they continue
to finish their own tasks. In this situation, the synthesis of
mission plans for three agents has to be conducted in one
entire model. Similarly, queries in the form of queries (5)–(8)
are checked and satisfied. Verifying invariance queries in the
form of query (7) takes less than 9 s to explore more than
770,000 states. Overall, our results show that mission plans
are successfully synthesized for all scenarios within a few

Table 1: Scalability evaluation results with different
number of milestones and tasks and 1 agent.

Query Numer of
Milstones

Numer of
Tasks

Numer of
Explored States Time

Reachability
30 30 20,363 0.2 s
60 60 157,033 2.2 s
100 100 712,721 14 s

Invariance
30 30 41,193 0.3 s
60 60 317,703 4.5 s
100 100 1,429,903 29 s

Table 2: Scalability evaluation results with different
number of agents running 3 tasks among 3milestones.

Query Numer of
Agents

Numer of
Explored States Time

Reachability

2 1,661 0.01 s
3 159,632 2.0 s
4 2,058,132 20160 s
5 Out of Memory Out of Memory

Invariance
2 3,533 0.03 s
3 344,701 4.0 s
4 Out of Memory Out of Memory

seconds. This is an indication that the TAMAA approach is
applicable to the industrial scenarios of AWL.

4.3 Scalability Evaluation
In this section, we consider the scalability of TAMAA with
regard to the number of milestones, tasks and agents con-
sidered. In all scenarios we are interested in two types of
queries: reachability and invariance (queries (5) and (7) are
used as examples). In this evaluation, we first vary the num-
ber of milestones and tasks between 30 and 100 for both.
Meanwhile, we use one AWL for all variations as this is a
realistic scenario for the use case. The result is presented
in Table 1, and it shows that the computation time ranges
between 0.2 s and 29 s and the number of states explored
is increasing exponentially with the number of milestones
and tasks for all queries. We mention here that even for a
model containing 100 milestones and tasks the results are
encouraging in term of model checking efficiency.
In addition, we evaluate the scalability of TAMAA by

varying the number of AWL between 2 to 5. The results are
shown in Table 2. The environment is kept the same for
all variations and contains three milestones and three tasks.
We conduct this evaluation using Scenario 3 described in
Section 4.2. The number of explored states and computation
time increases exponentially with the number of AWL. We
observe that the results for the case with three AWL running
in a 3-milestone environment executing 3 tasks are similar
with the results for one agent executing in an environment
with 60 milestones and 60 tasks shown in Table 1. This can be
explained by the increase in the number of TA and clocks for

the models containing more agents, which results in more
time zones and non-deterministic interleaving transitions.
Thus, searching through models with more agents takes
significantly longer. We note that the use of more than three
agents is problematic and therefore restricts the handling
of larger systems, due to the increased cost of computation
time and states explored. Because of the use of clocks at
locations and edges, partial order reduction [7] of the model
is not suitable in this model. One of our ongoing work is
to integrate reinforcement learning [18] in the model to
leverage the historical exploration of the state space of the
model to alleviate the scalability problem. We leave this to
our future work to report.

5 Related Work
In recent decades, there has been a growing interest in for-
mal modeling and verification of autonomous systems given
mission planning problems with complex goals. Belta et al.
[6] present a hierarchical structure and based on a three-level
process they propose a method using Linear Temporal Logic
(LTL). This is evaluated in several case studies [17, 19]. Bhatia
et al. [9, 10] propose synthesis methods by constructing a
multi-layered synergistic framework. This work uses tem-
poral logic to specify goals and shows the use of geometry
in the abstraction of environment results with significant
computational speedups compared to previous studies. Di-
marogonas et al. [4, 15] propose their method for motion
planning of multiple-agent systems using various temporal
logic. In contrast to these studies, our approach is focusing
on integrating a state-of-the-art path-planning algorithm
with temporal logic to leverage the heuristics and efficiency
of the former and the rigorousness and expressiveness of the
latter. In addition, our approach combines a model-checker
with a mission-management tool to tackle this problem on
an industrial case, which demonstrates the applicability and
scalability of this approach in realistic scenarios. Instead of
using LTL (e.g., [6]) for requirement specification, we explore
the use of TCTL for expressing more complex requirements
(i.e., both functional and timing requirements).

6 Conclusions and Future Work
In this paper we have presented an integrated approach
(named TAMAA) for automatically generating mission plans
for autonomous agents satisfying various requirements (func-
tional and timing). As part of TAMAA, we provide formal
definitions of the movement of autonomous agents and tasks.
These definitions enable a rigorous way of formalizing a prac-
tical problem. We also provide algorithms for the automatic
model generation before verifying the models in UPPAAL
against CTL/TCTL queries expressing autonomous vehicle
requirements important to their respective missions. For in-
creasing the appeal of our method, we have implemented

these algorithms in a tool written in Java and have integrated
it with a mission-management tool to provide an easy-to-
use automated support. Our approach has been evaluated
in three scenarios proposed by industry demonstrating its
applicability in realistic scenarios. The scalability evalua-
tion shows that while the number of tasks and the scale of
the environment do not significantly influence the cost of
model checking in terms of computation time and the num-
ber of states explored, the synthesis efficiency dramatically
decreases with the number of agents.

The future work has at least two potential directions. One
is to combinemodel checking techniques withmachine learn-
ing (e.g. reinforcement learning) to improve the efficiency
of searching through the state space. Another direction is
related to the integration of TAMAA with our two-layer
framework with the goal of proposing and evaluating an
entire solution for performing static planning and dynamic
simulation and verification by taking into account the dy-
namics and kinematics of different types of agents.

Acknowledgement: The research leading to the presented
results has been undertakenwithin the research profile DPAC
- Dependable Platform for Autonomous Systems and Con-
trol project, funded by the Swedish Knowledge Foundation,
grant number: 20150022.

References
[1] R. Alur and D. Dill. 1990. Automata for Modeling Real-time Systems. In Automata,

languages and programming. Springer, 322–335.
[2] Rajeev Alur and David L Dill. 1994. A theory of timed automata. Theoretical

computer science 126, 2 (1994), 183–235.
[3] Saeed Asadi Bagloee, Madjid Tavana, Mohsen Asadi, and Tracey Oliver. 2016.

Autonomous vehicles: challenges, opportunities, and future implications for
transportation policies. Journal of modern transportation 24, 4 (2016), 284–303.

[4] Fernando S Barbosa, Lars Lindemann, Dimos V Dimarogonas, and Jana Tumova.
2019. Integrated Motion Planning and Control Under Metric Interval Temporal
Logic Specifications. In 2019 18th European Control Conference (ECC). IEEE.

[5] Gerd Behrmann, Alexandre David, and Kim G Larsen. 2006. A tutorial on Uppaal
4.0. Department of computer science, Aalborg university (2006).

[6] Calin Belta, Antonio Bicchi, Magnus Egerstedt, Emilio Frazzoli, Eric Klavins, and
George J Pappas. 2007. Symbolic planning and control of robot motion [grand
challenges of robotics]. IEEE Robotics & Automation Magazine 14, 1 (2007), 61–70.

[7] Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang Yi. 1998. Partial order
reductions for timed systems. In International Conference on Concurrency Theory.
Springer, 485–500.

[8] Johan Bengtsson and Wang Yi. 2004. Timed automata: Semantics, algorithms
and tools. Lecture Notes in Computer Science 3098 (2004), 87–124.

[9] Amit Bhatia, Lydia E Kavraki, and Moshe Y Vardi. 2010. Sampling-based mo-
tion planning with temporal goals. In International Conference on Robotics and
Automation. IEEE, 2689–2696.

[10] Amit Bhatia, Matthew R Maly, Lydia E Kavraki, and Moshe Y Vardi. 2011. Motion
planning with complex goals. IEEE Robotics & Automation Magazine 18, 3 (2011).

[11] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. 2010. Theta*: Any-angle
path planning on grids. Journal of Artificial Intelligence Research 39 (2010).

[12] Stan Franklin and Art Graesser. 1996. Is it an Agent, or just a Program?: A
Taxonomy for Autonomous Agents. In International Workshop on Agent Theories,
Architectures, and Languages. Springer, 21–35.

[13] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. 2009. Temporal-
logic-based reactive mission and motion planning. IEEE transactions on robotics
25, 6 (2009), 1370–1381.

[14] BrankoMiloradović, Baran Cürüklü, Mikael Ekström, and Alessandro Papadopou-
los. 2019. Extended Colored Traveling Salesperson for Modeling Multi-Agent
Mission Planning Problems. In International Conference on Operations Research
and Enterprise Systems. INSTICC, SciTePress, 237–244.

[15] Alexandros Nikou, Dimitris Boskos, Jana Tumova, and Dimos V Dimarogonas.
2018. On the timed temporal logic planning of coupled multi-agent systems.
Automatica 97 (2018), 339–345.

[16] Scott Pendleton, Hans Andersen, Xinxin Du, Xiaotong Shen, Malika Meghjani,
You Eng, Daniela Rus, and Marcelo Ang. 2017. Perception, planning, control, and
coordination for autonomous vehicles. Machines 5, 1 (2017), 6.

[17] Stephen L Smith, Jana Tumova, Calin Belta, and Daniela Rus. 2011. Optimal path
planning for surveillance with temporal-logic constraints. International Journal
of Robotics Research 30, 14 (2011), 1695–1708.

[18] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[19] Alphan Ulusoy, Stephen L Smith, Xu Chu Ding, Calin Belta, and Daniela Rus.
2013. Optimality and robustness in multi-robot path planning with temporal
logic constraints. International Journal of Robotics Research 32, 8 (2013), 889–911.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 UPPAAL Timed Automata

	3 TAMAA Approach
	3.1 Use Case: Autonomous Wheel Loader
	3.2 Workflow of TAMAA
	3.3 Model Formalization and Definitions of Concepts
	3.4 Automatic Generation of Autonomous Mission Models via TAMAA

	4 TAMAA Implementation and Evaluation
	4.1 Implementation and User Interface
	4.2 Applicability Evaluation
	4.3 Scalability Evaluation

	5 Related Work
	6 Conclusions and Future Work
	References

