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Abstract—Finding a balance between testing goals and testing
resources can be considered as a most challenging issue, therefore
test optimization plays a vital role in the area of software testing.
Several parameters such as the objectives of the tests, test cases
similarities and dependencies between test cases need to be
considered, before attempting any optimization approach. How-
ever, analyzing corresponding testing artifacts (e.g. requirement
specification, test cases) for capturing the mentioned parameters
is a complicated task especially in a manual testing procedure,
where the test cases are documented as a natural text written
by a human. Thus, utilizing artificial intelligence techniques in
the process of analyzing complex and sometimes ambiguous test
data, is considered to be working in different industries. Test
scheduling is one of the most popular and practical ways to
optimize the testing process. Having a group of test cases which
are required the same system setup, installation or testing the
same functionality can lead to a more efficient testing process. In
this paper, we propose, apply and evaluate a natural language
processing-based approach that derives test cases’ similarities
directly from their test specification. The proposed approach
utilizes the Levenshtein distance and converts each test case into
a string. Test cases are then grouped into several clusters based
on their similarities. Finally, a set of cluster-based parallel test
scheduling strategies are proposed for execution. The feasibility
of the proposed approach is studied by an empirical evaluation
that has been performed on a Telecom use-case at Ericsson in
Sweden and indicates promising results.

Index Terms—Software Testing, Natural Language Processing,
Test Optimization, Semantic Similarity, Clustering

I. INTRODUCTION

Software testing can be considered as the most critical,
labor-intensive and time-consuming process in the software
development life cycle (SDLC), which almost demands 50%
of the total development cost [1]. Therefore, test optimization
techniques e.g. test case selection, prioritization, scheduling
has received a great deal of attention in recent years. Executing
all designed test cases inside of the test suite without a specific
plan can lead directly to the waste of testing resources [2]. On
the other hand, efficiently scheduling test cases for execution is
also a time-consuming process where several factors such
as execution time, requirement coverage, dependency and
similarities between test cases need to be analyzed in an early
stage of a testing process [3], [4]. There is a trade-off between
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the required effort for scheduling test cases and executing
them without any specific order. Having an accurate and fast
approach for measuring the mentioned testing factors and also
scheduling test cases for execution based on them can help test
developers and software engineers in a test team to save time
and also testing resources. Moreover, understanding the test
case properties (mentioned factors) can be utilized for other test
optimization purposes such as test suite reduction, parallel test
execution and also test automation. However, both test cases
properties and test optimization techniques can take substantial
time and effort in a manual testing procedure, where all testing
artifacts (e.g. requirements, test cases) are written by a human
in a natural text. Additionally, the complexity of the product
under test, the company’s infrastructure should be considered
for selecting a feasible test optimization approach. For instance,
parallel test execution is a suitable approach where multiple
products, applications or sub-components of one application
need to be tested in one testing environment. However, in other
cases, serial testing is a more practical test execution approach.
In this paper, we proposed a cluster-based parallel test execution
for manual integration test cases. The proposed approach is
an NLP-based approach that detects the similarities between
manual test cases. Later, we spot test cases that are structurally
identical and can be considered as duplicate and also those test
cases which are very similar or partially similar to each other.
Moreover, we calculate the similarity between test cases based
on their test specifications, using the Levenshtein distance. The
proposed approach in this paper opens ways to execute test
cases in a more efficient way, where the semantically similar
test cases between different products are going to be tested
parallel at the same time. Finally, the feasibility of the proposed
approach is analyzed on an industrial case study in the Telecom
domain at Ericsson in Sweden. This paper makes the following
contributions:

1) Measuring the similarities between manual integration test
cases.

2) Eliminating possible duplication of test cases.
3) Proposing a cluster-based parallel approach for test

execution.

II. BACKGROUND

Parallel test execution can be considered as a potential
solution for reducing testing time by increasing the utilization of
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Figure 1: An overview of the serial execution process for

testing five RBSs at Ericsson. The X-axis shows the name of

the products and the Y-axis represents the execution time.

available resources (e.g. CPU, processor cores, instrumentation
resources, microprocessors) [5] and it might result in faster time
to delivery of the final product. Testing the similar functionality
between several products in parallel across physical and virtual
machines can resolve the limitations of time and budget while
still assuring quality [6]. On the other hand, parallel testing
has its own sets of challenges and it is usually applicable
in large industries where there are no infrastructure or test
station limitations. The software quality assurance process at
Ericsson is a costly process where all radio products need
to be tested for compliance with relevant regulations and
standards on electromagnetic fields before they are delivered
to the market [7]. Radio Base Station (RBS) is an important
key element on mobile communication [8] among Ericsson’s
products. Their inherent complex design makes their testing
process very advanced to follow all the standards, especially
when an old and new standard needs to be covered at the
same time. The standards are translated as test cases which are
included several test steps. To a large extension, manual work
and subject matter expert (SME) knowledge are still required
to translate the standards to test cases to test their requirements.
Figure (1) shows a general overview of testing 5 different RBSs
at Ericsson. As we can see, all RBSs are tested in series and
the total required time for testing them varies from product to
product. The number of generated test cases for testing each
RBS and other factors such as RBS’s properties and design
can impact the required time for testing an RBS. Moreover,
each RBS will be tested in a specific test station. A typical test
station at Ericsson is the hardware interface between the RBS
and the test engineer. Today test cases are mostly executed
sequentially, which can be considered as the most expensive
way of test execution [9], which cannot even guarantee the
best execution time for the test suite. The approximate time
for a serial testing procedure can be defined as [9]:

t ≈
n∑

i=1

ti (1)

where ti is the execution time of each ith test case and n

represents the total number of test cases. Additionally, ti is a
sum of several factors such as system setup time, installation
time and the required time for executing a test case. As
highlighted earlier, executing similar test cases in parallel is a
way to reduce the total testing time, thus [9]:

t =

∑s
i=1 ti
p

+
n∑

i=s+1

ti (2)

where s represents similar test cases and p is the parallel
test stations for executing test cases in parallel. We need to
consider that, similar test cases are distributed across different
RBSs. While non-similar test cases are executed successfully,
then similar test cases can be executed in parallel at any given
time. Furthermore, identifying similar test cases can lead to a
more efficient usage of testing resources through:

• To figure out which test cases are superfluous and can be
eliminated.

• Simultaneous execution of test cases that test the same
functionality or required the same precondition, system
setup, and installation.

• Any combination of the previous options.

The preconditions for a test case include the state that a
system and its environment must be reached before a specific
test activity can be run. In other words, the preconditions
specify the setup that is needed for test execution. Many
possible types of settings and conditions can be interpreted as
a precondition but, generally, a precondition can fall under one
of the following classes:

• A previously executed step in the testing sequence.
• The outcome of the previous step in the testing sequence.
• The availability of existing data needed to run the test

case.

Although parallel test execution can significantly reduce
the testing time, however, not special efforts have been put
into proposing a suitable approach yet. It could be due to
many reasons e.g. test cases dependencies and infrastructure
limitations.

III. RELATED WORK

Parallel testing for hardware and software applications has
been studied during years. Karimi and Lombardi [10] present
an approach to reduce the test time complexity based on
the functional parallelism of a multi-port Random Access
Memory with many ports. In that way reducing the number
of tests based on the common patterns found in the design
of the component. Delgado [11] propose a new technique
to reduce the test time in test program execution, through
parallel testing in the three following scenarios: multiple units
of the same product, multiple units of different products and
reducing test coverage using: test pipe-lining architecture,
scheduling method and reducing the number of tests without
jeopardizing the quality of the product, respectively. Both
approaches mentioned above are based on specification-based
testing [12]. In other words, they do not try to reduce the testing
time by modifying the specification requirements, instead, they
follow the constraints. Misailovic et al. [13] use parallel test

100

Authorized licensed use limited to: Malardalen University. Downloaded on August 28,2020 at 21:00:41 UTC from IEEE Xplore.  Restrictions apply. 



Test cases String similarity

Semantic similarity

Clustering test cases

based on similarity scores
Cluster-based parallel

test execution

Input Step 1 Step 2 Output

Similarity Scores

Figure 2: The steps of the proposed solution for cluster-based parallel execution using semantic similarity between test cases.

generation and execution to generate and validate the test cases
given by the constraints for structurally complex test inputs.
The tool automatically generates fewer equivalent inputs given
the constraints (bounds). Correia et al. [14] demonstrate how
their tool called MOTSD works in the industrial context of
OutSystems. MOTSD uses a Particle Swarm Optimization
(PSO) algorithm and the goal is to minimize the regression
testing and diagnostic costs by providing faster feedback to the
developers when a change is made. MOTSD runs a subset of
the test suite close related to the change, reduces the costs of
fault location. Gonzalez-Sanchez et al. [15] present a spectrum-
based fault localization-approach for test prioritization. in this
approach, those test cases which are more likely to fail using a
heuristic indicator will be executed first. However, the proposed
approach in [15] is applicable in a more mature state of the
findings, that the test suite can be reduced by testing only
the most important features in order to reduce the cost of
failure localization. In the same way, Vahabzadeh et al. [16]
utilize an open-source tool called TESTLER to tackle the test
suite minimization based on removing the partial redundant
test statements. The issue with this approach is that is only
applicable on test code analysis and not test cases described
in text. We aim to generate fewer equivalent inputs to produce
a suitable test suite without compromising the quality of the
test based on the semantic similarity of the requirements for
a multiple port unit, multiple units, and different products.
Approximate string matching [17] is the task of comparing
two strings and approximate the similarity between them. In
the literature, it is used for a wide range of applications,
including spell checking and optical character recognition
correction [18], pattern recognition [19], spam filtering [20],
and record linkage [21]. The use of measurement for comparing
two strings can differ depending on the application and some
proposed error models are the episode distance, q-gram distance,
longest common subsequence (LCS), Hamming distance, block
distance, etc. The Levenshtein distance (or edit distance)
between two strings is a commonly used measurement for
approximate string matching and is the minimum amount of
character alterations (insertions, deletions, and substitutions
where each alteration cost 1) that are needed to make the two
strings the same. The lower bound of the Levenshtein distance
d(x, y) for two strings x and y is 0 and the upper bound
max(|x|, |y|). It has previously been used in the linguistic
distance to measure the difference between two languages [22].
For longer strings, like sentences or documents, other textual

analysis techniques have been proposed in the literature.
Latent semantic analysis (LSA) performs a quantitative content
analysis on a set of documents by counting the prevalence of
each word in each document and then group similar documents
that share the same words [23]. It has been used for search
engine procedures and information retrieval applications [24],
textual analysis [25], gene expression analysis [26], central bank
communications [27] and corporate social responsibility (CSR)
analysis [28]. More recently, word embeddings have been
learned by using neural network architectures for measuring
semantically similar words. The similarity between the two
words is then computed by calculating the cosine similarity
between their word embeddings. Two popular methods for word
embeddings are word2vec [29] and GloVe [30]. For measuring
the similarity between sentences using word embeddings there
are a couple of techniques proposed, such as calculating the
cosine similarity between the average of the word embeddings
of all words in the two sentences, Word mover’s distance [31],
and Smooth Inverse Frequency [32] that weights the word
embeddings by their corpus prevalence and removes irrelevant
words. However, the above methods do not take word order
into account. Some generic sentence encoders that preserve
word order are doc2vec [33], Skip-thought vectors [34],
InferSent [35], BERT [36], and Universal sentence encoder [37].
In this paper, we use the Levenshtein distance to compare the
test cases. This is due to a large number of test cases that need
to be compared and the structure of the test cases were word
order is not important. To the best of our knowledge, this work
is the first that explores the use of test description analysis to
perform product test optimization.

IV. METHOD

In this paper, we propose, apply and evaluate an NLP-based
approach for execution similar test cases in parallel. Figure (2)
represents an overall overview of our proposed approach.
According to Figure (2) the required input for utilizing the
proposed approach is the test case specifications, which is
written in the natural text by the testers. In the next step, the
semantic similarities between test cases will be measured by
using LSA techniques, edit distance metrics. Later, test cases
will be categorized into several groups based on their semantic
similarities. Finally, the test cases which are similar to each
other need to be executed in parallel on the same test stations.
In this paper, we define the concept of semantic similar test
cases as:
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Definition 1. Test case TC1 and TC2 are semantically similar
if they are designed to test the same functionality or they have
the same preconditions, execution requirements (installation),
system setup.

A. Semantic Analysis Using Edit Distance Metrics

Edit distance algorithms are a common approach to recognize
textual similarities. The basic operations used to edit are
insertion, substitution, and deletion. Each operation has its
associated cost, this means that some operations are more
expensive than others. We minimize this cost via ML algorithms
and heuristics. The cost of a pair of texts based on how many
operations were necessary to transform one text into another
text is used as an edit distance score. Using edit distance
metrics techniques for analyzing and parsing test cases, can
be considered as an appropriate approach for measuring the
semantic similarities between test cases. In this paper, we use
the Levenshtein distance which is a string metric for computing
the difference between two sequences, proposed by Vladimir
Levenshtein [38].

Definition 2. The Levenshtein distance between two strings is
the minimum amount of character alterations that need to be
made to turn the one string into the other.

By alterations, we refer to substitutions, additions, and
removals. Mathematically, the Levenshtein distance algorithm
can be described as [39]:

la,b(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

max(i, j) ifmin(i, j) = 0,

min

⎧⎨
⎩
la,b(i− 1, j) + 1

la,b(i, j − 1) + 1

la,b(i− 1, j − 1) + 1ai �=bj

otherwise.

(3)

where a and b are two strings to be compared and i and
j are the current index we are evaluating, starting at |a| and
|b| respectively. Furthermore, the theoretical maximum of the
Levenshtein distance is the length of the longer string, since
if the strings have no characters in common you have to first
substitute all the characters in the shorter string, then add the
rest. This upper limit allows us to define a ratio of similarity
between the two strings a and b as following [39]:

lratio(a, b) = 1− la,b(|a|, |b|)
max(|a|, |b|). (4)

As mirrored in Figure (2), applying the similarity detection
techniques (e.g. Levenshtein distance measurement) on the test
cases provides string similarity scores as an output, which can
be utilized for both clustering and classification purposes.

B. Cluster-Based Test Scheduling Strategies

In this subsection, we propose a set of cluster-based test case
scheduling strategies based on the semantic similarities between
test cases. By close consultation with SMEs at Ericsson, we
decide to propose the following clusters ”Identical”, ”Very
Similar”, ”Similar” and ”Partially Similar”, for grouping test
cases based on their semantic similarities. Table (II) gives an
example for each mentioned cluster, using manual integration
test cases generated by testers at Ericsson. In this example, the

semantic relationship of TC1 is analyzed with TC2. As we
can see, there are four different versions of TC2. At first sight,
all different versions of TC2 look similar, therefore having an
NLP-based approach can help us to distinguish all different
versions and also measuring the semantic relationship of it
with other test cases. In the presented example in Table (II),
both TC1 and TC2 are designed to test the same functionality
and both require the same system set up, installation and
preconditions. Moreover, we inserted a threshold in Table (II)
is our assumption for dividing test cases into each cluster. In
other words, if the Levenshtein distance between two test cases
is equal to 1, thus the test cases are identical. The proposed
threshold for other clusters is our assumption, which has been
made in this paper. However, the proposed approach in this
paper is not limited to the mention clusters and thresholds,
where any other label, name or threshold can be utilized. As
stated before, those test cases which are in the same cluster
should be executed parallel, since, the semantic similar test
cases are usually required the same system setup, installation
or test the same functionality.

V. INDUSTRIAL CASE STUDY

The provided industrial case study in this work is following
the proposed guidelines for conducting and reporting case study
research in software engineering by Runeson and Höst [40] and
specifically the way guidelines are followed in [41] and [2].

Property RBS 1 RBS 2 RBS 3 RBS 4 RBS 5
LTE � � � � �

WCDMA � � � �
GSM � � � �
TDD � �
FDD � � � � �
Ports 4 2 2 4 2

Number of test cases 87 78 77 91 84

Table I: Selected RBS, number of test cases and relevant

properties.

In this study, five multi-standard RBSs compatible with at
least 3G/WCDMA, 4G/LTE and 5G are selected as a case under
study. These products are intended to cover different markets
and operate with different standards, e.g. 2G/Global System for
Mobile Communication (GSM), 3G/Wideband Code Division
Multiple Access (WCDMA) and 4G/Long-Term Evolution
(LTE), both for Time Division Duplex (TDD) and Frequency
Division Duplex (FDD). Table (I) shows the number of assigned
test cases and also the designed properties, technologies for
each RBS. According to Table (I) the number of designed test
cases for each RBS is different, which may indicate directly
to the correlation to the required time for testing each RBS,
mirrored earlier in Figure (1).

A. Unit of Analysis and Procedure
The units of analysis in the case under study are test cases,

extracted from an internal database at Ericsson. Each test case
is written in a natural text by SMEs at Ericsson and contains
e.g. tens of hundreds of test steps inside of each test case. The
case study is performed in several steps:

1) A total number of five products (RBS) are selected as a
case under study.
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Cluster Test case example Threshold
Identical TC1: This test case will measure the current status of a LED.

TC2: This test case will measure the current status of a LED.

Levenshtein distance = 1

Very Similar TC1: This test case will measure the current status of a red LED.

TC2: This test case will measure the current status of a green

LED.

0.95 ≤ Levenshtein distance ≤ 0.99

Similar TC1: This test case will measure the current status of a LED.

TC2: This test case will measure the current status of a diode.

0.91 ≤ Levenshtein distance ≤ 0.94

Partially Similar TC1: This test case will measure the current status of a LED.

TC2: This test case will bias a LED and measure the current.

0.8 ≤ Levenshtein distance ≤ 0.9

Table II: Some examples of identical, very similar and partially-similar test cases. LED stands for Light Emitting Diode.

2) A total number of 417 test cases are captured from the
Ericsson’s database for each product (RBS).

3) The Levenshtein distance is measured between all test
cases, where (417× 416)÷ 2 = 86736 comparisons are
made between test cases. In other words, the Levenshtein
distance is measured between every single test case with
all other test cases between five RBSs.

4) Test cases are divided into four different clusters based
on their semantic similarities.

5) A set of cluster-based test case scheduling strategies based
on the semantic similarity between test cases are proposed
by us.

Figure (3) represents the obtained results using test cases for
five different products at Ericsson, clustered into four groups
based on the semantic similarities (the Levenshtein distance)
between test cases.
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Figure 3: The clustered test case pairs into four groups using

Levenshtein distance.

As can be seen, all test cases (presented in Table (I)) are
divided into four clusters based on their semantic similarities
relationship. The number of test cases presented in Figure (3)
represents test case pairs. For instance, 111 test case pairs
are classified into the ”Partially Similar” cluster. Thereby, in
total, the number of 246 test cases are grouped into mentioned
similar clusters, where the total number of 171 test cases have
remained as non-semantic similar test cases within all five

products (RBS).

B. Model Performance Evaluation
Evaluation metrics explain the performance of a model.

Selecting a suitable performance metrics is critical and also
influences the measured performance of the model [42]. To
evaluate the performance of the proposed approach in this paper,
a Ground Truth (GT) is conducted using the SME’s knowledge
at Ericsson, by manually labeling 20% of the utilized test cases
in this study.

C. Evaluation of Binary Classifiers
Utilizing of binary classifiers for evaluation can help us to

learn a model which tries to predict whether some instance
belongs to a class or not [43]. Moreover, the output of many
clarification algorithms such as logistic regression and decision
trees is a probability for an instance belonging to a positive
class.

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000

Threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
1
-S
c
o
r
e

Non-Similar Similar

Figure 4: F1-score for similar and non-similar test cases and

the threshold for detecting the optimal point.

In this paper, we measure F1-score as a proper evaluation
metric to show the performance of the proposed solution. F1-
score represents a harmonic relationship between precision and
recall. In this case, the precision and recall can be defined as
follow:

• Precision: is the number of correctly detected similarities
over the total number of detected similarities by us.
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• Recall: is the number of correctly detected similarities
over the total number of existing similarities.

Thereby:

F1− Score = 2× Precision×Recall

Precision+Recall
(5)

However, both precision, recall, and also F1-Score need
to be measured for non-similar test cases as well, using
Equation (5). Figure (4) shows similar and non-similar test
cases and according to F1-scores of the clustering task whether
test case TC1 matches the according to the GT or not. As can
be observed in Figure (4), the F1-score for both similar and
non-similar class behaves as one would expect. The F1-score
for the non-similar class increases as we raise the threshold,
while it decreases for the similar class. The optimal threshold
can be observed to lie where the F1-score is the highest for both
classes, namely at 0.91 with an F1-score of 0.61. However, we
need to consider that, the utilized GT for measuring F1-score is
provided by the SMEs, which might suffer from wrong labeling,
uncertainty, and ambiguity, because of human judgment.

VI. RESULT

As presented in Figure (3), all test cases are divided into 4
clusters based on their similarities, where the remaining test
cases are non-similar. Figure (5) shows the number of clustered
test cases per product (RBS), where similar test cases between
5 products can be executed at the same time.
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Figure 5: An overview of the parallel execution process for

testing five RBSs at Ericsson. The x-axis represents a calendar

time slot, the numbers inside the bars are the number of test

cases per cluster.

According to Figure (5), the number of test cases per cluster
is different, where e.g. RBS5 has just 12 test cases which are
”Partially Similar” to other test cases in other RBSs. It means
that 72 test cases which are designed to test RBS5 (see Table
(I)) can be executed serially, before or after parallel execution of
those 12 partially similar test cases. However, other RBSs have
also other non-similar test cases, which need to be executed
serially, but as we can see in Figure (5), most of the test cases
can be executed in parallel. As stated in Section (II), parallel
test execution can help the testing team for saving more time
and testing resources. For instance, executing all (in total 22)
identical test cases (see Figure (5)) between five RBSs at one

testing station is an efficient decision. The testers need to set
up the testing environment for testing once and several test
cases can be executed. However, in some testing situations, not
all identical test cases need to be executed, where getting a
“Pass” answer for some of them might be sufficient. However,
the following assumptions need to be made or satisfied for a
parallel test execution:

1) There are no dependencies between test cases.
2) All test cases have the same execution time (taj).
3) The required time for system setup, installation and getting

the testing station ready for testing is the same (tcj).
4) There are at least np+ 1 available test stations, to make

parallel testing feasible, where np is the number of
products tested.

Additionally, the total execution time (Ttotal) for testing a
test case can be calculated as:

Ttotal =

n∑

j=1

tcj + taj (6)

Where tcj is the system setup time and taj indicates to the
test cases execution (running) time [44]. Parallel test execution
for those test cases which have the same system setup. Thus,
the saving time (ST) for those test cases which are required
the same system setup can be calculated as:

ST =
(np− 1)

np
× 100 (7)

Using the presented results in Figure (5), Equation (7) and
making the mentioned assumptions, we can estimate the total
saving time using parallel test execution for the five products.
In this regard, we propose four different execution scenarios
which are matched the similarities clusters.

Table III: Time-saving potential for different parallel execution

scenarios for five RBSs. All test cases have the same tcj .

Scenario Cluster Time saving
1 Identical test case 95.4%
2 Very similar test cases 98.2%
3 Similar test cases 97.9%
4 Partially similar test cases 99.1%

Table (III) represents the potential time saving for five
RBSs using different parallel execution scenarios. To apply the
proposed scenarios, in our case, we need to have at least four
available test base stations. In other words, each cluster of test
cases (distributed between five RBSs) should be executed in
one testing base station, thus the system setup, installation, and
pre-conditions will be installed one time for executing several
test cases. In the presented scenarios in Table (III), we roughly
estimated the total saving time, when the system is seated once
at each testing station and all test cases are executed one after
another. For instance, in total 22 test cases are detected as
identical test cases (see Figure (5)). According to Scenario 1,
all those 22 test cases should be executed at one test station.
Thus, if all test cases are required the same system setup and
installation effort (tcj1 = tcj2 = ... = tcj22 ), it will be sufficient
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to perform the system setup activities just for one test case and
execute the remaining 21 test cases. Furthermore, minimizing
tcj can lead to minimizing the total test execution time (ttotal),
presented in Equation (6). We need just to consider that, the
proposed approach and analyzed scenarios in this paper, are
just reduced tcj . Moreover, testing the same functionality is
also required the same pre-condition and installation, which
can be saved by running similar test cases in parallel. To avoid
any confusion, we just clustered those test cases which have
the Levenshtein distance greater than or equal to 0.8, which
is a high value. However, as presented in Table (II), those
test cases which are clustered as similar, are designed to test
the same function and also required the same system setup,
installation effort.

VII. THREATS TO VALIDITY

The major construct validity threat [45] in this study is
the way that the semantic similarities between test cases are
measured. Utilizing just the test specifications for similarity
detection may not be sufficient in other testing processes.
Sometimes analyzing other testing artifacts such as requirement
specifications, standers and test records might help us to detect
the semantic similarities as well. Moreover, the proposed
threshold in this study is selected by close consultation with
SMEs, which need to be measured more precisely. The main
limitation of the proposed approach in this paper is the
infrastructure and testing station. For applying the proposed
approach in this paper, we need to have several available
test stations for testing each product parallel with others. The
coming technologies as 5G will only enlarge those challenges
due to the increase in the number of elements i.e. the number
of ports, making this solution a necessity.

VIII. DISCUSSION AND FUTURE WORK

The main goal of this study is to propose and apply an
approach that first detects the semantic similarities between
manual integration and later cluster test cases for execution.
To this end, we make the following contributions:

• We have proposed an NLP-based approach to detect
the semantic similarities between manual integration test
cases automatically. The semantic similarities have been
extracted by analyzing test case specifications.

• Test cases have been grouped into several clusters (e.g.
Identical, Very similar, Similar and Partially similar) based
on their semantic similarities.

• A set of cluster-based parallel test execution was proposed.
• The feasibility of the proposed approach in this paper was

analyzed on an industrial use case at Ericsson.

Parallel test execution can provide an opportunity for using
the testing resources more efficiently. Decreasing the redundant
efforts for system setup, installation and preparing the testing
environment ready for testing, directly impacts the testing total
cost and quality. Executing test cases in a parallel way might
help testers and test managers to save more time and cost
for testing a set of large products. On the other hand, having
an applicable, effective and efficient solution for parallel test
execution is a challenging task, where the trade-off between the

required effort and possible gain should be analyzed in an early
stage of a testing process. The product’s complexity, properties,
quality, and testing level have a direct effect on the number of
required test cases for testing a product. However, usually, a
large set of test cases are designed to testing a product at a
high-level testing level such as integration testing. Since the
required input for applying the proposed approach in this paper
is just test specification, thus the approach can be considered
as an applicable approach in all industries, which work with
manual testing.

A. Future Work

Developing the proposed approach as a tool that can handle
even larger sets of test specifications is one of the future
directions of the present work. Previously [46], [47] we applied
and evaluated another LSA method on a large industrial case
study. Comparing the performance of the proposed solution in
this paper with other LSA methods is also another considered
research direction for us. In the future, one more step will
be added to the proposed approach (see Figure (2)), which
will check the requirement specification behind each test
specification. The main goal by adding this step is to detect
the dependencies between test cases (if any exists). In this
paper, we assumed that there are no dependencies between
test cases and the order of execution inside of each product
is not important, while these assumptions might not be valid
for all applications [48], [49]. Hitherto, we proposed several
approaches for detecting the dependencies between manual
integration test cases, where several testing artifacts such as
signal information [50] and requirement specification [51]
have been used. In future applications, a method for threshold
determination could be of interest. One possibility would be
to use evaluation as a tool by choosing the threshold with the
best evaluation metrics, i.e. the threshold that best aligns with
SME-judgment.

IX. CONCLUSIONS

Test optimization can be considered as a key role player in
the software development life cycle and it can be performed
through a different way of test scheduling, test case selection,
prioritization and also automation. In this paper, we introduced
and applied our proposed NLP-based approach, for scheduling
manual integration test cases for execution in a parallel way.
Our proposed approach takes test specifications as input and
provides a cluster-based parallel test execution as output. First,
the Levenshtein distance between test cases is measured and
secondly, test cases are grouped for execution based on their
semantic similarities. Our empirical evaluations at Ericsson AB
and analysis of the results of one industrial project show that the
proposed approach is an applicable solution for scheduling test
cases for execution in a parallel way. The proposed approach
in this paper is also able to handle a large set of manual test
specifications, where the proposed clustering can be used for
other purposes such as test automation.
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