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Abstract 
The development of electronic systems within VCE faces challenges of shorter development time 
and keeping the electronics part of the product cost low. At the same time, electronic content and 
complexity is rapidly increasing. VCE has a wide range of products and also a wide range of 
technical solutions, processes, tools, and so on. Improved architecture design and a product line 
approach are envisioned to improve system properties and decrease cost by coordinating 
development. 

This report describes the current architecture requirements, challenges, component model, 
technology, and development process adopted in the Sweden branch of VCE electronic 
development. This is a first step towards identifying challenges and solutions in a company wide 
survey whose aim is to produce solutions for the cost, coordination, and improved system properties 
effort. 

1 Introduction 
In this report, we present a case study of an architecture for the development of software product 
lines of heavy vehicle on-board electronic systems. Moreover, we present challenges that are faced 
in this effort.  

The contribution of this paper consists of a current industrial method for platform development in 
product lines of automotive electronic systems. Platform development includes electronic systems 
architecture, component model, process, and methods for assuring quality properties of the system. 

The contributions in this paper are: 

- A case study of an automotive system that has been designed by using a component based, 
product line approach. The presentation includes a functional overview, architecture 
requirements, component model, design method, process, and challenges that are faced in this 
effort. 

1.1 VCE business context 

Volvo Construction Equipment, VCE, develops a variety of construction equipment vehicles. VCE 
is divided into a number of product companies and other supportive companies. The product 
companies focus on their specific products and are responsible for cost, deliveries, service etc to the 
end-customer. End-customers range from single vehicle owners to rental companies with hundreds 
of vehicles. Typically, a product company manufactures a product line of similar, but differently 
sized vehicles.  

VCE has two departments for development of on-board electronic and software systems. One 
department is located in Sweden and one in Korea. These departments hold expertise on and 
develop on-vehicle electronic systems for various products to the product companies. The electronic 
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development includes control systems, other on-vehicle software, and hardware. In the following 
this will be referred to as electronic development. 

The product companies can also decide to buy electronics development from vendors external to 
VCE. Hence, the final products can include hardware and software components from many vendors 
both from VCE and external to VCE. From the product companies’ perspective, VCE electronic 
development is essentially equal to any subsystem vendor and must develop control systems and 
software at competitive prices.  
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Figure 1. Electronic development in VCE 

This report describes the VCE Electronic development and aims at identifying today’s challenges 
and possible improvements. 

The VCE Electronic development vision is to coordinate development in terms of processes, 
methods and technology, and thereby develop cheap, high quality electronic systems to the VCE 
product companies.  

1.2 Challenges in electronic development 

The VCE electronic development faces challenges related to a reduction in time and budget for the 
development of electronic systems for the various product lines. At the same time, the content and 
complexity of on-vehicle software is rapidly increasing. System properties like safety, reliability 
and real-timeliness must not suffer when quickening the development. There is also a need for 
scalable and configurable systems where the customer selects, and pays for, only the wanted 
features. The main focus when addressing these challenges is to find processes, methods and 
technology that will shorten development time and lower development cost, but also to satisfy an 
increasing demand for new functions and flexible configurations in the vehicle’s electronic systems.  

The main challenges in VCE electronic development relates to: 

1. Cost reduction 

2. Shorter and more predictable development time 

3. Flexibility 
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In this section we describe these challenges in more depth, and elaborate on various aspects of the 
main challenges. 

1.2.1 Functions and system properties 

The vehicle’s main functionality in terms of loading capacity and robustness is the key for many of 
VCE’s end-customers. Therefore, it is often difficult to motivate even a small increase in cost for 
functions that does not obviously increase the vehicle’s production. Examples include functions to 
improve ergonomics, safety and logistics e.g. various x-by-wire type systems, fleet management, 
and infotainment systems. This is a different setting, compared to passenger cars, where the vehicle 
is not only intended to make profit.  

System properties that do not provide a certain function, such as maintainability, reliability, 
portability and configurability, are indirectly important to achieve a successful product. The system 
properties can be divided into operational properties and development properties. The development 
properties are usually not interesting to end-customers but must be successfully designed in order to 
keep development time and lead-time low. An electronic system that has a high ranking on 
development properties meets the developer requirements and is easier to reuse, further develop, 
and maintain. Thereby, VCE can decrease development time; achieve better profitability, and free 
developer resources for innovative progress. 

Also operational properties such as reliability and safety must be incorporated in the system design 
to achieve a successful system. Operational properties, as opposed to development properties, are 
interesting to end customers but typically they are hard to assess. For example, a system could 
prove more reliable if we design it with redundant hardware components or fault tolerant software 
design, but still it would be hard to assess the achieved increase in reliability. Traditionally, VCE 
electronic development “delivers” functions to product companies. As the complexity of electronic 
systems grow, the need for well defined and measurable system properties grow, and thus also the 
time and cost for achieving the wanted properties of the system. This means that an increasing part 
of the total development time is used to design of the system itself and not to design user functions. 
Finding a structured approach to defining, measuring, and designing system properties is one 
challenge. Another is to communicate requirements and fulfillment with product companies that 
traditionally order functions. 

1.2.2 Varying requests 

Still, end-customers (and thereby the product companies) request a variety of new functions and 
system properties, but the requests are often different between customers. Therefore, a company 
that successfully introduces a configurable product and optional functions could support a wider 
range of customers. However, optionability is a system property and will require a design effort and 
logistic process without providing any end-user functions. The development process and the 
technical solutions must accommodate the options at a reasonable cost. 

For example, a system with a large number of optional functions must be tested for each feasible 
combination. As the number of optional functions grows large, the total number of combinations to 
test could yield an extensive overhead cost. Also, all other parts of the development process must be 
adapted to handle the variety of configurations. Especially, an optional function that is rarely 
bought by customers could prove unprofitable although the function itself may be trivial to 
implement.  

On the technical side, including optionability in an on-vehicle system might lead to increased 
product cost. Including infrastructure to support the optionability could mean overcapacity in CPU, 
memory and network bandwidth, and thereby increased product cost. 
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1.2.3 Known problems 

Here we present some assorted problems known in the VCE electronic development domain. 

- Assessing benefits of advanced control systems. Example – engine power. Construction 
equipment end-customers are not traditionally experienced in judging the benefits of a 
complex electronic system. Traditionally an important parameter for assessing a vehicle is the 
engine power. Using advanced electronic control systems can increase the efficiency of the 
vehicle and therefore lessen the importance of a high engine power. Examples of possible 
efficiency increasers are; control system for lifting the bucket (lift-by-wire type system), and 
control system for the gearbox. 

- Communication system benefits. Communication systems require that the vehicle will be 
used in an environment where the owner can benefit from them. Some user might want GSM 
links and some satellite link depending on the intended location for the vehicle. A fleet 
management system, for instance, may increase production for a rental company with many 
vehicles, but may be considered worthless for a single-vehicle owner. Examples of 
communication functions are; anti-theft function, fleet management, and remote diagnostics 
for service shops. 

- Methods for estimating life cycle cost. Hardware product cost is critical throughout all VCE 
product lines. This includes sensors, wiring, actuators, CPU, memory, I/O, casing, displays, 
and input devices. This would imply that a specialized and minimal hardware set would be 
fitted in each separate product. However, the total product cost depends also on development 
cost, maintenance cost, and more. Really the life cycle cost. A custom set of hardware 
components for each product would bring on a high development cost, a high maintenance 
cost and thereby a high product cost. In order to find an optimal solution, all costs in the 
product life cycle, production volumes, and time-to-market issues must be considered.  

- Scalability. Typically CPU, I/O, and memory are designed as a box to host a number of 
software functions. These computational resources must be kept scarce to keep product cost 
low. However, reusing hardware is wanted to keep development cost and maintenance cost 
low. Reusing hardware for a new product may mean to include an unnecessary amount of 
resources. Software functions are often relatively feasible to exchange or remove, but 
changing hardware resources often requires design of a new box. To accommodate a common 
set of technology, methods and tools in this context is a challenge. 

- Openess and integration. A number of issues have arisen from integrating external vendor 
nodes. How to handle reliability, safety, and liability?  

1. External vendor nodes could short circuit or overload the bus and VCE is responsible for 
product safety. This yields questions of redundant and/or secure (e.g. only control system 
nodes) busses. 

2. An external node could malfunction due to wrongly interpreted messages. This presents a 
difficulty in defining responsibility. Vice versa if a VCE node is dependent on an external 
node by reading its messages.  

3. How to assure network bandwidth? Considering all VCE and external nodes (and 
different versions and configurations) and their worst-case network usage presents a 
challenge. Tests cannot fully assure network bandwidth. 

- Maintenance and configuration management. The on-vehicle system is a distributed 
system with versions of node hardware and software. If a bug is reported, upgrading all 
hardware and software in a faulty vehicle is expensive. One question that arises is “Which 
versions are compatible among the large number of possible configurations?” Also, if a 
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certain configuration is found to host a bug, all products with this configuration should be 
upgraded. This leads to logistical challenges. 

1.3 Approach to address challenges 

One way of reducing time spent on development is to reuse software components and architectural 
solutions between products. The ability to reuse components would put a high demand on a 
component model and a coherent approach to architecture design between products. A common 
electronic product line approach, including process, methods, and tools could address several 
objectives in system development, like time-to-market, development cost, and maintenance cost [1]. 
An improved architecture design method would aid in the effort of improving the quality attributes 
of the system e.g. configurability and reliability. Reusing components can also improve the 
component reliability since code is executed for longer time and tested in other contexts [15]. 

Applying a product line approach when developing a product family can greatly decrease the time 
spent in a development project once a common architecture and asset base has been developed [5]. 

1.4 Terminology in this report 

Developing a system from scratch is not the most common type of development today. Companies 
often develop new systems in an evolutionary way i.e. based upon previously developed systems. 
Typically a company also develops a product line i.e. variety of related systems. The objectives of 
using a structured method for developing product lines is to shorten time-to-market, reduce 
development cost, and to reduce maintenance cost. To address the issues of developing product 
lines, many companies make use of application platforms. A platform is a base of core assets that 
can be used for several products. This includes architecture, software components, specifications, 
test plans, development process, and more. A product line approach to development is an effort to 
create an overall development process taking into account a whole product line. The aim is to avoid 
sub optimization and lift the focus from single products. By focusing on the software architecture, 
developers want to get a high-level view of the system’s properties. The architecture should allow 
for reasoning and evaluation of system properties. The architecture is an important core asset in the 
platform. There exists several definitions of software architecture and one of the most reoccurring 
is; 

“The software architecture of a program or a computing system is the structure or structures of the 
system, which compromise software components, the externally visible properties of those 
components, and the relationships between them.“ [7] 

Software architecture design is a method intended to assess and achieve a number of quality 
attributes like maintainability, reusability, scalability. The requirements for quality attributes are 
called quality requirements. Thus, the quality requirements do not state functional requirements on 
the system, but instead states what qualities the system shall exhibit. A software architecture design 
method aim at accommodating specification, measurement, and design of quality attributes in the 
system. The method should provide early assessment of quality requirements fulfillment.  

A Product line architecture method is an overall strategy to address both the objectives of a product 
line approach and software architecture design i.e. achieving system quality attributes, reduce 
development cost, shorten time-to-market, and reduce maintenance cost. A product line architecture 
method includes several aspects of development. 

- Technology 
- Methods and process 
- Tools 
- Organization 
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2 Case-study 
The VCE Electronic development in Sweden has developed a platform for electronic systems and it 
is used in a number of high-end vehicles. The platform includes aspects of architecture, component 
model, development methods, tools, technology, and process. Since the VCE challenges relate to 
coordination and cost reduction, these aspects of the platform is especially focused on. Nonetheless, 
this section gives a thorough explanation of the background, quality requirements, component 
model, architectural views, tools, development process, and especially important methods.  

2.1 Functionality overview 

A useful platform for product lines must support the variety of functional requirements that the 
different products impose. Ideally, the platform should, to some extent, also support future 
functions. Here we outline some of the most central functions that are supported by the platform. 

The electronic functions in the vehicle can be categorized as the following.  

• Monitoring functions 

• Controlling functions 

• Logging functions 

• Communication functions 

Monitoring functions measure a quantity via a sensor and provide feedback in the GUI by indicators 
or display. Controlling functions control physical devices via actuators and often make decisions by 
analyzing monitored values. Logging functions save data in permanent memory to be retrieved by 
analyzing or service related functions. Communication functions provide communication with 
systems external to the vehicle.  

Monitoring functions are numerous in a construction equipment vehicle today. Oil levels, pressures, 
and temperatures are measured in various mechanical components throughout the vehicle. 
Examples are hydraulic fluid temperature, brake pressure, and transmission oil level.  

The larger part of the controlling functionality, today, lies in the engine and the gearbox control 
systems. The engine functionality is not developed within VCE and is not described further in this 
report. The gearbox and the automatic shifting of gears are controlled by the electronic system. A 
gearbox contains a large number of mechanical components that are controlled by actuators and 
thereby the electronic system. These mechanical components can include some or all of the 
following, converter, lockup, drop box, retarder, clutches, and brakes. The functionality for an 
automatic gearbox includes logics for when to shift gears, minimization of slip, avoidance of 
hunting, various efficiency optimizations, and self-adapting solutions to accommodate a variance of 
mechanical properties. The gearbox control is one of the most complex devices to control in today’s 
systems.  

Other control functions include control of speed (speed restriction), windshield wiper, load body, 
parking brake, and cooling fan. Control functions also include system functions like cooperation of 
brakes to achieve increased efficiency. (Many vehicles have several brakes and the control system 
can decide which to use to minimize heat losses or wear.) 

All functions that communicate with external systems are called communication functions. This 
includes all functionality that is dependent on communication technologies such as GPS, satellite 
communication, mobile phone technology, and also communication interfaces provided by 
connectors on the vehicle. Examples are, anti theft function, service tools, production tools, and 
fleet management.  
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Trying to guess the functions or types of functions that can be required in the near future is difficult, 
but here we present some ideas on what could come. On the control side, the future could very well 
include several x-by wire type control systems. Communication systems could include advanced 
fleet management like optimizing a fleet’s movement with respect to fuel consumption or time. 
There can be anti-theft functions with vehicle immobilizer. Communication functions could also 
include various infotainment systems like streaming video or Internet access.  

2.2 Quality attributes - quality requirements 

The design of VCE’s current architecture was done with the intent of using it for a relatively long 
time. The architecture was to be a base for development of several products over time. In order to 
be successful in the development effort, the wanted properties of the system were considered. The 
system must support the implementation of functional requirements for the various products, but it 
must also exhibit system properties such as scalability and reliability. These are the quality 
attributes and do not apply to a certain function in the system but are properties of the system as a 
whole [5]. The requirements for quality attributes are divided into development and operational 
quality requirements. Although, quality requirements are sometimes difficult to assess, they are 
often very important to achieve a useful architecture. For instance, a system must often be easy to 
change and maintain in order to be successful out of a business perspective. In VCE, the 
architecture was designed with the intent of meeting the identified quality requirements. 

Deciding which quality attributes are important to an architecture is dependent on many aspects of 
the product life cycle, production volumes and business issues. For instance, the quality attributes of 
mobile phone-, construction equipment-, and salary system -software architectures probably differ 
substantially. In VCE, various experienced specialists in the product companies identified the 
important quality attributes. VCE develops systems in an evolutionary way, and the electronic 
development also has substantial knowledge on what quality attributes are important to end-
customers.  

The customers of construction equipment buy VCE’s products with the intent of making business 
out of them. Therefore reliability, a low rate of service standstills and system malfunctions are often 
the main concerns when purchasing a construction equipment vehicle with all its embedded 
systems. Nonetheless, there is often a need for user specific configurations and flexibility in terms 
of extra functionality and features. 

Out of the developer perspective, the system and its subsystems must be reusable in order to meet 
the demands on shorter development cycles and a larger variety of products. Moreover, scalability 
is a wanted attribute of the platform since VCE’s products functionally range from quite low 
complexity to very complex. A scalable platform would allow for commonality in terms of 
technology, processes, methods and tools that are used in the development. There is also a need for 
maintaining the system, both with respect to service/bug-fixes and to further enhance and develop 
the system.  

In VCE, the most important quality requirements on the platform were identified as, 

Operational quality requirements: 

• Reliability – End-customers must perceive the products as robust and reliable. This calls for 
design that can be assured to perform its function via prediction and testing. 

• Safety – The architecture must allow for developing safety critical functions. Again accurate 
predictions on system behavior must be supported. Also, interrelations between safety-critical 
and other functions should be kept at a minimum. This is to support analyzing safety-critical 
design separately from other design. 
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• Real-timeliness - The response times of functions must be within requirements. The vehicle’s 
control functions may be safety related or control expensive hardware. The architecture must 
allow for developing functionality with hard real-time requirements.  

Development quality requirements: 

• Reusability - The architecture must be usable in several products to make the development 
cycle short. Moreover, using a unified architecture would allow for easier reuse of components 
and therefore also help in the effort of reducing the time spent on development. 

• Scalability - The architecture should be usable for several products where electronic system 
content varies. There are products that cannot possibly include the expensive hardware that is 
used in the most advanced vehicles because of the cost. The architecture must also be designed 
with a focus on scarce resources. Hardware cost is always kept as low as possible in on-board 
vehicle systems in order to keep product cost low.  

• Configurability - The architecture should allow for user-adapted instantiations. A customer with 
specific demands should be satisfied feasibly.  

• Maintainability – The architecture must allow for service download of software and feasible 
diagnostics.  

Methods for identifying the most important quality attributes are based upon experience. Also, 
assessing the fulfillment of the quality requirements are based on estimates. 

2.3 Component model 

To accommodate reuse of software components and methodology between products, VCE has 
incorporated a component model for the real time application domain. The component model is an 
important part of the VCE electronic platform since it enables some reuse and commonality in 
terms of tools and methods. 

2.3.1 Background 

The types of embedded systems that VCE are developing have high demands on timeliness and can 
be characterized as real-time systems. Moreover, the systems must perform in an environment of 
limited hardware capacity. Hence, the demands on efficient resource usage are high. Common 
component technologies, such as COM, JavaBeans and CORBA, are considered unfit for use in the 
on-vehicle systems because of their excessive resource usage and unpredictable timing behavior. A 
large resource usage would lead to a high hardware cost for each system produced. The VCE 
electronic hardware is very sparse on resources to keep costs low. 

Designing reusable real-time components is more complex and more expensive than designing non-
reusable non-real-time components [16]. This complexity arises from several aspects of real-time 
systems not relevant in non-real-time systems. In order to reuse software components in this 
environment, not only structural and functional attributes must be considered, but also temporal 
properties must be intact when the component is reused. The development of real-time components 
that can be run on different hardware platforms is complicated by the fact that components will 
have different temporal behavior on different hardware. Thus, the goal is a reuse method that 
accommodates the use of components on different hardware platforms. For the future, VCE wants 
to expand the reuse of components to include new types of hardware. 
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2.3.2 VCE Current component model 

The system functionality is decomposed into different modes of operation for different types of 
functionality. These modes include drive-, startup-, shutdown-, and reduced-mode. Specification of 
modes and valid mode transitions constitute a high level of system description.  

The functions in each mode are decomposed into tasks. Tasks are defined by their low-level 
functions together with the data-flow between them. Each task has a number of typed in- and out-
ports. A task executes by doing the following: read its in-ports, perform its function, and before 
termination, write the result to its out-port. A task is not permitted to communicate directly with 
another task. Each task also has a configuration containing its temporal properties, e.g., period time, 
deadline, release time and WCET. This construction is similar to the Pipes and Filters model, and 
implies that the tasks can be executed without knowledge of where the input data was produced or 
where the output data will be used. 

Inports Outports

Function

State

ReleaseTime
Deadline
MAXT
Entry function

Period

 

Figure 2. Task model 

One or more tasks can be encapsulated in a component. The component is a logical bundling of the 
task, its properties and its interface. The component provides a way to logically tie together, task(s) 
source code, task(s) configuration and task ports. Together, these include the task functionality and 
its temporal properties. When we want to reuse a component in a different application, the task and 
its configuration can be kept intact and only its thin component wrapper needs to be modified. The 
loose coupling between tasks and the independent execution of tasks provides a means of easier 
reuse of components. 

In order to be meaningful, no task set can be totally independent, but the VCE effort has been 
focused on minimization of communication and synchronization among components.  

A composite is a logical composition of one or more components. The same thin configuration 
wrapper that constitutes the component wrapper achieves a composite. Composites and components 
are technically the same, but logically it has been deemed convenient to name an encapsulation of 
components a composite. 
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Figure 3. Component decomposition 

So, by using the component model described above, a component or composite can be reused with 
both functionality and temporal properties intact. The communication part of the configuration may 
need to be altered when a component is reused in a new application depending on the new task set. 
However, this is only a matter of connecting the ports to their new producers/consumers. As an 
example, we can compare this task model with a traditional priority based task model. Reusing a 
task in the latter would force us to alter code for communication and synchronization. Thereby, the 
timing behavior might change and need further verification. So, by keeping the communication, 
synchronization, and temporal properties apart from the implementation VCE gains: 

• Better and earlier prediction of timing behavior 

• Easier reuse 

 

2.3.3 Example - A Communication component 

There is a communication component in the VCE architecture that could be reused in many 
applications. The communication component handles two communication protocols and has a large 
number of ports. One port for each message ID on the bus. The component is intended for use on all 
nodes in the system, and each node has an application with different communication needs. In order 
to accommodate many applications, the component must support communication via all the ports 
and at the same time perform within its time budget. The time budget is allocated by estimating a 
worst-case execution time, WCET, which is used in the component’s configuration. Hence, given 
our model, the component must be allocated enough resources in terms of execution time to handle 
a worst-case situation with all the ports enabled. When the component is used in an application 
where only a few of its ports are connected, the execution time of the component is never close to 
the WCET and the processor utilization gets unnecessarily low. In this context, the resources are not 
abundant and low processor utilization cannot be accepted. To change the configuration of the 
component every time it is reused could be done, but is not considered feasible or safe. The WCET 
and the temporal configuration would have to be estimated depending on the number of ports that 
are required by a certain node. There is no tool support to do this today and it would have to be 
done manually. 

In the VCE case, this communication component was intended for reuse on a computer node that 
has a task set with an especially heavy load of calculations, but not much communication. In this 
case the communication component could not be allotted its worst-case execution time and could 
not be reused without some alterations. 
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Figure 4. Communication component example 

This exemplifies a general problem in reusing components in the VCE approach. Given the 
component model, the number of ports in a component cannot change from one application to 
another easily. By altering the number of ports, either the real-time properties of the component or 
the processor utilization will suffer. So, the current component model does provide means for reuse 
but also has limitations. 

2.4 Architectural views 

Wall [17], proposes a number of architectural views important to a system in the real-time system 
domain. In order to describe the VCE electronic architecture we use some of these views to 
illustrate the current architecture and its development. The concept of views is used to separate 
various aspects of the system apart from only its internal structure.  

2.4.1 Hardware view 

A number of nodes, electronic control units (ECUs), are connected to two busses. One bus is the 
SAE J1939, CAN, bus and the other is a SAE J1587 bus. The number of nodes differs in different 
products but is the same within product lines. Today a unified hardware is used for all nodes 
developed by the VCE Sweden branch except the display ECU. A unified hardware means, in this 
case, a common design built for relatively easy change of CPU, I/O, and memory, but primarily 
ease of change in I/O configuration.  

The complete system includes nodes that are developed externally and do not use the same 
hardware. The ECU hardware is developed within VCE and includes processor, RAM, EEPROM, 
flash, CAN controller, analog and digital I/O, and drive circuitry. All encapsulated in a box 
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designed to fulfill the environmental requirements i.e. electro-magnetic fields, vibration, moisture 
etc. Each node includes around 100 I/O channels and the software functions are distributed over the 
nodes.  

......T-ECUV-ECU

1939
1587

I/O I/O I/O I/O

 

Figure 5. Hardware setting 

When designing a new system, we can choose the number of ECUs depending on resource demand. 
This solution is not optimal with respect to achieving maximum resource usage, but many 
advantages are had with respect to reusing software, methods and tools. Software that is reused 
include drivers, communication software, service software, error handling. Also infrastructure 
software like layering functionality and watchdog software is reused. Tools like compiler, code 
generators, and scheduler can be used more easily due to the fixed hardware platform. Methods for 
parameterization of software and makefile are also reused. 

2.4.2 Temporal & Synchronization view 

The temporal view is the description of the system that deals with analyzing timing behavior. 
Therefore, this view partly overlaps with the synchronization view that deals with the concurrency 
control of tasks. Control of task synchronization is necessary to avoid simultaneous access to shared 
resources and to guarantee task precedence relations. 

The system functionality is decomposed into tasks. Each task has a function that implements its 
behavior and also a state i.e. it can store data that will not be lost between task invocations. Apart 
from having a function and a state, each task has temporal attributes, precedence relations, and 
communication settings. The VCE development model supports specification of these properties 
and they all affect timing behavior of the task (and the system.) 

Inports Outports

Function

State

Comm.
setting

Precedence
Relations

Temporal
Attributes

 

Figure 6. Task configuration 
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Each task has a set of temporal attributes. The temporal attributes are period, the Worst Case 
Execution Time (WCET), the release time, and the deadline of a task. The WCET is the execution 
time for the task. The release time is the earliest time at which the task can be activated, relative to 
its period start. The deadline is the latest time at which a task is permitted to terminate, relative to 
its period start.  

Tasks can have precedence relations to other tasks. Any task can have a precedence relation to any 
other, but only when tasks are dispatched at the same time will the precedence relation be 
meaningful. Tasks with the same period time will always be dispatched at the same time. A 
precedence relation put a requirement on the concurrency of tasks during run-time. The preceding 
task will be executed before the preceded task.  

Task 1

Task 2

Task 3

Precedes

Precedes

 

Figure 7. Precedence relations 

In the VCE case, tasks are not allowed to preempt each other and thereby mutually exclude each 
other by a separation in time. Tasks start and finish execution before another task is started. Shared 
resources can, in this way, only be accessed by one task at a time. 

Based on experience, the WCET for each task is estimated before the actual implementation and 
this allows early temporal verification. The task-set can be scheduled before the tasks are 
implemented and, assuming that the estimated time budget is not violated during implementation, 
the system is schedulable. Schedulability and timing analysis can, in this way, be performed early in 
the development. This leads to that the time budget for each task is also a functional requirement for 
the implementation phase.  

Currently, the VCE system is quite interrupt intensive. Interrupts are used to manage bus messages 
and to read some sensor data. The interrupts have an impact on system timing properties. The 
temporal behavior for each interrupt is modeled with minimum inter-arrival time and execution 
time. VCE uses a method for scheduling interrupts with predictable real-timeliness kept intact [3]. 

2.4.3 Communication view 

In the VCE model, a task has a set of typed in-ports and out-ports. All communication of the task 
goes through these ports. On activation, a task reads its in-port, perform its function, and write the 
result to its out-port. This construction facilitates a loose coupling between tasks and implies that 
each task can be designed independently of other producing or consuming task’s design.  
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Figure 8. Communication flow 

Exchange of data between tasks is performed by unbuffered communication (shared memory) and a 
port is an unbuffered communication interface. The port can always be read and written to, and this 
implies that the data can be overwritten at any time. Unbuffered communication is generally 
preferred in controller applications [10]. The other choice would be to have buffered interfaces for 
the tasks (message queues). Buffered interfaces can be more complicated in a real-time system, as 
upper bounds on produced/consumed data must be determined to predict timing behavior of a task.  

Note the separation of communication relations and precedence relations. Tasks can be configured 
to communicate regardless of period times as opposed to precedence relations that can only be 
specified between tasks with the same period. 

2.5 Run-time system & Tools 

In order to be accepted by end-customers, on-vehicle control systems must meet stringent 
requirements on real-timeliness and reliability. This has lead to a pervading characteristic of robust 
design in the development of the control application. Many of the VCE tools are used to accomplish 
a predictable timing behavior and code execution. The software system performs various control 
and communication functions and functionality is distributed over the system nodes. Functions are 
implemented as tasks that often have hard real-time requirements. During run-time, tasks execute 
according to a dispatch table that is generated off-line. Soft real-time tasks are scheduled on-line 
and use the processor’s spare capacity to execute. The application is also quite interrupt intensive.  

VCE uses the Rubus operating system that supports hard and soft real-time tasks. A tool named 
Rubus Configuration Compiler, CC, supports the communication, synchronization, and temporal 
constructs described earlier. The configuration of the tasks is used by a scheduler that produces an 
off-line schedule and communication infrastructure for the operational mode. If the temporal 
properties of the task set cannot be fulfilled, the scheduler rejects the configuration. 

Time triggered schedules were used in VCE before the introduction of the scheduler tool. The 
schedules were then made by hand and as the system complexity increased, making analysis and 
changes to the system became irksome. The scheduler tool performs an automatic analysis and 
provides feedback if a change violates the temporal constraints. Note that the scheduling is 
performed based upon available resources in terms of CPU capacity. (Each task’s WCET is 
dependent on the CPU speed) One could envision a broader method that considers other resources 
like network or perhaps memory. 

The Rubus operating system supports the use of semaphores and preemption (even nested 
preemptions), but these functions are not used in the VCE approach. Using preemption and 
semaphores would make scheduling easier, but would integrate the design of timing characteristics 
in the code implementation phase. 
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Figure 9. Configuration compiler 

Input to the CC is both the configuration specification of the task set and the specification of 
hardware resources. The tool generates code to accommodate automatic mapping of the 
specification to a resource structure i.e. hardware resources. 

2.6 VCE mechanisms for product variability 

The products within a VCE product line are often not functionally or physically identical. Instead, 
the exact functionality is controlled by variants and options. This stems from the fact that customers 
request tailored systems to suit their specific needs. Logistically it would be convenient to provide 
only one type of physical product and provide the variation by software. This is done in many 
subsystems today, but the product volumes and the cost of mechanical and hardware components 
make this approach infeasible for some variable functions. Some functions are provided as options 
where the product is fitted with the necessary mechanical, hardware, and software components. 
Deciding on whether to mount physical components onto the product or to let the function be an 
option that must be fitted in the aftermarket is not always easy. The separate costs for components, 
production, aftermarket, and production volumes should be taken into account. 

Current VCE techniques for variability in electronic systems: 

• Parameterization and variables 

• Optional nodes 

Obviously, product specific behavior can be achieved by developing separate executables for each 
product in the product line. Developing executables totally separate could prove tedious in terms of 
administering changes if the products have common functionality. Control by pre-processor 
directives is often preferred in software industry. Separate executables could be obtained by a series 
of conditional compile directives throughout the code and by inputting product specific flags in a 
makefile or in build commands. 

Advantages of this method are its relative simplicity and also that it ensures rather small 
executables. (No extra code is included in the executable to accommodate generalization of 
components) 
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There are drawbacks to this method however. Firstly, the method has limited flexibility. The 
number of independent compile directives cannot grow large before the developers loose their 
overview. A change gives impact in so many products that mistakes are bound to happen.  

2.6.1 Parameters 

VCE uses parameterization as one way to accommodate variability. Parameterization is a technique 
that uses run-time switches for controlling program execution. Parameters are kept in permanent 
memory, E2. E2 is logically divided into areas and datasets. A dataset can contain one or more 
memory areas. This splitting into logical areas and datasets has to do with the wanted ability to keep 
different levels of security and access for different users. The users can be both human operators 
and different SW applications. 

Hence, we can achieve a product line where all products use the same executable file and product 
specific behavior is controlled by parameters in persistent memory. One benefit is to have fewer 
executables to release and administrate. Relative to the method of developing different executables, 
the testing effort is unaffected. Equal numbers of products must still be tested. Another benefit is 
that in order to change an existing product, only the parameters must be loaded into the target 
computer.  

Drawbacks include; unnecessarily large executable, dead code could possibly affect safety issues. 

2.6.2 Variables 

A variation on the idea of parameters is to let the application store certain variables in persistent 
memory. These variables also control program flow, but the idea is that the application itself 
calculates values according to some individual environment condition. This can be used for 
adaptive control solutions where there is a variation in response between different hardware. For 
instance, different response times in individual computer controlled hydraulic valves. Several 
challenges exist where adaptive control can be or is being used. 

2.6.3 Optional nodes, sensors, actuators, and resources 

Parameterization via datasets provides a convenient way to variate product functionality. The 
technique is especially useful when dealing with pure software options, like variable algorithms. 
Some functions are also dependent on additional hardware, like sensors, actuators, I/O, and 
significant amounts of computational resources. This includes functions like lift-weighing and 
communication systems. Parameterization is often considered a too expensive method for these 
functions. Fitting hardware and extra computational resources that is not used in the product adds to 
the product cost. Instead, the function is achieved with an optional kit of physical devices. This can 
include hardware, mechanics, sensors, actuators, and/or software. The method for providing the 
option is different for each type of function. Sometimes only an extra sensor is needed, given that 
there is enough I/O. (Note that I/O is also a resource that increases product cost, but it is often 
feasible to have a spare capacity in the delivered product.) Sometimes the optional function can be 
achieved with a separate node including all the hardware needed for the function. One example is 
the optional tachograph that is a node that can be connected to the network and print work shift 
reports on paper. One way to achieve a lift-weighing function is with a separate node with display 
and also the necessary sensors and wiring. Another way would be to use an existing display and use 
processor, memory, and I/O spare capacity to execute an optional task. 

Most often in VCE, the requirement on low product cost is high. Since the product volumes are 
relatively high, the product cost becomes an important parameter. Methods for estimating the real 
cost for the product life cycle are often not trivial. 
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Design decisions on whether to include resources in the product or not need to take into account: 

• After market cost - fitting, warehouse cost, knowledge and education, after market tool 
support.  

• Assembly cost - Physical product cost more if it includes more hardware, assembly takes 
more time. 

Configuration management issues cost money for all optional functions. This is true whether the 
function is included or optionally fitted. In practice it costs money to maintain and test a large 
number of configurations. 

Using an optional node that can be connected to the network bus has one other advantage. This 
provides a feasible interface, if the node is to be developed by a subsystem supplier. 

2.6.4 Logistic overview 

In the case of Truck products within Volvo, the central system and the number of configurations are 
larger than for construction equipment. The salesman has a number of configurations to present to 
the customer. (Standard configurations may include; logging truck, garbage truck, refrigerator truck 
etc...) The customer can then choose additional features. This includes both parameter settings and 
hardware components like climate control for instance. The central system includes functionality 
such as automatic ordering of components when the customer has ordered the truck. Later in the 
assembly line, the central system produces a worksheet for this particular configuration. 

The after market tools support parameter changes and the possibility to download new software. 

 

Sales
Assembly

After market

Central system

 

Figure 10. Central system 

 

2.7 Process & Methods Today 

VCE is developing on-vehicle software control systems for product lines of construction equipment. 
The content of electronics/software is increasing in newer vehicle models. As the system 
complexity grows, the need for structured high-level design methods becomes apparent.  

VCE uses a design process that focuses on high-level design and temporal attributes of the system. 
The process relies on decomposing the system into tasks and specifying the temporal attributes for 
each task. A configuration tool allows for use of language constructs to specify a high level design 
such as temporal constraints, communication and synchronization. This clearly separates the design 
of timing characteristics from the design and implementation of logical functionality. By estimating 
each task’s execution time in an early phase, the process accommodates early shedulability tests. 
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The process was first presented in [2], but an overview with some additions is presented here. 
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Figure 11. Development process 

I. Requirements engineering 

The product company compiles the customer requests and judge importance of each wanted 
function. The product company may also makes initial guesses on how the wanted function 
could be implemented. Some functions may obviously be part of the electronic system 
while others may require combinations of electronics and mechanics.  

II. Requirements analysis.  

Requirement analysis is done in cooperation between the product company and the 
electronic development department. In this stage the high level functions of the application 
are identified. It is also important here to determine temporal constraints for these 
functions. This step is not completely done until a detailed requirement specification exists  

III. High-level system decomposition.  



Page 19 of 19 

In this stage the different operational modes of the application are identified together with 
valid transitions between them. As an example the control system can have different 
functionality depending on the status of the vehicle, such as driving, startup, failed, and 
reduced.  

IV. Function decomposition and structuring.  

The functions, for each mode, are decomposed into transactions. Transactions in turn are 
decomposed into tasks. Tasks are defined by their low-level functions together with the 
data flow between them.  

Example 1: A multirate controller. The transaction consists of two sampling tasks, S1 and 
S2, a controller task C, and an actuator task A. The data-flow of the transaction can be seen 
in Figure 2. 

 

S1

S2

C A

 

Figure 12. Data flow between tasks 

Functionality having high responsiveness requirements or which occurs frequently but with 
short execution times cannot be implemented as a periodic task as the overhead would be 
too high. Such low-level functions are therefore implemented as interrupts. 

V. Mapping temporal constraints to attributes of the task model.  

In the previous stage high-level functions were decomposed into tasks and structured 
according to the interaction between them. In this step the high level temporal requirements 
are broken down into temporal attributes for tasks and the synchronization between them.  

Synchronization can be defined by precedence relationships between tasks or by mutual 
exclusion of tasks sharing a common resource.  

Example 1 (continued): The temporal attributes, derived by the control engineer for the 
multirate-transaction example are as follows (note that we don’t know of the WCET of the 
tasks as yet, hence the question marks): 

• Tasks S1 and S2 have period, release time, deadline, worst case execution time in 
µs = (1000, 0, 1000, ?). 

• Task C = (5000, 4000, 5000, ?). 

• Task A = (5000, 4000, 5000, ?).  

To enforce order between the controller and actuator task, we specify a precedence relation 
between C and A, i.e., task C precedes task A. 

VI. Defining Execution Time Budget. 

WCET can be obtained by either measurement or by statically analyzing the code produced 
for each task. In the VCE approach, however, execution time budgets are estimated, being 
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used later in step VIII as implementation requirements. The reason for this is that a 
feasibility test for the system, and a possible re-engineering, can be performed at an early 
stage, thus permitting early detection of design errors related to resource utilization, 
communication and synchronization.  

Example 1 (continued): The question marks are replaced by estimated time budgets. Since 
this is a delicate issue, it requires highly skilled engineers with long experience. 

VII. Feasibility check and automatic implementation.  

The formally described design can be checked for temporal correctness, with a tool 
designated Configuration Compiler (CC), even if no actual (low-level) implementation has 
been produced. The CC maps the design description to a resource structure. The CC is a 
pre-run-time scheduler that generates dispatch tables for running the tasks and the 
communication infrastructure for each mode. This constitutes an application skeleton for 
the running and communication of the tasks. In addition to the mapping of the model, CC 
also supports specification of architecture-specific attributes such as HW-performance, 
resolution of the run-time dispatcher, communication times, and the number of nested pre-
emptions permitted. The implementation of the CC is based on a heuristic tree search 
strategy, similar to the one presented in [18]. The major difference is that this scheduler 
takes into account interrupts [3] and architecture-specific attributes. The current version of 
CC is adapted to the real-time operating system Rubus (both commercial products, see 
www.arcticus.se).  

VIII. Implementation and module testing.  

The tasks are simply implemented by traditional programming (coding). In addition to the 
traditional functional specification, the programmer also has the execution time budget as 
an implementation requirement, i.e., the programmer must implement the specified function 
without exceeding the budget. The module testing includes both verification of functional 
behavior and checks that time budgets are not exceeded. If a time budget cannot be met, a 
redesign is required. In a simple but common case, a redesign could mean only to change 
the time budget given that there is enough CPU capacity available. 

IX. System integration and verification.  

The integration phase is usually performed quickly and without problems since the actual 
integration was performed during the design phase. The major task is the integration 
testing.  
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3 Conclusion 
In this report we have described the current electronic systems architecture in some of VCE’s 
construction equipment products. The VCE vision is to implement methods, processes, and 
technology to accommodate cost reduction, coordination of development of many products, and 
improved system properties. The general idea is to apply a product line approach to cut costs and 
facilitate coordination. Improved methods for architecture design will target the wanted 
improvement in system properties. Both solutions are quite complex and involve areas such as 
organization, process, technology, knowledge transfer, business strategy, and many more. 

VCE is also a global company and products are developed and produced throughout the world. This 
report describes mostly the aspects of electronic development in the Sweden branch of VCE. Before 
trying to present possible solutions to today’s challenges, the architecture needs of all VCE 
branches must be investigated. This study will continue with looking into aspects of VCE electronic 
development in VCEK, VCE Compact equipment, VCE Graders. 

However, this global business situation with a wide variety of products is even more complex. VCE 
is one company within Volvo Group. The companies within Volvo envision competition benefits 
from a company wide coordination and reuse strategy. The potential for strengthening business is 
very large in a company Volvo’s size. There is already some coordination and reuse in the works. 
Today, the VCE architecture is based upon that of VTC and uses the same service concept, 
production tools, a number of technologies, and a number of methods. Volvo Bus, Volvo Penta, and 
Volvo Aero are also facing the same basic challenges of cost and coordination. This study will also 
seek to find ways to improve and coordinate architecture issues by investigating common solutions. 
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