
Page 1 of 1

Case Study: VCE Electronic Architecture for Real-Time
Automotive Applications

Joakim Fröberg

Volvo Construction Equipment Components AB
Eskilstuna, Sweden

joakim.froberg@mdh.se

Abstract
The development of electronic systems within VCE faces challenges of shorter development time
and keeping the electronics part of the product cost low. At the same time, electronic content and
complexity is rapidly increasing. VCE has a wide range of products and also a wide range of
technical solutions, processes, tools, and so on. Improved architecture design and a product line
approach are envisioned to improve system properties and decrease cost by coordinating
development.

This report describes the current architecture requirements, challenges, component model,
technology, and development process adopted in the Sweden branch of VCE electronic
development. This is a first step towards identifying challenges and solutions in a company wide
survey whose aim is to produce solutions for the cost, coordination, and improved system properties
effort.

1 Introduction
In this report, we present a case study of an architecture for the development of software product
lines of heavy vehicle on-board electronic systems. Moreover, we present challenges that are faced
in this effort.

The contribution of this paper consists of a current industrial method for platform development in
product lines of automotive electronic systems. Platform development includes electronic systems
architecture, component model, process, and methods for assuring quality properties of the system.

The contributions in this paper are:

- A case study of an automotive system that has been designed by using a component based,
product line approach. The presentation includes a functional overview, architecture
requirements, component model, design method, process, and challenges that are faced in this
effort.

1.1 VCE business context

Volvo Construction Equipment, VCE, develops a variety of construction equipment vehicles. VCE
is divided into a number of product companies and other supportive companies. The product
companies focus on their specific products and are responsible for cost, deliveries, service etc to the
end-customer. End-customers range from single vehicle owners to rental companies with hundreds
of vehicles. Typically, a product company manufactures a product line of similar, but differently
sized vehicles.

VCE has two departments for development of on-board electronic and software systems. One
department is located in Sweden and one in Korea. These departments hold expertise on and
develop on-vehicle electronic systems for various products to the product companies. The electronic

Page 2 of 2

development includes control systems, other on-vehicle software, and hardware. In the following
this will be referred to as electronic development.

The product companies can also decide to buy electronics development from vendors external to
VCE. Hence, the final products can include hardware and software components from many vendors
both from VCE and external to VCE. From the product companies’ perspective, VCE electronic
development is essentially equal to any subsystem vendor and must develop control systems and
software at competitive prices.

Articulated
Haulers

Wheel-
Loaders

Electronic
dev.

Sweden

Electronic
dev.

Korea

Excavators Compact
Excavators

Graders

Ext.
Vendor More...

More...

VCE Electronic development

VCE Product Companies

Figure 1. Electronic development in VCE

This report describes the VCE Electronic development and aims at identifying today’s challenges
and possible improvements.

The VCE Electronic development vision is to coordinate development in terms of processes,
methods and technology, and thereby develop cheap, high quality electronic systems to the VCE
product companies.

1.2 Challenges in electronic development

The VCE electronic development faces challenges related to a reduction in time and budget for the
development of electronic systems for the various product lines. At the same time, the content and
complexity of on-vehicle software is rapidly increasing. System properties like safety, reliability
and real-timeliness must not suffer when quickening the development. There is also a need for
scalable and configurable systems where the customer selects, and pays for, only the wanted
features. The main focus when addressing these challenges is to find processes, methods and
technology that will shorten development time and lower development cost, but also to satisfy an
increasing demand for new functions and flexible configurations in the vehicle’s electronic systems.

The main challenges in VCE electronic development relates to:

1. Cost reduction

2. Shorter and more predictable development time

3. Flexibility

Page 3 of 3

In this section we describe these challenges in more depth, and elaborate on various aspects of the
main challenges.

1.2.1 Functions and system properties

The vehicle’s main functionality in terms of loading capacity and robustness is the key for many of
VCE’s end-customers. Therefore, it is often difficult to motivate even a small increase in cost for
functions that does not obviously increase the vehicle’s production. Examples include functions to
improve ergonomics, safety and logistics e.g. various x-by-wire type systems, fleet management,
and infotainment systems. This is a different setting, compared to passenger cars, where the vehicle
is not only intended to make profit.

System properties that do not provide a certain function, such as maintainability, reliability,
portability and configurability, are indirectly important to achieve a successful product. The system
properties can be divided into operational properties and development properties. The development
properties are usually not interesting to end-customers but must be successfully designed in order to
keep development time and lead-time low. An electronic system that has a high ranking on
development properties meets the developer requirements and is easier to reuse, further develop,
and maintain. Thereby, VCE can decrease development time; achieve better profitability, and free
developer resources for innovative progress.

Also operational properties such as reliability and safety must be incorporated in the system design
to achieve a successful system. Operational properties, as opposed to development properties, are
interesting to end customers but typically they are hard to assess. For example, a system could
prove more reliable if we design it with redundant hardware components or fault tolerant software
design, but still it would be hard to assess the achieved increase in reliability. Traditionally, VCE
electronic development “delivers” functions to product companies. As the complexity of electronic
systems grow, the need for well defined and measurable system properties grow, and thus also the
time and cost for achieving the wanted properties of the system. This means that an increasing part
of the total development time is used to design of the system itself and not to design user functions.
Finding a structured approach to defining, measuring, and designing system properties is one
challenge. Another is to communicate requirements and fulfillment with product companies that
traditionally order functions.

1.2.2 Varying requests

Still, end-customers (and thereby the product companies) request a variety of new functions and
system properties, but the requests are often different between customers. Therefore, a company
that successfully introduces a configurable product and optional functions could support a wider
range of customers. However, optionability is a system property and will require a design effort and
logistic process without providing any end-user functions. The development process and the
technical solutions must accommodate the options at a reasonable cost.

For example, a system with a large number of optional functions must be tested for each feasible
combination. As the number of optional functions grows large, the total number of combinations to
test could yield an extensive overhead cost. Also, all other parts of the development process must be
adapted to handle the variety of configurations. Especially, an optional function that is rarely
bought by customers could prove unprofitable although the function itself may be trivial to
implement.

On the technical side, including optionability in an on-vehicle system might lead to increased
product cost. Including infrastructure to support the optionability could mean overcapacity in CPU,
memory and network bandwidth, and thereby increased product cost.

Page 4 of 4

1.2.3 Known problems

Here we present some assorted problems known in the VCE electronic development domain.

- Assessing benefits of advanced control systems. Example – engine power. Construction
equipment end-customers are not traditionally experienced in judging the benefits of a
complex electronic system. Traditionally an important parameter for assessing a vehicle is the
engine power. Using advanced electronic control systems can increase the efficiency of the
vehicle and therefore lessen the importance of a high engine power. Examples of possible
efficiency increasers are; control system for lifting the bucket (lift-by-wire type system), and
control system for the gearbox.

- Communication system benefits. Communication systems require that the vehicle will be
used in an environment where the owner can benefit from them. Some user might want GSM
links and some satellite link depending on the intended location for the vehicle. A fleet
management system, for instance, may increase production for a rental company with many
vehicles, but may be considered worthless for a single-vehicle owner. Examples of
communication functions are; anti-theft function, fleet management, and remote diagnostics
for service shops.

- Methods for estimating life cycle cost. Hardware product cost is critical throughout all VCE
product lines. This includes sensors, wiring, actuators, CPU, memory, I/O, casing, displays,
and input devices. This would imply that a specialized and minimal hardware set would be
fitted in each separate product. However, the total product cost depends also on development
cost, maintenance cost, and more. Really the life cycle cost. A custom set of hardware
components for each product would bring on a high development cost, a high maintenance
cost and thereby a high product cost. In order to find an optimal solution, all costs in the
product life cycle, production volumes, and time-to-market issues must be considered.

- Scalability. Typically CPU, I/O, and memory are designed as a box to host a number of
software functions. These computational resources must be kept scarce to keep product cost
low. However, reusing hardware is wanted to keep development cost and maintenance cost
low. Reusing hardware for a new product may mean to include an unnecessary amount of
resources. Software functions are often relatively feasible to exchange or remove, but
changing hardware resources often requires design of a new box. To accommodate a common
set of technology, methods and tools in this context is a challenge.

- Openess and integration. A number of issues have arisen from integrating external vendor
nodes. How to handle reliability, safety, and liability?

1. External vendor nodes could short circuit or overload the bus and VCE is responsible for
product safety. This yields questions of redundant and/or secure (e.g. only control system
nodes) busses.

2. An external node could malfunction due to wrongly interpreted messages. This presents a
difficulty in defining responsibility. Vice versa if a VCE node is dependent on an external
node by reading its messages.

3. How to assure network bandwidth? Considering all VCE and external nodes (and
different versions and configurations) and their worst-case network usage presents a
challenge. Tests cannot fully assure network bandwidth.

- Maintenance and configuration management. The on-vehicle system is a distributed
system with versions of node hardware and software. If a bug is reported, upgrading all
hardware and software in a faulty vehicle is expensive. One question that arises is “Which
versions are compatible among the large number of possible configurations?” Also, if a

Page 5 of 5

certain configuration is found to host a bug, all products with this configuration should be
upgraded. This leads to logistical challenges.

1.3 Approach to address challenges

One way of reducing time spent on development is to reuse software components and architectural
solutions between products. The ability to reuse components would put a high demand on a
component model and a coherent approach to architecture design between products. A common
electronic product line approach, including process, methods, and tools could address several
objectives in system development, like time-to-market, development cost, and maintenance cost [1].
An improved architecture design method would aid in the effort of improving the quality attributes
of the system e.g. configurability and reliability. Reusing components can also improve the
component reliability since code is executed for longer time and tested in other contexts [15].

Applying a product line approach when developing a product family can greatly decrease the time
spent in a development project once a common architecture and asset base has been developed [5].

1.4 Terminology in this report

Developing a system from scratch is not the most common type of development today. Companies
often develop new systems in an evolutionary way i.e. based upon previously developed systems.
Typically a company also develops a product line i.e. variety of related systems. The objectives of
using a structured method for developing product lines is to shorten time-to-market, reduce
development cost, and to reduce maintenance cost. To address the issues of developing product
lines, many companies make use of application platforms. A platform is a base of core assets that
can be used for several products. This includes architecture, software components, specifications,
test plans, development process, and more. A product line approach to development is an effort to
create an overall development process taking into account a whole product line. The aim is to avoid
sub optimization and lift the focus from single products. By focusing on the software architecture,
developers want to get a high-level view of the system’s properties. The architecture should allow
for reasoning and evaluation of system properties. The architecture is an important core asset in the
platform. There exists several definitions of software architecture and one of the most reoccurring
is;

“The software architecture of a program or a computing system is the structure or structures of the
system, which compromise software components, the externally visible properties of those
components, and the relationships between them.“ [7]

Software architecture design is a method intended to assess and achieve a number of quality
attributes like maintainability, reusability, scalability. The requirements for quality attributes are
called quality requirements. Thus, the quality requirements do not state functional requirements on
the system, but instead states what qualities the system shall exhibit. A software architecture design
method aim at accommodating specification, measurement, and design of quality attributes in the
system. The method should provide early assessment of quality requirements fulfillment.

A Product line architecture method is an overall strategy to address both the objectives of a product
line approach and software architecture design i.e. achieving system quality attributes, reduce
development cost, shorten time-to-market, and reduce maintenance cost. A product line architecture
method includes several aspects of development.

- Technology
- Methods and process
- Tools
- Organization

Page 6 of 6

2 Case-study
The VCE Electronic development in Sweden has developed a platform for electronic systems and it
is used in a number of high-end vehicles. The platform includes aspects of architecture, component
model, development methods, tools, technology, and process. Since the VCE challenges relate to
coordination and cost reduction, these aspects of the platform is especially focused on. Nonetheless,
this section gives a thorough explanation of the background, quality requirements, component
model, architectural views, tools, development process, and especially important methods.

2.1 Functionality overview

A useful platform for product lines must support the variety of functional requirements that the
different products impose. Ideally, the platform should, to some extent, also support future
functions. Here we outline some of the most central functions that are supported by the platform.

The electronic functions in the vehicle can be categorized as the following.

• Monitoring functions

• Controlling functions

• Logging functions

• Communication functions

Monitoring functions measure a quantity via a sensor and provide feedback in the GUI by indicators
or display. Controlling functions control physical devices via actuators and often make decisions by
analyzing monitored values. Logging functions save data in permanent memory to be retrieved by
analyzing or service related functions. Communication functions provide communication with
systems external to the vehicle.

Monitoring functions are numerous in a construction equipment vehicle today. Oil levels, pressures,
and temperatures are measured in various mechanical components throughout the vehicle.
Examples are hydraulic fluid temperature, brake pressure, and transmission oil level.

The larger part of the controlling functionality, today, lies in the engine and the gearbox control
systems. The engine functionality is not developed within VCE and is not described further in this
report. The gearbox and the automatic shifting of gears are controlled by the electronic system. A
gearbox contains a large number of mechanical components that are controlled by actuators and
thereby the electronic system. These mechanical components can include some or all of the
following, converter, lockup, drop box, retarder, clutches, and brakes. The functionality for an
automatic gearbox includes logics for when to shift gears, minimization of slip, avoidance of
hunting, various efficiency optimizations, and self-adapting solutions to accommodate a variance of
mechanical properties. The gearbox control is one of the most complex devices to control in today’s
systems.

Other control functions include control of speed (speed restriction), windshield wiper, load body,
parking brake, and cooling fan. Control functions also include system functions like cooperation of
brakes to achieve increased efficiency. (Many vehicles have several brakes and the control system
can decide which to use to minimize heat losses or wear.)

All functions that communicate with external systems are called communication functions. This
includes all functionality that is dependent on communication technologies such as GPS, satellite
communication, mobile phone technology, and also communication interfaces provided by
connectors on the vehicle. Examples are, anti theft function, service tools, production tools, and
fleet management.

Page 7 of 7

Trying to guess the functions or types of functions that can be required in the near future is difficult,
but here we present some ideas on what could come. On the control side, the future could very well
include several x-by wire type control systems. Communication systems could include advanced
fleet management like optimizing a fleet’s movement with respect to fuel consumption or time.
There can be anti-theft functions with vehicle immobilizer. Communication functions could also
include various infotainment systems like streaming video or Internet access.

2.2 Quality attributes - quality requirements

The design of VCE’s current architecture was done with the intent of using it for a relatively long
time. The architecture was to be a base for development of several products over time. In order to
be successful in the development effort, the wanted properties of the system were considered. The
system must support the implementation of functional requirements for the various products, but it
must also exhibit system properties such as scalability and reliability. These are the quality
attributes and do not apply to a certain function in the system but are properties of the system as a
whole [5]. The requirements for quality attributes are divided into development and operational
quality requirements. Although, quality requirements are sometimes difficult to assess, they are
often very important to achieve a useful architecture. For instance, a system must often be easy to
change and maintain in order to be successful out of a business perspective. In VCE, the
architecture was designed with the intent of meeting the identified quality requirements.

Deciding which quality attributes are important to an architecture is dependent on many aspects of
the product life cycle, production volumes and business issues. For instance, the quality attributes of
mobile phone-, construction equipment-, and salary system -software architectures probably differ
substantially. In VCE, various experienced specialists in the product companies identified the
important quality attributes. VCE develops systems in an evolutionary way, and the electronic
development also has substantial knowledge on what quality attributes are important to end-
customers.

The customers of construction equipment buy VCE’s products with the intent of making business
out of them. Therefore reliability, a low rate of service standstills and system malfunctions are often
the main concerns when purchasing a construction equipment vehicle with all its embedded
systems. Nonetheless, there is often a need for user specific configurations and flexibility in terms
of extra functionality and features.

Out of the developer perspective, the system and its subsystems must be reusable in order to meet
the demands on shorter development cycles and a larger variety of products. Moreover, scalability
is a wanted attribute of the platform since VCE’s products functionally range from quite low
complexity to very complex. A scalable platform would allow for commonality in terms of
technology, processes, methods and tools that are used in the development. There is also a need for
maintaining the system, both with respect to service/bug-fixes and to further enhance and develop
the system.

In VCE, the most important quality requirements on the platform were identified as,

Operational quality requirements:

• Reliability – End-customers must perceive the products as robust and reliable. This calls for
design that can be assured to perform its function via prediction and testing.

• Safety – The architecture must allow for developing safety critical functions. Again accurate
predictions on system behavior must be supported. Also, interrelations between safety-critical
and other functions should be kept at a minimum. This is to support analyzing safety-critical
design separately from other design.

Page 8 of 8

• Real-timeliness - The response times of functions must be within requirements. The vehicle’s
control functions may be safety related or control expensive hardware. The architecture must
allow for developing functionality with hard real-time requirements.

Development quality requirements:

• Reusability - The architecture must be usable in several products to make the development
cycle short. Moreover, using a unified architecture would allow for easier reuse of components
and therefore also help in the effort of reducing the time spent on development.

• Scalability - The architecture should be usable for several products where electronic system
content varies. There are products that cannot possibly include the expensive hardware that is
used in the most advanced vehicles because of the cost. The architecture must also be designed
with a focus on scarce resources. Hardware cost is always kept as low as possible in on-board
vehicle systems in order to keep product cost low.

• Configurability - The architecture should allow for user-adapted instantiations. A customer with
specific demands should be satisfied feasibly.

• Maintainability – The architecture must allow for service download of software and feasible
diagnostics.

Methods for identifying the most important quality attributes are based upon experience. Also,
assessing the fulfillment of the quality requirements are based on estimates.

2.3 Component model

To accommodate reuse of software components and methodology between products, VCE has
incorporated a component model for the real time application domain. The component model is an
important part of the VCE electronic platform since it enables some reuse and commonality in
terms of tools and methods.

2.3.1 Background

The types of embedded systems that VCE are developing have high demands on timeliness and can
be characterized as real-time systems. Moreover, the systems must perform in an environment of
limited hardware capacity. Hence, the demands on efficient resource usage are high. Common
component technologies, such as COM, JavaBeans and CORBA, are considered unfit for use in the
on-vehicle systems because of their excessive resource usage and unpredictable timing behavior. A
large resource usage would lead to a high hardware cost for each system produced. The VCE
electronic hardware is very sparse on resources to keep costs low.

Designing reusable real-time components is more complex and more expensive than designing non-
reusable non-real-time components [16]. This complexity arises from several aspects of real-time
systems not relevant in non-real-time systems. In order to reuse software components in this
environment, not only structural and functional attributes must be considered, but also temporal
properties must be intact when the component is reused. The development of real-time components
that can be run on different hardware platforms is complicated by the fact that components will
have different temporal behavior on different hardware. Thus, the goal is a reuse method that
accommodates the use of components on different hardware platforms. For the future, VCE wants
to expand the reuse of components to include new types of hardware.

Page 9 of 9

2.3.2 VCE Current component model

The system functionality is decomposed into different modes of operation for different types of
functionality. These modes include drive-, startup-, shutdown-, and reduced-mode. Specification of
modes and valid mode transitions constitute a high level of system description.

The functions in each mode are decomposed into tasks. Tasks are defined by their low-level
functions together with the data-flow between them. Each task has a number of typed in- and out-
ports. A task executes by doing the following: read its in-ports, perform its function, and before
termination, write the result to its out-port. A task is not permitted to communicate directly with
another task. Each task also has a configuration containing its temporal properties, e.g., period time,
deadline, release time and WCET. This construction is similar to the Pipes and Filters model, and
implies that the tasks can be executed without knowledge of where the input data was produced or
where the output data will be used.

Inports Outports

Function

State

ReleaseTime
Deadline
MAXT
Entry function

Period

Figure 2. Task model

One or more tasks can be encapsulated in a component. The component is a logical bundling of the
task, its properties and its interface. The component provides a way to logically tie together, task(s)
source code, task(s) configuration and task ports. Together, these include the task functionality and
its temporal properties. When we want to reuse a component in a different application, the task and
its configuration can be kept intact and only its thin component wrapper needs to be modified. The
loose coupling between tasks and the independent execution of tasks provides a means of easier
reuse of components.

In order to be meaningful, no task set can be totally independent, but the VCE effort has been
focused on minimization of communication and synchronization among components.

A composite is a logical composition of one or more components. The same thin configuration
wrapper that constitutes the component wrapper achieves a composite. Composites and components
are technically the same, but logically it has been deemed convenient to name an encapsulation of
components a composite.

Page 10 of 10

Composite

Component

Task

Component

Task
Task

Task

Figure 3. Component decomposition

So, by using the component model described above, a component or composite can be reused with
both functionality and temporal properties intact. The communication part of the configuration may
need to be altered when a component is reused in a new application depending on the new task set.
However, this is only a matter of connecting the ports to their new producers/consumers. As an
example, we can compare this task model with a traditional priority based task model. Reusing a
task in the latter would force us to alter code for communication and synchronization. Thereby, the
timing behavior might change and need further verification. So, by keeping the communication,
synchronization, and temporal properties apart from the implementation VCE gains:

• Better and earlier prediction of timing behavior

• Easier reuse

2.3.3 Example - A Communication component

There is a communication component in the VCE architecture that could be reused in many
applications. The communication component handles two communication protocols and has a large
number of ports. One port for each message ID on the bus. The component is intended for use on all
nodes in the system, and each node has an application with different communication needs. In order
to accommodate many applications, the component must support communication via all the ports
and at the same time perform within its time budget. The time budget is allocated by estimating a
worst-case execution time, WCET, which is used in the component’s configuration. Hence, given
our model, the component must be allocated enough resources in terms of execution time to handle
a worst-case situation with all the ports enabled. When the component is used in an application
where only a few of its ports are connected, the execution time of the component is never close to
the WCET and the processor utilization gets unnecessarily low. In this context, the resources are not
abundant and low processor utilization cannot be accepted. To change the configuration of the
component every time it is reused could be done, but is not considered feasible or safe. The WCET
and the temporal configuration would have to be estimated depending on the number of ports that
are required by a certain node. There is no tool support to do this today and it would have to be
done manually.

In the VCE case, this communication component was intended for reuse on a computer node that
has a task set with an especially heavy load of calculations, but not much communication. In this
case the communication component could not be allotted its worst-case execution time and could
not be reused without some alterations.

Page 11 of 11

Component
Node 1
Application

1
2
3

n

Component
Node 2
Application

1
2
3

n

Component
Node 3
Application

1
2
3

n

Node 2 using a large
number of ports

Node 1 is using one port

Node 3 using two ports

Figure 4. Communication component example

This exemplifies a general problem in reusing components in the VCE approach. Given the
component model, the number of ports in a component cannot change from one application to
another easily. By altering the number of ports, either the real-time properties of the component or
the processor utilization will suffer. So, the current component model does provide means for reuse
but also has limitations.

2.4 Architectural views

Wall [17], proposes a number of architectural views important to a system in the real-time system
domain. In order to describe the VCE electronic architecture we use some of these views to
illustrate the current architecture and its development. The concept of views is used to separate
various aspects of the system apart from only its internal structure.

2.4.1 Hardware view

A number of nodes, electronic control units (ECUs), are connected to two busses. One bus is the
SAE J1939, CAN, bus and the other is a SAE J1587 bus. The number of nodes differs in different
products but is the same within product lines. Today a unified hardware is used for all nodes
developed by the VCE Sweden branch except the display ECU. A unified hardware means, in this
case, a common design built for relatively easy change of CPU, I/O, and memory, but primarily
ease of change in I/O configuration.

The complete system includes nodes that are developed externally and do not use the same
hardware. The ECU hardware is developed within VCE and includes processor, RAM, EEPROM,
flash, CAN controller, analog and digital I/O, and drive circuitry. All encapsulated in a box

Page 12 of 12

designed to fulfill the environmental requirements i.e. electro-magnetic fields, vibration, moisture
etc. Each node includes around 100 I/O channels and the software functions are distributed over the
nodes.

......T-ECUV-ECU

1939
1587

I/O I/O I/O I/O

Figure 5. Hardware setting

When designing a new system, we can choose the number of ECUs depending on resource demand.
This solution is not optimal with respect to achieving maximum resource usage, but many
advantages are had with respect to reusing software, methods and tools. Software that is reused
include drivers, communication software, service software, error handling. Also infrastructure
software like layering functionality and watchdog software is reused. Tools like compiler, code
generators, and scheduler can be used more easily due to the fixed hardware platform. Methods for
parameterization of software and makefile are also reused.

2.4.2 Temporal & Synchronization view

The temporal view is the description of the system that deals with analyzing timing behavior.
Therefore, this view partly overlaps with the synchronization view that deals with the concurrency
control of tasks. Control of task synchronization is necessary to avoid simultaneous access to shared
resources and to guarantee task precedence relations.

The system functionality is decomposed into tasks. Each task has a function that implements its
behavior and also a state i.e. it can store data that will not be lost between task invocations. Apart
from having a function and a state, each task has temporal attributes, precedence relations, and
communication settings. The VCE development model supports specification of these properties
and they all affect timing behavior of the task (and the system.)

Inports Outports

Function

State

Comm.
setting

Precedence
Relations

Temporal
Attributes

Figure 6. Task configuration

Page 13 of 13

Each task has a set of temporal attributes. The temporal attributes are period, the Worst Case
Execution Time (WCET), the release time, and the deadline of a task. The WCET is the execution
time for the task. The release time is the earliest time at which the task can be activated, relative to
its period start. The deadline is the latest time at which a task is permitted to terminate, relative to
its period start.

Tasks can have precedence relations to other tasks. Any task can have a precedence relation to any
other, but only when tasks are dispatched at the same time will the precedence relation be
meaningful. Tasks with the same period time will always be dispatched at the same time. A
precedence relation put a requirement on the concurrency of tasks during run-time. The preceding
task will be executed before the preceded task.

Task 1

Task 2

Task 3

Precedes

Precedes

Figure 7. Precedence relations

In the VCE case, tasks are not allowed to preempt each other and thereby mutually exclude each
other by a separation in time. Tasks start and finish execution before another task is started. Shared
resources can, in this way, only be accessed by one task at a time.

Based on experience, the WCET for each task is estimated before the actual implementation and
this allows early temporal verification. The task-set can be scheduled before the tasks are
implemented and, assuming that the estimated time budget is not violated during implementation,
the system is schedulable. Schedulability and timing analysis can, in this way, be performed early in
the development. This leads to that the time budget for each task is also a functional requirement for
the implementation phase.

Currently, the VCE system is quite interrupt intensive. Interrupts are used to manage bus messages
and to read some sensor data. The interrupts have an impact on system timing properties. The
temporal behavior for each interrupt is modeled with minimum inter-arrival time and execution
time. VCE uses a method for scheduling interrupts with predictable real-timeliness kept intact [3].

2.4.3 Communication view

In the VCE model, a task has a set of typed in-ports and out-ports. All communication of the task
goes through these ports. On activation, a task reads its in-port, perform its function, and write the
result to its out-port. This construction facilitates a loose coupling between tasks and implies that
each task can be designed independently of other producing or consuming task’s design.

Page 14 of 14

Figure 8. Communication flow

Exchange of data between tasks is performed by unbuffered communication (shared memory) and a
port is an unbuffered communication interface. The port can always be read and written to, and this
implies that the data can be overwritten at any time. Unbuffered communication is generally
preferred in controller applications [10]. The other choice would be to have buffered interfaces for
the tasks (message queues). Buffered interfaces can be more complicated in a real-time system, as
upper bounds on produced/consumed data must be determined to predict timing behavior of a task.

Note the separation of communication relations and precedence relations. Tasks can be configured
to communicate regardless of period times as opposed to precedence relations that can only be
specified between tasks with the same period.

2.5 Run-time system & Tools

In order to be accepted by end-customers, on-vehicle control systems must meet stringent
requirements on real-timeliness and reliability. This has lead to a pervading characteristic of robust
design in the development of the control application. Many of the VCE tools are used to accomplish
a predictable timing behavior and code execution. The software system performs various control
and communication functions and functionality is distributed over the system nodes. Functions are
implemented as tasks that often have hard real-time requirements. During run-time, tasks execute
according to a dispatch table that is generated off-line. Soft real-time tasks are scheduled on-line
and use the processor’s spare capacity to execute. The application is also quite interrupt intensive.

VCE uses the Rubus operating system that supports hard and soft real-time tasks. A tool named
Rubus Configuration Compiler, CC, supports the communication, synchronization, and temporal
constructs described earlier. The configuration of the tasks is used by a scheduler that produces an
off-line schedule and communication infrastructure for the operational mode. If the temporal
properties of the task set cannot be fulfilled, the scheduler rejects the configuration.

Time triggered schedules were used in VCE before the introduction of the scheduler tool. The
schedules were then made by hand and as the system complexity increased, making analysis and
changes to the system became irksome. The scheduler tool performs an automatic analysis and
provides feedback if a change violates the temporal constraints. Note that the scheduling is
performed based upon available resources in terms of CPU capacity. (Each task’s WCET is
dependent on the CPU speed) One could envision a broader method that considers other resources
like network or perhaps memory.

The Rubus operating system supports the use of semaphores and preemption (even nested
preemptions), but these functions are not used in the VCE approach. Using preemption and
semaphores would make scheduling easier, but would integrate the design of timing characteristics
in the code implementation phase.

Page 15 of 15

 Configuration
Specification

HW resource
Specification

Schedule

Configuration
Compiler

Rubus

Figure 9. Configuration compiler

Input to the CC is both the configuration specification of the task set and the specification of
hardware resources. The tool generates code to accommodate automatic mapping of the
specification to a resource structure i.e. hardware resources.

2.6 VCE mechanisms for product variability

The products within a VCE product line are often not functionally or physically identical. Instead,
the exact functionality is controlled by variants and options. This stems from the fact that customers
request tailored systems to suit their specific needs. Logistically it would be convenient to provide
only one type of physical product and provide the variation by software. This is done in many
subsystems today, but the product volumes and the cost of mechanical and hardware components
make this approach infeasible for some variable functions. Some functions are provided as options
where the product is fitted with the necessary mechanical, hardware, and software components.
Deciding on whether to mount physical components onto the product or to let the function be an
option that must be fitted in the aftermarket is not always easy. The separate costs for components,
production, aftermarket, and production volumes should be taken into account.

Current VCE techniques for variability in electronic systems:

• Parameterization and variables

• Optional nodes

Obviously, product specific behavior can be achieved by developing separate executables for each
product in the product line. Developing executables totally separate could prove tedious in terms of
administering changes if the products have common functionality. Control by pre-processor
directives is often preferred in software industry. Separate executables could be obtained by a series
of conditional compile directives throughout the code and by inputting product specific flags in a
makefile or in build commands.

Advantages of this method are its relative simplicity and also that it ensures rather small
executables. (No extra code is included in the executable to accommodate generalization of
components)

Page 16 of 16

There are drawbacks to this method however. Firstly, the method has limited flexibility. The
number of independent compile directives cannot grow large before the developers loose their
overview. A change gives impact in so many products that mistakes are bound to happen.

2.6.1 Parameters

VCE uses parameterization as one way to accommodate variability. Parameterization is a technique
that uses run-time switches for controlling program execution. Parameters are kept in permanent
memory, E2. E2 is logically divided into areas and datasets. A dataset can contain one or more
memory areas. This splitting into logical areas and datasets has to do with the wanted ability to keep
different levels of security and access for different users. The users can be both human operators
and different SW applications.

Hence, we can achieve a product line where all products use the same executable file and product
specific behavior is controlled by parameters in persistent memory. One benefit is to have fewer
executables to release and administrate. Relative to the method of developing different executables,
the testing effort is unaffected. Equal numbers of products must still be tested. Another benefit is
that in order to change an existing product, only the parameters must be loaded into the target
computer.

Drawbacks include; unnecessarily large executable, dead code could possibly affect safety issues.

2.6.2 Variables

A variation on the idea of parameters is to let the application store certain variables in persistent
memory. These variables also control program flow, but the idea is that the application itself
calculates values according to some individual environment condition. This can be used for
adaptive control solutions where there is a variation in response between different hardware. For
instance, different response times in individual computer controlled hydraulic valves. Several
challenges exist where adaptive control can be or is being used.

2.6.3 Optional nodes, sensors, actuators, and resources

Parameterization via datasets provides a convenient way to variate product functionality. The
technique is especially useful when dealing with pure software options, like variable algorithms.
Some functions are also dependent on additional hardware, like sensors, actuators, I/O, and
significant amounts of computational resources. This includes functions like lift-weighing and
communication systems. Parameterization is often considered a too expensive method for these
functions. Fitting hardware and extra computational resources that is not used in the product adds to
the product cost. Instead, the function is achieved with an optional kit of physical devices. This can
include hardware, mechanics, sensors, actuators, and/or software. The method for providing the
option is different for each type of function. Sometimes only an extra sensor is needed, given that
there is enough I/O. (Note that I/O is also a resource that increases product cost, but it is often
feasible to have a spare capacity in the delivered product.) Sometimes the optional function can be
achieved with a separate node including all the hardware needed for the function. One example is
the optional tachograph that is a node that can be connected to the network and print work shift
reports on paper. One way to achieve a lift-weighing function is with a separate node with display
and also the necessary sensors and wiring. Another way would be to use an existing display and use
processor, memory, and I/O spare capacity to execute an optional task.

Most often in VCE, the requirement on low product cost is high. Since the product volumes are
relatively high, the product cost becomes an important parameter. Methods for estimating the real
cost for the product life cycle are often not trivial.

Page 17 of 17

Design decisions on whether to include resources in the product or not need to take into account:

• After market cost - fitting, warehouse cost, knowledge and education, after market tool
support.

• Assembly cost - Physical product cost more if it includes more hardware, assembly takes
more time.

Configuration management issues cost money for all optional functions. This is true whether the
function is included or optionally fitted. In practice it costs money to maintain and test a large
number of configurations.

Using an optional node that can be connected to the network bus has one other advantage. This
provides a feasible interface, if the node is to be developed by a subsystem supplier.

2.6.4 Logistic overview

In the case of Truck products within Volvo, the central system and the number of configurations are
larger than for construction equipment. The salesman has a number of configurations to present to
the customer. (Standard configurations may include; logging truck, garbage truck, refrigerator truck
etc...) The customer can then choose additional features. This includes both parameter settings and
hardware components like climate control for instance. The central system includes functionality
such as automatic ordering of components when the customer has ordered the truck. Later in the
assembly line, the central system produces a worksheet for this particular configuration.

The after market tools support parameter changes and the possibility to download new software.

Sales
Assembly

After market

Central system

Figure 10. Central system

2.7 Process & Methods Today

VCE is developing on-vehicle software control systems for product lines of construction equipment.
The content of electronics/software is increasing in newer vehicle models. As the system
complexity grows, the need for structured high-level design methods becomes apparent.

VCE uses a design process that focuses on high-level design and temporal attributes of the system.
The process relies on decomposing the system into tasks and specifying the temporal attributes for
each task. A configuration tool allows for use of language constructs to specify a high level design
such as temporal constraints, communication and synchronization. This clearly separates the design
of timing characteristics from the design and implementation of logical functionality. By estimating
each task’s execution time in an early phase, the process accommodates early shedulability tests.

Page 18 of 18

The process was first presented in [2], but an overview with some additions is presented here.

Function decomposition
and structuring

IV

High level system
decomposition

III

Mapping temporal
constraints to attributes of the

task model V

Definition of
execution time budgets

VI

Feasibility check and
automatic implementation

VII

Implementation and
module testing

VIII

System integration and
verification

 IX

Requirements analysis

II

Requirements engineering

I

Design

Figure 11. Development process

I. Requirements engineering

The product company compiles the customer requests and judge importance of each wanted
function. The product company may also makes initial guesses on how the wanted function
could be implemented. Some functions may obviously be part of the electronic system
while others may require combinations of electronics and mechanics.

II. Requirements analysis.

Requirement analysis is done in cooperation between the product company and the
electronic development department. In this stage the high level functions of the application
are identified. It is also important here to determine temporal constraints for these
functions. This step is not completely done until a detailed requirement specification exists

III. High-level system decomposition.

Page 19 of 19

In this stage the different operational modes of the application are identified together with
valid transitions between them. As an example the control system can have different
functionality depending on the status of the vehicle, such as driving, startup, failed, and
reduced.

IV. Function decomposition and structuring.

The functions, for each mode, are decomposed into transactions. Transactions in turn are
decomposed into tasks. Tasks are defined by their low-level functions together with the
data flow between them.

Example 1: A multirate controller. The transaction consists of two sampling tasks, S1 and
S2, a controller task C, and an actuator task A. The data-flow of the transaction can be seen
in Figure 2.

S1

S2

C A

Figure 12. Data flow between tasks

Functionality having high responsiveness requirements or which occurs frequently but with
short execution times cannot be implemented as a periodic task as the overhead would be
too high. Such low-level functions are therefore implemented as interrupts.

V. Mapping temporal constraints to attributes of the task model.

In the previous stage high-level functions were decomposed into tasks and structured
according to the interaction between them. In this step the high level temporal requirements
are broken down into temporal attributes for tasks and the synchronization between them.

Synchronization can be defined by precedence relationships between tasks or by mutual
exclusion of tasks sharing a common resource.

Example 1 (continued): The temporal attributes, derived by the control engineer for the
multirate-transaction example are as follows (note that we don’t know of the WCET of the
tasks as yet, hence the question marks):

• Tasks S1 and S2 have period, release time, deadline, worst case execution time in
µs = (1000, 0, 1000, ?).

• Task C = (5000, 4000, 5000, ?).

• Task A = (5000, 4000, 5000, ?).

To enforce order between the controller and actuator task, we specify a precedence relation
between C and A, i.e., task C precedes task A.

VI. Defining Execution Time Budget.

WCET can be obtained by either measurement or by statically analyzing the code produced
for each task. In the VCE approach, however, execution time budgets are estimated, being

Page 20 of 20

used later in step VIII as implementation requirements. The reason for this is that a
feasibility test for the system, and a possible re-engineering, can be performed at an early
stage, thus permitting early detection of design errors related to resource utilization,
communication and synchronization.

Example 1 (continued): The question marks are replaced by estimated time budgets. Since
this is a delicate issue, it requires highly skilled engineers with long experience.

VII. Feasibility check and automatic implementation.

The formally described design can be checked for temporal correctness, with a tool
designated Configuration Compiler (CC), even if no actual (low-level) implementation has
been produced. The CC maps the design description to a resource structure. The CC is a
pre-run-time scheduler that generates dispatch tables for running the tasks and the
communication infrastructure for each mode. This constitutes an application skeleton for
the running and communication of the tasks. In addition to the mapping of the model, CC
also supports specification of architecture-specific attributes such as HW-performance,
resolution of the run-time dispatcher, communication times, and the number of nested pre-
emptions permitted. The implementation of the CC is based on a heuristic tree search
strategy, similar to the one presented in [18]. The major difference is that this scheduler
takes into account interrupts [3] and architecture-specific attributes. The current version of
CC is adapted to the real-time operating system Rubus (both commercial products, see
www.arcticus.se).

VIII. Implementation and module testing.

The tasks are simply implemented by traditional programming (coding). In addition to the
traditional functional specification, the programmer also has the execution time budget as
an implementation requirement, i.e., the programmer must implement the specified function
without exceeding the budget. The module testing includes both verification of functional
behavior and checks that time budgets are not exceeded. If a time budget cannot be met, a
redesign is required. In a simple but common case, a redesign could mean only to change
the time budget given that there is enough CPU capacity available.

IX. System integration and verification.

The integration phase is usually performed quickly and without problems since the actual
integration was performed during the design phase. The major task is the integration
testing.

Page 21 of 21

3 Conclusion
In this report we have described the current electronic systems architecture in some of VCE’s
construction equipment products. The VCE vision is to implement methods, processes, and
technology to accommodate cost reduction, coordination of development of many products, and
improved system properties. The general idea is to apply a product line approach to cut costs and
facilitate coordination. Improved methods for architecture design will target the wanted
improvement in system properties. Both solutions are quite complex and involve areas such as
organization, process, technology, knowledge transfer, business strategy, and many more.

VCE is also a global company and products are developed and produced throughout the world. This
report describes mostly the aspects of electronic development in the Sweden branch of VCE. Before
trying to present possible solutions to today’s challenges, the architecture needs of all VCE
branches must be investigated. This study will continue with looking into aspects of VCE electronic
development in VCEK, VCE Compact equipment, VCE Graders.

However, this global business situation with a wide variety of products is even more complex. VCE
is one company within Volvo Group. The companies within Volvo envision competition benefits
from a company wide coordination and reuse strategy. The potential for strengthening business is
very large in a company Volvo’s size. There is already some coordination and reuse in the works.
Today, the VCE architecture is based upon that of VTC and uses the same service concept,
production tools, a number of technologies, and a number of methods. Volvo Bus, Volvo Penta, and
Volvo Aero are also facing the same basic challenges of cost and coordination. This study will also
seek to find ways to improve and coordinate architecture issues by investigating common solutions.

Page 22 of 22

4 References

[1] Bosch, J., Design & Use of Software Architectures, Addison-Wesley, 2000.

[2] C Norström, K Sandström, M Gustafsson, J Mäki-Turja, and N-E Bånkestad. Experiences
from Introducing State-of-the-art Real-Time Techniques in the Automotive Industry. In
proceedings of 8th Annual IEEE International Conference and Workshop on the Engineering
of Computer Based Systems (ECBS01), Washington, US, April 2001. IEEE Computer
Society.

[3] Sandström, K., Eriksson, C., and Fohler, G., Handling Interrupts with Static Scheduling in an
Automotive Vehicle Control System, In Proceedings of the fifth International Conference on
Real-Time Computing Systems and Applications, pp158-165, October 1998. ISBN 0-8186-
9209-X.

[4] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg, Volcano a revolution in on-board
communications, Volvo Technology Report. 98-12-10.

[5] Brownsword, L., Clements, P., A Case Study in Successful Product Line Development,
Technical Report CMU/SEI-96-TR-016, October 1996.

[6] Bredemeyer, D., Motivating Software Architectures, http://www.bredemeyer.com/

[7] Bass, Clements, Kazman, Software architecture in practice, Addison Wesley, 1997.

[8] Eriksson, C., Mäki-Turja, J., Post. K., Gustafsson, M., Gustafsson, J., Sandström, K., and
Brorsson, E., An Overview of RTT: A Design Framework for Real-Time Systems, Journal of
Parallel and Distributed Computing, August, 1996.

[9] Josefsson, M., Programvarukomponenter i praktiken -att köpa tid och prestera mer, report
V040078, Sveriges Verkstadsindustrier, 1-1-1999.

[10] Isovic, D., Lindgren, M., Crnkovic, I., System Development with Real-Time Components, In
Proc. of ECOOP2000 Workshop 22 - Pervasive Component-based systems, June 2000.

[11] Tran, V., Liu, D., Component-based Systems Development: Challenges and Lessons Learned,
Software Technology and Engineering Practice, Proceedings., Eighth IEEE International
Workshop on, 1997.

[12] Le Lann, G., An analysis of the Ariane 5 flight 501 failure - a system engineering perspective,
In Proceedings of 4th international conference of engineering of computer based systems,
IEEE Computer Society, 1997.

[13] Thane, H., Monitoring, Testing and Debugging of Distributed Real-Time Systems, Doctoral
Thesis, Royal Institute of Technology, KTH, Mechatronics Laboratory, TRITA-MMK
2000:16, Sweden 2000.

[14] Clements, P., Northrop, L., Software Product Lines, Addison-Wesley, August 2001. ISBN 0-
201-70332-7.

[15] Fenton, N. E., Pfleeger, S. L., Software Metrics: A rigorous & practical approach,
International Thomson Computer Press, ISBN 0-534-95600-9, 1996

http://www.bredemeyer.com/

Page 23 of 23

[16] Douglas, B.P., Real-Time UML - Developing efficient objects for embedded systems, Addison
Wesley Longman, Inc, 1998

[17] Wall, A., A Formal Approach to Analysis of Software Architectures for Real-Time Systems,
IT Licentiate theses, 2000-004, MRTC Report 00/21.

[18] K. Ramamritham. Allocation and Scheduling of Complex Periodic Tasks. In 10th Int. Conf.
on Distributed Computing Systems, pages 108-115, 1990.

