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Abstract
Hyper-heuristic is a newmethodology for the adaptive hybridization ofmeta-heuristic algorithms to derive a general algorithm
for solving optimization problems. This work focuses on the selection type of hyper-heuristic, called the exponential Monte
Carlo with counter (EMCQ). Current implementations rely on the memory-less selection that can be counterproductive as the
selected search operator may not (historically) be the best performing operator for the current search instance. Addressing
this issue, we propose to integrate the memory into EMCQ for combinatorial t-wise test suite generation using reinforcement
learning based on the Q-learning mechanism, called Q-EMCQ. The limited application of combinatorial test generation on
industrial programs can impact the use of such techniques as Q-EMCQ. Thus, there is a need to evaluate this kind of approach
against relevant industrial software,with a purpose to show the degree of interaction required to cover the code aswell as finding
faults. We applied Q-EMCQ on 37 real-world industrial programs written in Function Block Diagram (FBD) language, which
is used for developing a train control management system at Bombardier Transportation Sweden AB. The results show that
Q-EMCQ is an efficient technique for test case generation. Addition- ally, unlike the t-wise test suite generation, which deals
with the minimization problem, we have also subjected Q-EMCQ to a maximization problem involving the general module
clustering to demonstrate the effectiveness of our approach. The results show the Q-EMCQ is also capable of outperforming
the original EMCQ as well as several recent meta/hyper-heuristic including modified choice function, Tabu high-level hyper-
heuristic, teaching learning-based optimization, sine cosine algorithm, and symbiotic optimization search in clustering quality
within comparable execution time.
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1 Introduction

Despite their considerable success,meta-heuristic algorithms
have been adapted to solve specific problems based on
some domain knowledge. Some examples of recent meta-
heuristic algorithms include Sooty Tern optimization algo-
rithm (STOA) (Dhiman and Kaur (2019)), farmland fertility
algorithm (FF) (Shayanfar and Gharehchopogh (2018)), owl
search algorithm (OSA) (Jain et al. (2018)), human men-
tal search (HMS) (Mousavirad and Ebrahimpour-Komleh
(2017)), and find-fix-finish-exploit-analyze (F3EA) (Kashan
et al. (2019)). Often, these algorithms require significant
expertise to implement and tune; hence, their standard ver-
sions are not sufficiently generic to adapt to changing search
spaces, even for the different instances of the same prob-
lem. Apart from this need to adapt, the existing research on
meta-heuristic algorithms has also not sufficiently explored
the adoption of more than one meta-heuristic to perform the
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search (termed hybridization). Specifically, the exploration
and exploitation of the existing algorithms are limited to use
the (local and global) search operators derived from a single
meta-heuristic algorithm as a basis. In this case, choosing
a proper combination of search operators can be the key to
achieve good performance as hybridization can capitalize on
the strengths and address the deficiencies of each algorithm
collectively and synergistically.

Hyper-heuristics have recently received considerable
attention for addressing some of the above issues (Tsai
et al. 2014; Sabar and Kendall 2015). Specifically, hyper-
heuristic represents an approach of using (meta)-heuristics to
choose (meta)-heuristics to solve the optimization problem at
hand (Burke et al. 2003). Unlike traditional meta-heuristics,
which directly operate on the solution space, hyper-heuristics
offer flexible integration and adaptive manipulation of com-
plete (low-level) meta-heuristics or merely the partial adop-
tion of a particular meta-heuristic search operator through
non-domain feedback. In this manner, hyper-heuristic can
evolve its heuristic selection and acceptance mechanism in
searching for a good-quality solution.

This work is focusing on a specific type of hyper-heuristic
algorithm, called the exponential Monte Carlo with counter
(EMCQ) Sabar and Kendall (2015); Kendall et al. (2014).
EMCQ adopts a simulated annealing like Kirkpatrick et al.
(1983) reward and punishment mechanism to adaptively
choose the search operator dynamically during runtime
from a set of available operators. To be specific, EMCQ
rewards a good performing search operator by allowing its
re-selection in the next iteration. Based on decreasing proba-
bility, EMCQ also rewards (and penalizes) a poor performing
search operator to escape from local optima. In the current
implementation, when a poor search operator is penalized,
it is put in the Tabu list, and EMCQ will choose a new
searchoperator from the available searchoperators randomly.
Such memory-less selection can be counterproductive as the
selected search operator may not (historically) be the best
performing operator for the current search instance. For this
reason,wepropose to integrate thememory intoEMCQusing
reinforcement learning based on the Q-learning mechanism,
called Q-EMCQ.

We have adopted Q-EMCQ for combinatorial interac-
tion t-wise test generation (where t indicates the interaction
strength). While there is already significant work on adopt-
ing hyper-heuristic as a suitable method for t-wise test suite
generation [see, e.g., Zamli et al. (2016, 2017)], the main
focus has been on the generation of minimal test suites. It
is worthy of mentioning here that in this work, our main
focus is not to introduce new bounds for the t-wise gener-
ated test suites. Rather we dedicate our efforts on assessing
the effectiveness and efficiency of the generated t-wise test
suites against real-world programs being used in industrial
practice. Our goal is to push toward the industrial adoption of

t-wise testing, which is lacking in numerous studies on the
subject. We, nevertheless, do compare the performance of
Q-EMCQ against the well-known benchmarks using several
strategies, to establish the viability of Q-EMCQ for further
empirical evaluation using industrial programs. In the empir-
ical evaluation part of this paper, we rigorously evaluate
the effectiveness and efficiency of Q-EMCQ for different
degrees of interaction strength using real-world industrial
control software used for developing the train control man-
agement system at Bombardier Transportation Sweden AB.
To demonstrate the generality of Q-EMCQ, we have also
subjected Q-EMCQ a maximization problem involving the
general module clustering. Q-EMCQ gives the best over-
all performance on the clustering quality within comparable
execution time as compared to competing hyper-heuristics
(MCF and Tabu HHH) and meta-heuristics (EMCQ, TLBO,
SCA, andSOS). Summing up, this papermakes the following
contributions:

This paper makes the following contributions:

1. A novel Q-EMCQhyper-heuristic technique that embeds
the Q-learning mechanism into EMCQ, providing a
memory of the performance of each search operator for
selection. The implementation of Q-EMCQ establishes
a unified strategy for the integration and hybridization
of Monte Carlo-based exponential Metropolis probabil-
ity function for meta-heuristic selection and acceptance
mechanism with four low-level search operators consist-
ing of cuckoo’s Levy flight perturbation operator (Yang
and Deb 2009), flower algorithm’s local pollination, and
global pollination operator (Yang 2012) as well as Jaya’s
search operator (Rao 2016).

2. An industrial case study, evaluating t-wise test suite gen-
eration in terms of cost (i.e., using a comparison of the
number of test cases) and effectiveness (i.e., using muta-
tion analysis).

3. Performance assessment ofQ-EMCQwith contemporary
meta/hyper-heuristics for maximization problem involv-
ing general module clustering problem.

2 Theoretical Background and an Illustrative
Example

Covering array (CA) is a mathematical object to represent
the actual set of test cases based on t-wise coverage crite-
ria (where t represents the desired interaction strength). CA
(N ; t, k, v), also expressed as CA (N ; t, vk), is a combi-
natorial structure constructed as an array of N rows and k
columns on v values such that every N × t sub-array con-
tains all ordered subsets from the v values of size t at least
once.Mixed covering array (MCA) (N ; t, k, (v1, v2, . . . vk))
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Fig. 1 Interconnected
manufacturing system

or MCA (N ; t, k, vk) may be adopted when the number of
component values varies.

To illustrate the use of CA for t-wise testing, consider
a hypothetical example of an integrated manufacturing sys-
tem in Fig. 1. There are four basic elements/parameters of
the system, i.e., Camera, Robotic Interface, Sensor, and Net-
work Cables. The camera parameter takes three possible
values (i.e., Camera = {High Resolution, Web Cam, and
CCTV}), whereas the rest of the parameters take two pos-
sible values (i.e., Robotic Interface = {USB, HDMI}, Sensor
= {Thermometer, Heat Sensor}, and Network Cables = {UTP,
Fiber Optics}).

As an example, the mixed CA representation for MCA
(N ; 3, 3123) is shown in Fig. 2 with twelve test cases. In
this case, there is a reduction of 50% test cases from the 24
exhaustive possibilities.

3 RelatedWork

In this section, we present the previous work performed on
the combinatorial t-wise test generation and the evaluation
of such techniques in terms of efficiency and effectiveness.

3.1 Combinatorial t-wise test suite generators

CA construction is an NP-complete problem (Lei and Tai
1998). CA construction is directly applied for t-wise test case
reduction; thus, considerable research has been carried out
to develop effective strategies for obtaining (near) optimal
solutions. The existing works for CA generation can be clas-
sified into two main approaches: mathematical and greedy

computational approaches. Themathematical approach often
exploits the mathematical properties of orthogonal arrays
to construct efficient CA (Mandl 1985). An example of
strategies that originate from the extension of mathematical
concepts called orthogonal array is recursive CA (Colbourn
et al. 2006). The main limitation of the OA solutions is
that these techniques restrict the selection of values, which
are confined to low interaction (i.e., t < 3), thus limiting
its applicability for only small-scale systems configurations.
Greedy computational approaches exploit computing power
to generate the required CA, such that each solution results
from the greedy selection of the required interaction. The
greedy computational approaches can be categorized further
into one-parameter-at-a-time (OPAT) and one-test-at-a-time
(OTAT) methods (Nie and Leung 2011). In-parameter-order
(IPO) strategy (Lei and Tai 1998) is perhaps the pioneer strat-
egy that adopts the OPAT approach (hence termed IPO-like).
IPO strategy is later generalized into a number of variants
IPOG (Lei et al. 2007), IPOG-D (Lei et al. 2008), IPOF
(Forbes et al. 2008), and IPO-s (Calvagna and Gargantini
2009), whereas AETG (Cohen et al. 1997) is the first CA
construction strategy that adopts the OTAT method (hence,
termed as AETG-like (Williams and Probert 1996)). Many
variants of AETG emerged later, including mAETG (Cohen
2004) and m AET GS AT (Cohen et al. 2007).

One can find two recent trends in research for combi-
natorial interaction testing: handling of constraints (Ahmed
et al. 2017) and the application of meta-heuristic algorithms.
Many current studies focus on the use of meta-heuristic algo-
rithms as part of the greedy computational approach for
CA construction (Mahmoud and Ahmed 2015; Wu et al.
2015; Ahmed et al. 2012). Meta-heuristic-based strategies,
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Fig. 2 Mixed CA Construction
MCA (N ; 3, 31, 23) for
interconnected manufacturing
system

which complement both the OPAT and OTAT methods, are
often superior in terms of obtaining optimal CA size, but
trade-offs regarding computational costs may exist. Meta-
heuristic-based strategies often start with a population of
random solutions. One or more search operators are itera-
tively applied to the population to improve the overall fitness
(i.e., regarding greedily covering the interaction combina-
tions).Althoughvariations are numerous, themain difference
between meta-heuristic strategies is on the defined search
operators. Meta-heuristics such as genetic algorithm (e.g.,
GA) Shiba et al. (2004), ant colony optimization (e.g., ACO)
Chen et al. (2009), simulated annealing (e.g., SA)Cohen et al.
(2007), particle swarmoptimization (e.g., PSTGAhmedet al.
(2012),DPSO)Wuet al. (2015), and cuckoo search algorithm
(e.g., CS) Ahmed et al. (2015) are effectively used for CA
construction.

In line with the development of meta-heuristic algo-
rithms, the room for improvement is substantial to advance
the field of search-based software engineering (SBSE) by
the provision of hybridizing two or more algorithms. Each
algorithm usually has its advantages and disadvantages.
With hybridization, each algorithm can exploit the strengths
and cover the weaknesses of the collaborating algorithms
(i.e., either partly or in full). Many recent scientific results

indicate that hybridization improves the performance of
meta-heuristic algorithms (Sabar and Kendall 2015).

Owing to its ability to accommodate two or more search
operators from different meta-heuristics (partly or in full)
through one defined parent heuristic (Burke et al. 2013),
hyper-heuristics can be seen as an elegant way to support
hybridization. To be specific, the selection of a particular
search operator at any particular instance can be adaptively
decided (by the parent meta-heuristic) based on the feedback
from its previous performance (i.e., learning).

In general, hyper-heuristic can be categorized as either
selective or generative ones (Burke et al. 2010). Ideally, a
selective hyper-heuristic can select the appropriate heuris-
tics from a pool of possible heuristics. On the other hand, a
generative hyper-heuristic can generate new heuristics from
the existing ones. Typically, selective and generative hyper-
heuristics can be further categorized as either constructive or
perturbative ones. A constructive gradually builds a particu-
lar solution from scratch. On the other hand, a perturbative
hyper-heuristic iteratively improves an existing solution by
relying on its perturbative mechanisms.

In hyper-heuristic, there is a need to maintain a “domain
barrier” that controls and filters out domain-specific infor-
mation from the hyper-heuristic itself (Burke et al. 2013).
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In other words, hyper-heuristic ensures generality to its
approach.

Concerning related work for CA construction, Zamli
et al. (2016) implemented Tabu search hyper-heuristic (Tabu
HHH) utilizing a selection hyper-heuristic based on Tabu
search and three measures (quality, diversity, and intensity)
to assist the heuristic selection process. Although showing
promising results, Tabu HHH adopted full meta-heuristic
algorithms (i.e., comprising of teaching learning-based opti-
mization (TLBO) Rao et al. (2011), particle swarm opti-
mization (PSO) Kennedy and Eberhart (1995), and cuckoo
search algorithm (CS) Yang and Deb (2009)) as its search
operators. Using the three measures in HHH, Zamli et al.
(2017) later introduced the newMamdani fuzzy-based hyper-
heuristic that can accommodate partial truth, hence allowing
a smoother transition between the search operators. In other
work, Jia et al. (2015) implemented a simulated annealing-
based hyper-heuristic called HHSA to select from variants
of six operators (i.e., single/multiple/smart mutation, sim-
ple/smart add and delete row). HHSA demonstrates good
performance regarding test suite size and exhibits elements
of learning in the selection of the search operator.

Complementing HHSA, we propose Q-EMCQ as another
alternative SA variant. Unlike HHSA, we integrate the
Q-learning mechanism to provide a memory of the perfor-
mance of each search operator for selection. The Q-learning
mechanism complements the Monte Carlo-based exponen-
tial Metropolis probability function by keeping track of the
best performing operators for selection when the current
fitness function is poor. Also, unlike HHSA, which deals
only with CA (with constraints) construction, our work also
focuses on MCA.

3.2 Case studies on combinatorial t-wise interaction
test generation

Thenumber of successful applications of combinatorial inter-
action testing in the literature is expanding. Few studies
(Kuhn and Okum 2006; Richard Kuhn et al. 2004; Bell and
Vouk 2005;Wallace andRichardKuhn 2001; Charbachi et al.
2017; Bergström and Enoiu 2017; Sampath and Bryce 2012;
Charbachi et al. 2017) are focusing on fault and failure detec-
tion capabilities of these techniques for different industrial
systems. However, still, there is a lack of industrial applica-
bility of combinatorial interaction testing strategies.

Some case studies concerning combinatorial testing have
focused on comparing between different strengths of com-
binatorial criteria (Grindal et al. 2006) with random tests
(Ghandehari et al. 2014; Schroeder et al. 2004) and the cov-
erage achieved by such test cases. For example, Cohen et al.
(1996) found that pairwise generated tests can achieve 90%
code coverage by using the AETG tool. Other studies (Cohen
et al. 1994; Dalal et al. 1998; Sampath and Bryce 2012) have

reported the use of combinatorial testing on real-world sys-
tems and how it can help in the detection of faults when
compared to other test design techniques.

Few papers examine the effectiveness (i.e., the ability of
test cases to detect faults) of combinatorial tests of differ-
ent t-wise strengths and how these strategies compare with
each other. There is some empirical evidence suggesting that
across a variety of domains, all failures could be triggered by
a maximum of four-way interactions (Kuhn and Okum 2006;
Richard Kuhn et al. 2004; Bell and Vouk 2005; Wallace and
Richard Kuhn 2001). In one such case, 67% of failures are
caused by one-parameter, two-way combinations cause 93%
of failures, and 98% by three-way combinations. The detec-
tion rate for other studies is similar, reaching 100% fault
detection by the use of four-way interactions. These results
encouraged our interest in investigating a larger case study on
how Q-EMCQ and different interaction strengths perform in
terms of test efficiency and effectiveness for industrial soft-
ware systems and study the degree of interaction involved in
detecting faults for such programs.

4 Overview of the proposed strategy

The high-level view of Q-EMCQ strategy is illustrated in
Fig. 3. Themain components ofQ-EMCQconsist of the algo-
rithm (along with its selection and acceptance mechanism)
and the defined search operators. Referring to Fig. 3, Q-
EMCQ chooses the search operator much like a multiplexer
via a search operator connector based on the memory on its
previous performances (i.e., penalize and reward). However,
it should be noted that theQ-learningmechanism is only sum-
monedwhen there are no improvements in the prior iteration.
The complete detailed working of Q-EMCQ is highlighted
in the next subsections.

4.1 Q-learningMonte Carlo hyper-heuristic strategy

The exponential Monte Carlo with counter (EMCQ) algo-
rithm from Ayob and Kendall (2003); Kendall et al. (2014)
has been adopted in this work as the basis of Q-EMCQ selec-
tion and acceptance mechanism. EMCQ algorithm accepts
poor solution (similar to simulated annealing (Kirkpatrick
et al. 1983); the probability density is defined as:

ψ = e− δT
q (1)

where δ is the difference in fitness value between the current
solution (Si ) and the previous solution (S0) (i.e., δ = f (Si )−
f (S0)), T is the iteration counter, and q is a control parameter
for consecutive non-improving iterations.

Similar to simulated annealing, probability density Ψ

decreases toward zero as T increases. However, unlike sim-
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Fig. 3 High-level view of the
proposed hyper-heuristic
strategy

ulated annealing, EMCQ does not use any specific cooling
schedule; hence, specific parameters do not need to be
tuned. Another notable feature is that EMCQallows dynamic
manipulation on its q parameter to increase or decrease the
probability of accepting poormoves. q is always incremented
upon a poormove and reset to 1 upon a goodmove to enhance
the diversification of the solution.

Although adopting the same cooling schedule as EMCQ,
Q-EMCQhas a different reward and punishmentmechanism.
For EMCQ, the reward is based solely on the previous per-
formance (although sometimes the poor performing operator
may also be rewarded based on some probability). Unlike
EMCQ, when a poor search operator is penalized, Q-EMCQ
chooses the historically best performing operator for the next
search instance instead of the available search operators ran-
domly.

Q-learning is a Markov decision process that relies on the
current and forward-lookingQ-values. It provides the reward
and punishment mechanism (Christopher 1992) that dynam-
ically keeps track of the best performing operator via online
reinforcement learning. To be specific, Q-learning learns the
optimal selection policy by its interaction with the environ-
ment. Q-learning works by estimating the best state–action
pair through the manipulation of memory based on Q(s, a)

table. A Q(s, a) table uses a state–action pair to index a
Q-value (i.e., as cumulative reward). The Q(s, a) table is
updated dynamically based on the reward and punishment
(r) from a particular state–action pair.

Let S = [s1, s2, . . . , sn] be a set of states, A =
[a1, a2, . . . , an] be a set of actions, αt be the learning rate
within [0, 1], γ be the discount factor within [0, 1], and rt be
the immediate reward/punishment acquired from executing
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action a, the Q(st, at) as the cumulative reward at time (t)
can be computed as follows:

Q(t+1)(st , at ) = Qt (st , at ) + αt (rt + γmax(Qt

(s(t+1), a(t+1))) − Qt (st , at ))
(2)

The optimal setting for t , γ , and rt needs further clari-
fication. When αt is close to 1, a higher priority is given to
the newly gained information for the Q-table updates. On the
contrary, a small value of αt gives higher priority to the exist-
ing information. To facilitate exploration of the search space
(to maximize learning from the environment), the value of αt

during early iteration can be set a high value, but adaptively
reduce toward the end of the iteration (to exploit the existing
best known Q-value) as follows:

αt = 1 − 0.9 × t/(Max I teration) (3)

The parameter γ works as the scaling factor for reward-
ing or punishing the Q-value based on the current action.
When γ is close to 0, the Q-value is based on the cur-
rent reward/punishment only. When γ is close to 1, the
Q-value will be based on the current and the previous
reward/punishment. It is suggested to set γ = 0.8 Samma
et al. (2016).

The parameter rt serves as the actual reward or punishment
value. In our current work, the value of rt is set based on:

rt = 1, if the current action improves fitness
rt = −1, otherwise

}
(4)

Based on the discussion above, Algorithm 1 highlights the
pseudo-code for Q-EMCQ.

Q-EMCQ involves three main steps, denoted as Steps
A, B, and C. Step A deals with the initialization of vari-
ables. Line 1 initializes the populations of the required
t-wise interactions, I = I1, I2, . . . , IM . The value of M
depends on the given inputs interaction strength (t), param-
eter (k), and its corresponding value (v). M captures the
number of required interactions that need to be captured
in the constructed CA. M can be mathematically obtained
as the sum of products of each individual’s t-wise interac-
tion. For example, for C A(9; 2, 34), M takes the value of
3 × 3 + 3 × 3 + 3 × 3 + 3 × 3 + 3 × 3 + 3 × 3 = 54. If
MC A(9; 2, 3222) is considered, then M takes the value of
3 × 3 + 3 × 2 + 3 × 2 + 3 × 2 + 3 × 2 + 2 × 2 = 37.
Line 2 defines the maximum iteration Θmax and population
size, N . Line 3 randomly initializes the initial population of
solution X = X1, X2, . . . , X M . Line 4 defines the pool of
search operators. Lines 6–14 explore the search space for 1
complete episode cycle to initialize the Q-table.

Step B deals with the Q-EMCQ selection and acceptance
mechanism. The main loop starts in line 15 with Θmax as

the maximum number of iteration. The selected search oper-
ator will be executed in line 17. The Q-table will be updated
accordingly based on the quality/performance of the cur-
rent state–action pairs (lines 18–24). Like EMCQ, theMonte
Carlo Metropolis probability controls the selection of search
operators when the quality of the solution improves (lines
25–30). This probability decreases with iteration (T ). How-
ever, it may also increase as the Q-value can be reset to 1
(in the case of re-selection of any particular search operator
(lines 29 and 34)). When the quality does not improve, the
Q-learning gets a chance to explore the search space in one
complete episode cycle (as line 33) to complete the Q-table
entries. As an illustration, Fig. 4 depicts the snapshot of one
entire Q-table cycle for Q-EMCQ along with a numerical
example.

Referring to episode 1 in Fig. 4, assume that the initial
settings are as follows: the current state st = Lévy flight
perturbation operator, the next action at = local pollina-
tion operator, the current value stored in the Q-table for the
current state Q(t+1)(st , at ) = 1.25 (i.e., grayed cell); the
punishment rt = −1.00; the discount factor γ = 0.10; and
the current learning factor αt = 0.70. Then, the new value
for Q(t+1)(st , at ) in the Q-table is updated based on Eq. 2 as:

Q(t+1)(st , at ) = 1.25 + 0.70 × [−1.00 + 0.10

× Max(0.00,−1.01, 1.00,−1.05) − 1.25] = −0.26

(5)

Concerning episode 2 in Fig. 4, the current settings are
as follows: the current state st= Local Pollination Opera-
tor, the next action at= Global Pollination Operator, the
current value stored in the Q-table for the current state
Q(t+1)(st , at ) = 1.00 (i.e., grayed cell ); the punishment
rt = −1.00; the discount factor γ = 0.10; and the cur-
rent learning factor αt = 0.70. Then, the new value for
Q(t+1)(st , at ) in the Q-table is updated based on Eq. 2 as:

Q(t+1)(st , at ) = 1.00 + 0.70 × [−1.00 + 0.10

×Max(0.92, 0.97, 0.11, 1.00) − 1.00] = −0.33 (6)

Considering episode 3 in Fig. 4, the current settings are as
follows: the current state st = Global Pollination Operator,
the next action at = Jaya Operator, the current value stored
in the Q-table for the current state Q(t+1)(st , at ) = 1.00
(i.e., grayed cell ); the reward rt = 1.00; the discount factor
γ = 0.10; and the current learning factor αt = 0.70. Then,
the new value for Q(t+1)(st , at ) in the Q-table is updated
based on Eq. 2 as:

Q(t+1)(st , at ) = 1.00 + 0.70 × [1.00 + 0.10

×Max(0.95, 0.91, 0.80, 0.00) − 1.00] = 1.06 (7)

The complete exploration cycle for updating Q-values
ends in episode 4 as the next action at = s(t+1) = Lévy
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Fig. 4 Q-learning mechanism for 1 complete episode cycle

flight perturbation operator. It must be noted that through-
out the Q-table updates, the Q-EMCQ search process is also
working in the background (i.e., for each update, Xbest is
also kept and the population X is also updated accordingly).

A complete cycle update is not always necessary, espe-
cially during convergence. Lines 38–39 depict the search
operator selection process as the next action (at ) (i.e.,
between Lévy flight perturbation operator, local pollina-
tion operator, global pollination operator, and Jaya operator)
based on the maximum reward defined in the state–action
pair memory within the Q-table (unlike EMCQ where the
selection process is random).

Complementing earlier steps, Step C deals with termina-
tion and closure. In line 39, upon the completion of the main
Θmax loop, the best solution Sbest is added to the final CA. If
uncovered t-wise interaction exists, Step B is repeated until
termination (line 41).

4.2 Cuckoo’s Levy Flight Perturbation Operator

Cuckoo’s Levy flight perturbation operator is derived from
the cuckoo search algorithm (CS) Yang and Deb (2009). The
complete description of the perturbation operator is summa-
rized in Algorithm 2.

Cuckoo’s Levy flight perturbation operator acts as the
local search algorithm that manipulates the Lévy flight
motion. For our Lévy flight implementation, we adopt the
well-known Mantegna’s algorithm Yang and Deb (2009).

Within this algorithm, a Lévy flight step length can be defined
as:

Step = u/[v](1/β) (8)

where u and v are approximated from the normal Gaussian
distribution in which

u≈N (0, σu
2) × σu v≈N (0, σv

2) × σv (9)

For v value estimation, we use σv = 1. For u value esti-
mation, we evaluate the gamma function (Γ ) with the value
of β = 1.5 Yang (2008) and obtain σu using

σu =
∣∣∣∣ (Γ (1 + β) × sin(πβ/2))

(Γ (1 + β)/2) × β × 2(((β−1))/2))

∣∣∣∣
(1/β)

(10)

In our case, the gamma function (Γ ) implementation is
adopted from Press et al. (1992). The Lévy flight motion is
essentially a random walk that takes a sequence of jumps,
which are selected from a heavy-tailed probability func-
tion (Yang and Deb 2009). As a result, the motion will
produce a series of “aggressive” small and large jumps (either
positive or negative), thus ensuring largely diverse values. In
our implementation, the Lévy flight motion performs a sin-
gle value perturbation of the current population of solutions,
thus rendering it as a local search operator.

As for the working of the operator, the initial Xbest is set
to X0 in line 1. The loop starts in line 2. One value from a
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Algorithm 1: Pseudo Code for Q-EMCQ
Input: Interaction strength (t), parameter (k) and its corresponding value (v)
Output: Final covering array, CA
/* Step A: (Initialization) */

1 Initialize the population of the required t-wise interactions, I = {I0, I1, . . . , IM } based on k and v values
2 Initialize Θmax iteration and population size N
3 Initialize the random population of solutions, X = {X0, X1, . . . , X N }
4 Let the pool of search operator H = {H0, H1, . . . , HN }
5 Set Qt (st , at ) = 0 for each state S = [s1, s2, . . . , sn], and action A = [a1, a2, . . . , an]
6 for each state S = [s1, s2, . . . , sn], and action A = [a1, a2, . . . , an] in random order do
7 From the current state st , select the best action at from the Q-table
8 if action (at ) == Ht

i , update Xt
i using Ht

i search operator then
9 Update the best solution obtained so far, Xbest = Pt

i

10 Get immediate reward/punishment rt using Eq. 4
11 Get the maximum Q value for the next state st+1
12 Update αt using Eq.3
13 Update Q-table entry using Eq. 2
14 Update the current state, st = st+1

/* Step B: (Selection and Acceptance) */
15 From the current state st , select the best action at from the Q-table
16 while T < Θmax do
17 if action (at ) == Ht

i , update Xt
i using Ht

i search operator then
18 Update the best solution obtained so far, Xbest = Pt

i

19 Ht ′
i = Ht

i
20 Get immediate reward/punishment rt using Eq. 4
21 Get the maximum Q value for the next state st+
22 Update αt using Eq. 3
23 Update Q-table entry using Eq. 2
24 Update the current state, st = st+1

25 Compute δ = f (Xt
i ) − f (X (t−1)

i )

26 if (δ > 0) /* improving fitness, complete episode unnecessary */
27 then
28 Set q=1 and maintain the best action at = Ht

i
29 else
30 Compute probability density ς using Eq. 1 /* worsening fitness */
31 if random(0, 1) < ς then
32 Ht ′

i = Ht
i

33 Redo Steps 6-14, starting with state st /* explore as one complete episode cycle */

34 Set q=1 and reselect the next action at = Ht ′
i

35 else
36 From the current state st , select the best action at from the Q-table
37 q++

38 T++

/* Step C: (Termination and Closure) */
39 Add Xbest to covering array, CA
40 if there are uncovered t − wise interaction in I then
41 Return to Step B
42 else
43 Terminate

particular individual Xi is selected randomly (column-wise)
and perturbed using α with entry-wise multiplication (⊕)
and levy flight motion (L), as indicated in line 4. If the newly
perturbed Xi has a better fitness value, then the incumbent is
replaced and the value of Xbest is also updated accordingly
(in lines 5–11). Otherwise, Xi is not updated, but Xbest will
be updated based on its fitness against Xi .

4.3 Flower’s Local Pollination Operator

As the name suggests, the flower’s local pollination opera-
tor is derived from the flower algorithm Yang (2012). The
complete description of the operator is summarized in Algo-
rithm 3.

In line 1, X Sbest is initially set to X0. In line 2, two distinct
peer candidates X p and Xq are randomly selected from the
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Algorithm 2: Pseudo Code for Cuckoo’s Levy Flight Perturbation Operator
Input: the population X = {X0, X1, . . . , X M }
Output: Xbest and the updated population X

′ = {X
′
0, X

′
1, . . . , X

′
M }

1 Xbest = X0
2 for i = 0 to population size, M do
3 Generate a step vector Ł which obeys Levy Flight distribution

4 Perturbate one value from random column wise, Xt+1
i = Xt

i + α
⊕

Łwi th α = 1

5 if f (X (t+1)
i ) > f (X (t)

i ) then
6 X (t)

i = X (t+1)
i

7 if ( f (X (t+1)
i ) > f (Xbest )) then

8 Xbest = X (t+1)
i

9 else
10 if ( f (X (t)

i ) > f (Xbest ) then
11 Xbest = X (t)

i

12 Return Sbest

Algorithm 3: Flower’s Local Pollination Operator
Input: the population X = {X0, X1, . . . , X M }
Output: Xbest and the updated population X

′ = {X
′
0, X

′
1, . . . , X

′
M }

1 Xbest = X0
2 for i = 0 to population size, S − 1 do
3 Choose X p and Xq randomly from X, where j �= k
4 Set γ = random (0, 1)

5 Update the current population X (t+1)
i = X (t)

i + γ (X (t)
p − X (t)

q )

6 if ( f (X (t+1)
i ) > f (X (t)

i )) then
7 X (t)

i = X (t+1)
i

8 if ( f (X (t+1)
i ) > f (Xbest )) then

9 Xbest = X (t+1)
i

10 else
11 if ( f (X (t)

i ) > f (Xbest )) then
12 Xbest = X (t)

i

13 Return Sbest

current population X . The loop starts in line 2. Each Xi will
be iteratively updated based on the transformation equation
defined in lines 4–5. If the newly updated Xi has better fitness
value, then the current Xi is replaced accordingly (in lines
6–7). The value of Xbest is also updated if it has a better
fitness value than that of Xi (in lines 8–10). When the newly
updated Xi has poorer fitness value, no update is made to Xi ,
but Xbest will be updated if it has better fitness than Xi (in
lines 11–12).

4.4 Flower’s global pollination operator

Flower’s global pollination operator (Yang 2012) is summa-
rized in Algorithm 4 and complements the local pollination
operator described earlier.

Similar to cuckoo’s Levy flight perturbation operator
described earlier, the global pollination operator also exploits
Levy flight motion to generate a new solution. Unlike the for-

mer operator, the transformation equation for flower’s global
pollination operator uses the Levy flight to update all the
(column-wise) values for Zi of interest instead of only per-
turbing one value, therebymaking it a global search operator.

Considering the flow of the global pollination operator,
Xbest is initially set to X0 in line 1. The loop starts in line
2. The value of Xi will be iteratively updated by using the
transformation equation that exploits exploiting Levy flight
motion (in lines 4–5). If the newly updated Xi has better
fitness value, then the current Xi is replaced accordingly (in
lines 6–7). The value of Xbest is also updated if it has a better
fitness value than that of Xi (in lines 8–10). If the newly
updated Xi has poorer fitness value, no update is made to
Xi . Xbest will be updated if it has better fitness than Xi (in
lines 8–10 and lines 11–12).
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Algorithm 4: Flower’s Global Pollination Operator
Input: the population X = {X0, X1, . . . , X M }
Output: Xbest and the updated population X

′ = {X
′
0, X

′
1, . . . , X

′
M }

1 Xbest = X0
2 for i = 0 to population size, M do
3 Set scaling factor ρ = random(0, 1)
4 Generate a step vector Ł which obeys Levy Flight distribution

5 Update the current population X (t+1)
i = X (t)

i + ρ · Ł · (Xbest − X (t)
i )

6 if ( f (X (t+1)
i ) > f (X (t)

i )) then
7 X (t)

i = X (t+1)
i

8 if ( f (X (t+1)
i ) > f (Xbest )) then

9 Xbest = X (t+1)
i

10 else
11 if ( f (X (t)

i ) > f (Xbest )) then
12 Xbest = X (t)

i

13 Return Xbest

4.5 Jaya search operator

The Jaya search operator is derived from the Jaya algorithm
Rao (2016). The complete description of the Jaya operator is
summarized in Algorithm 5.

Unlike the search operators described earlier (i.e., keep-
ing track of only Xbest ), the Jaya search operator keeps track
of both Xbest and X poor . As seen in line 6, the Jaya search
operator exploits both Xbest and X poor as part of its transfor-
mation equation. Although biased toward the global search
for Q-EMCQ in our application, the transformation equation
can also address local search. In the casewhenΔX = Xbest −
X poor is sufficiently small, the transformation equation off-
set (in line with the term�(Xbest − Xi )−ζ(X poor − X)) will
be insignificant relative to the current location of Xi allowing
steady intensification.

As far as the flow of the Jaya operator is concerned,
lines 1–2 set up the initial values for Xbest = X0 and
X poor = Xbest . The loop starts from line 3. Two random
values � and ζ are generated to compensate and scale down
the delta differences between Xi with Xbest and X poor in the
transformation equation (in lines 4–5). If the newly updated
Xi has a better fitness value, then the current Xi is replaced
accordingly (in lines 7–8). Similarly, the value of Xbest is
also updated if it has a better fitness value than that of Xi (in
lines 9–11). In the case in which the newly updated Xi has
poorer fitness value, no update is made to Xi . If the fitness of
the current Xi is better than that of Xbest , Xbest is assigned
to Xi (in lines 12–13). Similarly, if the fitness of the current
Xi is poorer than that of X poor , X poor is assigned to Xi (in
lines 14–15).

5 Empirical study design

We have put our strategy under extensive evaluation. The
goals of the evaluation experiments are threefold: (1) to
investigate how Q-EMCQ fares against its own predeces-
sor EMCQ, (2) to benchmark Q-EMCQ against well-known
strategies for t-wise test suite generation, (3) to under-
take the effectiveness assessment of Q-EMCQ using t-wise
criteria in terms of achieving branch coverage as well as
revealing mutation injected faults based on real-world indus-
trial applications, (4) to undertake the efficiency assessment
of Q-EMCQ by comparing the test generation cost with
manual testing, and (5) to compare the performance of
Q-EMCQ with contemporary meta-heuristics and hyper-
heuristics.

In line with the goals above, we focus on answering the
following research questions:

– RQ1: In what ways does the use of Q-EMCQ improve
upon EMCQ?

– RQ2: How good is the efficiency of Q-EMCQ in terms
of test suite minimization when compared to the existing
strategies?

– RQ3: How good are combinatorial tests created using Q-
EMCQ and 2-wise, 3-wise, and 4-wise at covering the
code?

– RQ4: How effective are the combinatorial tests created
using Q-EMCQ for 2-wise, 3-wise, and 4-wise at detect-
ing injected faults?

– RQ5: How does Q-EMCQ with 2-wise, 3-wise, and 4-
wise compare with manual testing in terms of cost?

– RQ6: Apart from minimization problem (i.e., t-wise test
generation), is Q-EMCQ sufficiently general to solve
(maximization) optimization problem (i.e., module clus-
tering)?
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Algorithm 5: Jaya Search Operator
Input: the population X = {X0, X1, . . . , X M }
Output: Xbest and the updated population X

′ = {X
′
0, X

′
1, . . . , X

′
M }

1 Xbest = X0
2 X poor = Xbest
3 for i = 0 to population size, M do
4 Set ϕ = random(0, 1)
5 Set ζ = random(0, 1)

6 Update the current population X (t+1)
i = X (t)

i + ϕ · (Xbest − X (t)
i ) − ζ · (X poor − X (t)

i )

7 if ( f (X (t+1)
i ) > f (X (t)

i ) then
8 X (t)

i = X (t+1)
i

9 if ( f (X (t+1)
i ) > f (Xbest )) then

10 Xbest = X (t+1)
i

11 else
12 if ( f (X (t)

i ) > f (Xbest )) then
13 Xbest = X (t)

i

14 if ( f (X (t)
i ) < f (X poor )) then

15 X poor = X (t)
i

16 Return Xbest

5.1 Experimental Benchmark setup

We adopt an environment consisting of a machine running
Windows 10, with a 2.9 GHz Intel Core i5 CPU, 16 GB
1867 MHz DDR3 RAM, and 512 GB flash storage. We set
the population size of N = 20 with a maximum iteration
value θmax = 2500. While such a choice of population size
and maximum iterations could result in more than 50,000
fitness function evaluations, we limit our maximum fitness
function evaluation to 1500 only (i.e., the Q-EMCQ stops
when the fitness function evaluation reaches 1500). This is to
ensure that we can have a consistent value of fitness function
evaluation throughout the experiments (as each iteration can
potentially triggermore than one fitness function evaluation).
For statistical significance, we have executed Q-EMCQ for
20 times for each configuration and reported the best results
during these runs.

5.2 Experimental Benchmark Procedures

For RQ1, we arbitrarily select 6 combinations of covering
arrays CA (N ; 2, 4223), CA (N ; 3, 524232), CA (N ; 4, 5132
23), MCA (N ; 2, 513322), MCA (N , 3, 6151433323) and
MCA (N , 4, 716151433323). Here, the selected covering
arrays span both uniform and non-uniform number of param-
eters. To ensure a fair comparison, we re-implement EMCQ
using the same data structure and programming language
(in Java) as Q-EMCQ before adopting it for covering array
generation. Our EMCQ re-implementation also rides on the
same low-level operators (i.e., cuckoo’s Levy flight perturba-
tion operator, flower algorithm’s local pollination, and global

pollination operator as well as Jaya’s search operator). For
this reason, we can fairly compare both test sizes and execu-
tion times.

For RQ2, we adopted the benchmark experiments mainly
from Wu et al. (2015). In particular, we adopt two main
experiments involving CA (N ; t, v7) with variable values
2 ≤ v ≤ 5, t varied up to 4 aswell as CA (N ; t, 3k)with vari-
able number of parameters 3 ≤ k ≤ 12, t varied up to 4. We
have also compared our strategy with those published results
for those strategies that are not freely available to download.
Parts of those strategies depend mainly on meta-heuristic
algorithms, specifically HSS, PSTG, DPSO, ACO, and SA.
The other part of those strategies is dependent on exact com-
putational algorithms, specifically PICT, TVG, IPOG, and
ITCH. We represent all our results in the tables where each
cell represents the smallest size (marked as bold) generated
by its corresponding strategy. In the case of Q-EMCQ, we
also reported the average sizes to give a better indication of
its efficiency. We opt for generated size comparison and not
time because all of the strategies of interest are not available
to us. Even if these strategies are available, their program-
ming languages and data structure implementations are not
the same renderings as an unfair execution time comparison.
Often, the size comparison is absolute and is independent of
the implementation language and data structure implemen-
tation.

For answering RQ3–RQ5, we have selected a train con-
trol management system that has been in development for a
couple of years. The system is a distributed control software
with multiple types of software and hardware components
for operation-critical and safety-related supervisory behav-
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ior of the train. The program runs on programmable logic
controllers (PLCs), which are commonly used as real-time
controllers used in industrial domains (e.g., manufacturing
and avionics); 37 industrial programs have been provided
for which we applied the Q-EMCQ approach for minimizing
the t-wise test suite.

Concerning RQ6, we have selected three public domain
class diagrams available freely in the public domains involv-
ing Credit Card Payment System (CCPS) Cheong et al.
(2012), Unified Inventory University (UIU) Sobh et al.
(2010), and Food Book (FB)1 as our module case studies.
Here, we have adopted the Q-EMCQ approach for maxi-
mizing the number of clusters so that we can have the best
modularization quality (i.e., best clusters) for all given three
systems’ class diagrams.

For comparison purposes, we have adopted two groups
of comparison. In the first group, we adopt EMCQ as well
as modified choice function (Pour Shahrzad et al. 2018) and
Tabu search HHH Zamli et al. (2016) implementations. It
should be noted that all the hyper-heuristic rides on the same
operators (i.e., Lévy flight, local pollination, global pollina-
tion, and Jaya). In the second group,we have decided to adopt
the TLBOPraditwong et al. (2011), SCAMirjalili (2016) and
SOS Cheng and Prayogo (2014) implementations. Here, we
are able to fairly compare the modularization quality as well
as execution time as the data structure, language implementa-
tion and the running system environment are the same (apart
from the same number of maximum fitness function evalu-
ation). It should be noted that these algorithms (i.e., TLBO,
SCA, SOS) do not have any parameter controls apart from
population size and maximum iteration. Hence, their adop-
tion does not require any parameter calibrations.

5.3 Case study object

As highlighted earlier, we adopt two case study objects
involving the train control management system as well as
the module clustering of class diagrams.

5.3.1 Train control management system

We have conducted our experiment on programs from a train
control management system running on PLCs that have been
developed for a couple of years. A program running on a PLC
executes in a loop in which every cycle contains the reading
of input values, the execution of the program without inter-
ruptions, and the update of the output variables. As shown in
Fig. 5, predefined logical and/or stateful blocks (e.g., bistable
latch SR, OR, XOR, AND, greater-than GT, and timer TON)
and connections between blocks represent the behavior of a
PLC program written in the Function Block Diagram (FBD)

1 https://bit.ly/2XDPOPB.

programming language (John andTiegelkamp2010).Ahard-
ware manufacturer supplies these blocks or is developed
using custom functions. PLCs contain particular types of
blocks, such as timers (e.g., TON) that provide the same
functions as timing relays and are used to activate or deac-
tivate a device after a preset interval of time. There are two
different timer blocks: (1) on-delay timer (TON) and (2) off-
delay timer (TOF). A timer block keeps track of the number
of times its input is either true or false and outputs different
signals. In practice, many other timing configurations can be
derived from these basic timers. An FBD program is trans-
lated to a compliant executable PLC code. For more details
on the FBD programming language and PLCs, we refer the
reader to the work of John and Tiegelkamp (2010).

We experimented with 37 industrial FBD programs for
which we applied the Q-EMCQ approach. These programs
contain ten input parameters and 1209 lines of code on aver-
age per program.

To answer our research questions, we generated test cases
using Q-EMCQ for 2-wise, 3-wise, and 4-wise and executed
each program on these test cases to collect branch cover-
age and fault detection scores for each test suite as well as
the number of test cases created. A test suite created for a
PLC program contains a set of test cases containing inputs,
expected and actual outputs together with timing constraints.
Test Case Generation and Manual TestingWeused test suites
automatically generated using Q-EMCQ. To do this, we
asked an engineer from Bombardier Transportation Sweden
AB, responsible for developing and testing thePLCprograms
used in this study, to identify the range parameter values for
each input variable and constraints. We used the collected
input parameter ranges for each input variable for generating
combinatorial test cases using Q-EMCQ. These ranges and
constraints were also used for creating manual test suites.
We collected the number of test cases for each manual test
suite created by engineers for each of the programs used in
this case study. In testing these PLC programs, the testing
processes are performed according to safety standards and
certifications, including rigorous specification-based testing
based on functional requirements expressed in natural lan-
guage. As the programs considered in this study aremanually
tested and are part of a delivered project, we expect that the
number of test cases created manually by experienced indus-
trial engineers to be a realistic proxy measure of the level of
efficiency needed to test these PLC programs thoroughly.
Measuring Branch CoverageCode coverage criteria are used
in practice to assess the extent to which the PLC program
has been covered by test cases (Ammann and Offutt 2008).
Many criteria have been proposed in the literature, but in
this study, we only focus on branch coverage criteria. For the
PLC programs used in this study, the engineers developing
software indicated that their certification process involves
achieving high branch coverage. A branch coverage score
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Fig. 5 An example of a PLC control program written using the FBD programming language

was obtained for each test suite. A test suite satisfies decision
coverage if running the test cases causes each branch in the
program to have the value true at least once and the value
false at least once.
Measuring Fault Detection Fault detection was measured
using mutation analysis by generating faulty versions of the
PLCprograms.Mutation analysis is used in our case study by
creating faulty implementations of a program in an automated
manner to examine the fault detection ability of a test case
(DeMillo et al. 1978). Amutated program is a new version of
the original PLC program created by making a small change
to this original program. For example, in a PLC program,
a mutated program is created by replacing an operator with
another, negating an input variable, or changing the value of
a constant to another interesting value. If the execution of a
test suite on themutated program gives a different observable
behavior as the original PLC program, the test case kills that
mutant. We calculated the mutation score using an output-
only oracle against all the created mutated programs. For all
programs, we assessed the mutation detection capability of
each test case by calculating the ratio of mutated programs
killed to the total number of mutated programs. Researchers
(Just et al. (2014); Andrews et al. (2005)) investigated the
relation between real fault detection and mutant detection,
and there is some strong empirical evidence suggesting that
if a test case can detect or kill most mutants, it can also be
good at detecting naturally occurring faults, thus providing
evidence that the mutation score is a fairly good proxy mea-
sure for fault detection.

In the creation of mutants, we rely on previous studies
that looked at usingmutation analysis for PLC software (Shin
et al. 2012;Enoiu et al. 2017).Weused themutation operators
proposed in Enoiu et al. (2017) for this study. The following
mutation operators were used:

– Logic Block Replacement Operator (LRO) Replacing a
logical block with another block from the same category
(e.g., replacing an AND block with an XOR block in
Fig. 5).

– Comparison Block Replacement Operator (CRO)Replac-
ing a comparison blockwith another block from the same
category (e.g., replacing a greater-than (GT) block with
a greater-or-equal (GE) block in Fig. 5).

– Arithmetic Block Replacement Operator (ARO) Replac-
ing an arithmetic block with another block from the same
functional category (e.g., replacing a maximum (MAX)
block with an addition (ADD) block).

– Negation Insertion Operator (NIO) Negating an input or
output connection between blocks (e.g., a variable var
becomes NOT(var)).

– Value Replacement Operator (VRO)Replacing a value of
a constant variable connected to a block (e.g., replacing
a constant value (var = 5) with its boundary values (e.g.,
var = 6, var = 4)).

– Timer Block Replacement Operator (TRO). Replacing
a timer block with another block from the same timer
category (e.g., replacing a timer-off (TOF) block with a
timer-On (TON) block in Fig. 5).
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To generate mutants, each of the mutation operators was
systematically applied to each programwherever possible. In
total, for all of the selected programs, 1368 mutants (faulty
programs based on ARO, LRO, CRO, NIO, VRO, and TRO
operators)were generated by automatically introducing a sin-
gle fault into the program.
Measuring Cost Leung andWhite (1991) proposed the use of
a costmodel for comparing testing techniques by using direct
and indirect testing costs. A direct cost includes the engi-
neer’s time for performing all activities related to testing, but
also the machine resources such as the test environment and
testing tools. On the other hand, indirect cost includes test
process management and tool development. To accurately
measure the cost effort, one would need to measure the direct
and indirect costs for performing all testing activities. How-
ever, since the case study is performed a postmortem on a
system that is already in use and for which the development
is finished, this type of cost measurement was not feasible.
Instead, we collected the number of test cases generated by
Q-EMCQ as a proxy measure for the cost of testing. We are
interested in investigating the cost of using the Q-EMCQ
approach in the same context as manual testing. In this case
study, we consider that costs are related to the number of
test cases. The higher the number of test cases, the higher
is the respective test suite cost. We assume this relationship
to be linear. For example, a complex program will require
more effort for understanding, and alsomore tests than a sim-
ple program. Thus, the cost measure is related to the same
factor—the complexity of the software which will influence
the number of test cases. Analyzing the cost measurement
results is directly related to the number of test cases giving
a picture of the same effort per created test case. In addition
to the number of test cases measure, other testing costs are
not considered, such as setting up the testing environment
and tools, management overhead, and the cost of developing
new tests. In this work, we restrict our analysis to the num-
ber of test cases created in the context of our industrial case
study.

5.3.2 Module clustering of class diagrams

The details of the three class diagrams involved are:

– Credit Card Payment System (CCPS) Cheong et al.
(2012) consists of 14 classes interlink with 20 two-
way associations and 1 aggregation relationship (refer
to Fig. 9a ).

– Unified Inventory University (UIU) Sobh et al. (2010)
consists of 19 classes interlink with 28 aggregations, 1
2-wise associations and 1 dependency relationship (refer
to Fig. 10a).

– Food Book (FB)2 consists of 31 interlinked classes with
25 2-wise associations, 7 generalizations, and 6 aggrega-
tions clustered into 3 packages (refer to Fig. 11a).

Module clustering problem involves partitioning a set of
modules into clusters based on the concept of coupling (i.e.,
measuring the dependency between modules) and cohesion
(i.e., measuring the internal strength of a module cluster).
The higher the coupling, the less readable the piece of code
will be, whereas the higher the cohesion, the better to code
organization will be. To allow its quantification, Praditwong
et al. (2011) define modularization quality(MQ) as the sum
of the ratio of intra-edges and inter-edges in each cluster,
called modularization factor (MFk) for cluster k based on the
use of module dependency graph such as the class diagram.
Mathematically,MFk can be formally expressed as in Eq. 11:

MFk =
{

0 if i = 0
i

i+ 1
2 j

if i > 0 (11)

where i is the weight of intra-edges and j is that of inter-
edges. The term 1

2 j is to split the penalty of inter-edges across
the two clusters that are connected by that edge. TheMQ can
then be calculated as the sum of MFk as follows:

MQ =
k=1∑

n

MFk (12)

where n is the number of clusters, and it should be noted that
maximizing MQ does not necessarily mean maximizing the
clusters.

6 Case study results

The case study results can be divided into two parts: for
answering RQ1–RQ5 and for answering RQ6.

6.1 Answering RQ1–RQ5

This section provides an analysis of the data collected in
this case study, including the efficiency of Q-EMCQ and the
effectiveness of using combinatorial interaction testing of
different strengths for industrial control software. For each
program and each generation technique considered in this
study, we collected the produced test suites (i.e., 2-wise
stands for Q-EMCQ generated test suites using pairwise
combinations, 3-wise is short for test suites generated using
Q-EMCQ and 3-wise interactions and 4-wise stands for gen-
erated test suites using Q-EMCQ and 4-wise interactions).

2 https://bit.ly/2XDPOPB.
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The overall results of this study are summarized in the form
of boxplots in Fig. 7. Statistical analysiswas performed using
the R software (R-Project 2005).

As our observations are drawn from an unknown distribu-
tion, we evaluate if there is any statistical difference between
2-wise, 3-wise, and 4-wise without making any assump-
tions on the distribution of the collected data. We use a
Wilcoxon–Mann–Whitney U-test (Howell 2012), a nonpara-
metric hypothesis test for determining if two populations of
data samples are drawn at random from identical populations.
This statistical test was used in this case study for checking
if there is any statistical difference among each measure-
ment metric. Besides, the Vargha–Delaney test (Vargha and
Delaney 2000) was used to calculate the standardized effect
size, which is a nonparametric magnitude test that shows sig-
nificance by comparing two populations of data samples and
returning the probability that a random sample from one pop-
ulation will be larger than a randomly selected sample from
the other. According to Vargha and Delaney (2000), statisti-
cal significance is determined when the obtained effect size
is above 0, 71 or below 0, 29.

For each measure, we calculated the effect size of 2-wise,
3-wise, and 4-wise and we report in Table 5 the p values
of these Wilcoxon–Mann–Whitney U-tests with statistically
significant effect sizes shown in bold.

RQ1: In what ways does the use of Q-EMCQ improve
upon EMCQ?

Table 1 highlights the results for both Q-EMCQ and
EMCQ results involving the 3 combinations of mixed cover-
ing arrays MCA (N ; 2, 513322), MCA (N ; 3, 524232), and
MCA (N ; 4, 513223).

Referring to Table 1, we observe that Q-EMCQ has out-
performed EMCQ as far as the average test suite size is
concerned in all three MCAs. As for the time performances,
EMCQ is better than Q-EMCQ, notably because there is no
overhead as far as maintaining the Q-learning table.

To investigate the performance of Q-EMCQ and EMCQ
further, we plot the convergence profiles for the 20 runs for
the three covering arrays, as depicted in Fig. 6a to Fig. 6c.
At a glance, visual inspection indicates no difference as far
as average convergence is concerned. Nonetheless, when we
zoom in all the figures (on the right of Fig. 6a to Fig. 6c),
we notice that Q-EMCQ has better average convergence than
EMCQ.

RQ2: How good is the efficiency of Q-EMCQ in terms
of test suite minimization when compared to the
existing strategies?

Tables 2 and 3 highlight the results of two main experiments
involving CA (N ; t, v7) with variable values 2 ≤ v ≤ 5, t

varied up to 4 as well as CA (N ; t, 3k) with variable number
of parameters 3 ≤ k ≤ 12, t varied up to 4. In general, the
authors of the strategies used in our experimental compar-
isons only provide the best solution quality, in terms of the
size N, achieved by them. Thus, these strategies cannot be
statistically compared with Q-EMCQ.

As seen in Tables 2 and 3, the solution quality attained by
Q-EMCQ is very competitive with respect to that produced
by the state-of-the-art strategies. In fact, Q-EMCQ is able
to match or improve on 7 out of 16 entries in Table 2 (i.e.,
43.75%) and 20 out of 27 entries in Table 3 (i.e., 74.07%),
respectively. The closest competitor is that of DPSO which
scores 6 out of 16 entries in Table 2 (i.e., 37.50%) and 19
out of 27 entries in Table 3 (i.e., 70.37%). Regarding the
computational effort, as the strategies used in our compar-
isons adopt different running environments, data structures,
and implementation languages, these algorithms cannot be
directly compared with ours.

RQ3: How good are combinatorial tests created
using Q-EMCQ for 2-wise, 3-wise and 4-wise at
covering the code?

In Table 4, we present the mutation scores, code coverage
results, and the number of test cases in each collected test
suite (i.e., 2-wise, 3-wise, and 4-wise generated tests). This
table lists the minimum, maximum, median, mean, and stan-
dard deviation values. To give an example, 2-wise created test
suites found an average mutation score of 52%, while 4-wise
tests achieved an average mutation score of 60%. This shows
a considerable improvement in the fault-finding capability
obtained by 4-wise test suites over their 2-wise counterparts.
For branch coverage, combinatorial test suites are not able
to reach or come close to achieving 100% code coverage on
most of the programs considered in this case study.

As seen in Fig. 7b, for the majority of programs consid-
ered, combinatorial test suites achieve at least 50% branch
coverage. 2-wise test suites achieve lower branch coverage
scores (on average 84%) than 3-wise test suites (on average
86%). The coverage achieved by combinatorial test suites
using 4-wise is ranging between 50% and 100% with a
median branch coverage value of 90%.

As seen in Fig. 7b, the use of combinatorial testing
achieves between 84% and 88% branch coverage on average.
Results for all programs (in Table 5) show that differences
in code coverage achieved by 2-wise versus 3-wise and 4-
wise test suites are not strong in terms of any significant
statistical difference (with an effect size of 0.4). Even if
automatically generated test suites are created by having the
purpose of covering up to 4-wise input combinations, these
test suites are not missing some of the branches in the code.
The results are matching our expectations: combinatorial test
suites achieve high code coverage to automatically generated

123



An evaluation of Monte Carlo-based hyper-heuristic… 13945

Table 1 Size and time
comparison for Q-EMCQ and
its predecessor EMCQ

MCA Q-EMCQ EMCQ

Size Time (sec) Size Time (sec)

Best Ave Best Ave Best Ave Best Ave

MCA (N ; 2, 513322) 15 17.00 11.53 12.55 17 17.56 9.29 11.35

MCA (N ; 3 , 514232) 83 86.10 53.93 8.14 84 86.50 42.92 46.49

MCA (N ; 4, 513223) 99 111.50 107.15 134.10 03 112.80 91.05 10.36

The bold numbers show the best results obtained

(a)

(b)

(c)

Fig. 6 Average convergences for Q-EMCQ and EMCQ for different CAs
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Table 2 CA (N ; t, v7) with variable values 2 ≤ v ≤ 5, with t varied up to 4

Meta-heuristic-based strategies Other Strategies

Q-EMCQ 1HSS 1PSTG 1CS 1DPSO 1Jenny 1TConfig 1ITCH 1PICT 1TVG 1IPOG

T v B est A ve

2 2 7 7.00 7 6 6 7 8 7 6 7 7 8

3 14 15.35 14 15 15 14 16 15 15 16 15 17

4 23 24.6 25 26 25 24 28 28 28 27 27 28

5 35 35.9 35 37 37 34 37 40 45 40 42 42

3 2 15 15.0 12 13 12 15 14 16 13 15 15 19

3 49 50.1 50 50 49 49 51 55 45 51 55 57

4 112 115.4 121 116 117 112 124 112 112 124 134 208

5 216 220.1 223 225 223 216 236 239 225 241 260 275

4 2 27 32.2 29 29 27 34 31 36 40 32 31 48

3 148 153.55 155 155 155 150 169 166 216 168 167 185

4 482 485.05 500 487 487 472 517 568 704 529 559 509

5 1148 1162.40 1174 1176 1171 1148 1248 1320 1750 1279 1385 1349

The bold numbers show the best results obtained

Table 3 CA (N ; t, 3k) with
variable number of parameters
3 ≤ k ≤ 12, with t varied up to
4

Meta-heuristic-based strategies Other Strategies

Q-EMCQ HSS PSTG CS DPSO Jenny TConfig ITCH PICT TVG IPOG

T k Best Ave

2 3 9 9.80 9 9 9 9 9 10 9 10 10 11

4 9 9.00 9 9 9 9 13 10 9 13 12 12

5 11 11.35 12 12 11 11 14 14 15 13 13 14

6 13 14.20 13 13 13 14 15 15 15 14 15 15

7 14 15.00 15 15 14 15 16 15 15 16 15 17

8 15 15.60 15 15 15 15 17 17 15 16 15 17

9 15 16.30 17 17 16 15 18 17 15 17 15 17

10 16 16.90 17 17 17 16 19 17 15 18 16 20

11 17 17.75 17 17 18 17 17 20 15 18 16 20

12 16 17.95 18 18 18 16 19 20 15 19 16 20

3 4 27 29.45 30 30 28 27 34 32 27 34 34 39

5 38 41.25 39 39 38 41 40 40 45 43 41 43

6 33 39.00 45 45 43 33 51 48 45 48 49 53

7 48 50.80 50 50 48 48 51 55 45 51 55 57

8 51 53.65 54 54 53 52 58 58 45 59 60 63

9 56 57.85 59 58 58 56 62 64 75 63 64 65

10 59 61.25 62 62 62 59 65 68 75 65 68 68

11 63 64.45 66 64 66 63 65 72 75 70 69 76

12 66 67.45 67 67 70 65 68 77 75 72 70 76

4 5 81 86.5 94 96 94 81 109 97 153 100 105 115

6 131 133.5 132 133 132 131 140 141 153 142 139 181

7 150 153.3 154 155 154 150 169 166 216 168 172 185

8 173 175.15 174 175 173 171 187 190 216 189 192 203

9 167 188.65 195 195 195 187 206 213 306 211 215 238

10 207 209.45 212 210 211 206 221 235 336 231 233 241

11 221 225.05 223 222 229 221 236 258 348 249 250 272

12 238 240.35 244 244 253 237 252 272 372 269 268 275

The bold numbers show the best results obtained
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Table 4 Results for each
measure: mutation score, branch
coverage score, and the cost in
terms of the number of test cases

Measure Test technique Minimum Maximum Median Mean SD

Mutation score (%) 2-wise 0, 0 100, 0 48, 4 52, 3 34, 7

3-wise 0, 0 100, 0 55, 5 57, 2 34, 3

4-wise 0, 0 100, 0 63, 4 60, 9 34, 2

Branch coverage (%) 2-wise 50, 0 100, 0 85, 0 84, 1 14, 3

3-wise 50, 0 100, 0 87, 5 86, 6 13, 0

4-wise 50, 0 100, 0 90, 6 88, 3 13, 4

Cost (# test cases) 2-wise 6, 0 231, 0 8, 0 19, 6 41, 3

3-wise 8, 0 732, 0 17, 0 50, 5 137, 3

4-wise 16, 0 1462, 0 43, 5 105, 8 273, 0

Manual 2, 0 62, 0 11, 0 17, 5 15, 3

We report the cost comparison between manual tests and t-wise (t ≤ 4) generated tests. We report several
statistics relevant to the obtained results: minimum, maximum, median, mean, and standard deviation (SD)
values

test suites using combinatorial goals up to 4-wise achieve
high branch coverage. Nevertheless, we confirm that there is
a need to consider other test design aspects and higher t-wise
strengths to achieve over 90% branch coverage. This under-
scores the need to study further howcombinatorial testing can
be improved in practice and what aspects can be taken into
account to achieve better code coverage. The programs con-
sidered in this study are used in real-time systems to provide
operational control in trains. The runtime behavior of such
systems depends not only on the choice of parameters but
also on providing the right choice of values at the right time
points. By considering such information, combinatorial tests
might be more effective at covering the code. This needs to
be further studied by considering the extent to which t-wise
can be used in combination with other types of information.

RQ4: How effective are tests generated using
Q-EMCQ for 2-wise, 3-wise, and 4-wise at detecting
injected faults?

To answer RQ4 regarding the effectiveness in terms of fault
detection, we focused on analyzing the test suite quality of
combinatorial testing. For all programs, as shown in Fig. 7a,
the fault detection scores of pairwise generated test suites
show an average mutation score of 52%, but they are not
significantly worse than 3-wise (57% on average) and 4-wise
(60%) test suites with no statistically significant differences
(effect size of 0, 4 in Table 5). Hence, a test that is generated
automatically using combinatorial techniques up to 4-wise is
not a good indicator of test effectiveness in terms of mutation
score. However, one hypothesis is emerging from this result:
if 4-wise test suites are not achieving a high mutation score,
there is a need to generate higher-strength test suites as well
as find ways to improve the fault detection scores by using
other test design techniques.

This is, to some extent, an entirely surprising result. Our
expectation was that combinatorial testing of higher strength
than 2-wise would yield high scores (over 90%) in terms
of fault detection. Tests for 4-wise in testing FBD programs
would intuitively be quite good test cases at detecting faults.
However, the results of our study are not consistent with the
results of other studies (Kuhn et al. 2010; Richard Kuhn et al.
2004; Kuhn and Reilly 2002) reporting the degree of inter-
action occurring in naturally occurring faults. Surprisingly,
this expectation does not clearly hold for the results of this
study. Our results indicate that combinatorial test cases with
interactions up to 4-wise are not good indicators of test effec-
tiveness in terms of fault detection. In addition, our results are
not showing any statistically significant difference in muta-
tion score between any t-wise strength considered in this
study.

RQ5: How does Q-EMCQ for 2-wise, 3-wise, and
4-wise compare withmanual testing in terms of
cost?

As a baseline for comparing the cost of testing, we used test
cases created by industrial engineers in Bombardier Trans-
portation for all 37 programs included in this case study.
These programs are part of a project delivered already to
customers and thoroughly tested. Each test suite contains
a set of test cases containing inputs, expected and actual
outputs, and time information expressing timing constraints.
As in this case study, we consider the number of test cases
related to the cost of creating, executing, and checking the
result of each test case; we use the number of test cases in
a test suite manually created as a realistic measure of cost
encountered in the industrial practice for the programs con-
sidered. We assume that the higher the number of test cases,
the higher are the respective cost associated with each test
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Fig. 7 Mutation score and achieved branch coverage comparison between 2-wise, 3-wise, and 4-wise generated test cases; boxes span from first
to third quartile, black middle lines mark the median, and the whiskers extend up to 1.5x the interquartile range and the circle symbols represent
outliers

Table 5 For mutation score and coverage, we calculated the effect size
of 2-wise versus 3-wise and 4-wise

Measure Method Effect Size p value

Mutation Score 2-wise 0.444 0.411

3-wise

3-wise 0.464 0.595

4-wise

2-wise 0.412 0.193

4-wise

Coverage 2-wise 0.454 0.494

3-wise

3-wise 0.447 0.432

4-wise

2-wise 0.412 0.186

4-wise

Cost (#test cases) Manual 0.536 < 0.565

2-wise

Manual 0.376 < 0.054

3-wise

Manual 0.157 < 0.001

4-wise

In addition, for the cost measure, we calculated the effect size between
manual testing and t-wise with t ≤ 4. We also report the p values of a
Wilcoxon–Mann–Whitney U-tests with significant effect sizes shown
in bold
The bold number shows the best result obtained

suite. This section aims to answer RQ5 regarding the rela-
tive cost of performing testing concerning the number of test
cases generated using Q-EMCQ in comparison with manu-
ally hand-crafted tests. As seen in Table 4, the number of
test cases for 2-wise and 3-wise is consistently significantly
lower than for 4-wise created tests. As seen in Table 5, the
cost of performing testing using Q-EMCQ for 4-wise is con-
sistently significantly higher (in terms of the number of test

2−wise 3−wise 4−wise manual
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Fig. 8 Cost comparison in terms of number of test cases between 2-
wise, 3-wise, 4-wise generated test cases and manual testing

cases) than for manually created test suites; 3-wise and 4-
wise generated test suites are longer (88 and 33 more test
cases on average, respectively) over manual testing. There is
enough evidence to claim that the results between 4-wise and
manual test suites are statistically significant, with a p-value
below the traditional statistical significance limit of 0, 05 and
a standardized effect size of 0, 157. The effect is weaker for
the result between 3 − wise and manual test suites with a
p-value of 0,05 and an effect size of 0, 376.

As seen in Fig. 8, the use of 2-wise consistently results in
shorter test suites for all programs than for 3-wise and 4-wise.
It seems like 2-wise test suites are comparable with manual
test suites in terms of the number of test cases. Examining
Table 5, we see the same pattern in the statistical analysis:
standardized effect sizes being higher than 0, 1, with p-value
higher than the traditional statistical significance limit of 0,
05. The effect is the strongest for the 2-wise and 4-wise with
a standardized effect size of 0, 08. It seems that 4-wise will
create much more tests than 2-wise, which in practice can
affect the cost of performing testing.
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6.2 Answering RQ6

As highlighted earlier, the experiment for RQ6 investi-
gates the performance of Q-EMCQ against some selected
meta/hyper-heuristics.

RQ6: Apart from theminimization problem (i.e.,
t-wise test generation), is Q-EMCQ sufficiently
general to solve (maximization) optimization
problem (i.e., module clustering)?

As the general observation from the results inTable 6,wenote
that hyper-heuristics generally outperform meta-heuristics.
This could be due to the fact hyper-heuristics can adap-
tively choose the right operator based on the need for the
current search. However, in terms of execution times, gen-
eral meta-heuristics appear to be slightly faster than their
hyper-heuristic counterparts owing to the direct link from
the problem domain to the actual search operators.

Going to specific comparison from hyper-heuristic group
in Table 6 and Figs. 9b, 10b and 11b,Q-EMCQandMCFout-
perform all other hyper-heuristics as far as the best MQ (with
2.226, 2.899, and 4.465) for Credit Card Payment System,
Unified University Inventory, and Food Book, respectively.
In terms of average, Q-EMCQ has a better performance than
that of MCF. Putting Q-EMCQ and MCF aside, Tabu HHH
outperforms EMCQ in both average and best MQ. On the
positive note, EMCQ outperforms all other hyper-heuristics
as far as execution times are concerned.

Considering the comparison with the meta-heuristics, Q-
EMCQ still manages to outperform all algorithms. In the
case of the Credit Card Payment System, TLBO manages to
match the best of MQ for Q-EMCQ, although with poorer
average MQ. This is expected as the Credit Card Payment
System consists of only 14 classes as compared to 19 and
31 classes in the Unified Inventory System, and Food Book,
respectively. In terms of execution time, SCA has the best
time performance overall for Unified Inventory University
(with 37.782 secs) and Food Book (with 56.798 secs), while
TLBO gives the best performance for Credit Card Payment
System (with 33.531 secs). Here, SOS gives the poorest exe-
cution time.

7 Discussion

Reflecting on the work undertaken, certain observations can
be elaborated as lessons learned. In particular, we can group
our observations into two parts: The first part relates to the
design of Q-EMCQ and its operators, whereas the second
part relates to its performance in the industrial case study.

Concerning thefirst part,we foreseeQ-EMCQas ageneral
hybrid meta-heuristic. Conventional hybrid meta-heuristics Ta
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Fig. 9 Clustering of Case Study 1—Credit Card Payment System

Fig. 10 Clustering of Case Study 2—Unified University Inventory

are often tightly coupled (whereby two or more operators
are interleaved together) and too specific for a particular
problem. In addition, the selection of a particular operator
during the searching process does not consider the previ-
ous performances of that operator. Contrary to conventional
hybrid meta-heuristic, apart from being adaptive, Q-EMCQ
design is highly flexible. Two aspects of Q-EMCQ can be
treated as “pluggable” components. First, the current Monte
Carlo heuristic selection and acceptance mechanism can be
replaced with other selection and acceptance mechanisms.
Second, the individual search operators can also be replaced
with other operators (taking into consideration whether it is
for local or global search). For instance, the cuckoo’s per-

turbation operator can easily be substituted by the simulated
annealing’s neighborhood search operator.

Unlike pure meta-heuristic approaches, Q-EMCQ also
does not require any specific tuning apart from calibrating
maximum iteration and population size. Notably, cuckoo
as a standalone algorithm requires the calibration of three
control parameters: maximum iteration, population size, and
probability (pa) for replacing poor eggs. Similarly, flower
as a standalone algorithm requires the calibration of three
control parameters: maximum iteration, population size, and
probability (p) for local or global pollination. Unlike the
cuckoo and flower algorithms, the Jaya algorithm does not
require additional parameters (other than maximum iteration
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Fig. 11 Clustering of Case Study 3—Food Book Class Diagram

and population size). Adopted as individual search operators,
the cuckoo’s probability (pa) and the flower’s probability (p)
are completely abandoned within the design of Q-EMCQ.

Similar to its predecessor EMCQ, the selection of the
search operators at any instance of the searching process
is adaptively performed based on the Monte Carlo heuris-
tic selection and acceptance mechanism. However, unlike
EMCQ, Q-EMCQ also keeps the memory of the best per-
forming operators via the Q-learning table. The effect of
maintaining the memory can be seen as far as average con-
vergence is concerned. In the early iteration stage, Q-EMCQ
behaves like EMCQas far average convergence is concerned.
However, toward the end of the iteration stage, while EMCQ
relies solely on the random selection of operators, Q-EMCQ
uses historical performance to perform the selection. For
this reason, Q-EMCQ has better average convergence than
EMCQ.

As far as comparative benchmark experiments with other
strategies are concerned, we note that Q-EMCQ and DPSO
give the best results overall (see 2 and 3). On the negative
note, the approach taken byDPSO is rather problem-specific.
On the contrary, our experiments with maximization prob-
lems (e.g., module clustering) indicate that the Q-EMCQ
approach is sufficiently general (refer to Table 6) although
with small-time penalty to maintain the Q-learning mecha-
nism. Here, DPSO has introduced two new control parame-
ters as probabilities (pro1 and pro2) in addition to the existing
social parameters (c1 and c2) and inertia weight (w) to bal-
ance between exploration and exploitation in the context of its
application for t-wise test generation. In this manner, adopt-
ing DPSO to other optimization problems can be difficult
owing to the need to calibrate and tune all these control
parameters accordingly.

On the other side of the spectrum, PICT and IPOG appear
to perform the poorest (with no results matching any of
the best sizes). A more subtle observation is the fact that
meta-heuristic and hyper-heuristics-based strategies appear
to outperform general computational-based strategies.

As part of our study, we used the number of test cases to
estimate the cost in terms of creation, execution, and result
checking. While the cost of creating and executing a test for
creating combinatorial tests can be low compared to manual
testing, the cost of evaluating the test result is usually human-
intensive. Our study suggests that combinatorial test suites
for 4-wise contain 100 created test steps (number of tests) on
average. By considering generating optimized or shorter test
suites, one could improve the cost of performing combina-
torial testing. We note here that the cost of testing is heavily
influenced by the human cost of checking the test result. In
this paper, we do not take into account the time of checking
the results per test case. In practice, this might not be the real
situation. A test strategy, which requires every input parame-
ter in the program to be used in a certain combination, could
contain test cases that are not specified in requirements. This
might increase the cost of checking the test case result. A
more accurate cost model would be needed to obtain more
confidence in the results.

The results of this paper show that 2- to 4-wise combi-
nations of values are not able to detect more than 60% of
injected faults (52% on average for 2-wise, 57% on average
for 3-wise, and 60% on average for 4-wise) and are not able
to cover more than 88% of the code (84% on average for 2-
wise, 86% on average for 3−2-wise, and 88% on average for
4-wise). Surprisingly, these results are not consistent with the
results of other studies (Kuhn et al. 2010; Richard Kuhn et al.
2004; Kuhn and Reilly 2002) reporting the degree of interac-
tion occurring in real faults occurring in industrial systems.

123



13952 B. S. Ahmed et al.

While not conclusive, the results of this study are interesting
because they suggest that the degree of interaction involved
in faults might not be as low as previously thought. As a
direct result, testing all 4-wise combinations might not pro-
vide reasonable assurance in terms of fault detection. There is
a need to considerways of studying the use of higher-strength
algorithms and tailoring these to the programs considered in
this study, which are used in real-time software systems to
provide control capabilities in trains. The behavior of such
a program depends not only on the choice of parameters but
also on providing the right choice of continuous values. By
considering the state of the system of the timing informa-
tion, combinatorial tests might be more effective at detecting
faults. Bergström and Enoiu (2017) indicated that the use of
timing information in combinatorial testing for base-choice
criterion results in higher code coverage and fault detection.
This needs to be further studied by considering the extent to
which t-wise can be used in combination with the real-time
behavior of the input parameters.

8 Limitations

Our results regarding effectiveness are not based on natu-
rally occurring faults. In our study, we automatically seeded
mutants to measure the fault detection capability of the
written tests. While it is possible that faults are naturally
happening in the industry would yield different results, there
are some evidence (Just et al. 2014) to support the use of
injected faults as substitutes for real faults. Another possible
risk of evaluating test suites based on mutation analysis is
the equivalent mutant problem in which these faults cannot
show any externally visible deviation. The mutation score in
this study was calculated based on the ratio of killed mutants
to mutants in total (including equivalent mutants, as we do
not know which mutants are equivalent). Unfortunately, this
fact introduces a threat to the validity of this measurement. In
addition, the results are based on a case study in one company
using 37 PLC programs. Even if this number can be consid-
ered quite small, we argue that having access to real industrial
programs created by engineers working in the safety-critical
domain can be representative. More studies are needed to
generalize these results to other systems and domains.

Finally, our general clustering problem has also dealt with
small-scale problems (the largest class diagram is only 31
classes). As the classes get larger, enumeration of the possi-
ble solution grows in a factorial manner. With such growth,
there could be a potential clustering mismatch. In this case,
maximizing MQ can be seen as two conflicting sides of the
same coin. On one side of the coin, there is a need to get
the largest MQ for better modularization. On the other side
of the coin, automatically maximizing MQ for a large set of
classes may be counterproductive (in terms of disrupting the

overall architectural package structure of the classes). In fact,
some individual clustersmay not be intuitive to programmers
at all. For these reasons, there is a need to balance between
getting the good enough MQ (i.e., which may not be the
best one) and simultaneously obtaining a meaningful set of
clusters.

9 Conclusions

We present Q-EMCQ, a Q-learning-based hyper-heuristic
exponential Monte Carlo with a counter strategy for combi-
natorial interaction test generation, and show the evaluation
results obtained from a case study performed at Bombardier
Transportation, a large-scale company focusing on develop-
ing industrial control software. The 37 programs considered
in this study have been in development and are used in differ-
ent train products all over the world. The evaluation shows
that the Q-EMCQ test generation method is efficient in terms
of generation time and test suite size. Our results suggest that
combinatorial interaction test generation can achieve high
branch coverage. However, these generated test suites do
not show high levels of fault detection in terms of muta-
tion score and are more costly (i.e., in terms of the number of
created test cases) than manual test suites created by experi-
enced industrial engineers. The obtained results are useful for
both practitioners, tool developers, and researchers. Finally,
to complement our current work, we have also demonstrated
the generality of Q-EMCQ via addressing the maximization
problem (i.e., involving the clustering of class diagrams).
For future work, we can focus on exploring the adoption of
Q-EMCQ for large embedded software both for t-wise test
generation as well as its modularization.
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