
A Lightweight Architecture Analysis
of a Monolithic Messaging Gateway

Daniel Brahneborg
Infoflex Connect AB
Stockholm, Sweden

Email: brahneborg@infoflexconnect.se

Wasif Afzal
Mälardalens Högskola

Västerås, Sweden
Email: wasif.afzal@mdh.se

Abstract—Background: The Enterprise Messaging Gateway
(EMG) from Infoflex Connect (ICAB) is a monolithic system used
to deliver mobile text messages (SMS) world-wide. The companies
using it have diverse requirements on both functionality and
quality attributes and would thus benefit from more versatile
customizations, e.g. regarding authorization and data replication.
Objective: ICAB needed help in assessing the current architecture
of EMG in order to find candidates for architectural changes as
well as fulfilling the needs of variability in meeting the wide
range of customer requirements. Method: We analysed EMG
using a lightweight version of ATAM (Architectural Trade-off
Analysis Method) to get a better understanding of how different
architectural decisions would affect the trade-offs between the
quality requirements from the identified stakeholders. Result:
Using the results of this structured approach, it was easy for
ICAB to identify the functionality that needed to be improved.
It also became clear that the selected component should be
converted into a set of microservices, each one optimized for a
specific set of customers. Limitation: The stakeholder require-
ments were gathered intermittently during a long period of
continuous engagement, but there is a chance some of their
requirements were still not communicated to us. Conclusion:
Even though this ATAM study was performed internally at
ICAB without direct involvement from any external stakeholders,
documenting elicited quality attribute requirements and relating
them to the EMG architecture provided new, unexpected, and
valuable understandings of the system with a rather small effort.

Index Terms—Architecture, Monolith, ATAM, Microservice

I. INTRODUCTION

Mobile text messages (SMS) are used world-wide, being
popular as they work on all mobile phones without any
additional software installed. In particular, they are commonly
used by companies to send meeting reminders, authentication
codes, travelling tickets, and more, to their customers. Between
these companies and the customers’ network operators, we
find a product segment called SMS gateways. These gateways
receive text messages from the companies, route them to the
right operators, manage the connections to the operators over
several different communication protocols, and handle any
operator specific requirements. The gateways are often run by
a separate group of companies, known as SMS brokers.

One of these gateways is the Enterprise Messaging Gateway
(EMG) from Infoflex Connect (ICAB). EMG is a system
with a proven track record spanning more than 20 years. Its
monolithic architecture makes it easy for customers to deploy

and manage EMG, and is also convenient for the software
developers as the entire code base is just a simple function
call away.

However, monoliths can be difficult to scale horizontally,
i.e. to more than one server, and are sensitive to failures as
those can bring the entire application down [1]. In our context,
it is also problematic that each software update requires a full
application restart, temporarily stopping all traffic.

One common way of addressing some of these issues with
monoliths is to split them into sets of microservices [2],
[3]. Selecting which parts of the monolith to extract is non-
trivial [4], [5], but usually involves identifying components
with loose coupling (independent) and strong cohesion (self-
contained) [6].

Older literature on modularity provide some other recom-
mendations, such as “We propose instead that one begins with
a list of difficult design decisions or design decisions which
are likely to change. Each module is then designed to hide
such a decision from the others.” by Parnas [7]. We find a
similar theme in many of the design patterns by Gamma et
al. [8], namely to “encapsulate the concept that varies”.

The approach used by Cruz et al. [9] was to base their
migration of a monolith to microservices on the results of
an architectural analysis of the system. Such an analysis
focuses on aspects which arise as a consequence of the
architecture, e.g. response times, scalability, and modifiability.
In particular, they used the Architectural Trade-off Analysis
Method (ATAM) created at the Carnegie Mellon’s Software
Engineering Institute [10], [11]. According to both Dobrica et
al. [12] and Anjos and Zenha-Rela [13], the only analysis
methods that consider a wide set of quality attributes are
ATAM and SBAR [14]. Of these, ATAM is the only one
applicable to mature products [13]. A more recent approach is
RCDA, the Risk- and Cost Driven Architecture approach [15],
adding a financial dimension to architectural work. RCDA
appears to be most useful early in relatively large projects,
neither of which is the case for us.

We know from experience that software such as EMG,
created by one company and used by others, usually require
variability in terms of customer specific behaviour. This vari-
ability is typically not required for microservices, as they
tend to be created for in-house use and even operated by
the developers themselves, sometimes phrased as “you build



it, you run it” [16]. This in-house focus means that “the
literature [on microservices] is scarce in relation to the use of
variability” [2]. Variability is also not covered in the otherwise
comprehensive mapping study on microservice architecture by
Alshuqayran et al. [17].

The research questions we address in this work are whether
ATAM could help identifying the components in EMG where
architectural changes would be most beneficial, and whether
it can help clarifying the need for variability in those compo-
nents. During the analysis, all known quality requirements as
given both by ICAB and their customers must be taken into
account.

We present the results of the systematic application of a
lightweight version of ATAM to ICAB’s EMG system. Our
primary contribution is showing that the ATAM analysis was
able to identify the best component to change, which in
ICAB’s case is the credit management. Our second contri-
bution is showing that ATAM also helped with managing the
variability, suggesting that the credit management component
should be extracted into a set of microservices, all providing
the same API but implementing different strategies. Our third
contribution is the overview of the ATAM artefacts and con-
cepts (Fig. 1), with more details than the original paper [10].
Our fourth contribution is a description of how ATAM can be
used in a real-world architecture analysis, even in the absence
of external stakeholders (Section III-E).

The analysis was carried out as an entirely internal project
at ICAB, avoiding the overhead that comes with involving
external parties. While this setup presented a risk of missing
some of the requirements and ignoring the relative importance
of the requirements we found, it also meant that the study
could be completed in just over one man month.

The current section has presented the background for the
analysis and related work. Next, Section II describes ATAM
and how we adapted it for our purposes, Section III presents
the results from the ATAM analysis, and Section IV discusses
the interpretation of those results. Section V discusses the
validity threats and finally, Section VI presents our conclusions
and planned future work.

II. METHOD

ATAM [10] is a systematic way to “assess the conse-
quences of architectural decisions in light of quality attribute
requirements”. We therefore only consider requirements whose
measurable responses to external stimuli are affected by the
architecture.

An ATAM study follows the nine steps below, typically in
a two or three day discussion workshop. The participants of
this workshop are the various stakeholders of the system. The
analysis is usually carried out in two phases, where phase 1
is limited to steps 1–6 and a small team, and phase 2 includes
all steps a few weeks later, now with the full team.

Presentation:
1) Present ATAM to the participants.
2) Present the system from a business perspective.
3) Present the suggested architecture.

Investigation and analysis:

4) Identify architectural approaches. These approaches re-
fer to aspects such as whether the system would be a
monolith, client–server, or something else. Other terms
used here are “styles” and “patterns”.

5) Generate the quality attribute utility tree, a hierarchical
list of quality requirements.

6) Analyze the architectural approaches in step 4, on how
they realize the most important quality attributes de-
scribed in step 5. This results in the identification of
sensitivity points where an architectural approach affects
a quality attribute, tradeoff points where an approach
affects multiple quality attributes in different ways, and
the list of such points that present a risk.

Testing:

7) Elicit and prioritize scenarios. Now the full set of stake-
holders are included, brainstorming both current use
cases, expected future “change scenarios”, and extreme
“exploratory scenarios”.

8) Analyze the architectural approaches again, now fo-
cusing on the most important scenarios from step 7.
If a scenario can not be realized using the selected
architectural approaches, these need to be adjusted.

Reporting:

9) Present the results.

The key concepts used in ATAM, according to our under-
standing, are shown in Fig. 1. We noted that there is a dis-
crepancy in the ATAM paper regarding the output from step 6.
First it says “all sensitivity points and tradeoff points should
be categorized as either a risk or a non-risk”, suggesting that
risk is an orthogonal concept to the first two. However, then it
continues “The risks/non-risks, sensitivity points, and tradeoff
points are gathered together in three separate lists”, where the
risks are now a concept of its own. In this paper we used the
second variant, with the risks list containing attribute goals we
do not yet know how to fulfill.

We made some additional adaptations of ATAM to fit our
situation better. First of all, no external stakeholders were
involved. Therefore, our analysis was based on the lightweight
version of ATAM [11], where the testing done in steps 7 and 8
is skipped. This is, in essence, ATAM phase 1 plus reporting.
The current section represents step 1 and Section III represents
step 9, containing the output produced by steps 2 to 6.

Next, we realized that the prioritization of the quality
attributes in step 6, “Analyze Architectural Approaches”, was
highly dependent on which stakeholders were present. To
get an objective result despite the lack of such stakeholders,
we needed another way of identifying the most important
scenarios. For this purpose, we counted the number of business
driver groups interested in each of the quality attributes. The
point of having a varied set of stakeholders would partly be
to have somebody represent all these different groups, making
this simple count seem a reasonable proxy.



Business Drivers

Architecture Architecture Approach

Utility Tree

Step 5

Scenario

Attribute Goal

Sensitivity Point

Risk

Tradeoff PointArchitectural Decision

Step 2

Step 3
Step 4

refined into

requires

grouped
into

input

input

fulfilled by

based on 

affects

configured
with

Step 6

Fig. 1. Artefacts created by the different steps in the ATAM version used in this paper, with arrows indicating data flow. The analysis output is discussed in
detail in Section III-E.

III. RESULTS

This section represents step 9, presenting the output gener-
ated from steps 2 to 6. We recall that step 1 was covered by
Section II, and that steps 7 and 8 were skipped entirely.

A. Step 2: Business Drivers
The system requirements from a business perspective were

grouped into “important functions”, “major quality attribute
goals”, “business goals”, and “constraints”.

• The most important functions of EMG are to:
– forward messages with high throughput, and
– manage client credits for these messages.

• The major quality attribute goals of EMG are to:
– be available without interruptions,
– prevent data loss, and
– be easy to install and maintain.

• To satisfy the business goals, each EMG release should:
– provide increased value to a varied set of both old

and new customers, and
– be done several times per year, to minimize risks for

both ICAB and the SMS brokers by not containing
too many new features or updated behaviours.

• The constraints, defining the border between what can
and what can not be done, say that:

– EMG must follow standard network protocols (e.g.
SMPP and HTTP),

– the relative message ordering does not need to be
maintained [18], and that

– ICAB does not have the resources for a full software
rewrite. This means focusing on the smallest changes
in the most isolated modules, giving the most value
to the largest number of customers.

Step 2 also includes the identification of the major stake-
holders, which in our case consists of three groups. The

first group consists of the staff at ICAB, where there is a
strong focus on maintaining a sound architecture, making the
required effort for adding new features predictable. In the
second group we have the entry level customers, operating
gateways with a limited amount of traffic. These customers run
EMG on a single node, trading potentially lower availability
for a lower cost and a simpler setup. The third and final group
consists of customers using multiple EMG nodes and com-
plex configurations to achieve higher system-level throughput,
higher availability to clients, and better protection of queued
messages.

B. Step 3: Analyzed Architecture

At the highest abstraction level, EMG, installed at an SMS
broker, sits between one or more clients on one side, and
one or more mobile network operators on the other side. The
clients send messages to EMG, the messages are routed within
EMG according to the site specific configuration, and persisted
on disk until they can be sent to the designated operator.
After a message has been acknowledged by the operator, it is
removed from disk. Additionally, the operator can send back
message specific delivery reports, which are handled much the
same way as normal messages, but travelling in the opposite
direction.

To maximize the throughput whilst minimizing the com-
plexity of the installation and configuration, EMG is a modular
monolith. Optionally, customer specific plugins can be used at
a handful of well defined points in the message life cycle.

EMG normally only needs to be restarted for installation
of optional software updates, typically less than a few times
per year. In order to prevent data loss and make these restarts
as opaque as possible for the clients, it is critically important
that the restarts are handled correctly. To accomplish this, the
modules in EMG are grouped into three types based on how
their data is managed. The modules without persistent state



Plugins

Credit manager

Incoming Connector

Protocol driver

Enterprise Messaging Gateway

NoSQL driver

may use

Client

Receive message

Parse message

MySQL

Filter, modify, etc.

Check user credit
use

Select the target
outgoing connector

Reject message

insufficient

rejected

Deduct default cost

Accept message

ok

Store message and
delivery report info

use

Send reply

LevelDB

Fig. 2. The main data flow for incoming traffic from clients.

comprise the first type. The second type uses an embedded
NoSQL database (currently LevelDB from Google), and the
third type uses an external MySQL database.

Modules of the first type provide functionality such as
network connectivity and protocol drivers (e.g. SMPP and
HTTP), address and content filtering and modification, mes-
sage routing, and logging. Most of these modules can use
either configurable builtin logic or a site specific plugin,
developed either by ICAB or the customers themselves.

The data managed by the second type of modules, using
an embedded database, is not accessible from the outside.
This enables ICAB to change both the actual database used
as well as the structure of the stored data, as needed. These
modules primarily handle the message queues and information
about pending delivery reports. There is also a module for the
SAT (Source Address Translation) functionality, providing a
dynamic mapping between the incoming sender address from
the client and the address used towards the operator. This
functionality enables a client to use an email address for the
sender address, which is mapped to a phone number picked
from a number pool. The message recipient can then reply to
this pool number, which the SAT module converts back to the
original email address.

The third type of modules manage data using the MySQL
client API, making the data available for modification from
the outside. This gives SMS brokers the option to use either
a simple single node database or a multi-node replicating

cluster, without requiring any special handling by EMG.
These modules mainly handle user authentication and message
credits. There is usually also a read-only view of the last
known state (e.g. received, forwarded, failed, or delivered) of
each accepted message, used for billing and troubleshooting.

C. Step 4: Architectural Approaches

At the top level, EMG is best described as using the publish-
subscribe [19] architectural style. Even though “connector” is
part of the publish-subscribe style, in the EMG context it is
used as an endpoint definition from clients or to operators.
The embedded NoSQL storage acts as the event bus, the
connection between producers and consumers. The publisher
is driven by the incoming connector the client connects to, and
the consumer is driven by the outgoing connector. The events
are the text messages, and the event types correspond to the
names of the connectors. Each event must only be received by
a single consumer, to avoid multiple copies of each message
appearing in the recipients’ mobile phones, barring exceptional
circumstances.

Both producers and consumers use a simple layered ap-
proach. The data flow of the producer side is shown in Fig. 2,
where each received message passes down through various
modules before a response propagates back to the sender.
The incoming connectors receive messages using one of the
protocol drivers, filter, modify and route them as configured,
and finally persist them in the NoSQL storage. Similarly, the
outgoing side handles connectivity to the systems downstream,



Important
Functions

Quality Goals
Business

Goals

Constraints

Credit M
anagem

ent
High Throughput

Interrupt Free
Prevent Data Loss

Easy Installation

Releases w
ith Value

Frequent Releases

Standard Protocols
No O

rdering
No Rew

rite

FunctionalityReliability

M
essage State

C
orrect-ish M

essage C
redits

No Code Changes

M
TTR

 < 1 m
in

Rare Client Reconnects
Survive Restarts
Survive N

ode D
eath

Efficiency

1000 clients
Fast responses

1000 M
PS

Maintainability

External Logs
New

 Protocols
Custom

 Changes
Unit/System

 Level Tests

Portability

Language Independent Plugins

R
atio of M

anual Installation Steps

Low
 Coupling

Third Party C
om

ponents

Fig. 3. Business Drivers (top) and Quality Attributes (bottom) for EMG.

forwards the messages, removes them from storage, and finally
adjusts the user credit value. The usage of an embedded
database provides good performance and protection from
temporary node failures, but not from permanent node failures.

EMG is deployed on one or more, physical or virtual, 64
bit Linux nodes. The deployment requires the installation of a
number of third party components, adding the executable files
for EMG, and making site specific configurations. MySQL is
deployed on the same or other nodes.

Using multiple EMG nodes is beneficial despite the lack
of data replication between them, as permanent node failures
are rare. Separate sets of messages can then be processed
in parallel by all nodes, resulting in increased system-wide
throughput.

Based on the assumption that the data in the embedded
databases is limited in size, all such data is loaded on startup
into specifically tailored in-memory data structures. Primarily,
this frees the “find the next message to send” and “find the
delivery report record corresponding to a given message id”
operations from having to make time consuming round-trips
to the database. These operations can now be carried out much
faster by instead traversing the data structures.

D. Step 5: Quality Attribute Tree

In step 5, the quality attributes are elicited, prioritized,
and refined with exact stimuli and falsifiable responses into
scenarios, which are to be analyzed in the next step. Typically
these attributes originate from the business goals, the result
from step 2. ATAM provides a sample list of possible quality
attributes, but also notes that stakeholders “may add their own
quality attributes or may use different names for the same
ideas” [10]. Another attribute list for use in ATAM is presented
by Bass et al. [11]. We decided to base our list on SIS-ISO/IEC
9126 [20], because it had a focus on measurable attributes.

Defining all scenarios fully was not considered meaningful
in this paper. For example, the functional requirement that all
incoming messages should be forwarded can be refined with
the quality requirement that this should be done as soon as
possible, which in turn could be refined by setting a maximum
time limit. However, the time a message is spent queued within
EMG depends entirely on the availability of and throughput
to the receiving side, both of which are beyond our control.

The full list of elicited quality attributes for the current
use cases are summarized together with their corresponding
business drivers in Fig. 3, and described in more detail below.



The attributes selected for step 6 are written in boldface.
1) Functionality: The database containing the current state

of each message should be kept reasonably up-to-date. As this
requirement was not among the ones analyzed in the next step,
the exact limit for the allowed delay was not specified further.

In order for the EMG owner to be able to bill the clients
correctly, and possibly also ensure messages are pre-paid, the
current value of the message credits for each user must be kept
up-to-date. A discrepancy of 1 second’s worth of messages
would be acceptable, if that increases the throughput.

Ever since EMG was created, it has followed the general
robustness principle of being as tolerant as possible when pro-
cessing incoming data, and as conservative as possible when
producing outgoing data. Following this principle ensures a
minimum of code changes are required for EMG to exchange
messages with other systems, and has served the product well.

2) Reliability: There are two types of quality attribute
requirements in the reliability category. The first type concerns
the availability to clients, stating that forcing clients to recon-
nect to EMG should be a rare event, and happen at most once
per several months. Additionally, when such an interruption
occurs, for example due to EMG being restarted, connectivity
should be restored in less than one minute.

The second type concerns the prevention of message loss.
As there is no dependable end-to-end acknowledgement for
text messages, a message received and confirmed back to
the sender must remain in the queue and eventually get sent,
regardless of whether the EMG application stops temporarily
or permanently. The latter is of course only possible to achieve
in a configuration with multiple nodes and data replication.

3) Efficiency: Most modules in EMG are I/O bound, either
for disk, network, or both. In order to effectively utilize
modern hardware with fast multi-core processors, each EMG
node must support traffic from at least 1000 parallel client
connections. Moreover, a majority of clients send very few
messages, which means a large number of clients are required
for the SMS gateway node to be profitable.

Next, incoming messages should result in an acknowledge-
ment sent back within 10 seconds. Some SMS gateways
wait up to a minute before sending back a reply, making it
difficult for the sender to know whether the remote system
is still operational. An EMG running on a local node has no
problems replying within 1 millisecond, but this time increases
significantly if routing is done using a plugin requiring one or
more network roundtrips to other systems, or if the message
must be replicated to a different data center.

Finally, each EMG node should be able to process at least
1000 messages per second (MPS). This number is based on
both the requirements from existing EMG customers, and what
seems to be reasonable given the current architecture. The
highest throughput is typically reached for 10–100 parallel
connections, as this keeps all processor cores busy.

4) Maintainability: For maintainability, where the require-
ments are based almost entirely on the business goals of doing
frequent and valuable releases, we consider both development
and operational perspectives. For the development perspective,

adding new protocols and custom logic should not affect the
rest of the system. This is supported by a comprehensive
regression test suite. For the operational perspective, the most
important requirement is to assist troubleshooting by having
EMG log over the network.

5) Portability: The portability requirements concern the
independence of the system from its surrounding environment,
and of its parts relative to each other. To achieve the former,
plugins should be possible to implement in any programming
language available on the Linux platform, and the number of
manual steps in the installation procedure should be kept to
a minimum. Until recently, plugins could only be written in
C and Perl, but with the recent addition of an HTTP inter-
face they are now language independent. For the installation,
having to install multiple system packages can cause conflicts
with other applications. Achieving the latter, where the parts
are independent from each other, enables making isolated
and predictable changes. Keeping system parts independent
is easier when using third party components, as they are
guaranteed not to have any dependencies back into EMG.

E. Step 6: Analyze Architectural Approaches

In step 6, the architectural approaches from step 4 are
analyzed on how well they support the most important require-
ments from step 5. As mentioned, we found those requirements
by counting the number of business goals they were related to.
This way we found “1000MPS” linked to 3 groups, followed
by “correct-ish message credits”, “MTTR < 1 min”, and “sur-
vive node death”, each one linked to 2 groups. We also found
links to 2 groups from “ratio of manual installation steps” and
“third party components”. We recall that these requirements
are all marked with boldface in Fig. 3. Conversely, each
one of the business drivers “high throughput”, “prevent data
loss” and “standard protocols” affects the largest number of
quality attribute groups, i.e. 3. We describe the most significant
architecture parameters related to these attributes below.

1) Risks: As motivated in Section II, our list of risks
contains “architecturally important decisions that have not
been made” [10]. In our case, the only identified risk concerns
the temporary storage of unsent messages. How to ensure
messages survive the permanent failure of the node they
arrived to, while still maintaining the desired throughput and
following the constraints from step 2, is an open issue.

2) Sensitivity points: The sensitivity points are “param-
eters in the architecture correlated to measurable quality
attributes” [10]. Production environment log files from various
sites clearly show that the greatest effect on the time required
to restart the EMG application after a failure, i.e. the MTTR,
is due to the preloading of NoSQL data. The lion’s share of
the startup time is used loading the runtime data for the SAT
functionality. This is because the SAT data is kept for several
days, whereas messages waiting to be sent and data on pending
delivery reports are typically removed after just a few seconds.

The ratio of manual installation steps and the coexistence
with third party components would both benefit from improved



installation procedures. In particular, using container technol-
ogy such as Docker1 could have considerable positive effects.

3) Trade-off points: Trade-off points are similar to sensi-
tivity points, but “correlated to multiple quality attributes with
different effects” [10]. The architectural decision of storing the
message credits in an external database is the source of two
such points, both related to performance.

The first point concerns the trade-off between performance
and usability. By keeping the credits in MySQL, we improve
usability as the credits are easy to read and update from an
external tool. However, because each database operation takes
non-zero time, at the same time we also lose throughput.

The second point is the trade-off between performance
and precision. To mitigate the lowered throughput from the
previous trade-off, credit updates could be limited to once
per n messages. This would improve performance on account
of fewer database operations, but reduce the precision of the
current credit value. The credit value would be only eventually
consistent at each point in time, so there are windows of time
in which clients might be able to send more messages than
they should be, according to their pre-paid message credits.

IV. DISCUSSION

Using multiple EMG nodes can not only protect from data
loss when an individual node fails, but also increase the total
system throughput as more work can be done in parallel.
Only the data protection would benefit from replication of the
data in the embedded databases, in particular the messages
yet unsent. In contrast, both data protection and throughput
would benefit from having an effective way of keeping the
message credits synchronized among all nodes, as it would
allow clients to simultaneously connect to multiple EMG
nodes. Furthermore, the ability of doing batch-wise updates
of the message credits may provide increased throughput also
for the smaller customers using a single EMG node.

We see that improving the credit management would have
the biggest impact as it would increase the system throughput,
and thereby the value of EMG, for basically all customers.
Such an enhancement could be carried out in multiple steps,
with each step producing a new variant to be released and
then maintained independently. These variants would probably
include, but not necessarily be limited to, the ones listed below.
Fig. 4 shows how they replace the “use” arrow between the
credit manager and MySQL to the right in Fig. 2.

1) A minimal microservice which checks and updates the
credit value for every message, in the same way as the
existing implementation.

2) A microservice which updates the credit value with a
configurable frequency.

3) A microservice replicating the message credits between
EMG nodes, allowing for a more efficient solution with
higher throughput than with a replicated database.

The modularity of EMG frees the rest of the system from
having to care whether credit updates are batched, if the values

1https://www.docker.com

Microservices

Plugins

Credit manager

Incoming Connector

Protocol driver

Enterprise Messaging Gateway

NoSQL driver

Client

Receive message

Parse message

MySQL

Filter, modify, etc.

Check user credit
use

Select the target
outgoing connector

Reject message

insufficient

rejected

Deduct default cost

Accept message

ok

Store message and
delivery report info

use

Send reply

LevelDB
may useFig. 4. The connection between the credit manager and MySQL, shown to

the right in Fig. 2, would be replaced by one of three microservices.

are replicated, and if so, how. The components not managing
the credit value need only be able to ask if a user can send
more messages, and request credit updates when the messages
are processed. This loose coupling makes the credit manage-
ment an excellent candidate for extraction to microservices.
As a microservice it can be updated without violating the
reliability requirement of allowing clients to remain connected
to EMG for extended periods of time. Due to the increased
operational complexity of microservices compared to a single
monolith, ICAB may also consider implementing the batching
of the credit updates as an optional feature in the EMG core.

The answer to our question regarding whether ATAM could
help identifying the components in EMG where architectural
changes would be most beneficial, is therefore a definite
yes. It is also clear that ATAM can help clarifying the need
for variability in such components. Additionally, the analysis
showed the significance of the SAT implementation. The SAT
feature is used by only a few EMG customers, but as the long
startup time of the current implementation risks violating the
important availability requirement, it needs to be updated.

A. Lessons learned

The EMG team members are well acquainted with the
customer requirements since they all have been involved with
the development of the product during its entire lifetime,
spanning more than 20 years. The new insights provided by
ATAM therefore came a surprise, as the extraction of the credit
management into a separate component had never before been
considered.

The flexibility of ATAM turned out to be very beneficial
to us. As mentioned in Section III-D, the examined quality
attributes could easily be adjusted for the specific system being
analyzed. Despite ATAM being presented as a tool for improv-
ing the communication between stakeholders [10], we were
able to adjust it to give meaningful results in ICAB’s context
even though none of the external stakeholders participated.

We were also able to identify prioritized quality attribute
scenarios directly in Fig. 3 as described in Section III-E,
without having to create an explicit quality attribute tree.
This worked in our context as the focus was on highlighting
the most prioritized scenarios, rather than making a finer
prioritization in terms of “high”, “medium” and “low”. We
appreciate that this allowed us to save both time and effort



as utility tree generation is known to be an effort consuming
activity [9].

One additional benefit of applying ATAM in our context
was the capture of variability scenarios, whereby the com-
ponent undergoing architectural change would be customized
according to the needs of different customers. This explicit
identification of variability in architecture perfectly matches
ICAB’s business goals, and other companies can very well
benefit from eliciting such variations without having to go all
the way to CBAM (Cost-Benefit Analysis Method) [11], [21].

V. THREATS TO VALIDITY

Runeson and Höst [22] have grouped validity threats into
construct, internal, external and reliability. External validity
threats concern whether the results are still valid in a more
general context. We recognize that some of the simplifications
mentioned in Section IV-A fall into this category.

Reliability threats concern whether other researchers would
get the same result. The most problematic threat here is the
list of business drivers elicited in step 2, and thereby also the
list of quality attribute requirements analyzed in step 6, which
may both be incomplete. We addressed this by revisiting the
lists over several months, adjusting them until they stabilized.

Another reliability threat is the selection of attribute require-
ments from step 5, where we used a different method than
suggested by ATAM. Given what we know about the existing
EMG installations, the results still appear reasonable.

VI. CONCLUSIONS AND FUTURE WORK

The monolithic application EMG needed to provide higher
availability and better data protection, which motivated us
to performed an ATAM analysis of the existing architecture.
EMG is a messaging gateway, which stores and forwards short
text messages, and is used by customers with very diverse
requirements. As messages are such an important core concept
of the application, we had long thought that the replication
of those messages would be the next step forward for EMG.
Taking all requirements into account, it instead became clear
that updating the credit management, used for the billing of
the senders of text messages, would provide the most value to
the largest set of customers. This improvement will be realized
by moving the credit management to a set of microservices,
which in turn will allow each customer to select the balance
between usability, performance and precision which best suits
their particular needs.

For future work, we plan to evaluate the new credit man-
agement microservices on relevant quality attributes, e.g. code
complexity and performance. ICAB also plans to investigate
how best to improve the installation procedures, possibly by
making use of container technologies.

ACKNOWLEDGMENTS

This work was sponsored by The Knowledge Foundation
industrial PhD school ITS ESS-H, Infoflex Connect AB and
H2020 project ADEPTNESS (871319).

REFERENCES

[1] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, Motivations, and
Issues for Migrating to Microservices Architectures: An Empirical
Investigation,” IEEE Cloud Computing, vol. 4, no. 5, pp. 22–32, 2017.

[2] L. Carvalho, A. Garcia, W. K. G. Assunção, R. Bonifácio, L. P. Tizzei,
and T. E. Colanzi, “Extraction of Configurable and Reusable Microser-
vices from Legacy Systems: An Exploratory Study,” in International
Systems and Software Product Line Conference. ACM, 2019.

[3] J-M. Horcas, M. Pinto, and L. Fuentes, “Software Product Line Engi-
neering: A Practical Experience,” in International Systems and Software
Product Line Conference. ACM, 2019.

[4] J. P. Gouigoux and D. Tamzalit, “From Monolith to Microservices:
Lessons Learned on an Industrial Migration to a Web Oriented Architec-
ture,” in 2017 IEEE International Conference on Software Architecture
Workshops. IEEE, 2017.

[5] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner, “From Monolith
to Microservices: A Classification of Refactoring Approaches,” in Lec-
ture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, vol.
11350 LNCS, pp. 128–141.

[6] S. Newman, Monolith to Microservices: Evolutionary Patterns to Trans-
form Your Monolith. O’Reilly Media, 2019.

[7] D. L. Parnas, “On the Criteria to be Used in Decomposing Systems into
Modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053–1058,
1972.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1994.

[9] P. Cruz, H. Astudillo, R. Hilliard, and M. Collado, “Assessing Migration
of a 20-Year-Old System to a Micro-Service Platform Using ATAM,”
in IEEE International Conference on Software Architecture Companion.
IEEE, 2019.

[10] R. Kazman, M. Klein, and P. Clements, “Method for Architecture
Evaluation,” Carnegie-Mellon Univ Pittsburgh PA Software Engineering
Inst, Tech. Rep., 2000.

[11] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Addison-Wesley Professional, 2013.

[12] L. Dobrica and E. Niemelá, “A Survey on Software Architecture Anal-
ysis Methods,” IEEE Transactions on Software Engineering, vol. 28,
no. 7, pp. 638–653, 2002.

[13] E. Anjos and M. Zenha-Rela, “A Framework for Classifying and
Comparing Software Architecture Tools for Quality Evaluation,” Lec-
ture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6786
LNCS, no. PART 5, pp. 270–282, 2011.

[14] P. Bengtsson and J. Bosch, “Scenario-Based Software Architecture
Reengineering,” in 5th International Conference on Software Reuse.
IEEE, 1998.

[15] E. R. Poort and H. Van Vliet, “RCDA: Architecting as a risk- and cost
management discipline,” Journal of Systems and Software, vol. 85, no. 9,
pp. 1995–2013, 2012.

[16] J. Gray, “A Conversation with Werner Vogels,” ACM Queue, vol. 4,
no. 4, pp. 14–22, 2006.

[17] N. Alshuqayran, N. Ali, and R. Evans, “A Systematic Mapping Study
in Microservice Architecture,” in IEEE International Conference on
Service-Oriented Computing and Applications. IEEE, 2016.

[18] D. Brahneborg, W. Afzal, A. Čaušević, and M. Björkman, “Towards a
More Reliable Store-and-forward Protocol for Mobile Text Messages,”
in 2018 Workshop on Advanced Tools, Programming Languages, and
PLatforms for Implementing and Evaluating Algorithms for Distributed
systems. ACM, 2018.

[19] G. Fairbanks, Just Enough Software Architecture: A Risk-Driven Ap-
proach. Marshall & Brainerd, 2010.

[20] ISO/IEC JTC 1, “SIS-ISO/IEC TR 9126-2:2003 Software Engineering
– Product Quality – Part 2: External Metrics,” Institute, Swedish
Standards, Tech. Rep., 2003.

[21] R. Kazman, J. Asundi, and M. Klein, “Making Architecture Design
Decisions: An Economic Approach,” Carnegie Mellon Software Engi-
neering Institute, Tech. Rep., 2002.

[22] P. Runeson and M. Höst, “Guidelines for Conducting and Reporting
Case Study Research in Software Engineering,” Empirical Software
Engineering, vol. 14, no. 2, pp. 131–164, 2009.


