
Received December 4, 2019, accepted January 1, 2020, date of publication January 9, 2020, date of current version January 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2965259

A Model-Driven Mobile HMI Framework (MMHF)
for Industrial Control Systems
IQRA QASIM , MUHAMMAD WASEEM ANWAR , FAROOQUE AZAM , HANNY TUFAIL ,
WASI HAIDER BUTT , AND MUHAMMAD NOUMAN ZAFAR
Department of Computer and Software Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST),
Islamabad 44000, Pakistan

Corresponding author: Muhammad Waseem Anwar (waseemanwar@ceme.nust.edu.pk)

ABSTRACT With the advent of software technologies, over a period of time, the Industrial Control Systems
(ICSs) have grown exponentially. Whereas, almost all ICSs comprise Human Machine Interfaces (HMIs),
which are the key component for monitoring and controlling complex industrial systems. For decades,
traditional HMIs with simple User Interfaces (UIs) remained operational to minimize the complexities
and resulting operational costs. However, due to the emergence of smartphone technologies, the perception
about user interfaces has been transformed significantly and users now demand same sort of experience
with industrial HMIs, as well. There are few industrial solutions, like, ICONICS GraphWorX to support the
development of mobile HMI screens. However, such proprietary solutions are quite expensive. Furthermore,
the underlying development approaches and source codes are not accessible in public domain. On the
other hand, the state-of-the-art approaches for the development of native mobile HMI screens are hard
to find in the literature. Consequently, there is dire need of a cost-effective, easy to use, open source
framework for the development of native mobile HMI screens. In order to achieve this goal, here we propose,
a Model-driven Mobile HMI Framework (MMHF). MMHF comprises, a Unified Modeling Language
(UML) Profile for Mobile HMI (UMLPMH) for modeling of HMI screens. MMHF also includes, an open
source transformation engine and a Model Driven Mobile-based HMI Code Generator (MDMHCG) to
automatically transform UMLPMH models into target native mobile HMI implementations. Consequently,
MMHF enables simpler way to design the HMI screens using UMLPMH and generates nativeMobile HMI
Screen implementations automatically usingMDMHCG. The empirical evidence of MMHF is demonstrated
through three (3) benchmark case studies, which prove that the MMHF is a feasible, cost effective and
scalable solution to develop native HMI screens for wide-ranging ICSs.

INDEX TERMS Human machine interface, mobile HMI, model driven engineering, unified modeling
language, industrial control system, industry automation, Internet of Things (IoT).

I. INTRODUCTION
Modern Industrial Control Systems (ICSs) are gaining com-
plexities to match the rapid & high quality production needs
of the industry [28]. The volume of data generated from
industrial plants is also growing gradually. It is the respon-
sibility of Human Machine Interface (HMI) to translate huge
amount of complex process data into human readable format
for decision making during plant processing. HMI acts as a
visual component of Supervisory Control and Data Acqui-
sition System (SCADA) [1]. User friendly and responsive
HMIs result in cost effective and efficient monitoring system.

The associate editor coordinating the review of this manuscript and
approving it for publication was Heng Zhang.

According to a report conducted at the end of 2015, the world-
wide market of HMI is estimated to reach by US$5,579.3 in
2019 at a compounded growth rate of 10.4% during a period
of 2013-2019 [2]. These HMIs play a central role in monitor-
ing and controlling industrial process from a computerized
panel system.

For industrial machines to be integrated with HMIs, correct
functioning of these devices with Programmable Logic Con-
trollers (PLCs) is a prerequisite [3]. There are various
input/output sensors connected to the industrial machines for
monitoring temperature, pressure, weight, speed and feed rate
etc. It is the PLC device that fetches data from these sensors
and converts it to required format through ladder logic [29].
HMI then translates the communications from PLCs,

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 10827

https://orcid.org/0000-0002-1644-4883
https://orcid.org/0000-0002-1193-5683
https://orcid.org/0000-0002-7421-7400
https://orcid.org/0000-0002-0203-586X
https://orcid.org/0000-0002-1347-3662
https://orcid.org/0000-0001-8746-7209

I. Qasim et al.: MMHF for ICSs

FIGURE 1. HMI based industrial control system.

sensors and other devices to the human readable format so
that operators can visualize, monitor and control industrial
processes as shown in Figure 1.

As users are now familiar with high quality smartphone
UIs, they demand same level of usability for HMIs. Hence,
due to the changing needs, traditional HMIs based on large
systems are now transforming towards portable handheld
mobile devices [4]. Traditional HMI systems usually com-
prise of huge fixed desktop panels. Moreover, web tech-
nologies are also being introduced in most of the industrial
HMI systems [5], however, they introduce low performance
and security related issues while configuring with real time
data. Although numerous modern HMI systems available
in market such as Simatic WinCC, Genesis 64, Wonder-
ware Intouch, etc., to provide tool support for mobile HMI
development [6], they are not freely available in market.
Furthermore, the underlying development approaches and
source code are not available publically. On the other hand,
the state-of-the-art approaches for the development of pure
native mobile HMI screens are hard to find in literature.
Consequently, the need for the development of a complete,
open source native mobile HMI approach for monitoring real
time industrial process is highly desirable. The existing devel-
opment methods for mobile HMI systems involve complex
mechanisms, extensive low-level coding and require high
level of expertise, lengthy development period and increased
cost. This opens up doors for introducing model driven
approach into nativemobile HMI client development that can:
1) reduce the complexity of its development process [23],
2) provide a higher-level abstraction with fully automated end
to end implementation, 3) provide a controlled development
during early stages, 4) deliver an open source generic and real
time solution which can provide a modern HMI for ICSs.

This article presents the cost effective, easy to use and open
source framework for the development of native mobile HMI
screens. Particularly, the contributions of this article are as
follows:

• Model-driven Mobile HMI Framework (MMHF) is
introduced to design native mobile HMI screens for
industrial control systems. It provides a simple way
for system integrators to design HMI screens and
subsequently generate native mobile HMI screens
implementations automatically.

• Firstly, a UML Profile for Mobile HMI (UMLPMH)
is developed in MMHF to accomplish the modeling of
HMI screens with simplicity. Particularly, it contains
several HMI concepts for ICS, such as: widgets, real
time data connectivity etc. This enables design of both
simple, as well as, complexmobile HMI screens through
UMLPMH.

• Secondly, an open source transformation tool is
developed named as Model Driven Mobile-based HMI
Code Generator (MDMHCG) for instantly transforming
input UMLPMH models into target HMI android code.
Particularly, transformation rules are developed for the
conversion ofUMLPMHconcepts into low level android
code. Subsequently, the implementation of rules is done
through Model-to-Text (M2T) transformation approach
by exploiting the features of Acceleo and Java services.

• Finally, the idea is validated through three case studies:
1) home automation, 2) sewage plant and 3) traffic
controller.

This paper is organized as: Section II provides the detailed
related work and industrial tools in the domain of HMI
development. Section III covers the details of proposed
UMLPMH. Section IV presents the detailed implementation
regarding MDMHCG. Section V provides the validation of
MMHF using three bench mark case studies. The case studies
selected for validation purposes are from different domains
and of different sizes to make sure that the proposed approach
works on every case. SectionVI contains a brief discussion on
the MMHF as well as the limitations. Section VII concludes
the research and recommends the future directions.

II. PRELIMINARIES
In this section, a brief overview of the approaches regard-
ing HMI, model driven HMI and mobile based HMI
are presented. Furthermore, the comprehensive analysis of
renowned industrial automation tools in the context of HMI
development is also performed. Finally, research gap is
identified on the basis of both industry and state-of-the-art
analysis.

A. LITERATURE REVIEW
1) HMI RELATED APPROACHES
Harpreet Singh Saini and R.D Daruwala [7] proposes an
embedded processor along with Internet of Things (IoT)
support for accessing real time values of industrial processes
and subsequently display on HMI screen. This processor acts
as an IoT server to acquire data from industrial processes and
send it to local device HMI and remote IoT client HMI for
display. These HMIs are developed in QT framework which
is based on C++ language. It uses an open source Mod-
busPal emulator for fetching field devices data. In another
study, Villani et al. [2] target the idea of design development
of adaptive human machine interfaces for complex indus-
trial control systems. The HMI adapts itself according to
the physical and cognitive capabilities of human workers.

10828 VOLUME 8, 2020

I. Qasim et al.: MMHF for ICSs

The proposed system first measures the workers’ capabilities,
then adapts the interface according to the measured abilities
of user. Finally, the interface trains the unexperienced users
about how to interact with the machines. It proposes the con-
cept of a generic meta HMI that is customized according to
a specific platform based on worker needs and requirements.
In another study, Normanyo et al. [8] develops HMI screens
using Siematic WinCC (a windows based software). It uses
PLCSIM for simulation between PLC devices and HMI. The
tag values are assigned to eachHMI element using theWinCC
software. Similarly, Jayanthi et al. [9] develop an HMI
for process control systems using multiple software tools.
WPLSoft is used to program PLC and is connected to HMI
using a communication protocol (RS485). HMI is created in
DOPSoft tool and connected to PC through eRemote. The
sameHMI can be connected tomobile device through TPLink
for remote control of data. There is a non-conventional HMI
based study [1] where a theoretical framework for 3D visu-
alization of HMI driven by non-conventional display device
(such as projector or table) with Natural User Interface (NUI)
paradigm is proposed. 3D visualizations provide complete
replica of a real factory that enhances processes monitoring
and control. NUI provides an interactive user interaction in
a more natural way. This method focuses on both interac-
tion and visualizations of HMI. The proposed HMI system
is based on a hierarchical structure in an agent oriented
environment i.e. process control level, floor factor level and
business level. The proposed method was used for imple-
menting an experimental virtual reality process to combine
3D visualizations of HMI with NUI. Another research [10]
introduces trust related factors into the HMI for automated
driving vehicle systems. This framework provides guidelines
for designers while developing HMI system for automated
driving system.

2) MODEL BASED HMI APPROACHES
To cope with the inherent complexities of HMI development
[38], model driven approaches are also proposed in this area.
The motivation for adopting model based HMI development
is based on cost effectiveness, shorter development time,
reusability and improved quality [21].

Dorninger et al. [14] work on the model based reengi-
neering of HMI systems for shifting existing systems to new
technology. It reengineers HMI by performing static analysis
of its available source code and extract the central information
to develop implementation independent model. These imple-
mentation models serve as the starting point to automatically
generate parts of HMI system based on new technology
concepts. It uses Xpand code generation language based on
Eclipse EMFmodels. In [15] a model driven prototyping tool
is proposed for early checking of in-vehicles HMI design
during requirements and design phase. It provides an open
source software, based on image editor in Eclipse, relational
database to store HMI information and web browser simula-
tor for checkingHMI design. It helpsHMI designers to design
new HMI requests and visualize them. In another study,

Martin et al. [6] use a model driven approach to develop a
plant model from partially available data required for semi-
automated generation of HMIs. Authors propose a meta-
model for the description of production plant components.
Based on proposed meta-model, a plant model is developed
to process data that generates a concrete HMI model using a
three step process. User can intervene at each step to influence
HMI. This concrete HMI model is converted to executable
web based HMI application. Ramaswamy et al. [16] propose
a meta-model for the non-functional properties (NFPs) of
the HMI (human, machine and their interactions). Functional
requirements cannot be used alone to make runtime decisions
so modeling NFPs are necessary in these type of architec-
tures. The proposed solution reduces the troubleshooting time
of faults and ensures safety of industrial workers.

3) MOBILE BASED HMI APPROACHES
Smartphones and mobile devices can provide a portable
remote access of production plants to the operating engi-
neers [20]. They can remotely silence an alarm or send
commands to the industrial process [24]. With the increasing
trend of mobile devices in daily lives [22], same sort of
UIs is now demanded in industrial control systems as well.
Several mobile based HMI solutions have been presented in
the academia. For example, Jain et al. [4] propose the idea
of reproducing existing HMI screens on a mobile device.
Remote mobile connects with HMI panel through a wire-
less connection with a server component. Proposed method
divides HMI system into dynamic and static parts. Static parts
do not change over a period of time and are loaded once
e.g. labels, buttons etc. Dynamic parts are continuously sent
to the mobile client by server component as they continuously
change e.g. filling of tank bar, movement of dial meter etc.
This approach allows minimum data to be stored on mobile
device so reduces threats of device thefts. It also reduces
development costs due to reusability of HMIs. Lojka et al. [5]
use web technologies in designing and developing HMI sys-
tems. They develop JavaScript framework for simplifying
HMI development. The created HMIs do not communicate
directly with PLC devices instead it reads/writes data to SQL
database through mobile service feature of Microsoft Azure.
Communication server is used to fetch data from PLCs and
update database accordingly. Oscar Neira [19] proposes a
method based on Adaptive HMI Engine for generating HMIs
at runtime taking into consideration user needs and require-
ments to improve user-system interaction. This HMI engine
is based on two components: HMI Definer is based on web
application (running at remote server) that allows to adapt
runtime data to the interfaces. It creates design and layout
of HMI based on user tasks, user profile and characteristics
of the device. This layout specification is based on JSON
messages that are transformed to web HMI elements by
HMI Builder. HMI builder then displays final interface in
a web browser of a mobile device. Willocx et al. [20] pro-
pose a method for handling security requirements of mobile
access to critical processes of ICSs. It uses VPN network for

VOLUME 8, 2020 10829

I. Qasim et al.: MMHF for ICSs

TABLE 1. Evaluation of HMI features in leading industry automation tools.

secure transfer of data from ICS to mobile devices. pfSense
(an open source firewall/router) is used on ICS network to
allow only traffic from VPN network. Access to VPN net-
work is based on user and device authentication (through
OpenVPN app on the device). For establishing a VPN tunnel
connection, the credentials of both VPN endpoint and mobile
device are verified along with user login details. MobileIron
MDM (Mobile Management System) is used to enroll trusted
mobile devices in account. Only devices that are enrolled in
MDM account can successfully establish a VPN connection.
Upon successful connection, devices can get access to the ICS
network through VPN.

B. INDUSTRY PERSPECTIVE
There are multiple industry automation tools available in
the market for developing HMI/SCADA systems. The four
(4) most widely used HMI/SCADA tools are described in
Table 1.

ICONICS GENESIS 64 suite provides a deployment
platform for integrating all available plants and business
data into a real time distributed platform. It is a complete
software solution for all HMI and SCADA applications. It is
used for a variety of applications such as HMI/SCADA,
Building Automation, Plant Data Historian and more. It pro-
vides GraphWorXTM64, an HMI software package, to design
highly interactive and animated graphics for process control
systems. It is a canvas where one can display real time
process data through any OPC UA compliant data source.

GraphWorXTM64 allows you to create own symbols (HMI
objects) or use from Symbols Library available in Genesis
64. It provides static as well as dynamic objects to create ani-
mated displays. GraphWorXTM64 symbols library provides
basic shapes such as line, circle, ellipse, square, rectangle,
arc, polyline and polygon. Other than basic symbols it allows
you to add sliders, dials, gauges, indicators, buttons, lights,
clock and other real time data based objects.

SIMATIC WinCC is an innovative visualization system
with high performance functions to monitor and control
industrial processes data [30]. It provides a high perfor-
mance HMI system for use with Windows Platform [42].
The Graphics system of WinCC provides an editor to
draw HMI screens and handles dynamic values on inter-
face [44]. It handles display of static (buttons, texts etc.)
as well as dynamic objects (e.g. modifying bar length).
This editor provides objects palette that includes standard
objects (line, polygon, ellipse, rectangle, text), smart objects
(bar, input/output field, status display), windows objects
(slider, button, checkbox), tube objects (tube bend, poly-
gon tube, T-piece) and controls (such as ActiveX controls).
One can also import graphics to the editor. The dynamic
objects of the screen are connected to process tag values.
The input/output field property for each object allows to add
dynamics e.g. tag values can be set for tank object to show
change in its water level.

AggreGate SCADA/HMI is a complex system that
offers advanced data acquisition and processing capabilities,
intended to facilitate supervisory control and monitoring
for a wide range of sectors, such as process control,
industrial automation, telemetry and machine-to-machine
communications. The built-in HMI Builder assists in draw-
ing and animating any HMIs [35] containing both sim-
ple components (buttons, captions, text fields, lists, etc.)
and complex ones (tables, multi-layer panes, tabbed
panes, charts, geographical maps, dynamic SVG images,
video windows, etc.).

Open Automation Software (OAS) develops and mar-
kets IoT, SCADA, HMI, and database application software
for device to device and device to human interface [36].
The OAS Web HMI product allows to create user inter-
faces to display and interact with real time data, enabling
a whole range of applications on any device with a web
browser.

10830 VOLUME 8, 2020

I. Qasim et al.: MMHF for ICSs

FIGURE 2. Overview of model-driven mobile HMI framework (MMHF).

Each tool supports its own HMI module to develop HMI
system, different types of HMI screen dynamics based on real
time values and supports visualization dimensions such as
2D or 3D graphics. Although these tools provide powerful
graphical libraries, they are not freely available in market
that makes the development process costly. Also, each of
these tools support a specific scripting language that arises
language barrier for users as theymust learn specific language
for customizing tool. Furthermore, the information regard-
ing the underlying development technologies is not provided
by any tool vendor, therefore, extension of aforementioned
industrial tools is not possible. This makes the usage of these
readily available tools, less applicable in vast scenarios.

C. RESEARCH GAPS AND PROPOSED SOLUTION
Traditional HMIs were based on fixed PC panels but now
with emerging trends of smartphones and advancements in
technology, users demand highly interactive HMIs similar to
their mobile device applications. For this purpose, multiple
solutions exist in academic research. After a detailed analysis
of the existing researches for HMI, we concluded that current
solutions have following issues: -
• Monopoly of expensive proprietary tools that are not
freely available and demand high costs for native mobile
HMI widgets access.

• Lack of high-level solution to reduce complexities
involved in mobile HMI development.

• Web based HMI solutions compromised with low
performance and security related issues.

• Lack of open source tool for native mobile HMI
development.

In order to solve the identified gaps (after a detailed literature
review of HMI development approaches and industrial tools),

we have proposed a solution based on a complete, open
source mobile HMI application (Android) for monitoring real
time industrial process data. We have integrated a model
driven approach intomobile HMI client that reduces the com-
plexity of its development process, provides a higher level
abstraction with fully automated end to end implementation,
a controlled development during early stages, as well as,
an open source generic and real time solution which can
provide a modern touch-based HMI for industrial control
systems.

The proposed approach results in following advantages:

• Solution with simple development process
• Cost-effective open source solution
• Ready to use android HMI application code
• Reusability of the developed HMI models
• Reduced development time

III. PROPOSED METHODOLOGY
HMIs have emerged as a critical industrial component used to
control, monitor and execute complex industrial processes..
These HMIs require real time industrial data through sen-
sors by using communication protocols. Developing such
systems that involve real time field data with complex indus-
trial processes is: time consuming, costly and require spe-
cial skills / knowledge. To provide a generic, automated,
easy-to-use, fast and high level mobile HMI development a
Model-drivenMobile HMI Framework (MMHF) is proposed.
Figure 2 provides an overview of the proposed framework.
In order to provide a complete mobile HMI application,
multiple concepts like UML Profile and Model to Text
(M2T) transformation concepts are involved in the proposed
solution.

VOLUME 8, 2020 10831

I. Qasim et al.: MMHF for ICSs

FIGURE 3. UML profile for mobile HMI (UMLPMH).

The MMHF is based on model driven engineering which
includes the UML Profile Diagram to extend and enforce
the meta-level concepts [31] in modeling the requirements of
mobile HMI system. Proposed UML Profile only adds new
domain specific concepts to the existing metamodels [39]
and do not modify or create new metamodels. Model to Text
transformation technique is utilized to take domain model as
an input model to generate complete HMI mobile android
code and Widgets Designer (.axml) code for the application.
These files are then needed to be deployed on an actual
environment to provide a fully functional HMI mobile appli-
cation based on real time PLC device, where, data is fetched
using an open source Data Acquisition (DA) server. The
proposed framework helps non expert user of the domain to
add widgets of their choices, set their properties and assign
PLC device addresses without knowing the complex code and
technical details. It finally generates a full fledge mobile HMI
deployable code for their application.

A. UML PROFILE FOR MOBILE HMI (UMLPMH)
UML Profile for Mobile HMI (UMLPMH), provides a
generic extension mechanism that allows to extend and
customize meta-model (i.e. UML) using stereotypes [43]

by introducing domain specific concepts of mobile HMI
for industrial control systems. Stereotype is a profile class
defines, how an existing metaclass can be extended as a part
of profile [32]. UMLPMH is developed in papyrus modelling
editor tool. Proposed profile contains multiple stereotypes
that help to introduce mobile HMI related domain concepts
into the UML modeling as shown in Figure 3. These stereo-
types extend metaclasses of Class, Instance Specification,
Property and Slot. UMLPMH stereotypes can be categorized
based on following system components: -
• HMI Widgets based Concepts
• PLC Device related Concepts
• Data Source related Concepts

1) HMI WIDGETS BASED CONCEPTS
HMI widget related concepts help to define HMI widgets
and assign them to real time PLC devices data using an
open source Data Acquisition (DA) server. It contains follow-
ing stereotypes i.e. Widget, TankWidget, DialWidget, Traf-
ficLightWidget, SwitchWidget, BulbWidget, RoomWidget,
LabelWidget, Tag and RefreshScreen. These stereotypes,
as represented in Figure 3, are required to model both simple
as well as complex widgets.

10832 VOLUME 8, 2020

I. Qasim et al.: MMHF for ICSs

�Widget�
Widget stereotype contains common attributes required

by all widgets i.e. attributes for specifying their x and y
positions on mobile interface. These common attributes are
based on layout_x property specifying distance of current
view from x-axis in dp unit (Density-independent pixels) and
layout_y property specifying distance of current view from
y-axis in dp. Widget stereotype is an abstract stereotype and
is not extended from any metaclass. It only provides common
properties for all types of widgets.
�TankWidget�
Tank is a type of HMI widget that displays filling of a tank

based on real time data obtained fromPLC devices. TankWid-
get stereotype facilitates to model tank objects and assign
them unique identification defined in its attributes as tankID.
TankWidget stereotype is extended from metaclasses Class
and Instance Specification that enables it to be applied on
multiple instances of tankwidget in domainmodel. TankWid-
get is derived from another abstract stereotype named as
Widget and thus inherits its properties as well.
�DialWidget�
Dial is a type of HMI widget that provides visual rep-

resentation of a current value of a dial based on real time
data. DialWidget stereotype enables to model dial objects
and assign them unique identification number defined in its
attributes as dialID. DialWidget stereotype is extended from
metaclasses Class and Instance Specification that enables it
tobe applied on multiple instances of dial widget in domain
model. DialWidget is derived from another abstract stereo-
type named as Widget and thus inherits its properties as well.
�BulbWidget�
Bulb is a type of HMI widget that displays on and off

states of a bulb based on real time data. BulbWidget stereo-
type enables to model bulb objects and assign them unique
identification number defined in its attributes as bulbID.
BulbWidget stereotype is extended from metaclasses Class
and Instance Specification that enables it to be applied
on multiple instances of bulb. BulbWidget is derived from
another abstract stereotype named asWidget and thus inherits
its properties as well.
�TrafficLightWidget�
Traffic Light is a type of HMIwidget that displays different

states of a traffic light i.e. signal on, signal off and signal
going to turn off based on real time data. TrafficLightWidget
stereotype enables to model traffic light objects and assign
them unique identification number defined in its attributes
as trafficID. TrafficLightWidget stereotype is extended from
metaclasses Class and Instance Specification that enables
it to be applied on multiple instances of traffic light.
TrafficLightWidget is derived from another abstract
stereotype named as Widget and thus inherits its properties
as well.
�SwitchWidget�
Toggle Switch is a type of HMI widget that displays on

and off states of a toggle switch based on real time data.
SwitchWidget stereotype enables to model toggle switch

objects and assign them unique identification number defined
in its attributes as switchID. SwitchWidget stereotype is
extended from metaclasses Class and Instance Specifica-
tion that enables it to be applied on multiple instances of
switch. SwitchWidget is derived from another abstract stereo-
type named as Widget and thus inherits its properties as well.
�RoomWidget�
Room is a type of HMI widget that allows to model

rectangular areas for different purposes like control rooms,
bed rooms etc. RoomWidget stereotype enables to model
room objects for human machine interface. Unique iden-
tification number is assigned to this widget based on its
attribute named as roomID. It allows settings for height and
width of the RoomWidget in dp unit based on its owned
attributes named as layout_width and layout_height respec-
tively. RoomWidget stereotype is extended from metaclasses
Class and Instance Specification that enables it to be applied
on multiple instances of room. RoomWidget is derived from
another abstract stereotype named asWidget and thus inherits
its properties as well.
�LabelWidget�
Label is a type of widget that displays specified

texts or labels on a mobile HMI screen. LabelWidget stereo-
type enables to model label objects for human machine inter-
face. LabelWidget stereotype is extended from metaclasses
Class and Instance Specification and has multiple attributes
i.e. labelID, layout_width, layout_height, text, textSize and
textStyle. labelID assigns unique identification to label wid-
get. layout_width and layout_height set width and height of a
label in dp units. Text attribute allows to enter text to be dis-
played on HMI screen. textStyle attribute helps to select style
of a text as bold, normal or italic defined in the enumeration
TextStyle. textSize sets the size of a text specified in dp unit.
�Tag�
Tag is basically a connection between HMI screen widget

and the PLC device. In UMLPMH, mobile HMI acts as a
client that requests DA Server for real time data from target
PLC’s. For that purpose, it is required to specify PLC device
address for each widget to assign real time device data to
the widget. Tag stereotype allows to specify PLC device
address for each widget. Tag stereotype extends metaclasses
Class and Instance Specification. It consists of attributes:
widgetID that specifies id of a widget for which device
data is requested, widgetType that specifies type of widget,
i.e. tank, dial, bulb, toggle switch or traffic light defined in
enumeration WidgetType, for which device data is requested
and tagName that specifies name of a tag containing PLC
device address.
�RefreshScreen�
Stereotype RefreshScreen is used to define time constraints

on data requests from Modbus DA Server for HMI widgets.
screenRefreshPeriod attribute allows to refresh a screen in
loop after a specific time period. This time period is defined
in seconds or minutes. With each screen refresh, request for
device data is resent to server for each widget. autoRequest
defines the condition if request to all devices has to be

VOLUME 8, 2020 10833

I. Qasim et al.: MMHF for ICSs

generated in a loop or just once. RefreshScreen stereotype
is extended from metaclass Class.

2) PLC DEVICE RELATED CONCEPTS
Device related concepts help to specify device address for an
HMI widget to visualize and monitor real time devices data
on HMI screens. Device address is based on IP address of a
device, port number, destination or memory location of data,
starting address and range of data. Device related concepts are
managed through Device, Destination and Inputs stereotypes
as shown in Figure 3.
�Device�
Device stereotype is extended frommetaclasses Class, Slot

and Property. Device stereotype represents the physical exis-
tence of the real time data based on PLC device. Each PLC
device communicates and acquires data from a specific type
of industrial machine or process so a unique identification
number is assigned to each device as deviceID. PLC devices
communicate with DA server through TCP/IP communica-
tion protocol and for that purpose each device has its own
location identification address over the internet defined as
ipAddress. To communicate with PLC devices a physical
endpoint is defined and named as port.
�Destination�
The stereotype Destination represents the memory location

of targeted PLC device and extended from both metaclasses
of Class, Slot and Property. These memory locations are also
known as registers or relay outputs which are used to read
and write data on device memory. Four types of memory
locations are present in a PLC device which are defined
in the enumeration LocationType i.e. Coils, Inputs, Holding
Registers and Input Registers.
�Inputs�
Stereotype Inputs represents the device memory physical

address from where real time data is acquired. The attributes
defined in this stereotype are; startingAddress that repre-
sents the starting address of a memory location for data and
numOfInput attribute that specifies the number of consecu-
tive locations from where data is acquired. Inputs stereotype
is extended from metaclasses Class, Slot and Property.

In domain Model of mobile HMI, three stereotypes
i.e. Device, Destination and Inputs are applied on an attribute
deviceAddress of a class Tag to define a complete device
address for a widget.

3) DATA SOURCE RELATED CONCEPTS
Data source related concepts help to define connection
mechanism to DA Server for request and fetch real time
device data through PLC. It is based on DataSourceConnec-
tion stereotype, as shown in Figure 3, to specify IP address
and port for a connection to DA Server.
�DataSourceConnection�
DataSourceConnection stereotype helps to define con-

cepts required for connection with DA server to request
devices data and transfer the response to the HMI widgets.
DataSourceConnection stereotype extends metaclass Class.

It consists of two attributes i.e. serverIPAddress that defines
the location address of the server over TCP network and port
attribute that defines the endpoint of the communication for
a server.

4) DATA TYPES AND ENUMERATIONS
It is required to define certain data types and enumerations
to achieve the mobile HMI modeling through UMLPMH.
Therefore, three (3) enumerations (i.e. LocationType,
TextStyle andWidgetType) are defined as shown in Figure 3.
Particularly, enumeration LocationType represents four types
of Modbus memory registers used for HMI widgets i.e. Coils
that are based on binary on/off outputs, Inputs are based
on read only binary inputs, Holding_Registers are based on
analog parameters that can be changed and Input_Registers
are based on read only analog inputs. TextStyle enumeration
defines different text styles for widget labels i.e. bold, normal
and italic. Enumeration WidgetType deals with types of HMI
widgets i.e. Tank, Dial, ToggleSwitch, Bulb and TrafficLight.

We have extended metaclasses Class, Slot, Instance
specification and Property to define fourteen stereotypes in
UMLPMH. Out of these stereotypes, ten stereotypes are
proposed for HMI widgets, three stereotypes are proposed
for defining PLC settings for widgets and one stereotype
is proposed for connection with DA server. The practical
demonstration of these stereotypes is given in Section V
where three case studies (i.e. HomeAutomation,Water Treat-
ment Plant and Traffic Light Control System) are modelled
using UMLPMH.

IV. IMPLEMENTATION
This section provides the implementation details of the pro-
posed transformation engine, Model Driven Mobile-based
HMICodeGenerator (MDMHCG), which transforms aUML
Class Diagram (.uml) modelled through UMLPMH into
android code for HMI application. Section A deals with
the architecture of the proposed transformation engine and
Section B provides transformation rules.

A. TRANSFORMATION ENGINE ARCHITECTURE
The architecture of our transformation engine is presented
in Figure 5. MDMHCG takes input models and transforms
them into HMI android code using transformation rules.
It is implemented in JAVA and Acceleo Tool (for writ-
ing transformation rules). MDMHCG is based on Model to
Text Language (MTL) standard. The transformation Engine
MDMHCG, is based on two main components i.e. Tool User
Interface and Code Generator. Detailed description of these
components is as follows:

Tool User Interface: Main interface of MDMHCG is
presented in Figure 4. It provides two main functionalities
i.e. System Modeler and Transformation Engine. System
Modeler provides a facility to open Papyrus tool to model
mobile HMI applications. Transformation Engine option
allows to provide input model and transform it into HMI
android code through transformation engine interface as

10834 VOLUME 8, 2020

I. Qasim et al.: MMHF for ICSs

FIGURE 4. Main interface of model driven mobile based HMI code
generator (MDMHCG).

shown in Figure 10. This transformation interface comprises
of: Input Model allows to browse through and select available
.uml files in system. Destination Folder allows to set path for
generated output files. Generate button performs the action of
automatically generating mobile HMI code files from input
model. Status shows current state of tool. Reset button allows
to enter new input model and destination folder. Open folder
directs to the folder where output files were generated.

User interface of MDMHCG is developed using four main
java classes i.e. Launcher, MainScreen, TextRefiner andWin-
Main. MainScreen serves as the main executor of transfor-
mation engine. It provides a graphical user interface (GUI)
including buttons and input fields. Launch and WinMain
are the java based controller classes that implement these
functionalities. Text Refiner does the string manipulation in
a required format for further use.
Code Generator: The specified input models are fed into

code generator that processes these models into deploy-
able android HMI code using transformation rules. Code
generator is based on two main components i.e. Generate
(Generate.java) and Template (generate.mtl) files to imple-
ment transformation rules. The main component is Template
file that is based onmultiple sub templates. It fetches the input
models and passes them to its respective sub templates. Each
sub template applies its transformation rules on each UML
model element to generate the output. The output artifacts
are based on deployable android HMI code and a widgets
designer (.axml) code.

It is important to note that the source code of
transformation engine (MDMCG) is publically available [45]
for evaluation. Furthermore, UMLPMH profile, sample case
studies along with domain model and comprehensive user
manual can also be found at [45].

B. TRANSFORMATION RULES
Model transformation is the process of automatic generation
of output artifacts (model, code, text, documentation etc.)
from an input source model based on transformation
rules [33]. Transformation rules are the set of formal defi-
nitions [34] that define how one or more constructs in source

model languagemap to one ormore constructs in targetmodel
language [18]. While developing transformation rules, main
focus is to reduce overall efforts and information loses during
transformation process [17].

1) TRANSFORMATION RULES FOR CODE GENERATION
The process of generating code or text artifacts through
Model to Text (M2T) transformation is carried out in trans-
formation engine [37]. The transformation rules required to
generate low level mobile HMI android code fromUMLPMH
models are given in Table 2.

Model Artifacts are based on elements of Unified Mod-
elling Language (UML) for modeling mobile HMI system.
Code Artifacts define android code elements that are con-
verted during transformation from UML model elements.
Mapping maps UMLmodel elements to their respective code
elements. Package is an element of UML that groups together
other packageable elements and provides a hierarchical view
of the model. During transformation process, the Name of a
Package is mapped to the name of a folder containing code
files. Model Class describes a static structure of a system
in UML. The Name of a Model Class is mapped to the
name of class in code by prefixing keyword class. Visibility
constrains the usage of a named element by allowing four
types of accessibility options i.e. public, private, protected
and package.

The Visibility of a Model Class is mapped to the
access specifier of code class by prefixing it to the class
keyword. Model class Attributes, Attributes’ Visibility and
Applied Stereotypes’ Property are mapped to the class owned
attributes and visibility of attributes in code. Association pro-
vides a semantic relationship between classifiers in UML and
its Member Ends are mapped to the instances of the Owned
Class as attributes of an Owning Class in code artifact. Mem-
ber Ends Visibility and Multiplicity are mapped to the access
specifiers and cardinality of the instances of the Owned Class
respectively. Cardinality ‘1’ is mapped to single instance and
cardinality ‘0..∗’ is mapped to List<Type> instance.

Operations define behavioral feature of a Model Class
in UML and its Name is mapped to the method name of
a class in code. Name of Owned Parameters is mapped to
the name of parameters of class and direction of Owned
Parameters is mapped to the type of parameters i.e. in, out,
inout and return type of method. Opaque Behavior is based
on implementation specific semantics in UML like a block
of code. Description of Opaque Behavior is mapped to the
body of method or method definition in code. Enumeration
is a user defined list of named elements in UML. The Name
of Enumeration is mapped to the name of Enum in code by
prefixing enum keyword to the name. Enumeration Literals
are mapped to named values of Enum in code.Widgets define
five types of HMI widgets (Tank, Dial, Traffic Light, Bulb
and Switch) for modelling mobile HMI system. Name of
Instance Specification of an HMI widget is mapped to the
id of ImageView tag in code artifact. Classifier Name of
Instance Specification is mapped to the widget type in code.

VOLUME 8, 2020 10835

I. Qasim et al.: MMHF for ICSs

TABLE 2. Transformation rules for translating UMLPMH models into mobile HMI android code.

10836 VOLUME 8, 2020

I. Qasim et al.: MMHF for ICSs

FIGURE 5. Architecture of transformation engine.

Similarly Applied Stereotype’s Property of Instance Speci-
fication is mapped to the HMI instance’s owned attributes
in code artifact. In MMHF, five different types of widgets
have been introduced, i.e., traffic light, bulb, toggle switch,
dial & tank widgets. In this regard, complex transformation
rules haach widget to successfully generate corresponding
android code in order to achieve proper real time visualiza-
tion as per the values of sensors. In this regard, it is only
required to include the desired widget in HMI model and
set the given properties accordingly. The developed transfor-
mation rules generate accurate corresponding android code,
e.g., data connectivity, positioning of widget in screen etc.

V. VALIDATION
This section deals with the validation of the proposed
framework with the help of three case studies i.e. Home
Automation, Sewage Treatment Plant and Traffic Control Sys-
tem case studies, which prove the applicability and usefulness
of the proposed framework.

A. EXPERIMENTAL SETUP
We have used open source Modbus based Data
Acquisition (DA) sever, which is developed in our institution,
for the validation. To develop realistic environment, five (5)
Fatek PLC’s [13] are configured with 1000 tags. Fatek PLC’s
provide standard support for Modbus protocol, therefore,
the employed DA server is able to perform both read and
write operations on PLC’s. Particularly, we configured all
four types of tags (i.e. coils, discrete inputs, holding andinput
registers) in order to meet the requirements of all case studies.
It is important to note that the actual sensors are not attached
with the PLC’s due to limited availability of resources.
However, proper read and write operations are performed
on PLC’s through DA server in order to visualize the effects
of data change on generated mobile HMI screens. We have

designed and transformed several mobile HMI screens for
first two case studies (i.e. Home Automation and Sewage
Plant).Here, we are only providing the design, transformation
and deployment details of one HMI screen for each case
study. In this regard, the UMLPMH profile, sample case
studies along with domain model, user manual and source
code of transformation engine (MDMCG) can be found at
[45] for further evaluation.

B. HOME AUTOMATION CASE STUDY
1) REQUIREMENTS
With the advancement of technology, home automation has
grown rapidly in the past few years [41]. It gives access to
control devices in his home from a mobile device, tablet or a
PC, anywhere in the world [25]. Home automation systems
include nearly everything e.g. fans, lights, switch buttons,
heating and cooling systems etc. Home Automation is a
step towards IoT [26], where everything has an assigned IP
address and can be controlled and monitored remotely.

In this section, a home automation system is designed
to validate our proposed framework. This system involves
TV lounge, bedroom and kitchen with various type of HMI
widgets i.e. bulbs, buttons, AC temperature sensors and elec-
tric power consumptionsensors. The MMHF allows to model
home automation HMI widgets, assign them PLC device val-
ues and automatically generate android code. Subsequently,
the generated code can be deployed on target mobile devices
for monitoring home devices. Particularly, the Fatek PLCs
are configured with several tags to provide connectivity with
different sensors e.g. lights, switch buttons, fans, AC temper-
ature sensors, etc. The generated mobile HMI client is able to
request the data of 512 Input Output (IO) tags of PLCs which
are configured on different IP addresses. The distribution of
tags are as follows:

VOLUME 8, 2020 10837

I. Qasim et al.: MMHF for ICSs

FIGURE 6. Domain model classes for HMI widgets.

• 250 IO tags belong to Bulbs/Lights.
• 62 IO tags belong to different types of switches e.g. AC,
Heater etc.

• 150 IO tags belong to Power Consumption Sensors.
• 50 IO tags belong to Temperature Sensors.

2) MODELING
Complete domain model of a mobile HMI screen for Home
Automation case study is shown in Figure 6 and Figure 7.
This model contains two types of main concepts i.e. HMI
Widgets and Data Source Connection concepts. The model of
HMI screen composes multiple classes along with necessary
applied stereotypes, attributes and methods for proper execu-
tion of the system. HMI widget concepts are based on twelve
classes; Activity andMain Activity classes handle main oper-
ations of the system. They define working / visualization of
widgets based on acquired real time device data. Main class
is used to define layout and properties of HMI widgets. Tag
class is used to assign PLC address and address space to each
widget based on which request is sent to DA server. Widget,
ToggleSwitch, Tank, Dial, Bulb, Label, Room and Traffi-
cLight classes are used to define the HMI widgets. Data
source connection concepts of model are based on ten classes;
RequestHandler and ConnectionHandler are used to initiate
device requests to DA server and receive response from server
back. IPValidator class performs validation of IP addresses

of devices. Device, Input and Destination classes are used for
storing and transmitting device requests. ResponseData class
stores and transmits response from server. Constant class
defines necessary static attributes of the model. Utility and
StateObject are support classes which provide support like
converting data in proper format for transmission.

Figure 8 shows instance model for home automation
system. Multiple instances of HMI widgets have been mod-
elled and have assigned them tag values based on device
address properties. These instances comprise of widgets
like bulb, toggle button and dial along with tag class
instances for specifying device addresses. Figure 9 shows
how values are assigned to these instances in papyrus class
diagram.

It is important to note that we developed several mobile
HMI screens for home automation case study. Here,
we are including the details for one screen only. In this
regard, MMHF is publically available [45] for further
evaluation.

3) CODE GENERATION
The domain model of Home Automation system is given as
an input model to MDMHCG as shown in Figure 10. It then
applies transformation rules and algorithms to transform
input domain model (.uml file extension) into deployable
android source code for HMI screen as shown in Figure 11.

10838 VOLUME 8, 2020

I. Qasim et al.: MMHF for ICSs

FIGURE 7. Domain model classes for data source connection concepts.

The generated outputs are based on following files and
folders:

1) HMICode folder contains ‘.cs’ files for the
development of android HMI application.

2) WidgetsDesigner folder contains a ‘.axml’ file for the
properties and layout of HMI widgets.

4) DEPLOYMENT
For verification of generated android code, compilation and
execution is necessary. For this purpose, we have used Visual
Studio 2015 for compilation and execution of code. We cre-
ated new Xamarin Android project [11] in visual studio and
pasted our generated code files into an empty project as
shown in Figure 13. After the copying files of generated code
in visual studio, it first compiles code by checking for the syn-
tax errors. Upon successful compilation, generated code files
are then executed to display the output of mobile HMI screen
through real time values of PLCs. It is important to note that
we have performed several read / write operations on tags
through DA sever in order to confirm the proper visualization
effects of mobile HMI screen. Furthermore, write operations
are also successfully performed through mobile HMI screen.
In this regard, Figure 12 (a) represents a running Home
Automation HMI system on Android Emulator in processing
state to fetch devices data through DA server. Figure 12 (b)
shows HMI widgets successfully displaying devices data
requested through server.

It is important to note that the UMLPMH profile, sample
case studies along with domain model, user manual and
source code of transformation engine (MDMCG) can be
found at [45] for further evaluation.

C. SEWAGE TREATMENT PLANT CASE STUDY
1) REQUIREMENTS
Automation processes are being introduced into Sewage
Treatment Plants to increase reliability and safety of the
process and reduce development and maintenance costs [27].
These automation systems control almost everything from
electricity supply to the processes to the safe discharge of
waste water from plants. TheMMHF helps to develop mobile
HMI applications for waste water sewage treatment plants
to monitor treatment processes remotely. In this case study,
several mobile HMI screens are developed through MMHF.
Here, an example mobile HMI screen is demonstrated for
control room. Particularly, the Fatek PLCs are configured
with several tags to provide connectivity with different sen-
sors e.g. control switches, PH value sensor, solid flow meter,
ferric chloride and decantation tanks etc. Generated mobile
HMI client is able to request the data of 800 Input Output (IO)
tags of PLCs which are configured on different IP addresses.
The distribution of tags are as follows: -

• 250 IO tags belong to temperature sensors.
• 100 IO tags belong to liquid level sensors.
• 150 IO tags belong to PH value meters.

VOLUME 8, 2020 10839

I. Qasim et al.: MMHF for ICSs

FIGURE 8. Instance model of home automation system containing widgets and devices information.

• 80, 90, 60 and 70 IO tags belong to Solid flow meters,
Pressure transducers, Point level switches and Speed
sensors respectively.

2) MODELING
As we have discussed earlier, the MMHF provides a
generic method to develop mobile HMI screens. Therefore,
the domain model that we have discussed in previous case
study, can be implemented here as well. However, it is
required to design instance specification model for each HMI
screen separately as per requirements. The instance specifi-
cation model for control room of sewage treatment plant is
given in Figure 14.

3) CODE GENERATION AND DEPLOYMENT
The model file (.uml extension) is given as an input to the
MDMHCG. It transforms the input model, by applying trans-
formation rules and algorithms and meta-level concept, to the
android source code for mobile HMI screens. The generated
files are based on two folders HMICode and WidgetsDe-
signer as shown previously in Figure 11 for home automation
system.

For the verification of generated android code, we have
paste it to Visual Studio 2015, Xamarin Android com-
ponent as already explained for home automation case
study in Figure 13. Finally, the execution of generated
mobile HMI screen is performed as shown in Figure 15,
where Figure 15 (a) represents a running Sewage Treatment
Plant system on Android Emulator in processing state to

fetched devices data through DA server. Figure 15 (b) shows
HMI widgets successfully displaying devices data requested
through server.

D. TRAFFIC LIGHT CONTROL SYSTEM
Traffic light control systems are widely used to monitor and
control the flow of automobiles through the junction of many
roads. They aim to realize smooth motion of cars in the
transportation routes. HMIs are being introduced into the
traffic light control systems that allows operators to remotely
monitor and control all activities of a traffic light system [40].
In this case study, a traffic signal HMI widget is used at
the junction of four roads to control traffic remotely. The
MMHF helps to develop mobile based HMI system for traffic
control system that comprises of three main components i.e.
PLC, DA server and HMI mobile client. PLC devices acquire
real time data for states of signal lights, countdown timers,
density of vehicles at different lanes etc. DA server commu-
nicates with PLC to provide real time data requested by HMI
mobile client. The instance specification model for traffic
light control system is shown in Figure 16. Subsequently,
the functional HMI screens are shown in Figure 17 and
Figure 18.

VI. DISCUSSION AND LIMITATIONS
This article presents a Model-driven Mobile HMI
Framework (MMHF) to develop the native mobile HMI
screens for industrial control systems. This is the first real

10840 VOLUME 8, 2020

I. Qasim et al.: MMHF for ICSs

FIGURE 9. Assigning values to the instances of home automation system.

step towards the cost effective and scalable mobile HMI
solution for industry automation because:

1) Exiting industrial tools like Genesis64 are highly
expansive and usually provided with pay per tag policy.
On the other hand, MMHF is publically available free of
cost. Furthermore, it is capable of designing various HMI
screens for different industrial control systems. Therefore,
MMHF is significantly cost effective solution as compared
to proprietary tools. As far as state-of-the-art is concerned,
it is hard to find wide-ranging open source framework
particularly for the development of native mobile HMI
screens.

2) Industrial tools do not provide any information about
the underlying development techniques and tools. Conse-
quently, the extension of industrial tools in academia is not
possible. On the other hand, MMHF underlying develop-
ment approaches and supporting tools are explicitly stated
in this article. Furthermore, it is publically available [45].
Consequently, the researchers and practitioners of the domain
can easily extend the current features of MMHF. Particularly,
it opens the door for academia to propose different industry

FIGURE 10. Transformation of UMLPMH Models into mobile HMI android
code for home automation system.

FIGURE 11. Generated code files for home automation system.

automation techniques for HMI on the basis of MMHF.
Therefore, the proposed framework in this article is highly
scalable.

It can be argued that the development of HMI screens in
MMHF is a bit complex because it requires to understand
the UML modeling concepts for the development of HMI
screens. We admit that MMHF is not currently providing
the drag and drop facilities for HMI screen development
as provided by industrial tools. Actually, MMHF is a solid
foundation and several functionalities can be incorporated in
it due to its highly scalable features. For example, the drag
and drop features can be included in the MMHF with mini-
mal efforts by exploiting the features of Sirius framework.1

Particularly, the concepts of UMLPMH can be exported to
Sirius framework to develop a full tool for design mobile
HMI screens with sophisticated drag and drop facilities. Sim-
ilarly, it can be argued that MMHF is not currently provid-
ing the advanced HMI development features like dynamics
(e.g. Flash etc.), 3D support etc. Therefore, it is difficult
to develop HMI screens through MMHF in real industries.
We admit that such advanced features are missing in MMHF,
however, we provide the proof-of-concept by incorporating
few important widgets and proper visualization is achieved
in real time as per configured settings and according to the

1 https://www.eclipse.org/sirius/

VOLUME 8, 2020 10841

I. Qasim et al.: MMHF for ICSs

FIGURE 12. Home automation system’s HMI connecting with DA server and displaying real time state of home system through widgets in (a)
and (b) respectively.

FIGURE 13. Deployed code for mobile HMI of home automation system.

values of sensors. Therefore, more widgets and dynamic can
be included in the MMHF in similar manner.

Another important aspect of MMHF is the connectivity
support for data acquisition sever. Particularly, we use open
source Modbus based data acquisition sever, which is devel-
oped in our institution, for the validation ofMMHF. However,
we provide complete connectivity mechanism in MMHF
to support the data acquisition from standard technologies
like OPC UA. Particularly, we provide different connec-
tivity features like: number of devices and corresponding
IP address, etc. in UMLPMH. Furthermore, the generated
native HMI client sends and receives response from DA
server through value, quality and timestamp attributes as
defined in the standard OPC DA server specifications,2

e.g., 192 value of quality belongs to Good etc.

2 https://opcfoundation.org/about/opc-technologies/opc-classic/

Therefore, native mobile HMI clients of MMHF can eas-
ily communicate with OPC based data acquisition server.
In fact, we successfully tested the connectivity of native
HMI clients with classic Matrikon OPC server3 (Modbus)
for evaluation purposes.

It can be argued that the validation of MMHF is
questionable as it is not yet applied in any real industry.
Basically, MMHF is solely developed in academia without
any funding or industry support. Therefore, we have cer-
tain limitations of resources like sensors, real devices etc.
However, we have tried our level best to develop a real
industry environment as much as possible for the validation
of MMHF. For example, we have used real PLC’s available
in the institution’s control lab. Moreover, we have properly
configure more than 1000 IO tags in PLC’s in order to per-
form realistic Read and / or Write operations through mobile
HMI screens. Furthermore, the correctness of visualizations
on data change is comprehensively evaluated in the generated
mobile HMI screens. Particularly, we have tested generated
mobile HMI screens with 1000 IO tags without any lag.
Therefore, MMHF is fully capable to be applied in most of
the real industries without any issues for the development
of mobile HMI screens. In fact, we are currently contacting
several industries in this regard.

During the investigation of existing solutions for mobile
HMI development, we found few small applications for the
android based HMI screens on Google Play store. Particu-
larly, Virtuino Modbus [12] and HMI Modbus applications
are providing few realistic features for android HMI screens.
However, the underlying development mechanism and source
code is not given, therefore, scalability is an important issue
for such applications. Furthermore, proper working of such
applications is highly questionable because we encountered a
significant lag onHMI screens after 300 tags while evaluating
VirtuinoModbus [12] application. On the other hand, we have

3 https://www.matrikonopc.com/downloads/types/drivers/index.aspx

10842 VOLUME 8, 2020

I. Qasim et al.: MMHF for ICSs

FIGURE 14. Instance model of water treatment plant containing widgets and devices information.

FIGURE 15. Water treatment system’s HMI connecting with DA server and displaying real time state of system through HMI widgets in (a) and
(b) respectively.

FIGURE 16. Instance model of traffic light control system containing
widgets and devices information.

successfully tested MMHF mobile HMI client on 1000 tags
without any lag.

FIGURE 17. Traffic light control system’s HMI connecting with DA server
for devices data.

To summarize, MMHF is a feasible, cost effective and
scalable solution for the development of native HMI screens.

VOLUME 8, 2020 10843

I. Qasim et al.: MMHF for ICSs

FIGURE 18. Traffic light control system’s HMI displaying ‘‘Check’’, ‘‘Stop and ‘‘Start’’ ’’ states of traffic signal in (a), (b) and (c) respectively.

Particularly, it provides certain benefits to the researchers and
practitioners of the domain, such as: -
• Ready to use solution: MMHF provides a model tem-
plate to add widgets and set their properties accord-
ingly for designing desired HMI screen. Subsequently,
the design of HMI screen represented throughmodel can
be automatically transformed to low level android imple-
mentations with a click of button. Finally, the generated
android code for HMI screens can be directly deployed
to the target mobile devices in order to visualize and
control the industrial processes.

• Reduced complexity: MMHF provides abstract mod-
elling environment for HMI designing, instead of
directly coding the native HMI using extensive low-level
programming. This significantly reduces development
complexity in terms of time and cost.

• Scalability: MMHF is highly scalable as both
UMLPMH and MDMHCG are fairly extendable. For
example, it is straightforward to include more indus-
trial widgets in UMLPMH for designing complex HMI
screens. Similarly, MDMHCG is publically available
and existing transformation rules can be upgraded with
simplicity in order to generate native HMI screens with
advanced visualization features.

VII. CONCLUSION AND FUTURE WORK
This article presents aModel-drivenMobileHMIFramework
(MMHF) for the development of native mobile HMI screens
for (ICSs). Particularly, the design of HMI screens can
be accomplished through a UML Profile for Mobile HMI
(UMLPMH) which is developed as a part of MMHF. Further-
more, an open source transformation engine, Model Driven
Mobile-based HMI Code Generator (MDMHCG), is imple-
mented in MMHF to automatically transform UMLPMH
models into target native mobile HMI implementations. The
viability ofMMHF is demonstrated through three benchmark
industrial case studies. The experimental results prove that
the MMHF is a feasible, cost effective and scalable solution
for developing pure native HMI screens in wide-ranging
ICSs.

Unlike industrial HMI tools, the underlying develop-
ment methodologies of MMHF are explicitly given in this
article. Furthermore, MMHF is available publically for fur-
ther enhancements. Consequently, it provides an opportunity
for further future work for academia to work on different HMI
approaches based on this novel idea of MMHF. For example,
the concepts of UMLPMH can be extended to incorporate
more widgets and dynamic in MMHF in order to support
the design of complex HMI screens. Moreover, the con-
cepts of UMLPMH can be exported to Sirius framework to
develop a full designing tool with sophisticated drag and
drop facilities. Furthermore, the extension of MDMHCG is
fairly possible to generate both desktop and web HMI screens
implementations along with android code. Finally, to summa-
rize, as a future work, several extensions of MMHF are pos-
sible as per the demanding requirements of HMI screens for
modern ICSs.

REFERENCES
[1] T. Skripcak, P. Tanuska, U. Konrad, and N. Schmeisser, ‘‘Toward noncon-

ventional human–machine interfaces for supervisory plant process mon-
itoring,’’ IEEE Trans. Human-Mach. Syst., vol. 43, no. 5, pp. 437–450,
Sep. 2013.

[2] V. Villani, L. Sabattini, J. N. Czerniak, A. Mertens, B. Vogel-Heuser,
and C. Fantuzzi, ‘‘Towards modern inclusive factories: A methodology
for the development of smart adaptive human-machine interfaces,’’ 2017,
arXiv:1706.08467. [Online]. Available: https://arxiv.org/abs/1706.08467

[3] M. W. Anwar and F. Azam, ‘‘Proposing a novel architecture of script com-
ponent to incorporate the scripting language support in SCADA systems,’’
in Computer Information Systems and Industrial Management (Lecture
Notes in Computer Science), vol. 8838, K. Saeed and V. Snášel, Eds.
Berlin, Germany: Springer, 2014.

[4] M. Jain and S. Tolety, ‘‘An optimized design approach for extending HMI
systems with mobile devices,’’ in Proc. Companion 36th Int. Conf. Softw.
Eng., 2014.

[5] T. Lojka, P. Satala, J. Mocnej, and I. Zolotova, ‘‘Web technologies in
industry HMI,’’ in Proc. IEEE 19th Int. Conf. Intell. Eng. Syst. (INES),
Sep. 2015, pp. 103–106.

[6] C. Martin, M. Freund, A. Braune, R.-E. Ebert, M. Plebow, S. Severin,
and O. Stern, ‘‘Integrated design of human-machine interfaces for pro-
duction plants,’’ in Proc. IEEE 20th Conf. Emerg. Technol. Factory
Automat. (ETFA), Sep. 2015, pp. 1–6.

[7] H. S. Saini and R. Daruwala, ‘‘Human machine interface in Inter-
net of Things system,’’ in Proc. Int. Conf. Comput. Commun. Control
Automat. (ICCUBEA), Aug. 2016, pp. 1–4.

10844 VOLUME 8, 2020

I. Qasim et al.: MMHF for ICSs

[8] E. Normanyo, F. Husinu, andO. R. Agyare, ‘‘Developing a humanmachine
interface (HMI) for industrial automated systems using siemens simatic
WinCC flexible advanced software,’’ J. Emerg. Trends Comput. Inf. Sci.,
vol. 5, no. 2, pp. 134–144, 2014.

[9] G. Jayanthi, S. Arunachalam,K. Praveen, andK. P. S. Unni, ‘‘Cost effective
SCADA for remote monitoring and control for effective process automa-
tion using HMI,’’ in Proc. Int. Conf. Power, Energy, Control Transmiss.
Syst. (ICPECTS), Feb. 2018, pp. 342–346.

[10] F. Ekman, M. Johansson, and J. Sochor, ‘‘Creating appropriate trust in
automated vehicle systems: A framework for HMI design,’’ IEEE Trans.
Human-Mach. Syst., vol. 48, no. 1, pp. 95–101, Feb. 2018.

[11] Xamarin Android. Accessed: Oct. 2019. [Online]. Available: https://docs.
microsoft.com/en-us/xamarin/android/

[12] Virtuino Modbus. Accessed: Oct. 2019. [Online]. Available: https://
virtuino.com/index.php/virtuino-modbus

[13] Fatek PLC. Accessed: Oct. 2019. [Online]. Available: http://www.fatek.
com/en/prod.php?catId=1

[14] B. Dorninger, W. Beer, M. Moser, R. Zeilinger, and A. Kern, ‘‘Automated
reengineering of industrial HMI screens by static analysis,’’ in Proc. IEEE
Emerg. Technol. Factory Automat. (ETFA), Sep. 2014.

[15] Y. Atarashi, M. Morita, and N. Koga, ‘‘HMI development of derived
products by model-driven prototyping tool for in-vehicle system,’’ in
Proc. 5th IIAI Int. Congr. Adv. Appl. Inform. (IIAI-AAI), Jul. 2016,
pp. 1072–1077.

[16] A. Ramaswamy, B.Monsuez, andA. Tapus, ‘‘Model driven software devel-
opment for human-machine interaction systems,’’ in Proc. ACM/IEEE Int.
Conf. Hum.-Robot Interact. (HRI), 2014, pp. 270–271.

[17] M. W. Anwar, M. Rashid, F. Azam, M. Kashif, and W. H. Butt, ‘‘A model-
driven framework for design and verification of embedded systems
through SystemVerilog,’’Des. Automat. Embedded Syst., vol. 23, nos. 3–4,
pp. 179–223, Dec. 2019, doi: 10.1007/s10617-019-09229-y.

[18] K. M. Aziz, ‘‘Evaluating model transformation technologies-an
exploratory case study,’’ B.S. thesis, Dept. Comput. Sci. Eng., Univ.
Gothenburg, Gothenburg, Sweden, 2011. Accessed: Jan. 2020. [Online].
Available: https://gupea.ub.gu.se/handle/2077/27847

[19] O. Neira, A. N. Lee, J. L. M. Lastra, and R. S. Camp, ‘‘A builder for
adaptable human machine interfaces for mobile devices,’’ in Proc. 11th
IEEE Int. Conf. Ind. Inform. (INDIN), Jul. 2013, pp. 750–755.

[20] M. Willocx, J. Vossaert, V. Raes, and V. Naessens, ‘‘Using android devices
as mobile extensible HMIs,’’ in Proc. 5th Int. Conf. Internet Things, Syst.,
Manage. Secur., Oct. 2018.

[21] D. Akdur, V. Garousi, andO. Demirörs, ‘‘A survey onmodeling andmodel-
driven engineering practices in the embedded software industry,’’ J. Syst.
Archit., vol. 91, pp. 62–82, Nov. 2018.

[22] I. Qasim, F. Azam, M. W. Anwar, H. Tufail, and T. Qasim, ‘‘Mobile user
interface development techniques: A systematic literature review,’’ inProc.
IEEE 9th Annu. Inf. Technol., Electron. Mobile Commun. Conf. (IEM-
CON), Nov. 2018.

[23] H. Tufail, F. Azam, M. W. Anwar, and I. Qasim, ‘‘Model-driven develop-
ment ofmobile applications: A systematic literature review,’’ inProc. IEEE
9th Annu. Inf. Technol., Electron. Mobile Commun. Conf. (IEMCON),
Nov. 2018.

[24] H. Tufail, M. Waseem Anwar, I. Qasim, and F. Azam, ‘‘Towards the
selection of optimum alarms system in leading industry automation
software,’’ in Proc. 8th Int. Conf. Ind. Technol. Manage. (ICITM),
Mar. 2019.

[25] I. Majumdar, B. Banerjee, M. T. Preeth, and M. K. Hota, ‘‘Design of
weather monitoring system and smart home automation,’’ in Proc. IEEE
Int. Conf. Syst., Comput., Automat. Netw. (ICSCAN), Jul. 2018.

[26] B. Kaur, P. K. Pateriya, and M. K. Rai, ‘‘An illustration of making a home
automation system using raspberry Pi and PIR sensor,’’ in Proc. Int. Conf.
Intell. Circuits Syst. (ICICS), Apr. 2018.

[27] Z. M. Zain, M. A. C. Munaaim, and M. Mat-Noh, ‘‘Solar powered
microcontroller module for real-time sewerage treatment plant monitoring
system: Prototype development,’’ in Proc. 7th IEEE Int. Conf. System Eng.
Technol. (ICSET), Oct. 2017.

[28] P. Li, X. Yang, and Y. A. W. Shardt, ‘‘Simultaneous robust, decoupled
output feedback control for multivariate industrial systems,’’ IEEE Access,
vol. 6, pp. 6777–6782, 2018.

[29] H. T. H. Thabet, ‘‘Design and simulation of a monitoring electrical energy
consumption system based on PLC techniques,’’ in Proc. 1st Int. Sci. Conf.
Eng. Sci.-3rd Sci. Conf. Eng. Sci. (ISCES), Jan. 2018.

[30] A. Toroman and E. Mujcic, ‘‘Application of industrial PLC for controlling
intelligent traffic lights,’’ in Proc. 25th Telecommun. Forum (TELFOR),
Nov. 2017.

[31] J. P. S. Da Silva, M. Ecar, M. S. Pimenta, G. T. A. Guedes, L. P. Franz,
and L. Marchezan, ‘‘A systematic literature review of UML-based domain-
specific modeling languages for self-adaptive systems,’’ in Proc. 13th Int.
Conf. Softw. Eng. Adapt. Self-Manag. Syst. (SEAMS), 2018.

[32] H. Marouane, A. Makni, R. Bouaziz, C. Duvallet, and B. Sadeg, ‘‘Defining
a UML profile for the consistency of design patterns,’’ in Proc. IEEE/ACS
13th Int. Conf. Comput. Syst. Appl. (AICCSA), Nov. 2016.

[33] J. Thangaraj and S. Ulaganathan, ‘‘Model reusability and multidirectional
transformation using unified metamodel,’’ in Proc. IEEE Distrib. Comput.,
VLSI, Electr. Circuits Robot. (DISCOVER), Aug. 2018.

[34] H. Wang, D. Zhong, T. Zhao, and F. Ren, ‘‘Integrating model checking
with SysML in complex system safety analysis,’’ IEEE Access, vol. 7,
pp. 16561–16571, 2019.

[35] Aggregate Widgets. Accessed: Sep. 2019. [Online]. Available: https://
aggregate.tibbo.com/technology/visualization/widgets.html

[36] Open Automation Software. Accessed: Sep. 2019. [Online]. Available:
https://openautomationsoftware.com/

[37] I. Mahmood, T. Kausar, H. S. Sarjoughian, A. W. Malik, and N. Riaz,
‘‘An integrated modeling, simulation and analysis framework for engineer-
ing complex systems,’’ IEEE Access, vol. 7, pp. 67497–67514, 2019.

[38] M. Hentati, A. Trabelsi, L. Benammar, and A. Mahfoudhi, ‘‘Search-based
software engineering for optimising usability of user interfaces within
model transformations,’’ IET Softw., vol. 13, no. 5, pp. 368–378, Oct. 2019.

[39] G. Dupont, S. Mustafiz, F. Khendek, and M. Toeroe, ‘‘Building domain-
specific modelling environments with papyrus: An experience report,’’ in
Proc. 10th Int. Workshop Modeling Softw. Eng. (MiSE), 2018.

[40] O. M. Winzer, A. S. Conti-Kufner, and K. Bengler, ‘‘Intersection traffic
light assistant—An evaluation of the suitability of two human machine
interfaces,’’ in Proc. 21st Int. Conf. Intell. Transp. Syst. (ITSC), Nov. 2018.

[41] R. Zhang, S. He, X. Yang, X. Wang, K. Li, Q. Huang, Z. Yu, X. Zhang,
D. Tang, and Y. Li, ‘‘An EOG-based human–machine interface to control
a smart home environment for patients with severe spinal cord injuries,’’
IEEE Trans. Biomed. Eng., vol. 66, no. 1, pp. 89–100, Jan. 2019.

[42] Z. Sheng, C. Ji, and S. Hua, ‘‘Application of siemens PLC and WinCC in
the monitoring-control system of bulk grain silo,’’ in Proc. Chin. Control
Decis. Conf. (CCDC), Jun. 2018.

[43] A. Amjad, F. Azam, M. W. Anwar, W. H. Butt, M. Rashid, and
A. Naeem, ‘‘UMLPACE formodeling and verification of complex business
requirements in event-driven process chain (EPC),’’ IEEE Access, vol. 6,
pp. 76198–76216, 2018.

[44] G. Guo, ‘‘Design and implementation of smart campus automatic settle-
ment PLC control system for Internet of Things,’’ IEEE Access, vol. 6,
pp. 62601–62611, 2018.

[45] Model-Driven Mobile HMI Framework (MMHF). Accessed: Oct. 2019.
[Online]. Available: https://ceme.nust.edu.pk/ISEGROUP/MHCG/index.
html

IQRA QASIM received the B.S. degree in software
engineering from Fatima Jinnah Women Univer-
sity, Rawalpindi, Pakistan, in 2014, and the M.S.
degree in software engineering from the National
University of Sciences and Technology (NUST),
Islamabad, Pakistan, in 2019. Her research inter-
ests include model driven architecture (MDA),
human–machine interface, and industrial control
systems.

MUHAMMAD WASEEM ANWAR is currently
pursuing the Ph.D. degree with the Department
of Computer and Software Engineering, CEME,
National University of Sciences and Technology,
Pakistan. He is also a Senior Researcher and an
Industry Practitioner in the field of model-based
system engineering (MBSE) for embedded and
control systems. His major research area is MBSE
for complex and large systems.

VOLUME 8, 2020 10845

http://dx.doi.org/10.1007/s10617-019-09229-y

I. Qasim et al.: MMHF for ICSs

FAROOQUE AZAM is currently an adjunct
Faculty Member of the Department of Computer
and Software Engineering, College of Electrical
and Mechanical Engineering, National University
of Sciences and Technology, Pakistan. He has been
teaching various software engineering courses,
since 2007. His areas of interests are model driven
software engineering, business modeling for Web
applications, and business process reengineering.

HANNY TUFAIL received the M.Sc. degree in
computer science from Quaid-i-Azam University
Islamabad, Pakistan, in 2011, and the master’s
degree in software engineering from the National
University of Sciences and Technology (NUST),
Pakistan, in 2019. His research interests aremodel-
driven software engineering, context aware sys-
tems, mobile applications, and industrial control
systems.

WASI HAIDER BUTT is currently an Assistant
Professor with the Department of Computer and
Software Engineering, College of Electrical and
Mechanical Engineering, National University of
Sciences and Technology, Pakistan. His areas of
interests are model driven software engineering,
as well as Web development and requirement
engineering.

MUHAMMAD NOUMAN ZAFAR received the
B.S. degree in software engineering from the Gov-
ernment College University, Faisalabad, in 2014,
and the M.S. degree in software engineering from
the College of Electrical and Mechanical Engi-
neering (CEME), National University of Science
and Technology (NUST), Islamabad, in 2018. He
is an Active Member of the Eclipse and Microsoft
Community as well as the Model Driven Software
Engineering Research Group at CEME, NUST.

His research interests are model driven architecture, distributed industrial
control systems, the Internet of Things, big data, and robotics.

10846 VOLUME 8, 2020

