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Abstract—This paper provides a systematic three-stage
methodology for migrating complex real-time industrial software
systems from single-core to multi-core computing platforms.
Single-core platforms have limited computational capabilities that
prevent integration of computationally demanding applications
such as image processing within the existing system. Modern
multi-core processors provide increased computing capacity and
allow the parallel execution of different applications within
the system. However, this transition is non-trivial and requires
a systematic and well-defined migration process. This paper
reviews some of the existing migration methods and provides
a systematic multi-phase migration process with emphasis on
software architecture recovery and transformation to explicitly
address the timing and dependability attributes expected of
industrial software systems.

Index Terms—real-time systems, multi-core, software architec-
ture, software migration, robotics.

I. INTRODUCTION

Software evolution has been a continuous process in in-
dustrial real-time embedded software systems with new func-
tionality, performance improvements and bug fixes introduced
with each new version [1], [2]. Many of these industrial
systems have been developed over the decades [3], undergoing
major revisions due to technology shifts, changing customer
requirements, improved development processes, etc. The long
life-cycle of such systems results in creation of large assets
that become critical for a business [4]. However, one constant
factor with evolution of such systems is that many of the
software components and their architectures are optimized
for single-core computing platforms. Integrating new data-
intensive and computationally demanding applications such as
the augmented reality interfaces [5], [6] requires additional
computational capacity. Moreover, with the decreasing avail-
ability of single-core processors, there is a need to migrate
the existing software to the powerful multi-core computing
platforms. Such migration, however, should ensure that the
quality attributes such as performance and dependability [7],
[8] match the current system quality and more optimistically,
improved much further.

A major concern while migrating existing real-time soft-
ware systems towards multi-core systems is the identification
of technical solutions that can improve the performance in
terms of resource usage and timing predictability [9]–[11].
Invariably, these solutions should also be complementary to
other extra-functional attributes such as scalability, maintain-
ability and portability of the software system. Furthermore, the

new solutions should ensure maximum reuse of the existing
software with minimal re-engineering efforts.

To address these multi-dimensional aspects of a complex
real-time software system with strict timing and dependability
requirements, we use a focus group discussion to formulate
an open-ended Research Question (RQ),

RQ: How to migrate a complex real-time software from a
single-core to a multi-core architecture with maximum
software reuse and minimal re-engineering effort?

We further refine this into the following sub-questions,
RQ1: Which migration methodology addresses the concerns of

software reuse, dependability and timing requirements?
RQ2: How to evaluate and analyse the applicability of different

multi-core solutions for embedded control software?
RQ3: What are the tools that facilitate the migration process?

These questions were developed by considering a con-
figurable robot controller software [7] developed at ABB
Robotics1, with functionality ranging from motion control
to cloud connectivity. The system has close to 140 tasks
and 71,128 methods. It integrates real-time and non real-
time functionalities with varying Quality of Service (QoS)
requirements on a single-core platform.

To address the discussed questions, we use a mixed research
methodology utilizing discussions with a focus group and
subject experts complemented with a review of the state-of-
the-art literature to identify key concerns and provide a sys-
tematic methodology to migrate industrial software with real-
time requirements from single-core to multi-core platforms.
Concretely, the paper provides the following contributions:
• a review of systematic approaches to software migration;
• a systematic methodology for migrating complex embedded

software from single-core to multi-core platforms; and
• a review of tools that facilitate the migration process.
We would like to point out that the paper does not include an
evaluation of the methodology as the migration is currently in-
progress and will take considerable time before completion,
hence the evaluation is left for future work. Also, since
the focus of the paper is the methodology, we have limited
discussion on possible multi-core solutions.

The rest of the paper is organized as follows. Section II
provides an overview of a robotic system and its controller
software. Section III reviews the software migration methods.

1https://new.abb.com/products/robotics/controllers



Section IV discusses a systematic approach focusing on archi-
tecture migration, followed by implementation and verification
of the migration in Section V and Section VI respectively.
A review of the tools facilitating the migration process is
discussed in Section VII. Finally, Section VIII concludes the
paper.

II. SYSTEM OVERVIEW

The systems corresponds to a typical robotic system con-
sisting of a manipulator arm, a controller, and a graphical con-
troller interface. This paper considers software functionality of
the controller, which can be divided into functions concerning
(i) configuration, (ii) communication, and (iii) control. The
configuration functions include the robot programming inter-
face that allows the user to configure and specify the runtime
behavior of the manipulator. The user is also able to define
the robot environment such as additional sensors and actuators.
The real-time communication functions allow the controller to
interact with devices such as Programmable Logic Controllers
(PLCs) and other sensors interconnected using a real-time
network. The non-real-time communication functions allow
the controller to interact with enterprise network including
PCs and the cloud. The control functions generate the path
to be followed by the manipulator based on the user-defined
configuration. The output of the control functions is provided
to drive controllers that manage the low-level motor actuation.
The controller software has different runtime modes and the
available functions vary between modes. The main modes
include the “Initialization mode”, “Safe-init mode”, “System
update and configuration mode”, “Normal operation mode”,
and “Fail-safe mode” [12]. The controller software is in the
initialization mode during startup. It enters the safe-init mode
if there are errors during the startup. The controller software
can be modified in the system update and configuration mode.
It executes the motion planning algorithms with real-time
communication enabled during the normal operation mode. It
transitions into a fail-safe mode from a normal operation mode
if an unexpected error occurs. During normal operation, the
user-defined instructions from the robot programming interface
provide input to the motion generation components of the
software, which in turn generate the path to be followed by
the manipulator. Simultaneously, the sensor information and
actuator commands are read and written by the communication
components based on the user configuration as well as system
configuration.

III. SOFTWARE MIGRATION METHODOLOGY

Software migration is usually carried out when adopt-
ing a different architectural paradigm than the existing one,
such as changing the programming language [13] or when
moving from native server deployments to cloud-based de-
ployments [14], [15]. Sneed [16] proposed a five-step re-
engineering planning process for legacy systems, covering
Project Justification, Portfolio Analysis, Cost estimation, Cost-
benefit analysis and Contracting. The author highlights the
need for creating measurable metrics to justify the effort and
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Fig. 1. Proposed migration workflow.

the improvements achievable with the migration. Erraguntla et
al. [17] discussed a three phase migration method consisting
of analysis, synthesis and transformation phases to migrate
single-core to multi-core parallel environments. During the
analysis and synthesis phase, the design of the existing soft-
ware is recovered while recommendations for the multi-core
environment are made during the transformation phase of the
migration method. They also provided a reverse engineering
toolkit called RETK for the analysis and synthesis phases.
Battaglia [18] presented the RENAISSANCE method for re-
engineering a legacy system. The method focuses on planning
and management of the evolution process.

Menychtas et al. [19] presented a framework called ARTIST,
a three-phase approach for software modernization focusing on
migration towards the cloud. They categorized the migration
into three main phases, Pre-migration, Migration and Modern-
ization and Post-migration. During the pre-migration phase,
they proposed a feasibility study to address the technical and
economic points of view. During the migration and modern-
ization phase, the actual migration is carried out and finally
during the Post-migration phase, the system is deployed and
validated. Forite et al. [20] proposed the FASMM approach
to better manage the migration and to record and reuse the
knowledge gained during the migration in other projects. More
recently, Reussner et al. [2] and Wagner [21] proposed model-
driven approaches to software migration. The focus in these
approaches is to reverse engineer the system using automated
tools and capture the information in modelling languages and
then use the model-driven approach for further maintenance
of the system.

Most of the works discussed so far focused on reverse
engineering the existing system to get an understanding of
the system, and then to use this information to model and
transform the system based on the technical requirements.
However, an important aspect we found lacking was empha-
sis on verification and validation of the reverse engineering
processes. Additionally, while many of these works focused
on architecture transformation and implementation changes,
emphasis on migration of the testing methods was negligible.
During our discussions in the focus group, testing was iden-
tified as an important domain which required investigation as
multi-core architectures are more prone to concurrency issues,
e.g., livelock, deadlock, race-conditions and data corruption.

Based on the reviewed methods and the extra-functional
requirements, we create a migration workflow as depicted in
Fig. 1 and apply the Analyze, Verify, Transform and Validate
approach to this workflow. Essentially, during analysis, the
requirements for the migration process are established and the



existing system behaviour is recovered. Then the results of
the analysis are verified by the subject experts. New solutions
are identified and evaluated during the transformation phase.
Finally, the applicability of these solutions, along with the
migration process, is validated during the validation phase.
Additionally, we consider the migration process to be iterative
in the sense that each stage can be revisited and decisions can
be roll-backed or modified to address unexpected issues that
may have been missed or if they do not meet the objective of
the migration. A brief overview of the different stages of the
proposed workflow is as follows.
1) During the first stage, we focus on the migration of soft-

ware architecture. In this stage, the goal is to synthesize an
abstract system model, validate its accuracy and transform
the model for the multi-core environment.

2) In the second stage, the implementation and verification
migration, the goal is to analyse the system source code
to identify potential concurrency issues within the code
and transform the code according to the new multi-core
architecture model. Additionally. the existing verification
techniques are augmented with methods relevant for a
multi-core architecture.

3) In the third stage, we validate the migration process by
identifying the validation parameters and measuring these
parameters and then comparing them with the values ob-
tained before migration.

IV. SOFTWARE ARCHITECTURE MIGRATION

Real-time embedded systems have a strong focus on timing,
safety and dependability requirements and therefore, should
have a well-defined software architecture to support such
requirements. As there are significant differences in the single-
core and multi-core platforms, the software architecture should
be modified such that it can make the best use of the resources
and address implicit constraints. To approach this transforma-
tion systematically, the software architecture migration stage
is divided into five well-defined phases shown in the Fig. 2.
1) architecture requirements specification;
2) architecture abstraction and representation;
3) architecture recovery;
4) architecture transformation; and
5) architecture verification.

A. Architecture Requirements Specification

As is common in any software development process, we
consider the requirements specification as a necessary step in
the migration process. In our case, the requirements are es-
sentially high-level, focusing primarily on the extra-functional
properties of scalability, performance and timing guarantees
as the guiding principles for the complete migration process
in itself and that the actual requirements are derived in the
architecture recovery phase of the migration process. During
this phase, we also identify a requirements specification and
management process to better manage the requirements during
the implementation stages of the migration process.
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Fig. 2. Various phases in the software architecture migration.

B. Architecture Abstraction and Representation

In this phase, we seek to identify an abstraction level that
accurately represents the system behaviour. An abstraction
level close to the implementation may be too detailed, while a
higher abstraction level can miss critical information that may
be necessary for assuring correct system behaviour. Therefore,
to identify the right abstraction, we need to identify the system
properties that can be affected when moving to the multi-
core architectures. A representation model that can sufficiently
represent these properties is necessary. Such a representation
should also be easy to comprehend for further analysis and
for communication with stakeholders such as system architects
and developers. To address these issues, we conduct interviews
with experts and review state-of-the-art literature related to
multi-core in the real-time systems domain and the model-
driven engineering domain to guide the selection of the
abstraction level and for the identification of the representation
tools. We highlight the motivation for our choices and discuss
the outcome in the respective sections.

1) Expert Interviews: Since the system we are considering
is a complex system providing different functionalities ranging
from embedded control to cloud connectivity, any ad-hoc or
intuition-based selection of the abstraction level could result
in potentially avoidable complexity issues and costly re-work.
Therefore, we relied on informal and open-ended interviews
with the system software architects and domain architects to
identify possible abstraction levels. From these discussions, we
identify the task-level abstraction to be sufficient for the mi-
gration process. We further identify dependencies, precedence
constraints, timing properties, and inter-task communication
as key parameters that can sufficiently capture the system’s
behaviour at the task level abstraction.

2) State-of-the-art in Real-time Systems: Since the lit-
erature on real-time systems is extensive, we skip further
discussion but we conclude that much of the literature in this
domain uses the task-level abstraction for the system represen-
tation [22] and provides results based on this abstractions [10],
[23]. With this, we convincingly conclude that the task-level
abstraction can be relied upon for the migration process.

3) State-of-the-art in Model-driven Engineering: Many
modelling languages are available for representing the ar-
chitecture of the system at various abstraction levels. Since



the system considered in this work is a real-time system,
we identified the UML MARTE2 profile [24], Rubus [25],
[26], UPPAAL [27], MechatronicUML3 [28], AUTOSAR [29],
ART-ML Framework [30], just to name a few, as the possible
modelling languages and frameworks that can be used to
represent the system under discussion.

Although many of these languages, frameworks and sup-
porting tools offer detailed semantics for capturing multiple
viewpoints which is essential for managing embedded systems,
the learning curve with many of these tools is rather steep,
especially when being used for representing task-level abstrac-
tion of existing systems. We choose the UPPAAL tool for our
purposes primarily for its ability to allow expressive modelling
of the task-level abstraction. Once we have identified this, we
move on to the architecture recovery phase of transformation.

C. Architecture Recovery

We need to have a better understanding of existing archi-
tecture to be able to modify and adapt it to new platforms.
However, in many cases, the documented architecture or the
intended architecture does not represent the actual implemen-
tation. Such deviations can be attributed to multiple reasons.
For example, many of the software systems are developed
using a top-down development approach. As a result, imple-
mentation level changes are not propagated back to the archi-
tectural documents resulting in inconsistencies. Recovering the
architecture, therefore, is an essential step for the migration.
While many useful architecture visualisation tools such as
CodeSonar4 and Imagix5 analyse the source code to provide
architecture visualisation, they only provide information on the
logical structure of the software and additionally, they may
not be able to detect faulty architectural patterns within the
recovered architecture.

In this phase, we focus primarily on extracting the temporal
properties of the system, which can manifest themselves in
different forms such as deadlines or message buffer sizes.
We consider the system to be modelled with cause-effect
task chains [31], which implicitly consider maintaining the
causality in the underlying communication. These chains are
constrained by the timing constraints similar to that of the
AUTOSAR standard. At the task-level abstraction, each task
can be represented in terms of its period, worst-case execution
time and various types of timing requirements such as dead-
line, data age, and data reaction constraints [32]. Note that
the tasks and their corresponding software components at the
software architecture abstraction have the read-execute-write
semantics, which allow them to be adapted to comply with
the Logical Execution Time (LET) model. In addition to these,
there can be indirect temporal requirements such as the number
of messages in a message queue should not be less than a
specific value during a certain operating mode, which then
requires that the task producing the messages for the queue

2https://www.omg.org/omgmarte/
3http://www.mechatronicuml.org/en/index.html
4https://www.grammatech.com/products/code-visualization
5https://www.imagix.com/index.html
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Fig. 3. Architecture analysis.

can be blocked only for a duration that does not violate this
requirement. These kinds of properties are difficult to obtain
from static analysis tools. Therefore, we need a comprehensive
multi-dimensional software comprehension and reverse engi-
neering approach to extract such information from the existing
software architecture, specifically, the timing properties and
constraints, which are crucial in verifying timing predictability
of the system [32].

To extract the necessary timing-related software properties,
we relied on multiple data sources. Essentially, the architecture
documentation, run-time execution logs and domain experts. In
the following, we justify the need for analysing each of these
sources and identify the information that can be obtained from
them, also shown in Fig. 3.

a) Documentation Analysis: The architecture of large
software intensive systems is normally documented according
to the “4+1” architectural view model [33] or an enhanced
variant. The format for architecture documentation can vary
depending on the internal process and industry-relevant certi-
fication requirements. SysML [34] and UML models are some
of the formal description formats for documentation used in
the industry. Complementing such formal description formats
are the textual documents explaining the architecture in natural
language as a part of the documentation. These high-level
architectural models and documents identify the different com-
ponents of the system and the interaction between components,
summarise the design patterns and technologies employed in
the implementation and provide a concise overview of the
functions of these components. By analysing these documen-
tation artefacts, it should be possible to identify chains of
dependent components, the tasks associated with these com-
ponents and the expected timing behaviours. However, during
our analysis, we found that the existing documentation did
not contain any information mapping different tasks to their
respective components and information on expected timing
behaviours was either unavailable or was incomplete in the
architecture documents.

b) Run-time Analysis: While the high-level documents
are good sources of information, the information provided by
such documentation may either be incomplete or may not
reflect the actual implementation. One reason for such an



inconsistency is due to the structure of the development pro-
cess, where the information flow is usually top-down, and the
changes made at the implementation level are not propagated
back to the architecture documents [35]. Additionally, these
industrial software systems have been incrementally developed
over many years with the addition of new functionality, bug
fixing, and other optimisations in each increment. Therefore,
due to the accumulation of undocumented changes made
during implementation over the years, relying solely on high-
level documentation as the only source of information for
modelling the system can result in an inaccurate representation
of the expected system behaviour. This makes it necessary to
consider the run-time logs as complementary sources of the
system information. One approach to understanding the run-
time behaviour of the system is the tracing and measurement-
based approach [36]. Using this approach, information such
as number of context switches, response times, execution
times, number of task instances, periodicity of the tasks,
among others can be collected. By using dynamic analysis
and visualisation tools such as Tracealyzer [36], additional
information such as the communication flow between differ-
ent tasks, identification of shared resources, task chains and
precedence constraints between the tasks can be obtained. The
information gained from the run-time analysis can be used to
refine and enhance the model.

The run-time analysis comes with its own set of conun-
drums. As the system under consideration is configurable,
i.e., the user can configure and specify the runtime behavior,
it is difficult to identify a configuration that can be single
representative of possible configurations for run-time analysis.
One possible approach to address this issue is to use the
“maximum load” approach. We consider the system to be in
“maximum load” state, if under normal operation mode, all
system tasks are active and that each task is executing its most
computationally heavy or memory intensive jobs. Relying on
a single configuration, however, is not sufficient to make
any statistically reliable conclusions about the measurements.
Therefore, another argument would be to gather run-time
behaviour from as many possible configurations as feasible.
Again, identifying this ”feasible” number is not straight for-
ward. This is made even more complicated by the continuous
development process, where code is modified and new builds
generated daily. Identifying a fixed version of the software
for analysis becomes non-trivial for such cases. To simplify
the process and move forward, we use a maximum load
configuration and ensure that all system software components
are active during the trace period. Note that we rely on the
latest released version of the software.

During the run-time analysis of our system, we found that
there were inconsistencies between the expected and observed
behaviours. A few of the inconsistencies were a result of
incorrect configuration of the instrumented code, while others
were actual deviations from the expected behaviour. This
observation highlights the fact that relying on a single source
for information is not only ineffective but also error-prone.
This necessitates the need for expert validation of the collected

information to create a sufficiently accurate system model.
c) Expert Validation: Architectural design decisions are

made by analysing multiple factors such as domain require-
ments, dependencies on services provided by the operating
systems and the underlying hardware platform, among others.
However, the high-level architectural models and documents
do not describe the rationale behind the design decisions and
even if they do, such information is limited. Moreover, in
legacy systems, such documents do not completely reflect the
implementation [35]. Furthermore, as the information from the
run-time analysis is quantitative and statistical in nature, it
is possible to misinterpret any deviation from a commonly
occurring pattern as an inconsistency whereas this could have
been a design decision. To avoid such misinterpretations and
improve system model accuracy, discussions with domain
experts are mandatory during the architecture analysis. These
discussions will be used to understand the rationale behind
the design decisions, and to validate the observations of the
documentation and the run-time analysis phases. In our work,
we were able to validate the inconsistencies such as the
deviation from a commonly occurring pattern as a design
decision and also mark some of the observed results as an
outcome of incorrect code instrumentation configuration.

D. Architecture Transformation

As discussed earlier, the architecture transformation phase
focuses primarily on evaluating potential solutions and identi-
fying the most appropriate ones for the final implementation.
Before we evaluate any solution, we need to identify the
system requirements that need to be considered to identify,
evaluate and qualitatively rank possible solutions. Since in
our case, the migration to multi-core will primarily affect the
runtime behaviour, we focus on the explicit temporal require-
ments, implicit requirements such as the number of messages
in a queue and assigned QoS levels to different functional
domains. An important requirement here is to ensure that
this transformation results in improved system predictability,
performance and that the architecture is scalable in terms
of the number of cores and new functionality that needs to
be integrated into future versions of the software. Since the
terms predictability, performance, and scalability are generic in
nature, we need to ensure that we have measurable definitions
for these terms. Once we define the evaluation criteria, we then
move towards the evaluation process itself. The evaluation can
be carried out in various ways depending on the evaluation
metric and the solution being considered, such as simulation,
model-checking and analytical calculations. Once the evalua-
tion of possible solutions is complete, we rank these solutions
based on an agreed evaluation metric and based on these
rankings, we select the solutions for the final implementation
phase. To ensure that this transformation is systematic, we
divide the transformation phase into the following steps:
1) identification of potential solutions;
2) evaluation of the solutions;
3) ranking of the solutions;
4) selection of the solutions.



a) Identification of potential solutions: Identification
of potential solutions can be done in many different ways.
Although we don’t make any specific recommendations, we
would like to point out that the number of potential solutions
could be infinitely many and we hypothesize that evaluating
each solution will be impossible. Especially in the case of
real-time systems, where the search space in terms of near-
optimal solutions is large [10], [11], [37], [38]. Therefore, a
good starting point in this stage could be the domain experts.
Also, the information from the architecture abstraction and
recovery phases can be a useful guide in reducing the search
space. In our case, we use expert interviews and review
the state-of-art in the real-time systems domain to identify
potential solutions. Another important consideration is that
since application developers are focused primarily on the
application functionality, they rely on the operating systems to
provide support for real-time properties. This implies that in
many cases, only those mechanisms supported by an operating
system can be considered as part of the potential solution set.

As highlighted earlier, the purpose of an abstract system
model is to capture all the relevant properties of the system
but without the functional complexity. This enables creation of
synthetic tasks for simulation and verification of new design
solutions. These abstract task sets can be modified and verified
in short time spans when compared to modification of the
actual implementation of the system. Many of the real-time
workload models such as those reviewed in [22] have been
successfully used to represent practical systems such as in
the avionics domain as well as in the automotive domain.
While many of these workload models consider the tasks to
be independent, we found that the system under study violates
this assumption and that new jobs of tasks are triggered by
jobs of other tasks. Also, the presence of event triggered
components within the system along with multi-rate task
chains implementing a single functionality, requires that the
precedence constraints as well as task chains be considered
when considering potential solutions [31].

Some of the relevant issues that should be addressed by the
potential solutions for transitioning from single core to multi-
core platforms were highlighted by Macher et al. [39], and
Nemati et al. [40]. For example, use of single-core hardware
implies that the system tasks execute in sequential manner. If
run on multi-core, the task precedence constraints may not
be maintained affecting system dependability. Additionally,
systems designed for single-core do not require any mapping
of software and multiple compute resources. However, pre-
dictable execution on multi-core is provided by partitioned
scheduling approaches [38]. Ad hoc partitioning can affect
system performance and scalability. Multi-level caching can
cause data inconsistencies when tasks sharing a variable
are executing on different cores [41]. In the case of fixed-
priority scheduling, priority assignment can impact response
times [37]. Along with these technical challenges, maximiz-
ing the re-use of the system artefacts and the minimal re-
engineering of the system software are essential requirements
that must be considered in the migration process.

b) Evaluation of the solutions: Once the potential so-
lutions have been identified, the next step is to evaluate these
solutions. By evaluation, we refer to the application of the
potential solutions from the previous step to the abstract model
from the architecture recovery stage and measurement of the
identified metrics. The evaluation can be done in different
ways as already highlighted earlier such as simulation in the
case of ART-ML framework [30] or the Cheddar tool [42],
analytical calculations if using techniques such as those iden-
tified in [38] or model-checking if using the timed automata
approach specified in [43].

We would like to point out that given the safety-critical
nature and complexity of the system, we hypothesize that
the potential solution identification and evaluation steps are
rather time consuming and are critical in the migration process.
The time spent during these phases can potentially result in
practical solutions that ensure that the migration process is
successful in meeting the extra-functional requirements.

Moving forward, we return to the question of identifying the
best solution among the many evaluated solutions. To guide
in this direction, we use the ranking approach as follows.

c) Ranking of the solutions: The ranking step of the
transformation phase basically orders the evaluated solutions
in terms of certain criteria. To order the evaluated solutions,
we propose to use the following multi-step approach:
• identify parameters to rank potential solutions;
• provide measurable definitions to the identified parameters;
• arrive at a consensus on measurement methods for the

parameters;
• prioritize or assign weights to the parameters for trade-off

analysis;
• rank the evaluated solutions.

We believe that this approach provides a systematic way
to measure effectiveness of the evaluated solutions and guide
in selection of the final solution. By identifying measurable
parameters, the methods to measure them, and prioritize them
if a trade-off is necessary, we can remove any ambiguity
associated with the perceived effectiveness. To identify these
parameters, we rely on expert interviews and a focus group
discussion consisting of the different domain experts.

d) Selection of the solutions: Once the potential solu-
tions have been evaluated and ranked, the selection of final
solutions should be rather straight forward. However we would
like to point out the fact that there could be solutions that may
optimize one requirement while negatively affecting another.
This situation would need a systematic trade-off analysis. We
leave further discussion on trade-off analysis for future work.

E. Architecture Verification

The last step in the architecture transformation phase is
the verification of the transformed architecture. Here we
essentially verify if the transformed architecture complies with
requirements from the architecture requirements specification
phase and the recovery phase. The verification stage is rather
simple and straight forward since the different steps in the



transformation phase involve verification in the evaluation
stage with the systematic ranking and selection approach.

V. IMPLEMENTATION MIGRATION

So far, we discussed the transformation at the architecture
level of the system in our migration process. We now dis-
cuss the processes necessary to implement the transformed
architecture at the source code level. Although not directly
related to the migration process itself, we consider that some
form of refactoring at the source-code level may be necessary
prior to the migration process. Depending on the existing
logical architecture and the quality of the software, the refac-
toring may address different concerns. For example, removal
of duplicate and dead code, creating components based on
functionality, adoption of the layered architecture similar to
AUTOSAR. For further discussion, we assume that the system
has a layered architecture with well-defined components, that
the logical architecture is capable of handling new components
and modifications in the abstraction layers, and that the source
code is separated according to the components.

Further, we classify the architecture solutions as abstract
component level or functional component level solutions. For
example, if the solution is a new priority order for the tasks,
then it is functional component level solution if the tasks
are associated with the component and that the priorities
can only be changed in the component files. If it is a new
synchronization protocol, then it is an abstract level solution,
which is used by all components and may need a new
implementation. Therefore, before we make the changes, we
identify components that need to be modified, map solutions
that need new components and then implement the changes.

A. Component Identification and Creation

The solutions selected during the transformation phase may
require that changes be made to the existing components
in the system. For example, if the components use nested
semaphores and if the identified solution does not support
nested semaphores, then such nested semaphores need to be
removed. To do this in a systematic manner, we index and
categorize the transformed solutions, review the solutions with
the domain experts and component owners and associate each
component with the solution that requires that component to be
modified. If there are solutions that are classified as abstract-
level solutions or which could not be mapped to existing
components, we create new components for such changes.

B. Implementation

Once all components have been identified for modification
and new components created, the necessary changes are imple-
mented in the source code. Although the concurrency related
issues are addressed during the architecture transformation
phase, it is possible that they could manifest during the im-
plementation stage. Therefore, coding guidelines that address
these issues are provided to the developers to minimise the
manifestation of these issues during the implementation.

VI. VERIFICATION MIGRATION

The system verification and validation stage is the final stage
of the migration process. Typically, for the system such as the
one being considered, a reliable verification process is already
in place. This includes the usual verification approaches such
as unit testing, functional testing, and system integration tests.
Since the architectural transformation is primarily related to
the runtime behaviour and performance, we expect that most,
if not all existing tests related to functional behaviour to be
valid. Therefore, we hypothesise that any failures here could
be related to the concurrent execution of the system tasks.
To maintain the quality of the system software, we focus on
augmenting the existing tests with concurrency related testing
approaches along with performance verification. Again, to
approach this enhancement in a systematic way, we divide the
verification migration process into concurrency testing and the
migration validation phase.

A. Concurrency Testing

The goal during this phase is to augment the existing
verification process to identify concurrency related issues.
These include race conditions, atomicity violations and dead-
locks. A comprehensive review can be found in the work by
Bianchi et al. [44]. We propose the analysis of solutions during
the architecture transformation phase to identify scenarios
that could lead to potential concurrency issues. This way, it
will be possible to create tests for those specific scenarios.
Additionally, static code analysis that identifies concurrency
bugs is added to enhance the verification process.

B. Migration Validation

During this phase, we focus on validation of the migration
process itself. We begin by identifying the parameters to
qualitatively validate the outcome of the process. We use
two metrics for this purpose: (i) results of the functional
and system integration tests, and (ii) performance related
parameters such as response times. In the first case, the number
of failures should not be greater than those from the pre-
migration version. In the second, the values of the performance
parameters should not be less than those measured with the
pre-migration version. We point out here that although the
validation is the last step, depending on the development
process, this validation can be applied to each build prior to
release. By using the results of the validation with each build,
the pace of the migration process can be measured.

VII. TOOLS FOR MIGRATION

Software migration from single-core to multi-core architec-
tures is a complex process and requires the use of different
tools at different stages of the migration process. Here, we
review some of the tools that can be used during the different
phases of the migration process.



A. Architecture Representation

Software requirements and the architecture can be described
in natural language and as models using different modelling
languages such as the UML. For embedded systems with
timing requirements, there exist many tools that allow mod-
elling and specification of different views of the system. The
APP4MC tool6, allows modelling and specification of the
hardware as well as software components and provides support
for scheduling algorithms. Another tool is the MARTE [45]
profile for UML. The MARTE profile extends the UML
models to include description of timing requirements. The
MAST tool-suite7 allows for modelling as well as performing
automatic schedulabilty analysis and supports many of the
common scheduling algorithms for single-core as well as
multi-core architectures. UPPAAL [27] is another tool for
modelling the software as timed-automata and it supports
model checking for formal analysis and verification. A few
concerns with many of these tools are that some have steep
learning curves, while others such as UPPAAL are not scalable
to large systems and almost all lack support for automatic
conversion of existing source code to abstract models.

B. Architecture Recovery

For architecture recovery, static code visualization tools
such as CodeSonar and Imagix could be used. For dynamic
analysis, tools which provide visualization of the run-time be-
haviour along with statistical information on timing properties
can be effective. For example, Tracelyzer allows visualization
of the run-time behaviour and provides different views to
analyse this information.

VIII. CONCLUSION

Migration of complex real-time embedded software from
single-core to multi-core computing platforms is non-trivial.
To ensure a successful migration of these software systems, a
systematic approach is needed that takes multiple software en-
gineering perspectives into account such as software processes,
software architectures, requirements engineering, reverse engi-
neering, model-based development, real-time scheduling and
schedulability analysis. In this paper, we presented a system-
atic multi-stage methodology for migrating real-time industrial
software systems from single-core to multi-core computing
platforms. In this regard, we studied a complex real-time
software system from the automation industrial domain that
requires such a migration. We used focus group discussions,
expert interviews and reviewed the literature to guide the de-
velopment of the migration strategy. We identified the software
architecture transformation as the main phase in the migration
process and presented a systematic approach to perform the
transformation with emphasis on the architecture recovery and
an evaluation mechanism for possible multi-core solutions. To
select suitable solutions from the set of evaluated approaches,
we proposed ranking of these solutions based on measurable

6https://www.eclipse.org/app4mc/
7https://mast.unican.es/

parameters for the final implementation and we reviewed some
of the tools that can be used during the migration process.
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[7] G. Mustapić, J. Andersson, C. Norström, and A. Wall, “A Dependable
Open Platform for Industrial Robotics – A Case Study,” in Architecting
Dependable Systems II, R. de Lemos, C. Gacek, and A. Romanovsky,
Eds. Springer Berlin Heidelberg, 2004, pp. 307–329.

[8] A. Avizienis, J. . Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, Jan 2004.

[9] S. Mubeen, E. Lisova, A. Feljan, “A Perspective on Ensuring Predictabil-
ity in Time-critical and Secure Cooperative Cyber Physical Systems”,
20th IEEE International Conference on Industrial Technology, 2019.

[10] C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Altmeyer, and R. I.
Davis, “A survey of timing verification techniques for multi-core real-
time systems,” ACM Comput. Surv., vol. 52, no. 3, pp. 56:1–56:38, 2019.

[11] R. I. Davis and L. Cucu-Grosjean, “A survey of probabilistic schedula-
bility analysis techniques for real-time systems,” LITES, vol. 6, no. 1,
pp. 04:1–04:53, 2019.
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